\usepackage{amsmath} \usepackage{amssymb}

Sparsest-cut and negative-type metrics

Recall that the sparsest-cut value $\beta$ is defined as:
\[ \beta = \min_{\varnothing\neq S\subseteq V}\; \frac{|\delta(S,\overline{S})|}{|S|\cdot|\overline{S}|} \]

Arora-Rao-Vazirani: Key Theorem

Assume $x_1,\dots,x_n\in S^{d-1}= \{x\in\mathbb{R}^d\,|\,\|x\|=1\}$ are such that for all $i,j,k\in[n]$ it holds that $\angle x_ix_jx_k \leq \pi/2$, as well as:
\[ \frac{1}{\binom{n}{2}}\sum_{i 0 \]
then there exist $S,T$ such that:
  1. $|S|=\Omega(n)$,
  2. $|T|=\Omega(n)$,
  3. $d(S,T)=\Omega\Big(\frac{1}{\sqrt{\log n}}\Big)$, and
  4. $d(x_i,x_j)=\|x_i-x_j\|^2$
and so forth until the end of proof. $\square$