INFORMATION PROCESSING 77, B. GILCHRIST, EDITOR
© IFIP, NORTH-HOLLAND PUBLISHING COMPANY (1977)

COROUTINES AND NETWORKS OF PARALLEL PROCESSES

GILLES KAHN
Iria-Laboria
Rocquencourt, France

DAVID B. MACQUEEN
University of Edinburgh
Edinburgh, Scotland, U.K.

The concept of coroutine or process is useful in a large class of applications, usually involving incre-
mental generation or transformation of data. We present a language based on a clear semantics of process
interaction, which facilitates well-structured programming of dynamically evolving networks of processes.
These networks exhibit the same input/output behavior whether they are executed sequentially or in
parallel. Sample program proofs are used to illustrate the benefits of the language's simple denotational
semantics. The language serves also to clarify the relationships between coroutines, call-by-need,

dynamic data structures and parallel computation.

1. INTRODUCTION

Many algorithms are naturally organized as systems
of independent processes which coexist and interact
with one another. In this paper, we present a struc-—
tured approach to the programming of such systems.
This approach is embodied in a programming language
which subordinates control to structure, relieving
the programmer of the burden of control management
and permitting process systems to be executed either
sequentially or concurrently with the same result.
The language was designed to reflect the clear
semantic conception of process interaction presented
in (13, with the result that programs are relatively
easy to verify.

1.1 Coroutines, multipass algorithms, and pipelines

Our notion of a process is derived from Conway's
original concept of coroutines, [2] which he intro-
duced as an improved way of executing multipass
algorithms. In his words, "... a coroutine is an
autonomous program which communicates with adjacent
modules as if they were input and output subroutines."
The coroutines represent successive passes each of
which inerementally transforms a stream of data, so
that their execution can be interleaved in time
according to a "demand-driven" scheduling strategy.
This mode of execution was described succinctly :
“When coroutines A and B are conmnected so that A
sends items to B, B runs for a while until it en—
counters a read command, which means it needs some-
thing from A. The control is then transferred to A
wnitil it wants to write, whereupon control is retur-
ned to B at the point where it left off."

Conway went on to note that coroutines can be execu-
ted simultaneously if parallel hardware is available.
This is possible without time-dependent side effects
because the coroutines communicate with each other
only via input/output instructions, and this in turn
follows from the fact that the coroutines are model-
ling separate passes of a multipass algorithm. When
executed in parallel, such a system is called is a
"pipeline." Many studies of parallel program schemata
have been concerned with generalizing this simple
linear organization.[3-5]

The classic illustration of coroutines is the coope-
ration between the lexical analyzer and the parser
in a compiler. However, algorithms structured as a
set of interacting coroutines occur in many appli-
cations besides compiling, such as input/output
handling, [6] text manipulation, [7] algebraic
manipulations, [8] sorting, [9] numerical computation,
[10] and artificial intelligence. [11] The UNIX
operating system [12] provides a "pipelining coubi-
nator" in its command language which is used to
connect programs together in linear pipelines for
quasi-parallel execution.

1.2 Alternative approaches to coroutines

A different approach to coroutines, typified by the
SIMULA control primitives call, detach and resume,

is fairly widespread. [13-14] The SIMULA primitives
can be used to implement Conway's style of coroutines,
where control transfers are hidden in the input/
output commands, but they also allow many other types
of interaction which often result in intricate
control relationships. Use of the resume command in
particular leads to obscure control structures,
because it resembles a go to command with a moving
target. For the sake of program reliability and
verification one needs to impose discipline on the
use of these primitives, and when this is done
716-181 it leads to the structuring of process in-
teraction along the lines of Conway's original
proposal.

1.3 Related ideas

The evaluation mechanism used in our system has its
origins in theoretical work [19-20] on "call-by-
need" parameter passing. The same work has inspired
"lazy evaluators" for LISP 21,22] which in some
respects behave like our process networks and can
execute slightly modified versions of some of our
examples. These systems, however, do not have any
analogue of our cyclic network structures.

Communication channels are related to the streams
of Landin, 23] who foresaw their connection with
coroutines. In fact, our language can be viewed as

a powerful strear processing language. A simplified
version of streams already exists in POP-2 [24] in
the form of dynamic lists, but their usefulness is
limited because the lack of processes in POP-2 makes
it awkward to define stream transformations.

2. THE PROGRAMMING LANGUAGE

2.1 Introduction

The language presented here provides concise and
flexible means for creating complex networks of
processes which may evolve during execution. The key
concepts are processes and structures called channels
which interconnect processes and buffer their commu-
nications. Channels carry information in one direc-
tion only from a producer process to one or more
consumer processes, and they behave like unbounded
FIFO queues.

In this section we explain how processes are decla-
red, how they communicate via channels, and how
networks of processes are created and transformed.
Then we introduce a more powerful functional notation
and discuss iterative versus recursive reconfigura-
tion of processes.

994 1977 IFIP Congress Proceedings

The language has been implemented in Edinburgh as an
extension of POP-2. [20] Although its concrete
syntax follows the style of POP-2 (e.g., the Algol
assignment "A:=B" is written B + A in POP-2), no
feature of POP-2 that departs significantly from
PASCAL or ALGOL is used.

2,2 Processes

Each process is specified in a process declaration,
patterned after a procedure/function declaration in
POP-2 :

Process <name> <parameter—list> ;
<process body>
Endprocess

The parameter list is partitioned into two sublists :
the ordinary parameters and the port parameters.
Parameters in the first group are evaluated according
to the rules of POP-2. Port parameters [25] will be
bound to communication channels so that a process
may communicate with its neighbors in the network.
In the declaration of TRANSDUCER (see fig.l) A is
an ordinary parameter, called by value, while QI and
Q0 are respectively input and output ports. In a
typed language, say PASCAL, the process heading
would appear like this :
Process TRANSDUCER (A: Integer; QI: in integer;

Q0: out integer);
The body of a process declaration is similar to the
body of a procedure in POP-2 : variables and func-
tions may be declared local to the process (thus no
restriction is placed on the amount of memory avai-
lable to a process). Conceptually, each process is
thought of as executing on a separate machine so
that it cannot communicate with any other process
except through interconnecting channels. Hence :

(1) No global variable may be updated by a process

(2) Arrays, but not references to arrays, may be
sent along communications lines

(3) More generally, if a reference to the dynamic
storage area is sent by a process, the area
that may be reached through this reference must
become read-only.

(Note that (3) is automatically satisfied in purely
applicative languages). The constraints above do not
mean that two processes cannot access a common file
or table, but a process should be responsible for
the management of all accesses to such a shared
object, in the manner advocated in [261, This is the
way, for example, in which we deal with input/output
in our system.

All constructs of POP-2 may occur in the body of a
process. Two primitive functions are provided to
transmit information between processes, and a recon—
figuration instruction allows the redefinition of
the network.

2.3 Transmission primitives

A process is connected to its neighbours via one-way
communication channels. The function GET is used to
obtain data : if A is an input port, the evaluation
of the expression GET(A) yields the next item arri-
ving via port A. If no value ever arrives, this
evaluation does not terminate. Consecutive evalua-
tions of GET(A) yield consecutive items, as if A was
a sequential input file. The procedure call
PUT(<expression>,B) sends the result of evaluation
of the first argument along the chanuel bound to
output port B.

Availability of an item at an input port camnot be
tested. This is not an oversight but a deliberate
decision to exclude time-dependent input/output
behavior. Certain sections of an operating system
demand a primitive of this kind, but the absence of
time-dependencies gives a distinct flavour to pipe-
lining as opposed to other kinds of parallel proces-
sing and permits the simulation of a pipeline by a
set of coroutines. Note also that including such a
primitive changes drastically the mathematical
semantics of the language. [27]

2.4 Reconfiguration

While a process program is running, it may be visua-
lised as a directed graph.where nodes represent
processes and edges stand for communication channels.
During computation, this graph may evolve in a top-
down fashion : a node may be replaced by a subgraph,
provided this subgraph can be appropriately spliced
into the incoming/outgoing edges (i.e., channels) of
the original node. A reconfiguration instruction has
the form :

doco <body> closeco

and its body specifies a transformation of this
sort. The keyword doco stands for 'do concurrently"
or "do coroutines." Closeco is just the matching
closing bracket. The body of the instruction has two
parts :

(i) the declaration of new communication's lines
(edges in the new subgraph)

(ii) a list of process calls. Port parameters in
these calls may be bound either to channels that
have just been declared or to ports of the parent
process, 1i.e., the process in which this recon-
figuration instruction occurs.

In fig.l, the process GO contains a reconfiguration
instruction. Its evaluation provokes the graph trans-—
formation displayed on fig.2.

The two calls to TRANSDUCER set up two distinet
instances of this process. As a reconfiguration
instruction merely specifies a new setup, the order
in which process calls occur is, for the moment,
irrelevant.*

Process PRODUCER out QO;
vars N; ¢ > N;
repeat INCREMENT N; PUT(N,Q0) forever
Endprocess;
Process TRANSDUCER A in QI out QO0;
repeat PUT(A + GET(QI),Q0) forever
Endprocess;
Process CONSUMER in QI;
repeat 20 times PRINT(GET(QI)) close
Endprocess;
Process GO;
doco channels Q1 Q2 Q3;
PRODUCER (Ql); TRANSDUCER(!,Q1,Q2);
TRANSDUCER(-1,Q2,Q3); CONSUMER(Q3)3;
closeco
Endprocess;

Start doco GO() closeco;
1234567891011 1213141516 17 18 19 20

Fig.l. First example.

OO

2

\[8
O

-~
o
w

Fig.2. Reconfiguration.

* As the reader realizes by now, the program of fig.l
does not achieve very much. It just serves to illus-
trate the first features of the language.

Coroutines and Networks of Parallel Processes 995

Remark : In Algol, a procedure call lumps together
three distinct operations : the creation of new
procedures, the binding of formal to actual parame-
ters and control transfer. In ISWIM (28] or SL5[29]
some of these actions may be performed separately.
Here, processes are bound to their arguments as soon
as they are created, but control is transferred in
an entirely separate manner.

Conway's original coroutine scheme requires the
coroutine network to be acyclic. The theory tells us
that this restriction is unnecessary. From a pragma-
tic point of view, the extra cost incurred at execu-
tion time is minimal and feedback loops in coroutine
programs are in fact quite useful. Another constraint,
implicit in Conway's paper, is essential. Call a
process a producer (resp. consumer) for Q if it is
bound to channel Q via an output port (resp. input
port). The sequence of items that will be sent on Q
during execution of the program is the history of Q.
If the history of every communication variable is
determined by the value of the program's parameters,
a parallel program is called determinate. A simple
rule guarantees determinacy of process programs @ at
any given time during execution, a channel must be
bound to a single producer, and to a single output
port of that producer. Note that several consumers
may share the same input line : in this case all
consumers get the same input sequence.

2.5 Activation

Within a POP-2 program, an activation instruction of
the form :
start <reconfiguration instruction>
may be issued to request execution of a process
program. This instruction terminates when the process
_ program terminates. Once an initial network has been
set up by the reconfiguration instructiom, it is set
in motion and from then on control transfer is auto-
matic. In the simple program of fig.l, an activation
instruction is issued at top-level. The occurrence of
the POP-2 prompt character (':') after the results
shows that the program did terminate.

The program of fig.3 is more interesting. This form
of the sieve of Eratosthenes appears, to the best of
the authors' knowledge, for the first time in £301.
For each newly discovered prime, a FILTER process is
created by SIFT, whose task it is to remove all mul-
tiples of that prime from the integers to be consi-
dered. A proof of the correctness of this program is
sketched in section 4.

Process INTEGERS out QO;

Vars N; 1 + N;

repeat INCREMENT N; PUT(N,Q0) forever
Endprocess ;

Process FILTER PRIME in QI out QO;
Vars N;
repeat GET(QI) - N;
if (N MOD PRIME)# @ then PUT(N,Q0) close
forever
Endprocess;

Process SIFT in QI out QO3
Vars PRIME; GET(QI) - PRIME;
PUT (PRIME,Q0); comment emit a discovered prime;
doco chanmels Q;
FILTER(PRIME,QI,Q); SIFT(Q,Q0)
eloseco
Endprocess;

Process OUTPUT in QI; Comment this is a library process;
repeat PRINT(GET(QI)) forever

Endprocess;

Start doco channels Q1 Q2;
INTEGERS(Q1); SIFT(Ql,Q2); OUTPUT(Q2);
eloseco;

Fig.3. Sieve of Eratosthenes.

2.6 Functional notation

The constructs explained so far are sufficient for
all programming. However, we can write much more
elegant programs in a functional notation. Most
processes have a single output line so that they are
functions from streams to streams. (23] Thus in the
way that ALGOL 60 permits functions along with proce-
dures, processes may be declared functional and used
to build stream expressions. In process calls occur-
ring in reconfiguration instructions, such expres—
sions may be provided as arguments where input chan-
nels are expected. For example, the program in fig.3
will now look like :

Process INTEGERS => QO;

Proééés FILTER PRIME Zn QI => QO;
Pra;é;s SIFT 7n QI => QO0;

Praééés OUTPUT in QI;

v

start doco OUTPUT(SIFT(INTEGERS())) closeco;

This new notation is very convenient because many
channels are created implicitly. But stream expres-
sions denote only acyclic subnets. A simple construct
(akin to Landin's WHEREREC) allows networks to be
built with cycles. In a reconfiguration instructiom,
we allow now a list of elementary reconfigurations
where, in the familiar BNF notation :

<elem.reconf>: :=<process call>
|<e1eﬂ.reconf>WHERE<chan-list>{iZE}<Stream'exp‘1iSt>

In the program of fig.4, a reconfiguration written in
this style can be found in the activation. Since X
occurs both in the channel list and within the stream
expression on the right of IS, a network with a cycle
is being specified. Note also that X is shared as
input by the three.instances of TIMES and the process
OUTPUTF .

Finally, a difficulty crops up when, as a consequence
of a reconfiguration, the newly created network has
to output values on a channel previously bound to an
output port of the parent process, as happens in SIFT
for example (see fig.3). Another kind of elementary
reconfiguration, called splictng must be included :

<list of stream expressions> => <list of output ports>

This specifies that the stream expressions on the left
are to provide data to the channels bound to the ports
on the right. So the reconfiguration in SIFT is now :

doco SIFT(FILTER(PRIME,QI)) => QO closeco

Note that this device offers a simple way to have a
network shrink rather than expand. For example the
process QCONS :

Proceas QCONS A in QL => Q0

PUT(A,Q0);
doco QI => QO closeco
Endprocess

first emits A and then ties its input to its output
channel and vanishes.

2.7 Optimizing recursion

The situation of the process SIFT is a common one.
This process reconfigures into a subgraph containing
a new instance of SIFT and disappears. Instead, SIFT
could merely create in front of itself new FILTERs
upon receiving new inputs and thus be iterative rather
than recursive. To indicate that the parent process
is to be included in a new configuration, the dummy
process call CONTINUE is used. Usually the bindings
of the parent process have to change. An assignment
permits switching inputs, splicing is needed to
reconnect outputs. The transformed version of SIFT
is

996 1977 IFIP Congress Proceedings

Process SIFT in QL => QO0;
Vars PRIME;
repeat
GET(QI) ~ PRIME; PUT(PRIME,QO)
doco FILTER(PRIME,QI)*QI; CONTINUE closeco
forever
Endprocess ;

In our implementation, significant time and space
savings result from this transform.

2.8 An example

The programming style is now much less imperative.

To illustrate this, consider a problem treated by
Dijkstra. (31] One is requested to generate the first
N elements of the sequence of integers of the form

283b5c(a,b,c20) in increasing order, without omission
or repetition. The idea of the solution is to think
of that sequence as a single object and to notice
that if we multiply it by 2, 3 or 5, we obtain sub-
sequences. The program of fig.4 embodies the idea
that the solution sequence is the least sequence
containing | and satisfying that property. The pro-
cess MERGE assumes two increasing sequences of inte-
gers as input and merges them, eliminating duplica-
tions on the fly. The process TIMES multiplies all
elements of its input channel by the scalar A. The
process OUTPUTF is a library process. Notice that
control considerations do not intervene in'the design
of this program.

Remarks : (1) What is an implicit quantity in other
coroutine systems, the history of a communication's
variable ("mytical" variable in [161), is now expli-
cit and subject to calculations. The style of program™
ming also recalls LUCID, [34] which has a similar
semantics. The pay-off will be in easier correctness
proofs. Note also that this programming language is
just what is needed to compute over real numbers

with unlimited accuracy. [35]

Process MERGE in QI1 QI2 => QO0;
Vars 11, 12; comment local buffers;
GET(QI1)~11; GET(QI2)~>12; Comment initialisation;
loopif 11<12 then PUT(I1,Q0); GET(QII)~II
elseif 11>12 then PUT(12,Q0); GET(QI2)~>I2
else comment 11 = I2. Remove duplicationms;
PUT(I1,Q0) ;GET(QI1)~I1; GET(QI2)+I2
close
Endprocess;

Process TIMES A in QI => QO
repeat PUT(A*GET(QI),Q0) forever
Endprocess;

Start doco
OUTPUTF (20, X)
where chamels X is
QCONS (1,MERGE(TIMES(2,X),
MERGE(TIMES(3,X),
TIMES(5,X))))
closeco

12345689 101215 16 18 20 24 25 27 30.32 36

Fig.4. An example from Dijkstra.

(2) Returning to the particular program of fig.4, it
can be made much more efficient if we eliminate redun-
dant number generation, calling it with :

start doco OUTPUTF(20,X)
where chamels X,Y,Z are
QCONS(1,MERGE(TIMES(2,X),Y)),
QCONS(3,MERGE(TIMES(3,Y),Z)),
QCONS(5,TIMES(5,2))
closeco

3. EXECUTION

3.1 Outline

From an operational point of view, a process network
is a collection of independent machines which inte-
ract by making demands upon or sending data along

communication channels. Processes are represented
by data structures containing local access environ-
ments and control continuations. A channel is repre-
sented by a linear list containing items stored in
the channel and terminating with a reference to the
current producer for the channel. Consumers have
pointers intc this list which are updated by the GET
operation, while the producer inserts new items at
the end of the list via the PUT operation. A recon—
figuration instruction results in :

(1) creation of new processes and channels,

(2) initializing or updating input channel pointers,

(3) initializing or updating channel producer

information.

A single constraint regulates the activity of proces-
ses : if a process requests input data from an empty
channel, it must stop and wait until that data is
provided by the channel's producer, which must be
activated if possible. Given this constraint, a range
of scheduling strategies are possible, from pure
coroutine execution where a single process is active
at any time to full parallelism where all processes
run except when they are waiting for input. These
scheduling strategies all yield the same input/output
behavior, because the exclusive use of channels for
interprocess communication and the careful choice of
data transmission primitives serve to insulate pro-
cesses from scheduling-dependent information.

3.2 Coroutine mode of execution

In this mode, activation of processes is strictly
demand driven. Since the demand must originate some-
where, a process is selected to drive the whole net-
work, and the demands of this driving process propa-
gate through the network via the execution of trans-
mission primitives and reconfiguration instructions.
(i) Selection of the driving process

The last process created in the execution of the
activation instruction is designated as the initial
driving process and is the first process activated.
Normally, it is that process which is responsible
for producing (e.g. printing) the ultimate outcome.*
(ii) Transmission primitives

Both GET and PUT may involve transfer of control.
Applying GET to an empty input channel C causes sus-
pension of the running process and activation of the
producer for C. The channel C is made hungry to indi-
cate that there is a consumer waiting on it. Applying
PUT to a hungry output channel causes suspension of
the running process and resumption of the waiting
consumer, whereupon the interrupted GET operation is
completed.

Remarks : (1) There is no transfer of control when
GET is applied to a mnonempty input channel or PUT is
applied to a nonhungry output channel.

(2) If as a result of a GET operation the
scheduler attempts to activate a producer which is
itself waiting, further computation is impossible and
deadlock has been detected.

(iii) Reconfiguration

Except for the driving process, any process which is
active is trying to satisfy some hungry output chan-
nel. After such a process reconfigures, the scheduler
gives control to the (possibly new) producer for that
hungry channel.

When the driving process reconfigures it may survive
(i.e., remain in the new configuration) in which case
it retains control, or it may disappear, in which
case the last process created is chosen as the new
driving process and is activated.

3.3 Parallel mode of execution

After a PUT instruction sends an item on a hungry
channel, the waiting consumer must be reactivated.
But if additional processors are available there is

* . e s -

The last process created in a reconfiguration is
the outermost one in the last elementary reconfigura-—
tion.

Coroutines and Networks of Parallel Processes 997

no need to deactivate the producer process ; it may
continue to run in anticipation of further demands
for its output. In this way, computations that were
interleaved in time can be made to overlap, and some
process switching overhead is saved as well, without
increasing the programmer's burden. The one drawback
is that the process which was not deactivated may
carry out nonessential computation, i.e., computation
that is not needed to produce the final outcome of
the program. This nonessential computation may even
involve the recursive creation of superfluous pro-
cesses.

We have developed a method of restraining such over-
anticipation and verified its effectiveness in quasi-
parallel simulations. The idea is to associate with
each channel C a non-negative integer A(C), called
the anticipation coefficient. Once activated, the
producer for C will not be deactivated by PUT until C
contains at least A(C) many unconsumed items. Note
that the coroutine mode of execution results when
A(C) = 0 for all channels C. The anticipation coeffi-
cient can only be accessed by the primitives GET and
PUT. It is set by a special primitive ANT(n,C).Nor-
mally, the anticipation coefficient should be set as
the channel is passed as an input parameter to a new
process. In any case, the specifications for anticipa-
tion will not affect the semantics of the program,
nor will they require alterationms to its basic design.

4. PROGRAM PROOFS

For a detailed presentation of the mathematical
semantics of the programming language, the reader is
referred to L1]. Roughly, to any program one associa-
tes a set of recursive equations. Standard proof
techniques can then be used. [19,32] A form of
structural induction is used repeatedly. Suppose one
wishes to prove that a sequence X has property P
(1) First one proves, usually by induction, that P
holds for a sufficiently rich set of finite ini-
tial segments of X.

(2) Second one proves that P admits induction, that
is that if it holds for sufficiently many finite
initial segments of some sequence, it must hold
for the whole sequence as well.

Formal proofs are too long to be given here in detail,

so we present only the articulating lermas.

4.1 Program of fig.4

Lemma 1 (Properties of MERGE) : If L] and L, are
strictly increasing sequences of integers t%en
(1) MERGE(L‘,LZ) is strictly increasing

(2) As sets, MERGE(L ’LZ) cL UL2 and if L1 and L2
are infinite, equality hoids.
(3) length (MERGE(LI.Lz))Zmin(length(Ll),length(Lz))

Lerma 2 (Properties of TIMES) : if A is a positive

integer, L a strictly increasing sequence of integers

then :

(1) TIMES(A,L) is a strictly increasing sequence of
integers.

(2) Each element of TIMES(A,L) is the product of A
by some element of L.

(3) length(TIMES(A,L))=length(L)

Lemma 3 : The variable X denotes a sequence of infi-

nite length.

Lemma 4 : The solution sequence satisfies the recur-

sive equation defining X.

A special case of McCarthy's recursion induction £33}

is applicable here and so we conclude from lemmas 3

and &4 that X is the solution sequence. (The proof of

the improved version presents no difficulty.)

4.2 Sieve of Eratosthenes (recursive form)

Lemma 1 : INTEGERS() is exactly the increasing sequen-
ce of all integers starting with 2.

Lerma © @ For any integer p and sequence L, the
sequence FILTER(p,L) is a subsequence of L that
contains :

(1) no multiples of p

(2) all members of L that aren't multiples of p.

Lemma 3 : For any sequence L, SIFT(L) is a subsequen-
ce of L.

Lemma 4 : If L is an increasing sequence and p occurs
in SIFT(L) no other multiple of p occurs in SIFT(L).

Lemma 5 : 1f every element of L is greater thanm !

and if p is a prime occurring in L, then p occurs in

SIFT(L) .

By lermas 1 and 5, the output of the program must
contain all primes. By lemma 4, composite numbers
cannot occur. Hence the program generates exactly the
primes, in increasing order by lemma 3.

Remark : Notice that in contrast to [21-22] our
semantics involves recursively defined data as well
as recursively defined functions.

CONCLUSION

In the course of developing this language we have
written a considerable number of applications programs,
including four types of sorting, a formal power series
package with 17 series operations, and a pipeline
version of the discrete Fourier transform. This expe-
rience has confirmed most of our expectations, indi-
cated limitations, and suggested generalizations.

We have found the language conducive to clear, well-
structured ptogramming. Programs are conceived func-
tionnally and operational concerns such as process
scheduling do not enter into their design. The recon-
figuration statement encourages top-down development,
and the functional notation provides a concise way of
expressing the relationships between processes. Pro-
gram proofs can be carried out at a level of abstrac-
tion which avoids the intricacies of dynamic behavior
~-i.e., in terms of operations on abstract data rather
that machine state transitioms.

As our ideas about process networks evolved, channels,
considered as data structures, assumed a more central
role. A channel is an example of a dynamic data
structure, i.e., a structure which is gradually gene=
rated by processes embedded within itself. To a consu”
mer, these structures behave as though they were
already fully defined, because as soon as one accesses
a new part of the structure it becomes defined. Our
experience, together with theoretical work by Kahn
and Plotkin, suggests that process networks should

be generalized by broadening the class of dynamic
data structures used for process comnunication - from
linear lists to trees, tableaux, etc. For example, in
a compiler the abstract syntax tree might be a dyna-
mic tree generated from the input text by a number of
parser processes operating inm parallel, while several
consumer processes work from the top down generating
code.

As a final comment, this study seems to provide fur-
ther evidence for developing the model theory of
programming languages. [367 As the level of expres—
sion in programming languages increases, their inter-
preters will also become increasingly sophisticated.
In the design and proof of programs, a firm grip on
the model theory of the language will prove more
useful than the knowledge of a delicate (and mythical)
interpretive mechanism.

ACKNOWLEDGMENT

We owe thanks to Rod Burstall, Gordon Plotkin, and
Jerry Schwarz for many helpful discussions. The
authors gratefully acknowledge support from (respec—
tively) the Compagnie Internationale des Services en
Informatique and the U.K. Science Research Council.

REFERENCES

[1] Gilles Kahn, The semantics of a simple language

for parallel programming, Proceedings of IFIP
CONGRESS 74, North-Holland Publ. Co, 1974.

r2] Melvin E. Conway, Design of a separable transi-
tion-diagram compiler, Communications of the ACM,
vol. 6, no 7, July 1963, 396-408.

998

1977 IFIP Congress Proceedings

€3]

[4]

5]

[61

(71

(83

f91

r1o]

"11]

[12]

[133

[14]

f15]

L16]

[171

[18]

7191

r20]

(211

[221

[23]

[24]

Richard M. Karp and Raymond E. Miller, Parallel
program schemata, Journal of Computer and
System Sciences, vol. 3, no 1, 1969, 147-195.

Duane Adams, A computation model with data flow
sequencing, Ph.D. Dissertation, Stanford Univer-
sity, Computer Science Dept., December 1969.

Jack B. Dennis, On the design and specification
of a common base language, in Computers and
Automata, Brooklyn Polytechnic Institute, 1971.

Donald E. Knuth, The art of computer program-
ming, Fundamental Algorithms, vol. I, Addison-
Wesley, Reading, Mass. 1968.

Brian W. Kernighan and P.J. Plauger, Software
Tools, Addison-Wesley, Reading, Mass. 1976.

D. Barton, I.M. Willers and R.V.M. Zahar, An
implementation of the Taylor series method for
ordinary differential equations, The Computer
Journal vol. }4, no.3, 243-248.

Donald E: Knuth, The art of computer programming

Sorting and searching, vol. 3, Addison-Wesley,
Reading, Mass. 1973.

W.K. Pratt, J. Kane and H. Andrews, Hadamard
transform image coding, Proceedings of the IEEE,
vol. 57, no.l, 58-67.

J.L. Stansfield, Programming a dialogue teaching
situation, Ph.D. Thesis, Dept. of Artificial
Intelligence, University of Edinburgh, 1974.

Dennis M. Ritchie and K. Thompson, The UNIX
operating system, Communications of the ACM,
vol. 17, no. 7, July 1974.

Ole-Johan Dahl and C.A.R. Hoare, Hierarchical
program structures, in Structured Programming,
Academic Press, 1972.

W. Morven Gentleman, A portable coroutine system,
Proceedings of the IFIP CONGRESS 1971, North-
Holland, 1971.

G. Lindstrom, Control extension in a recursive
language, BIT, vol. 13, no.l, 1973, 50-70.

Maurice Clint, Program proving : coroutines,
Acta Informatica, vol. 2, no.l, 1973, 50-63.

P.A. Pritchard, A proof rule for multiple corou-
tine systems, Information Processing Letters,
vol. 4, no.6, March 1976.

Ole-Johan Dahl, An approach to correctness proofs
of semi-coroutines, Symposium on Mathematical
Foundations of Computer Science, A. Blikle Ed.,
Springer Verlag, 1976, 157-174.

Jean E. Vuillemin, Proof techniques for recur-
sive programs, Ph.D. Thesis, Stanford University
1973.

Christopher P. Wadsworth, Semantics and pragma-
tics of the lambdacalculus, Ph.D. Thesis, Uni-
versity of Oxford, September 1971.

James H. Morris and P. Henderson, A lazy evalu-
ator, Proceedings of the Third ACM Conference
on Principles of Programming Languages, January
1976.

D.P. Friedman and D.S. Wise, CONS should not
evaluate its arguments, Third International
Colloquium on Automata, Languages and Program-
ming, Edinburgh University Press, 1976.

Peter J. Landin, The correspondence between
ALGOL 60 and Church's lambda notation : Part 1,
Communications of the ACM, vol. 8, no.2, Februa-
ry 1965, 89-101.

R.M. Burstall, J.S. Collins and R.J. Popplestone,
Programming in POP-2, Edinburgh University Press,
1971.

[25]

ra2e6]

£271

[281]

[29]

f301

£31]

£32]

[33]

[34]

[35]

[361

Robert M. Balzer, An overview of the ISPL
computer system design, Communications of the
ACM, vol. 16, no.2, February 1973, 117-122.

Carl Hewitt, et al. Behavioral semantics of
nonrecursive control structures, Colloque sur
la Programmation, Springer Verlag, 1976.
Gordon Plotkin, A powerdomain comstruction, to
appear in SIAM Journal on Computing.

Peter J. Landin, A lambda-calculus approach,
in Advances in Programming and Non-numerical
Computation, Pergamon Press, 1966.

D.E. Britton, F.C. Druseikis, R.E. Griswold,
D.R. Hanson and R.A. Holmes, Procedure referen-
cing environments in SL5, Third ACM Symposium
on Principles of Programming Languages, January
1976.

M. Douglas McIlroy, Coroutines, Internal report,
Bell Telephone Laboratories, Murray Hill, New
Jersey, May 1968.

Edsger W. Dijkstra, A discipline of programming,
Prentice Hall, New Jersey, 1976.

Robin Milner, Implementation and applications
of Scott's logic for computable functions, ACM
Conference on Proving Assertions about Programs,
January 1972.

John McCarthy, A basis of a mathematical theory
of computation, in Computer Programming and
Formal Systems, Braffort and Hirschberg, Ed.,
North-Holland, Amsterdam, 1963.

Edward A. Ashcroft, William Wadge, Proving
programs without tears, Symposium on Proving
and Improving programs, IRIA, Rocquencourt,
G. Huet and G. Kahn Ed., 1975.

Edwin Hiedmer,.Exaktes rechnen mit rellen
Zahlen, Eidgenossische Technische Hochschule,
Zurich, Bericht mno. 20, July 1976.

Dana Scott, Outline of a mathematical theory of
computation, Proceedings of the Fourth annual
Princeton Conference on Information Sciences

and Systems, 1970, 169-176.

