GRAPH PARTITIONING USING SINGLE COMMODITY FLOWS [KRV'06]

notes by Petar MAYMOUNKOV

Theme — The algorithmic problem of finding a sparsest cut is related to the combinatorial problem of building expander graphs from "simple" building blocks!

1. Preliminaries

We consider an undirected graph G defined on V = [n] and edge-weighted by $w(e) \ge 0$. For $S \subseteq V$ we use ∂S to be the set of edges with exactly one endpoint in S. Define $w(\partial S) = \sum_{e \in \partial S} w(e)$.

DEFINITION 1.1. — The expansion of G is defined as

(1.1)
$$\Phi(G) = \min_{S \subset V} \frac{w(\partial S)}{\min\{|S|, |S^c|\}}$$

DEFINITION 1.2. — A single commodity flow ω between $s \neq t \in V$ can be viewed as $\omega \in \mathbb{R}^{V \times V}$, having the following properties:

(i) Skew symmetry:

$$\omega_{xy} = -\omega_{yx}, \text{ for all } x, y \in V$$

(ii) Capacity

$$\omega_{xy} \leqslant w(x,y), \text{ for all } x, y \in V$$

(iii) Conservation:

$$\sum_{y} \omega_{xy} = 0, \text{ for all } s, t \neq x, y \in V$$

(iv) Demand:

$$\sum_{y} \omega_{sy} = d$$
, which implies $\sum_{y} \omega_{ty} = -d$

LEMMA 1.3 (Concentration of measure). — If $v \in \mathbb{R}^d$ and ζ is a random unit vector in \mathbb{R}^d , then

$$\mathbf{E} (v^* \zeta)^2 = \frac{\|v\|^2}{d}, \text{ and}$$
$$\mathbf{Pr} \Big[(v^* \zeta)^2 \ge x \|v\|^2 / d \Big] \le e^{-x/4}, \text{ for } x \le d/16$$

2. Embedding graphs by flow

LEMMA 2.1. — If $H \stackrel{\xi}{\mapsto} G$, then $\Phi(H) \leq C_{\xi} \Phi(G)$.

Proof. — By assumption H routes in $C_{\xi} \cdot G$ with no congestion. Consider any cut (S, S^c) . If $h \in E(H)$ is cut, then it contributes $w_H(h)$ to $w_H(\partial S)$ and at least $w_H(h)$ to $w_{C_{\xi}G}(\partial S)$. Thus $w_H(\partial S) \leq w_{C_{\xi}G}(\partial S)$, and

$$\Phi(H) = \min_{S} \frac{w_H(\partial S)}{\min\{|S|, |S^c|\}} \leq \min_{S} \frac{w_{C_{\xi}G}(\partial S)}{\min\{|S|, |S^c|\}} = \Phi(C_{\xi}G) = C_{\xi}\Phi(G).$$

3. Main result

THEOREM 3.1. — Given an undirected graph G and an expansion parameter $\alpha > 0$, there is a randomized algorithm that w.h.p. outputs

- (i) Either a cut (S, S^c) with $\Phi(S, S^c) \leq \alpha$,
- (ii) or an expander H and an embedding $H \xrightarrow{\xi} G$ with congestion at most $O(\log^2 n/\alpha)$
- ALGORITHM 3.1 (Main algorithm conceptually). On input G and α : Build an expander graph H as the union of simple graphs M_1, \ldots, M_t . Try to embed each M_i in G with congestion \leq $1/\alpha$. If success, then $\Phi(G) \geq \alpha/t$, otherwise an M_i fails to embed, which uncovers a sparse cut.

4. Constructing expanding graphs incrementally

For a perfect matching μ , define the 1-step random walk $W_{\mu} := 1/2 \cdot (I+\mu)$, where μ is viewed as an adjacency matrix. Let (M_1, \ldots, M_t) be a sequence of perfect matchings, and define the natural *matching walk* as the *t*-step walk with transition matrix $W = W_{M_t} \cdots W_{M_1}$. DEFINITION 4.1. — A matching walk is mixing iff $\mathbf{1}_x^* W \mathbf{1}_j \ge 1/2n$ for all $x, y \in [n]$.

LEMMA 4.2 (Matching walk mixes — matching union expands). — If (M_1, \ldots, M_t) mixes, then $\Phi(\bigcup_{i=1}^t M_i) \ge 1/2$.

Proof. — Consider the directed "time-line" graph H defined on $\{1, \ldots, n\} \times \{0, \ldots, t\}$, where for all $i \in \{1, \ldots, n\}$ and $k \in \{0, \ldots, t-1\}$

- (i) $(i, j) \stackrel{H}{\sim} (i, j+1)$, and
- (ii) $(i, j) \stackrel{H}{\sim} (i', j+1)$ where *i* and *i'* are matched by M_{j+1} .

Every edge in H is given capacity 1/2. The matching walk from $x \in [n]$ induces a flow of value 1 on H from (x,0) to $(1,t),\ldots,(n,t)$. If the walk mixes, the flow delivers at least 1/2n units to each $(1,t),\ldots,(n,t)$.

It is easy to see (using induction) that the simultaneous unit flows from $(1,0),\ldots,(n,0)$ do not violate the edge capacities of H. Observe that the vertex-projection of H onto $\{1,\ldots,n\}$ equals $\bigcup_{i=1}^{t} M_i$, and thus the simultaneous flow is realizable there as well.

For any (S, S^c) cut in [n] where $S \leq n/2$, this flow delivers at least |S||n-S|/2n units to S^c . From here, the Min-cut Max-flow Theorem asserts $\Phi(\bigcup_{i=1}^t M_i) \geq 1/2$.

We are going to use a *potential* function $\psi(W)$ to measure how far W is from mixing. For now $\psi(W)$ is abstract.

5. Idea

I am betting that G has expansion $\geq \alpha$:

- (a) If I am right, i.e. α ≤ Φ(G), I can build an expander as the union of O(log² n) matchings so that each embeds in G with congestion ≤ 1/α. Thus, proving that G's expansion is at least O(α/log² n)
- (b) If I am wrong and Φ(G) ≤ α ≤ O(log² n · Φ(G)), I might be just lucky enough that the matchings I need happen to be embedable in G with congestion ≤ 1/α (i.e. I never happen to need a matching across the sparsest cut), in which case I still prove that O(α/log² n) ≤ Φ(G)
- (c) However, if I am significantly off, i.e. $O(\log^2 n \cdot \Phi(G)) \leq \alpha$, then I am bound to run into a cut sparser than α in my attempt to realize some needed matching in G

6. Main algorithm

Here $\psi(t) := \psi(W_{M_t} \cdots W_{M_1}).$

Algorithm 6.1 (Main). — On input G and α :

1. (Find-Bisection) Find a bisection (S, S^c) such that adding any perfect matching M_{t+1} between S and S^c to $\{M_1, \ldots, M_t\}$ reduces the potential, in expectation, by $1 - \Theta(1/\log n)$, i.e.

 $\mathbf{E}\psi(t+1) \leqslant (1 - \Theta(1/\log n))\psi(t)$

- 2. Using a maximum-flow procedure
 - (a) Either, produce a perfect matching M_{t+1} that embeds in G with congestion $\leq 1/\alpha$,
 - (b) Or, find a cut in G of expansion at most α

6.0.1. What lies ahead

We'll define a potential so if $\psi \leq O(1/n^2)$ then W is mixing, and thus the algorithm terminates in at most $O(\log^2 n)$ iterations w.h.p. thereby producing an embedding $(M_1, \ldots, M_{O(\log^2 n)}) \mapsto G$ with congestion $O(\log^2 n)/\alpha$.

7. Find next best matching

Note, *Find-Bisection* has nothing to do with G. It's an algorithm about matchings and their mixing properties.

ALGORITHM 7.1 (Find-Bisection). — On input $\{M_1, \ldots, M_t\}$, output a bisection (S, S^c) so that the addition of any matching M_{t+1} between S and S^c brings the matching walk "significantly" closer to mixing:

- Choose $\zeta \in \{\pm 1\}^n$ randomly, so $\zeta \perp \mathbf{1}$
- Compute $u = W_t \dots W_1 \zeta$, where $W_i = 1/2 \cdot (I + M_i)$
- Form S from the first n/2 smallest entries of u

8. Single step random walks and mixing

The main object of study here is a *positive* and *doubly stochastic* matrix $P \in \mathbb{R}^{n \times n}$ which encodes a random walk step on [n].

DEFINITION 8.1. — The 1-step walk P is mixing iff $P_{xy} \ge 1/2n$ for all x, y.

DEFINITION 8.2. — Define the potential of P as

(8.1)
$$\psi(P) := \|P - \mathbf{J}/n\|^2$$

4

Remark 8.3. — The potential of P is intended to measure (upper-bound) the ℓ_2 distance between "a 1-step random walk on P starting from a uniform distribution" and "the uniform distribution", i.e.

(8.2)
$$\psi'(P) := \|P\mathbf{1}/n - \mathbf{1}/n\|^2$$

This intention is justified by:

LEMMA 8.4. $-\psi(P) \ge n\psi'(P)$ Proof. $-\psi'(P) = \|P\mathbf{1}/n - \mathbf{1}/n\|^2$ $= \|P\mathbf{1}/n - \mathbf{J}\mathbf{1}/n^2\|^2$ (where $\mathbf{J} = \mathbf{1}\mathbf{1}^*$) $= 1/n^2 \cdot \|(P - \mathbf{J}/n)\mathbf{1}\|^2$ $\le 1/n\|P - \mathbf{J}/n\|^2$ (Cauchy-Schwarz or Frobenius norm) $= \psi(P)/n$

When $\psi(P)$ is sufficiently small, the 1-step walk is mixing:

LEMMA 8.5. — If $\psi(P) \leq 1/4n^2$ then $P_{xy} \geq 1/2n$ for all $x, y \in V$.

9. Averaging transformation and matchings

All matchings in this text are perfect. For any self-inverse permutation (or a matching, in particular) on [n] characterized by its matrix $\mu \in \mathbb{R}^{n \times n}$, consider the averaging transformation $W_{\mu} = 1/2 \cdot (I + \mu)$ applied to P.

Remark 9.1. — Note that $W_{\mu}P$ represents the random walk where the first step is taken according to P and the second according to W_{μ} .

LEMMA 9.2. — The composition $W_{\mu}P$ has the following properties:

- (i) $\mathbf{1}_x^*(W_\mu P) = \mathbf{1}_y^*(W_\mu P)$ for all $x \stackrel{\mu}{\sim} y$,
- (ii) $(\mathbf{1}_x + \mathbf{1}_y)^* (W_\mu P) \mathbf{1} = (\mathbf{1}_x + \mathbf{1}_y)^* P \mathbf{1}$, and
- (iii) $W_{\mu}P$ is positive and doubly stochastic.

Lemma 9.3. —

$$\psi(P) - \psi(W_{\mu}P) \ge \frac{1}{2} \sum_{\substack{x \stackrel{\mu}{\sim} y}} \|(\mathbf{1}_{x} - \mathbf{1}_{y})^{*}P\|^{2}$$

Proof. — Focus on contribution of $x \stackrel{\mu}{\sim} y$. First,

$$\mathbf{1}_{x}^{*}W_{\mu}P = \mathbf{1}_{y}^{*}W_{\mu}P = \frac{1}{2}(\mathbf{1}_{x} + \mathbf{1}_{y})^{*}P$$

Write $\psi(P)$ as

$$\psi(P) = \sum_{x} \|\mathbf{1}_{x}^{*}P - \mathbf{1}/n\|^{2}$$

Use the Parallelogram identity

$$||f||^{2} + ||g||^{2} = \frac{1}{2}||f + g||^{2} + \frac{1}{2}||f - g||^{2}$$

to compute the contribution of x and y to $\psi(W_{\mu}P) - \psi(P)$ as

$$2\|1/2 \cdot (\mathbf{1}_x + \mathbf{1}_y)^* P - \mathbf{1}/n\|^2$$
$$-\|\mathbf{1}_x^* P - \mathbf{1}/n\|^2 - \|\mathbf{1}_y^* P - \mathbf{1}/n\|^2 = \|(\mathbf{1}_x - \mathbf{1}_y)^* P\|^2$$

10. Approximating potential reduction

For a random $\zeta \in \{\pm 1\}^n$:

LEMMA 10.1. — With high probability, for all x, y,

(10.1)
$$\| (\mathbf{1}_x - \mathbf{1}_y)^* P \|^2 \ge \frac{n-1}{O(\log n)} \cdot | (\mathbf{1}_x - \mathbf{1}_y)^* P \zeta |$$

Proof. — Use $(\mathbf{1}_x - \mathbf{1}_y)^* P \perp \mathbf{1}$ and $\zeta \perp \mathbf{1}$ and concentration of measure lemma.

COROLLARY 10.2. — With high probability,

(10.2)
$$\psi(P) - \psi(W_{\mu}P) \ge \frac{n-1}{O(\log n)} \cdot \sum_{x \stackrel{\mu}{\sim} y} |(\mathbf{1}_{x} - \mathbf{1}_{y})^{*}P\zeta|$$

Remark 10.3. — The success probability in both statements above can be chosen to be $1 - n^{-C}$ for any constant C (due to concentration of measure).

11. Isolating a cut of good matchings

We now additionally require $\zeta \perp \mathbf{1}$. Let $u = P\zeta$ and renumber its coordinates so that $u_1 \leq u_2 \leq \cdots \leq u_n$.

LEMMA 11.1. — For any matching μ between $\{1, \ldots, n/2\}$ and $\{n/2 + 1, \ldots, n\}$,

(11.1)
$$\mathbf{E}\sum_{\substack{x \sim y \\ x \sim y}} (u_x - u_y)^2 \ge \frac{\psi(P)}{n-1}$$

Corollary 11.2. —

(11.2)
$$\mathbf{E}\Big(\psi(P) - \psi(W_{\mu}P)\Big) \ge \frac{\psi(P)}{O(\log n)}$$

Proof of Lemma 11.1. — Let η be the median of u_1, \ldots, u_n .

$$\sum_{\substack{x \stackrel{\mu}{\sim} y}} (u_x - u_y)^2 \ge \sum_{\substack{x \stackrel{\mu}{\sim} y}} \left((u_x - \eta)^2 + (u_y - \eta)^2 \right)$$
$$= \sum_x (u_x - \eta)^2$$
$$= \sum_x u_x^2 - 2\eta \sum_x u_x + n\eta$$
$$\ge \sum_x u_x^2$$

Step (†) follows from $\zeta \perp \mathbf{1}$ and the column-stochasticity of P as $\sum_x u_x = \mathbf{1}^* P \zeta = \mathbf{1}^* \zeta = 0$.

Note that $u_x = \mathbf{1}_x^* P \zeta = (\mathbf{1}_x P - \mathbf{1}^*/n) \zeta$, since $\zeta \perp \mathbf{1}$. Observe that $w_x := (\mathbf{1}_x^* P - \mathbf{1}/n) \perp \mathbf{1}$, using row-stochasticity. And since $\zeta \perp \mathbf{1}$ and $w_x \perp \mathbf{1}$, applying the concentration of measure lemma gives

$$\mathbf{E} \, u_x^2 = \frac{\|\mathbf{1}_x^* P - \mathbf{1}/n\|^2}{n-1}$$

Thus,

$$\mathbf{E}\sum_{\substack{x \sim y \\ x \sim y}} (u_x - u_y)^2 \ge \mathbf{E}\sum_x u_x^2$$
$$= \sum_x \frac{\|\mathbf{1}_x^* P - \mathbf{1}/n\|^2}{n-1}$$
$$= \frac{\psi(P)}{n-1}$$

12. Finding a matching or a cut

For simplicity, assume G is unweighted.

ALGORITHM 12.1 (Cut-or-Flow). — The input is $S \subset V$ with |S| = n/2and maximum allowable congestion $1/\alpha > 0$:

> Assign each edge in G capacity 1/α. Add a source node with an outgoing unit-capacity arc to each vertex in S, and add a sink node with an incoming unit-capacity arc from each vertex in S^c.

PETAR MAYMOUNKOV

- 2. Find a maximum flow between the source and the sink
- 3. If the flow value is at least n/2, we produce a matching between S and S^c , by decomposing the flow into flow paths
- 4. Otherwise, we find a minimum cut separating the source and the sink, and output the partition induced on V

Remark 12.1. — If a matching is found, then by construction it can be embedded in G with congestion at most $1/\alpha$.

LEMMA 12.2. — If the maximum flow-value between the source and the sink is less than n/2, then the minimum cut in G has expansion less than α .

Proof. —

- If the maximum flow is < n/2 then the minimum cut (separating the source and the sink) is also < n/2.
- Let the number (and capacity) of edges in the cut incident to the source (and respectively sink) be n_s (and n_t).
- The remaining cut capacity is $n/2 n_s n_t$, thus using at most $\alpha(n/2 n_s n_t)$ edges of G
- The cut separates $\ge n/2 n_s$ vertices in S from $\ge n/2 n_t$ vertices in S^c , thus

$$\Phi_G(S, S^c) \leqslant \alpha \frac{n/2 - n_s - n_t}{\min\{n/2 - n_s, n/2 - n_t\}} \leqslant \alpha$$

13. Running time and speedup via sparsification

Break down:

- $-O(\log^2 n)$ iterations w.h.p., each including:
- Find-Bisection in $\tilde{O}(n)$,
- Single commodity flow in $O(m^{3/2})$ using [3],
- Decomposition into paths in $\tilde{O}(m)$

In total $\tilde{O}(n+m^{3/2})$. Can get $\tilde{O}(m+n^{3/2})$ using

THEOREM 13.1 (Benczùr-Karger [2]). — Given a graph G with n vertices and m edges and an error parameter $\epsilon > 0$, there is a graph \hat{G} such that

- (i) \hat{G} has $O(n \log n/\epsilon^2)$ edges and
- (ii) The value of every cut in Ĝ is within (1±ε) factor of the corresponding cut in G.

 \hat{G} can be constructed in $O(m \log^2 n)$ time if G is unweighted and in $O(m \log^3 n)$ time if G is weighted.

14. Authors' conclusions and open problems

- The union of the flows corresponds to an embedding of a complete graph
- Can this approach yield a (tight) $O(\log n)$ approximation for embedding a complete graph?
- What about improving to a $O(\sqrt{\log n})$ approximation algorithm by embedding an arbitrary expander?
- Can this analysis be related to random collapsing process underlying METIS?

15. Petar's remarks

- (1) Lower bound gap When an embedding is found, the KRV algorithm/analysis is insensitive to whether some subset of the matchings can be embedded simultaneously (with congestion $\leq 1/\alpha$), which would exhibit tighter lower-bound certificates
- (2) Upper bound gap consider the sparsest cut in a graph comprised of two copies of K_n connected by an edge. Explain how the KRV algorithm can succeed in finding an embedding when $\alpha = \log^2 n/n$
- (3) It is conceivable that for a choice of α in the critical region $\Phi(G) \leq \alpha \leq O(\log^2 n \cdot \Phi(G))$, multiple runs of the algorithm will eventually find a sparser cut. But this needs to be proven and will most likely happen with tiny probability (unless the graph has many sparsest cuts)
- (4) Is it possible to build an expander using o(log n) matchings? How (Butterfly, de Bruijn)? If yes, then replicating the same argument will give an approximation guarantee (using multi-commodity flow to embed desired matchings, and multi-commodity duality to get a cut otherwise). More on this in [4]
- (5) The analysis in this paper is very much about expanders built from matchings, and it is not tight because $\psi \leq 1/4n^2$ implies $P_{xy} \geq 1/2n$, but the converse is not true. In other words, the needed condition is $\|\mathbf{J}-P\|_{\infty} \leq 1-1/2n$, but the enforced condition is $\|P-\mathbf{J}/n\|_2 \leq 1/2n$

BIBLIOGRAPHY

- [1] KHANDEKAR, RAO, VAZIRANI, Graph partitioning using single commodity flows, STOC'06
- [2] BENCZÙR, KARGER, Approximating s-t minimum cuts in $\tilde{O}(n^2)$ time, STOC'96

PETAR MAYMOUNKOV

- [3] GOLDBERG, RAO, Beyond the flow decomposition barrier, JACM'98
- [4] ARORA, HAZAN, KALE, $O(\sqrt{\log n})$ approximation to sparsest cut in $\tilde{O}(n^2)$ time, FOCS'04