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Abstract

This work discusses my attempts to extend Kenyon and Mitzenmacher’s technique for
proving diveregnce of the online approximation algorithm Best Fit to Random Fit – another
approximation algorithm for the well-known NP-hard problem of bin packing. In specific,
the paper goes over Kenyon and Mitzenmacher’s recent advances on divergence of the waste
of Best Fit bin packing for the skewed distributions U{αk, k} with α ∈ [0.66, 2/3) in detail,
and describes the modifications I made to their methods in attempt to prove diveregence for
Random Fit under the same input conditions.
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1 Introduction

Bin packing is a classical NP-hard problem in Computer Science. Its definition is fairly simple,
yet its behavior appears to be rather complex. In the one-dimensional version one is given a
finite set of items of sizes Ln = a1, . . . , an ∈ (0, 1] and is asked to find a packing of these items
into bins of capacity 1, so that the number of bins used is minimized. Since this is an NP-hard
problem, people have turned their attention to analysing different approximation techniques. A
rich spectrum of algorithms for approximating the bin packing problem has been looked at, yet
the most prominent seem to be the two on-line algorithms Best Fit and First Fit. In the on-line
setting, one receives an uninterrupted sequence of items and is asked to pack them into bins
as they come. The Best Fit algorithm places each successive item in the bin with the smallest
residual capacity that can accomodate the item; if no such bin exists, a new bin is created and
the item is placed there. In the First Fit algorithm, one keeps track of the order in which bins
are created b1, b2, . . . and places each successive item in the bin with the smallest index that can
accommodate the item, or otherwise creates a new one.

In 1974, Johnson et al. [6] showed that the worst-case performance of both Best and First Fit
is within a factor of 1.7 of the optimal packing. However, the worst-case input sequences seemed
to be too rare combinatorically, which motivated the study of all sorts of of bin packing algorithms
under the so-called skewed distribution U(0, a), where the items’ sizes are independent random
variables, uniform over the interval [0, a], for a < 1. For these distributions, the optimal packing
was proved to be perfect [5], in the sense that limn→∞E

[
OPT (Ln)/(a1 + a2 + · · · + an)

]
=

1 1, which means that the expected asymptotic performance ratio of any on-line algorithm is
strictly greater than 1 if and only if the waste2 grows linearly in the number of items. Based on
experimental observation it was conjectured that for all skewed distributions U(0, a) the waste
grows linearly for both Best [1, 9] and First Fit [4].

Later on, Coffman et al. [7] introduced the discrete skewed distributions U{j, k} as means of
gaining insight into the continuous case. Under the distribution U{j, k} the items’ sizes are drawn
independently and uniformly from the set {1/k, 2/k, . . . , j/k}. U{j, k} approximates U(0, a), if
we set j = ak and let k grow to infinity. In addition, an easier way to think about U{j, k}, is to
define the bins to be of capacity k and the items’ sizes be uniformly distributed over {1, 2, . . . , j}.
In 1995 Kenyon, Rabani and Sinclair [3] proved that Best Fit has O(1) waste under U{k−2, k}.
Then in 1997 Albers and Mitzenmacher [2] used a new algorithm called Random Fit (RF) to
make a transition from Best to First Fit and prove that First Fit also has O(1) waste under
U{k − 2, k}. In this respect Random Fit is interesting as a bridge between First and Best. As
in First Fit, Random Fit keeps track of the order in which bins are created b1, b2, . . . and when
a new item comes, the sequence of bins is permuted randomly and uniformly, and the item is
packed in the bin with the lowest index that can accommodate it; otherwise a new bin is created
and the item is placed there. Another way of describing Random Fit is to say that when a new
item comes, Random Fit finds the subset of bins which can accommodate it and picks a random
one from it to place the item there.

Aside from the two results concerning waste performance mentioned above, there has been
very little proven. However, it is conjectured that both Best and First Fit have linear waste for
almost all skewed distributions U{j, k}. Very recently, Kenyon and Mitzenmacher [4] proved

1Here OPT (Ln) is the optimal number of bins (respectively their aggregate capacity) that can pack the items
from the sequence Ln.

2waste refers to the difference between the total capacity of the bins used and the aggregate size of the items
packed.
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linear waste of Best Fit for U{j, k} where j = αk and 0.66 5 α < 2/3. The proof of the result is
based on a very specific property that the algorithm exhibits when j is within this small range.
The present paper goes in detail over their paper and fills in certain lemmas and discussions
which have been omitted for bravity; then I discusses why it is hard to apply their methodology
to Random Fit.

2 Sketch of Ideas

The now standard way of thinking about bin packing under the discrete distribution U{j, k} is
a Markov chain, introduced in [8]. At any moment of time we can have bins with remaining
capacities in the set {1, 2, . . . , k− 1}; we let si to be the number of bins with remaining capacity
i, and treat the vector s = (s1, s2, . . . , sk−1) as our Markov state. Under Best and Random Fit it
is clear how the states are connected, since the vector s carries all the information necessary to
compute the probabilities of next moves. This makes it a multi-dimensional Z

k−1
+ Markov chain.

As mentioned in the introduction, to prove divergence from optimal, we need to show that the
waste grows linearly with time. This is equivalent to showing that asymptotically the Markov
chain process goes away from the origin. The approach that [4] takes, and which I am going
to follow, is to look a different Markov chain, and consequently show that s1 grows linearly.
Deriving the new Markov chain from the one mentioned above is a bit cumbersome, but there is
a shorter and more intuitive way of describing it. One can divide the possible configuratons 3 of
the process into two groups easy and difficult ; when in an easy configuration the probability of
increasing s1 will be easily shown to be more than 1/2; in a difficult configuration the probability
of increasing s1 will be less than 1/2. A novel lemma due to [4] shows that when j < 2/3k, the
difficult configurations are very few. The strategy is to prove that difficult configurations are
short-lived, in the sense that their effect on s1 is amortized if we run the process for a constant
number C of additional steps. The state of the algorithm when it enters a difficult configuration,
together with the following C steps become a single superstep, represented by a single node in
the new Markov chain. Next we are going to show that most transitions in the new Markov
chain increase s1. This entails showing that transitions going out of supersteps tend to increase
s1.

It is hard to analyse jC possibilities (the possible outcomes of a superstep), so Kenyon and
Mitzenmacher propose to classify all configurations into finitely many groups and analyse the
worst-case behavior based only on group information by using stochastic domination. The worst-
case outcome is determined by dynamic programming: one should succesively find the worst
outcome for each group as a starting point with remaining one more item to be inserted, and
from that calculate the worst case given that there are two more items to be inserted, and so
on. Dynamic programming is commonly used in Markov decision processes (see e.g. [10]). Yet
[4] is the first time when it is used in the contex of average-case bin packing analysis. Although
the derived dynamic program has to deal with a constant number of cases, there are tens of
thousands so a computer program is necessary.

3 Analysis of discrete skewed distributions of Best Fit

This section proves the divergence of waste for Best Fit. The proof is a more detailed version of
[4]’s proof.

3By configuration, I mean a vector s = (s1, s2, . . . , sk−1).
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Figure 1: The histogram above represents a convenient way of thinking about the state of the
Best Fit bin packing process. On the X-axis are all possible bin capacities, and the Y -axis shows
the number of bins of each given capacity. If one were to observe this histogram in the actual
process of bin packing, one would roughly see new tics appearing in the right part of the X-axis,
travelling in a jumpy fashion towards the left piles.

3.1 The general Markov chain

Throughout this section, I am going to be working with the discrete distribution U{j, k}, where
the bins are of capacity k and the incoming items are uniformly distributed over {1, 2, . . . , j}.

Let’s reiterate the standard Markov chain definition from [8]. Denote by si(t) the number of
bins of residual capacity exactly i at time t. Call s(t) = (s1(t), s2(t), . . . , sk−1(t)) the Markov
state or configuration vector. The process starts at s(0) = (0, 0, . . . , 0), reflecting the fact that
there are no open bins. Let l be the size of the next item inserted. Let i be the smallest index
such that i = l, if such exists; in that case, Best Fit inserts item l into a bin with capacity i, so
we have si(t+ 1) = si(t)− 1 and, if i > l, si−l(t+ 1) = si−l(t) + 1; all other components of s(t)
remain unchanged. If no such sequence exists, then the algorithm inserts item l into an empty
bin, so we have sk−l(t + 1) = sk−l(t) + 1 and all other components of s(t) remain unchanged.
This completes the description of the Markov chain (it gives enough information to derive the
capacities on the Markov chain’s edges).

From now on, it is assumed that j = αk, where 0.66 5 α 5 2/3. The remainder of the section
builds a different Markov chain for analysing the packing process, but uses the language from the
definition of this general chain for convenience. Also, in the paper we assume that k is sufficiently
large, so that all arguments hold throughout.

3.2 The difficult configurations

The attack for proving instability is to show that s1, the number of almost full bins, is biased
upward and hence tends to increase. Let Xt ∈ {0, 1, . . . , j − 1} denote the number of ways to
increase s1, and Yt ∈ {0, 1} denote the number of ways to decrease s1 at time t.
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In the case of Best Fit, the values of s1 increase exactly when an item of size x is inserted
and we have sx = 0 and sx+1 6= 0, and so Xt is exactly the number of such pairs (sx, sx+1)
for 0 < x 5 j. At every time step, if s1(t) = 0, we have Yt = 0, and if s1(t) 6= 0, Yt = 1:
namely s1(t) can decrease only when an item of size 1 arrives. The only situations when s1 is
biased downward are when s1 has no way to increase and one way to decrease, i.e. for some
m = 1, s1, s2, . . . , sm 6= 0 and sm+1 = · · · = sj+1 = 0. We call these configurations when s1 is
biased downward difficult configurations, as handling them is the challenge of the problem. The
so-called open range lemma in the next section shows that m must be less than k/3.

3.3 The open range lemma

The following lemma demonstrates that one cannot have more than one bin with remaining
capacity within a rather large range. The following fact is a classical basic property of both
Best, First and Random Fit.

Fact 1. Any two open bins with remaining capacities g and g′ must have g + g′ < k.

Moreover, for the sake of completeness we mention one more fact, which follows from Fact 1.

Fact 2. At any time of the execution of Best, First or Random Fit the following inequality holds:∑
dk/2e5i5k−1

si 5 1.

Lemma 1 (Open range lemma). If the maximum item size is j, and j = αk with α < 2/3,
then sk/3 + · · ·+ sk−j−1 5 1.

Proof. Assume 3‖k for clarity. Since sk/3 + · · · + sk−j−1 = 0 initially, we only need to show
that when sk/3 + · · ·+ sk−j−1 = 1 it cannot increase.

Consider any time t when sk/3 + · · ·+ sk−j−1 = 1 and let i ∈ {k/3, . . . , k− j− 1} be such that
si = 1. Let i′ be such that k/3 5 i′ 5 k − j − 1. How can si′ increase? Note that si′ cannot
increase by having an item of size k − i′ placed into an empty bin, since k − i′ is greater than j,
the largest item size. Thus a bin with remaining capacity i′ can only be introduced by adding
some item of size x to a bin which already has a remaining capacity g > k−j−1, with g−x = i′.

Assume then that at time t there is one bin with remaining capacity i and one with remaining
capacity g. From Fact 1, we have g + i < k, so that

k − g > i =
k

3
. (1)

By definition, the remaining capacity g must be larger than i. Also, by the definition of Best Fit,
item x would have been placed in the bin with remaining capacity i if it had fit there, rather than
in the bin with remaining capacity g. So it must be that x does not fit in remaining capacity i:

x > i =
k

3
. (2)

Now, by assumption

i′ =
k

3
. (3)

4



PETAR MAYMOUNKOV SENIOR THESIS

Summing inequalities (1),(2) and (3) we obtain k − g + x + i′ > k, and hence i′ > g − x – a
contradiction.

Again, the open range lemma simplifies the analysis, since it ensures that there is some well-
defined range of values i where most of the values si must be 0, and hence any difficult config-
uration must have m 5 k/3. We note that this result holds for Random Fit as well, since both
Fact 1 and 2 hold for the two algorithms.

3.4 A Markov chain of supersteps

Recall that difficult configurations are the ones such that for some m 5 k/3, s1, s2, . . . , sm 6= 0
and sm+1 = · · · = sj+1 = 0. When the process enters a difficult configuration, we consider the
evolution of the system over τ steps for some random stopping time τ (defined precisely in the
next paragraph), bounded by a constant C independent of k or j. We show that the probability
of s1 to increase after these τ steps is more than 1/2. In other words, we are creating a Markov
chain which starts at the initial configuration, branches out and every time it reaches a difficult
configuration it is collapsed together with the following τ steps in one Markov state, this state we
call a superstep. As we show in what follows, there are lots of transitions going out of superstep
states, in the order of jC , but for the majority of them s1 had increased on exit of the superstep.
All in all, we end up with a Markov chain, for which the sum of the probabilities of the outgoing
edges of each state which lead to an increase of s1 is more than the sum of the probabilities of
the outgoing edges which lead to a decrease in s1. It is a theorem, which we give at the end,
that states that from this condition for the Markov chain it follows that s1 is divergent.

Now, let’s turn to defining the stopping time framework more precisely. Suppose we have just
entered a difficult configuration, and assume for simplicity that we are at time 0 now. Then the
stopping time τ will correspond to one of the following events:

1. Time step C has been reached for some fixed constant C.

2. The coordinate s1 increases.

3. The coordinate s1 decreases.

4. The coordinate sm becomes 0.

5. The coordinate sm+1 becomes positive.

6. For some m+ 1 < a, the coordinate sa becomes equal to 2. In fact, a < dk/2e, due to Fact
2.

7. For some m+2 < a, the coordinates sa and sa−1 become positive. In fact, a 5 dk/2e, again
due to Fact 2.

The idea of this stopping time is to show that when we run the process for at most C more
steps, after a difficult configuration has occured, it is more likely that s1 will either increase or
remain unchanged than s1 will decrease. Events 4,5,6 and 7 are there, because they make the
analysis simpler. They are very unlikely as it turns out. As a result, s1 is either unbiased or
biased upwards over any normal step or any superstep of the chain, and this is sufficient to prove
instability.

In the analysis of a superstep (the evolution of the process from entering into a difficult
configuration until the stopping time), we shall assume that at each step the number of ways in
which s1 can increase is sm+2 + sm+3 + · · ·+ sj+1. This assumption will make the furthe analysis
much simpler, but it fails to be true when either sa > 1 for m + 2 5 a 5 j + 1, or sb−1, sb > 0
for some m + 2 < b 5 j + 1; it also fails to be true when for some 0 5 a < m sa becomes
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0, but we shall disregard this case, because then the actual possibilities for increasing s will be
even more; so, that is why we introduce the stopping events 4,5,6 and 7, which make sure that
sm+2 + sm+3 + · · ·+ sj+1 is truely equal (or smaller than) the number of ways s1 can increase at
any time throughout the superstep. In plain words, every bin whose residual capacity turns to
a for m+ 2 5 a 5 j + 1 is useful unless sa > 0 or sa−1 > 0.

Now, turning to the analysis more rigorously, we wish to show that the probability that s1

has increased after the end of the τ -th step is greater than the probability that it has decreased.
Imagine that we run the process for C steps regardless of what happens, but we put a mark at
the τ -th time step. So we actually wish to show that the probability that s1 has increased before
we put the mark is greater than the probability that it has decreased.

Instead of examing all jC possible outcomes, we introduce another simplification, we are
only going to look at all possible sequences X1, . . . , XC−1, where Xt will be a random vari-
able,representing the number of ways for s1 to increase at time t for t ∈ [0, C). Denote by A(t),
for 0 5 t < C−1, the probability that time t is not the stopping time, i.e. t 6= τ , on the condition
that time t has already been reached. Taking into account that Xt 5 C we get:

A(t) = 1−
[
Xt

j
+

1
j

+
1
j

+
Xt + 2
j

+
X2
t

j
+
X2
t

j

]
(4)

= 1−
[
C

j
+

1
j

+
C + 2
j

+
C2

j
+
C2

j

]
(5)

= 1− C2 + 2C + 3
j

, (6)

where the terms in the square brackets of the first line above are upper bounds on the probabilties
of the events 2,3,4,5,6 and 7. Let’s look at the probability P that s1 has increased after the τ -th
step.

P =
C∑
t=1

[
Xt

j

t−1∏
i=1

A(i)
]

(7)

=
1
j

C∑
t=1

Xt +O

(
1
j2

)
(8)

Similarly, an upper bound on the probability P that s1 has decreased after the τ -th step would
be

P 5
C

j
. (9)

From the above two inequalities we get a lower bound on the difference between the probability
that s1 increases and the probability that s1 decreses.

P − P =
∑C

i=1Xi − C
j

+O

(
1
j2

)
. (10)

Let P (x1, . . . , xC) be the probability that s1 increases, given that Xi = xi, for 1 5 i 5 C; let
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Px1,...,xC be the probability that Xi = xi. Then we obtain a closed form lower bound for P .

P =
∑

x1,...,xC

P (x1, . . . , xC)Px1,...,xC (11)

=
∑

x1,...,xC

[
1
j

C∑
i=1

xi +O

(
1
j2

)]
Px1,...,xC (12)

=
1
j
E

[ C∑
i=1

Xi

]
+O

(
1
j2

)
(13)

So, for P − P we need to show:

P − P =
C

j

[
E
[∑C

i=1Xi

]
C

− 1
]
+O

(
1
j2

)
(14)

= 0. (15)

Instead, we are going to show that

C

j

[
E
[∑C

i=1Xi

]
C

− 1
]
> ε, (16)

for some ε > 0. This would be enough, because as k grows to infinity, so does j and the O(1/j2)
term in P − P will become smaller than ε in absolute value.

Intuitively, (16) shows that we can count the number of ways s1 can increase at each step and
subtract the number of ways s1 can decrease at each step over C steps, in order to compute
difference in the probability that s1 increases rather than decreases over an interval that ends at
a stopping time.

As we said before, from the definition of the stopping time, which excludes problematic events,
it follows that Xt, the number of ways for s1 to increase, is equal to (or greater than) sm+2 +
· · ·+ sj+1 at each time t. Thus we are reduced to showing that there exists a constant C, a real
ε′ > 0 (both independent of k) such that for sufficiently large k,

E

[∑C
t=1

(
sm+2(t) + sm+3(t) + · · ·+ sj+1(t)

)
C

configuration at time 0
]
> 1 + ε′. (17)

Moreover, the formula above says that we are going to disregard the cases when a superstep
stops prematurely (before C steps have past), and consider only the remaining ones.

3.5 Tha analysis starting from a difficult configuration

In this subsection we need the assumtion that j = αk for α ∈ (33/50, 2/3), and using the
fact that m 5 k/3 we analyze the life of a superstep, starting at a difficult configuration with
s1, . . . , sm 6= 0 and sm+1 = · · · = sj+1 = 0.

3.5.1 Using stochastic domination: a nonrigorous example

First, let’s look at a simplified example, which demonstrates the gist of the analysis of the
(general) Markov chain within a superstep. For this simplified analysis we shall ignore the effect
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of non-empty bins with remaining capacity at least k/2 (in fact, there can be at most one such
bin due to Fact 2), i.e. we assume sk/2 + · · ·+ sk−1 = 0. As explained later, such mostly empty
bins complicate the analysis.

We start with an example where k/4 5 m 5 k/3. At every step there are j = αk possibilities
for the item arriving. Now we want to calculate a lower bound in the probability of increasing
and an upper bound on the probability of decreasing s1. At this point we should consider the
conditional probabilities of Xt’s change, on the condition that we are not entering a stopping
configuration. But since the ways in which we can enter a stopping configuration are constantly
many O(C), as k grows to infinity, their impact becomes negligible. Hence, we can safely assume
that no incoming will item will throw us in a stopping configuration. So, out of the j = αk
possibilities, Xt has at least j−k/2 = k(2α−1)/2 ways of increasing, corresponding to insertions
of items k/2, k/2 + 1, . . . , j (this is due to the assumption that bins are never more than half
empty). On the other hand, since sm is positive, Xt has at most k/2−m 5 k/6 ways of decreasing
if it is non-zero, and no ways of decreasing of it is equal to 0. It is also worth noting that in
general Xt has at most mXt ways of decreasing in general, since for a bin that contributes to Xt,
there could possibly be at most m items that on entrance could reduce its residual capacity to
something not greater than m. (For this range of m, however, the bound of k/2−m is better.)

We now use stoachstic domination to justify our analysis, given a lower and an upper bound
on the probabilities of Xt increasing and decreasing, respectively. Following standard definitions
(see, e.g. [11]), we say that X stochastically dominates Y and write X =R Y , if Pr[X >
u] = Pr[Y > u] for all real values u. It follows from that very definition that E[X] = E[Y ],
and intuitively X is more likely to take on larger values than Y . It is simple to show now by
induction on t that Xt =R Zt, where

Z0 = 0, (18)

Zt+1 =


Zt + 1, w.p. k(2α−1)

2kα ,

Zt − 1, w.p. k/2−m
kα , if Zt 6= 0, 0 otherwise,

0, with all remaining probability.

(19)

It follows from the definition above that the probability of Zt increasing is smallest, and the
probability of Zt decreasing is largest for the smallest value of α, α = 33/50, and the smallest
value of m, m = k/4. That is, Xt =r Zt, where

Z0 = 0, (20)

Zt+1 =


Zt + 1, w.p. 8/33,
Zt − 1, w.p. 25/66, if Zt 6= 0, 0 otherwise,
0, with all remaining probability.

(21)

By explicitly computing the distributions of Z0, Z1, . . . , ZC−1, we find that E
[
(Z0 + Z1 + · · · +

ZC−1)/C
]
> 1 for a small constant C. (For C = 30, E

[
(Z0 + Z1 + · · · + ZC−1)/C

]
≈ 1.007; as

C gets large this value increases.) From here, since X dominates Z stochastically, we get, for a
small constant C, that

E
[
(X0 +X1 + · · ·+XC−1)/C

]
= E

[
(Z0 + Z1 + · · ·+ ZC−1)/C

]
> 1. (22)

We can continue by breaking down the process into a finite number of similar cases, covering the
entire range of m. (For example, we could take the cases 0 5 m 5 k/8 and k/8 5 m 5 k/4.) In
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Figure 2: Regions of the Best Fit histogram, represented by the configuration (Xt, At, Bt). The
range for m represents the fact that in the actual case analysis (given in the appendix) m is
assumed to be within some range, but it is not clear what it’s exact value is.

each case, we can find the probability of Xt increasing or decreasing, so as to find a dominating
simple one-dimensional random walk. It is thus easy to check each specific case, simply by
determining the distribution of Zt over a reasonably small number of steps.

3.5.2 The important parameters describing a configuration

The above example demonstrates the general approach: instead of looking explicitly at all possi-
ble configurations into which the process can go, we group them together by the number of ways
they present for s1 to increase, and examine the evolution of the system for a small number of
steps. In this example, however, we ignored the impact of “mostly empty” bins (the ones with
si > 0 and i = k/2) on the outcome of the process, but in fact it is quite important. Take for
example the case when j = 0.34k, m = 0.32k and s0.64k = 1. In this case it is impossible for any
of sm+2, sm+3, . . . , sk/2 to increase on the next step. This example is meant to show that the
presence of mostly empty bins has an impact on the process.

In order to account for these mostly empty bins, we refine the grouping of the configurations
to account for them too. Call a bin with remaining capacity at least k/2 a light bin. According
to Fact 2 there can only be one such bin at a time. In fact, we refine the grouping further by
distinguishing between two types of light bins. Call a light bin helpful if its remaining capacity
is at most j+ 1. A helpful light bin can immediately lead to an increase in s1 (given that we are
within a superstep), if an appropriately sized item arrives. Similarly, call a bin unhelpful if its
remaining capacity is greater than j + 1.

Now we can subdivide all possible configurations into groups of the form (Xt, At, Bt), where Xt

is again the number of ways for s1 to increase at time t, At is a 0/1 random variable, representing
whether or not there is a light helpful bin, and Bt is a 0/1 random variable representing whether
or not there is light unhelpful bin. Note that when At = 1, we must have Xt = 1, since by
definition a helpful light bin provides one way for s1 to increase.

An illustration of a configuration is given on Figure 2.

3.6 The configuration space

Before jumping into the specific configuration framework that I have picked for Random Fit, I’d
like to say a few words about configuration spaces in general.

9
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3.6.1 The dynamic program

Our approach for showing that E
[∑C

t=1

(
sm+2(t)+sm+3(t)+· · ·+sj+1(t)

)
/C
config. at time 0

]
>

1 + ε′ would be as follows. Start with the initial difficult configuration on entry to the su-
perstep (0, 0, 0). Then compute the distribution over all possible configurations after the first
step. Then we use this distribution to compute the distribution of the configurations after
the second step, and so forth. At each step we compute E

[∑C
t=1

(
sm+2(t) + sm+3(t) + · · · +

sj+1(t)
)
/C
config. at time 0

]
, and stop as soon as it is greater than 1 by a reasonable frac-

tion (a couple of orders of magnitute bigger than the floating-point precision of the 32-bit PC
processor, which we used to analyse the outcomes).

Unfortunately, this relatively simple way of attacking the problem doesn’t work, due to the fact
that our triple (Xt, At, Bt) does not carry complete information about the current configuration,
and so for certain sizes of the incoming items there will be ambiguity in deciding what the
next configuration would be. We want to use worst-case analysis in such situations, similar to
allowing an oblivious adversary some limited power in deciding the flow of the process. For
example, suppose At = 1, and an item of size in the range [0.5k, j] arrives. Such an item could
be placed in the light bin; alternatively, such an item may be too large for the light bin, and
instead cause xt to increase. The effect of the item depends on the exact residual capacity of the
light bin and the value of the entering item; however, we don’t keep track of the capacity of the
light bin in our state.

In such ambiguous cases, we assume the worst case for the current configuration with respect to
the incoming item. This simplifies the analysis in that we need not distinguish between different
light bins according to their capacity (which would require distinguishing between many more
different ranges of the incoming item sizes), yet it also complicates the analysis slightly in that we
need to consider several possibilities (for the adversary’s choice) at each step. These possibilities
are unavoidable in that we can’t a priori decide which one would be the worst case.

Now let’s describe the way to compute the worst-case value of E
[∑C

t=1

(
sm+2(t) + sm+3(t) +

· · ·+ sj+1(t)
)
/C
config. at time 0

]
= E

[∑C
t=1Xt/C

config. at time 0
]

over C steps, given that
an oblivious adversary is making choices at each step of the process. Let

EQ(S) = E

[ Q∑
t=1

Xt

config. at time 0 is S = (X0, A0, B0)
]
,

be the worst-case expected value of
∑Q

t=1Xt, if we run the process for Q steps starting from
configuration S = (X0, A0, B0).

1. Start by computing the E1(S) for all S = (X0, A0, B0), with 0 5 X0 < C. This is easy to
do, because for each adversarial choice we can see which yields a smaller expected value of
X1.

2. Proceed inductively for 0 < i 5 C. Compute Ei(S) for all S, given knowledge of Ei−1(S) for
all S. We always pick the adversarial choice which yields a configuration S′ with minimal
Ei−1(S′).

3. Finally, we check whether EC(0, 0, 0)/C = 1 + ε′, for some big enough ε′ > 0 to absorb the
floating-point error of the computation.

We run the above program for increasing values of C until we find the one that yields EC(0, 0, 0)/C =
1 + ε′.

10
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Finally, note that we need to apply this analysis over the space of all (m,α) pairs. Suppose
one focuses on a specific value of α (such as α = 33/50), and proves EC(0, 0, 0) > 1 + ε′, by
splitting up the possible values of m over a small constant number of ranges. The claim is then,
that there are small constants δ, ε′′ > 0 such that EC(0, 0, 0) > 1 + ε′′ for α′ ∈ [α − δ, α + δ].
Hence, it suffices to try a sufficiently dense subset of α values in the range [33/50, 2/3), and by
the “continuity” from the claim, conclude that EC(0, 0, 0) > 1 + ε for a suitable ε everywhere in
the interval.

Proof of claim: Let’s look at two settings, one with j = αk and one with j = α′k, such that
α 5 α′ 5 α + δ. Let pt(x) and p′t(x) be the probability of Xt = x in the worst case in both
settings, respectively. Also, denote by pq(w 5 α) the probability that the incoming items for the
first q steps in the second setting are always with sizes not bigger than αk. We have

p′t(x) = pt(w 5 α)pt(x) +
(
1− pt(w 5 α)

)
ht(x), (23)

for some ht(x) 5 1. We know that pt(w 5 α) =
(
α/α′

)t. Next we look at

pt(x)− p′t(x) = pt(x)− pt(w 5 α)pt(x)−
(
1− pt(w 5 α)

)
ht(x)

=
(
pt(x)− ht(x)

)(
1− pt(w 5 α)

)
5 1− pt(w 5 α)

= 1−
( α
α′

)t
5 1−

(
α

α+ δ

)t
= ε̄t(α, δ).

(24)

We look at the expectations of Xt and X ′t for 1 5 t 5 C

E[Xt]− E[X ′t] =
C−1∑
i=0

i
(
pt(x)− p′t(x)

)
5 C

C−1∑
i=0

(
pt(x)− p′t(x)

)
5 C

C−1∑
i=0

ε̄t(α, δ)

5 C
C−1∑
i=0

ε̄C(α, δ)

5 C2ε̄C(α, δ).

(25)

Hence,

E

[ C∑
t=1

Xt/C
config. at time 0

]
−

E

[ C∑
t=1

X ′t/C
config. at time 0

]
5 C2ε̄C(α, δ)

= C2

[
1−

(
α

α+ δ

)C ]
.

(26)

11
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That means that the expectation of the sum of the Xt’s is continuous in α.
The list of choices that the adversary can take at each step according to the range of the

incoming item size is big enough not to be included here. (A sample case is included in the
appendix.) Calculating up to E100 is sufficient to show that supersteps of 100 steps end up
with an increase of s1 in most of the cases. (The worst case appears to be the lower end of the
interval, 33/50; and the result cannot be extended beyond 2/3 simply because the open range
lemma ceases to apply.) The lower barrier 33/50 is chosen for convenience. It appears that
additional work on detailing cases would be necessary to extend the result below 0.65 = 13/20.

3.7 Tying together steps and supersteps

So far we’ve shown that we can think of the Best Fit bin packing process as a sequence of
steps and supersteps, such that the steps tend to not decrease s1, whereas the (constant length)
supersteps tend to increase it slightly, i.e. E

[∑C
t=1Xt/C

config. at time 0
]
> 1+ε. This in itself

makes the process equivalent to a random walk with a probability of increasing not less than the
probability of decreasing. In other words, it already shows that the process is diverging. The
next step is to show that it is diverging in a strictly linear fashion.

Theorem 1. The number of s1 bins for Best Fit bin packing under the skewed discrete distribu-
tion U{j, k}, with 33k/50 < j < 2k/3, grows linearly in n for sufficiently large k.

Proof: Let Yt be the indicator function of the event s1(t) 6= 0, and define Zt = Xt − Yt. The
distribution of s1(t) given the state at time t− 1 is:

s1(t) =


s1(t− 1) + 1, w.p. Xt−1/j,

s1(t− 1)− 1, w.p. Yt−1/j,

s1(t− 1), otherwise.

(27)

Thus we get:

E
[
s1(t)‖s1(t− 1), Zt−1

]
=
Xt−1

j

(
s1(t− 1) + 1

)
+

+
Yt−1

j

(
s1(t− 1)− 1

)
+
(

1− Xt−1

j
− Yt−1

j

)
s1(t− 1)

= s1(t− 1) +
Zt−1

j
.

(28)

Therefore we have E
[
s1(t)‖Zt−1

]
= E

[
s1(t− 1)

]
+Zt−1/j, and consequnetly E

[
s1(t)

]
= E

[
s1(t−

1)
]
+(1/j)E

[
Zt−1

]
; and from the latter, by induction, we obtain:

E
[
s1(t)

]
=

1
j

t−1∑
i=0

E
[
Zi
]
+s1(0). (29)

We always have Zt = −1; in fact, the difficult configurations are precisely when Zt = −1.
Consider running the (general) Markov chain for n steps, starting from some given initial con-
figuration. Divide time into supersteps in the following way. A superstep is simply a normal
step of the chain, except in the case when we are in a state with Zt = −1. In this case, all the
steps from this point until the stopping time are combined into a superstep; call the latter long

12



PETAR MAYMOUNKOV SENIOR THESIS

supersteps and the former, respectively, short supersteps. Every short superstep has Zt = 0 and
every long superstep has E

[∑
t5τ Zt

]
> 0, where τ is the stopping time of the long superstep.

To show linear waste, we are going to demonstrate that E
[
s1(t)

]
is linear in t. Specifically, we

show that for some big fixed n0, over any n0 subsequent steps of the chain, the expected change
of s1, E

[
∆s1(n0)

]
, is constant (fraction of n0); and then apply E

[
s1(t)

]
= t/n0E

[
∆s1(n0)

]
. We

want to check that over the n0 steps the number of short supersteps with Zt > 0 plus the number
of long supersteps is not less than cn for some fixed c ∈ (0, 1] 4.

We have already shown that long supersteps tend to increase s1 and short supersteps do so
too, if Zt > 0; all we need to show now is that it is very unlikely to have a situation in which
almost all of the supersteps within a sequence of n0 chain transitions are short with Zt = 0. This
may appear obvious; however, it is a priori possible that all of the si except those determined
in the open range lemma are greater than 0 for almost all steps, in which case we might have
Zt = 0 for almost every (short) superstep.

We show that this is not the case, simply by showing that the area adjacent to the open
range guaranteed by the open range lemma must also be open a constant fraction (of n0) of
the time. Spceifically, set γ = 2/3 − α. We show that all of s(1−α)k, s(1−α)k+1, . . . , s(1−α+αγ/2)k

are simultaneously 0 for an expected constant fraction of the time steps. From this it is easy
to conclude that an expected constant fraction of the steps are short supersteps with Zt > 0,
since from a state where s(1−α)k, s(1−α)k+1, . . . , s(1−α+αγ/2)k are all simultaneously 0 we achieve
a state where exactly two non-neighbouring si in the range

[
(1 − α)k, (1− α+ αγ/2) k

]
are

non-zero in two time steps with constant probability. In fact the probability is approximately
γ2/4, corresponding to the immediate insertion of two items into empty bins that yield bins with
remaining capacity in this range (note that this probability estimate is not violated if there is a
light bin, and as before problematic events happen with negligible probability so they don’t affect
the analysis). To sum up, an expected constant fraction of configurations have the property that
there are no bins within the range of capacities

[
(1− α)k, (1− α+ αγ/2) k

]
, and some constant

fraction of them produce short supersteps with Zt = 1 or 2 in two steps. Of course, some of these
configurations may fall within long supersteps in which case we don’t consider them, because the
long superstep already ensures that we are tending to increase s1. So if we prove that bn0 of the
configurations have the adjacent range property, then we would have at least (b/C)n0 supersteps
(long or short) which tend to strictly increase s1.

To show that all of s(1−α)k, s(1−α)k+1, . . . , s(1−α+αγ/2)k are simultaneously 0 for an expected
constant fraction of the time steps, we show that S = s(1−α)k + s(1−α)k+1 + · · · + s(1−α+αγ/2)k

is stochastically dominated by a random walk that is biased downward. This follows since
there are at most (αγ/2)k entering item sizes that increase S when S 6= 0 5, corresponding to
when items are placed into empty bins. No other items sizes can increase S because all items
sizes which could possibly make a bin of capacity > (1 − α + αγ/2)k into a bin of capacity
∈
[
(1 − α)k, (1− α+ αγ/2) k

]
would have to fall in of the bins in S, since we assumed S 6= 0.

On the other hand, when the range sk/3, . . . , sk−j−1 are all 0, at least γk − 2 (which is bigger
than (αγ/2)k as k grows) possible item sizes decrease S; namely, any item size in the range[
k/3, k − j − 1

]
.

Hence, we have shown that each chain of n0 steps will contain at least cn0 supersteps, each of
which is either short with Zt > 0 or long. Therefore E

[
s1(t)

]
= Θ(T ). Also, the constant factor

4It can happen sometimes that the n0 boundary cuts some long superstep in the middle, but this is not going
to be crucial for our analysis, since we can choose n0 big enough so that cn0 > C.

5We are only interested in the case when S 6= 0, because when S = 0, S can only stay constant or go up.

13



PETAR MAYMOUNKOV SENIOR THESIS

Figure 3: This histogram is similar to the one for Best Fit on Figure 1. Notice, however, that
with Random Fit s1 is not so great, and is even less then s2, s3 and s4.

implied by the Θ(·) notation is in fact independent of k.

4 Analysis of discrete skewed distributions of Random Fit

This section presents a discussion of the conjectured divergence of Random Fit, using ideas from
the proof of the Best Fit case.

4.1 The general Markov chain

The general Markov chain in the case of Random Fit has the same states as in Best Fit, but
different transition probabilities. Let l be the size of the next item inserted.

Let i1 < i2 < · · · < ip be the maximal sequence of indices of bins whose capacity is equal or
bigger than l, if such exists; in that case, Random Fit inserts item l into a bin with capacity
iσ, where σ R← {1, . . . , p}, so, if the capacity of the bin with index iσ was c, after insertion we
get sc(t + 1) = sc(t) − 1 and, if c > l, sc−l(t + 1) = sc−l(t) + 1; all other components of s(t)
remain unchanged. If no such sequence exists, then the algorithm inserts item l into an empty
bin, so we have sk−l(t + 1) = sk−l(t) + 1 and all other components of s(t) remain unchanged.
This completes the description of the Markov chain.

4.2 The difficult configurations

The case with Random Fit is a bit different then Best Fit. With Best Fit we had that the
probability of increasing s1 is Xt/j and the probability of decreasing it is Yt/j. With Random
Fit, clearly, s1 can decrease only when it is not 0; in this case, let c1 < c2 < · · · < cq be the
maximal sequence of indices, for which sc1 > 0, . . . , scq > 0 and c1 = 1. Then there is one way in
which s1 could potentially decrease, namely if an item of size 1 arrives and it gets packed in a bin

14



PETAR MAYMOUNKOV SENIOR THESIS

of remaining capacity 1; in this case, the probability of decreasing would be Vt = s1/
(
j
∑q

i=1 sci
)
.

On the other hand, (assuming that j < k− 1) an incoming item of size cz− 1 5 j would increase
s1, if it gets packed in a bin of capacity cz, which happens with probability scz/

(∑q
i=cz−1 si

)
, for

z = 2.
It follows that the total probability of increasing s1 is

Ut =
1
j

X′t+1∑
z=2

scz∑q
i=cz−1 si

(30)

=
1
j

1∑q
i=1 sci

X′t+1∑
z=2

scz (31)

where X ′t, the number of ways which can potentially increase s1, is such that c1 < · · · < cX′t+1 5
j + 1 < cX′t+2 < · · · < cq.

Classifying the difficult configurations in the case of Random Fit is slightly more subtle than in
the Best Fit case. In the Best Fit case, a configuration was difficult if it had bins of capacites in
all points of the range [0, ξk] for some ξ < α, and no bins of capacities in the range [ξk, αk]. This
classification has two strengths. First, it gives a definitive way of judging whether a configuration
is difficult or not, in other words it is an “if and only if” classification. And second, it is simple
to apply – it only refers to the presence of bins with capacities in certain fixed ranges, but does
not refer to the number of bins within any range.

There is no such simple classification in the case of Random Fit, because one can virtually
create both easy and difficult configurations for almost any “presence constraint.” For instance,
if I am given a configuration C and all I am told about it is that it has bins with capacities in
certain given ranges, in most of the cases I won’t be able to tell whether this is an easy or difficult
configuration from this information. For example, consider the following two configurations
which have bins of capacities 1 and 2 and no other bins, yet one of them is easy and one is
difficult: s1 = 1, s2 = 100, or s1 = 100, s2 = 1 for any k. More surprisingly, we can create two
configurations which have bins with capacities 1, γk, for γ < α, and νk, for ν > α, and still one
will be easy and one will be hard: s1 = sγk = sνk = 1; or s1 = 3 and sγk = sνk = 1.

The best we can do in the case of Random Fit is the following lemma:

Lemma 2. Any Markov state of the general chain for which there exists ν 5 α, such that
sνk = 0 and sνk+1 6= 0, and sνk+2 = · · · = sk−1 = 0, is easy in the sense that the probability of
s1 increasing on the next step is bigger than the probability of it decreasing.

Proof. Let c1 < c2 < · · · < cX′t+1 (where X ′t is as above) is the maximal sequence of capacities
such that sci 6= 0, for all 0 < i 5 X ′t + 1. Then the probability of decreasing s1 is Vt =
s1/
(
j
∑X′t+1

i=1 sci
)
< 1/j. It is strictly less than 1/j, because the condition from the lemma ensures

that s1 <
∑X′t+1

i=1 sci . On the other hand, let cw = νk+1, then probability of increasing s1 would
be:

Ut =
1
j

X′t+1∑
z=w

scz∑q
i=cz−1 si

(32)

=
1
j

1∑q
i=w sci

X′t+1∑
z=w

scz (33)

= 1/j. (34)
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In view of this lemma and the examples given, we can naturally classify the general Markov
chain states in four categories:

1. s1 6= 0, . . . , sm 6= 0 and sm+1 = · · · = sk−1 = 0 for some 0 5 m < 1.3k (due to the Open
Range Lemma). States in the category can be both difficult or easy as demonstrated in the
examples above, and they could potentially be attacked by the methodology used in Best
Fit’s case.

2. s1 6= 0, . . . , sm 6= 0, sm+1 = · · · = sb−1 = sb+1 = · · · = sk−1 = 0 and sb = 1, for b > αk + 1
and 0 5 m < 1.3k. Just like in the previous category, states in the category can be both
difficult or easy as demonstrated in the examples above, and they could potentially be
attacked by the methodology used in Best Fit’s case.

3. There exists ν 5 α, such that sνk = 0 and sνk+1 6= 0, and sαk+2 = · · · = sk−1 = 0. This
category represents the definitely easy states (according to the above lemma).

4. There exists ν 5 α, such that sνk = 0 and sνk+1 6= 0, sαk+2 = · · · = sb−1 = sb+1 = · · · =
sk−1 = 0 and sb = 1 for b > αk + 1. This category represents states that are potentially
difficult, and cannot be analyzed using techniques similar to those of the Best Fit case.

Examples of these categories are shown on Figure 4. Categories 1 and 2 are susceptible to
analysis similar to that of the Best Fit case, because they are easily describable by a configuration
scheme like the one used in for Best Fit. For example, if we were to use the Best Fit notation,
Category 1 states would correspond to (0, 0, 0) and Category 2 states would correspond to (0, 0, 1).
In the next sections I explain why it is still difficult to use that type of analysis to prove divergence
for these two categories. Category 3 represents easy states, according to the lemma, so we need
not take care of it. In a later section I am going to show that most states in Category 4 are easy,
and that the few ones that are not are susceptible to case analysis.

4.3 A Markov chain of supersteps

This and the next section will be devoted to dealing with difficult states of Category 1 or 2.
Again, we shall take advantage of the superstep setting. As soon as the process goes into a
difficult state of Category 1 or 2, we are marking the beginning of a superstep. The stopping
time framework would be the same as in the Best Fit case, which will ensure that all of the
following holds in most of the time:

1. At any moment in time during the superstep, the general Markov state of the system is of
the form s1 6= 0, . . . , sm 6= 0 and su1 6= 0, . . . , suq 6= 0 and all other si’s are zero, where there
are no two consequtive numbers in the sequence u1, . . . , uq,and u1 > m.

2. m stays constant throughout the superstep.
3. The superstep takes exactly C steps.

In general, any set of problematic events could potentially be used as long as we ensure that as
k grows to infinity the probability of a problematic event becomes negligible. And, in fact, we
only need to make sure that for all k > k0, for some k0 ∈ N, the probability of a problematic
event is less then some constant po, which is small enough to ensure that s1 tends to increase
even when problematic events happen, and to dampen the effect of the floating point imprecision
of the computer we are using for our analysis.

More specifically, we are hoping that at the end of the analysis we shall be able to prove
a statement like this: “the difference between the probability of s1 having increased and s1
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Category 1: s1 6= 0, . . . , sm 6= 0 and
sm+1 = · · · = sk−1 = 0.

Category 2: s1 6= 0, . . . , sm 6= 0, and
sm+1 = · · · = sb−1 = sb+1 = · · · = sk−1 = 0 and
sb = 1 for b > αk + 1.

Category 3: There exists ν 5 α, such that
sνk = 0 and sνk+1 6= 0, and
sαk+2 = · · · = sk−1 = 0.

Category 4: There exists ν 5 α, such that
sνk = 0 and sνk+1 6= 0,
sαk+2 = · · · = sb−1 = sb+1 = · · · = sk−1 = 0 and
sb = 1 for b > αk + 1.

Figure 4: Categories 1 to 4 classify all possible general Markov chain states. Category 3 represents
an easy state; categories 1 and 2 represent (generally) difficult states that can possibly be attacked
using the case analysis for Best Fit; category 4 represents a (generally) difficult state which, I
show, is equivalent to Categories 1 and 2. In all of the above 0 5 m < 1/3k.
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having decreased after the superstep terminates is greater than d∗ > 0, on the condition that
problematic events don’t happen.” Given such a statement, we would like to be able to prove
that the probability of s1 having increased after the termination of a superstep is more than
the probability of it having decreased in the general setting, i.e. even when problematic events
do happen. We also have to account for computational imprecision εc, so in the worst-case the
difference will really be d′∗ = d∗ − εc. We know that in the case of a problematic event the worst
that can happen is s1 to decrease, so we simply want to choose po such that d′∗ > po.

We need to ask ourselves how much convenience could we possibly get by picking a good set
of problematic events. From our discussion above, it follows that the set of problematic events
could be any set of events who size is a very small constant fraction of k, but since we don’t
know d∗ a priori and since po is so small, it is hard to come up with a useful set of events which
has a size a fraction of k. Constant-sized sets of problematic events seem to be most useful. The
set of events that we are using above makes sure that bins not in the range [0,m] are never next
to each other; one can easily extend this to a set of problematic events that ensures that these
bins are never any closer than l from each other, for some constant l. This is so becase the set
of events that violate this condition are linear in the number of steps C, which is constant. And
so, even more generally, one can pick problematic events that ensure that some constant-sized
vicinity of each bin not in the range [0,m] never looks like any of a fixed number of “vicinity
appearances.” We could also ensure that certain fixed size (or small fraction sized) regions of the
histogram never fall into any of a fixed number of states, and so on and so on. Unfortunately,
none of these is really too useful for any analysis; all that problematic events really achieve for
us is convenience when it comes to expressing the probabilities of s1 increasing or decreasing,
because these events take care of getting rid of unpleasant extreme cases that never happen.

Next, let’s turn to expressing the probabilities of increasing and decreasing s1 in a superstep.
As before, let A(t) be the probability that t is not the stopping time τ (on the condition that we
have already reached step t and Xt is known, where Xt is taken to mean s(m+1)+· · ·+s(αk+1)).
Then the union bound tells us that A(t) = 1−

∑7
i=1 Ti(t), where Ti(t) is the probability that a

stopping event of type i happens at time t; and since TBFi (t) 5 Ti(t) 5 TBFi (t)/C, where TBFi (t)
is the equivalent of Ti(t) for Best Fit, we get:

A(t) = 1−O(1/j2) (35)

Hence, the probability P that s1 has increased would be

P =
C∑
t=1

[
HX′t

j

t−1∏
i=1

A(i)

]
(36)

=
C∑
t=1

[
HXt

j

t−1∏
i=1

A(i)

]
(37)

=
1
j

C∑
t=1

HXt +O

(
1
j2

)
, (38)

where X ′t is as in the previous two sections and Hn =
∑n

i=1 1/i is the harmonic number of n.
Again, using a union bound, we find the upper bound on the probability that s1 has decreased

(after the end of the superstep):

P 5
C

j
. (39)
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This formula also assumes the worst-case that s1 is so much bigger than s2 + · · ·+ sk−1 that any
incoming item of size 1 will virtually go into a bucket of capacity 1.

For the difference of the two probabilities, we get:

P − P =
∑C

i=1HXi − C
j

+O

(
1
j2

)
. (40)

P , however, in the form shown above is, of course, a conditional probability which assumes the
knowledge of all of X1, . . . , XC . Exactly along the lines of the Best Fit analysis, we get the
unconditional version:

P =
1
j
E

[ C∑
i=1

HXi

]
+O

(
1
j2

)
. (41)

In other words, we need to show that

P − P =
C

j

[
E
[∑C

i=1HXi

]
C

− 1
]
+O

(
1
j2

)
(42)

= 0, (43)

or, as before, simply:

E

[∑C
t=1Hsm+2(t)+sm+3(t)+···+sj+1(t)

C

configuration at time 0
]
> 1 + ε′. (44)

for some ε′ > 0.

4.4 The configuration space

Before jumping into the specific configuration framework that I have picked for Random Fit, I’d
like to say a few words about configuration spaces in general. We already mentioned that the
configuration space size should be a constant rather than a growing function of k, because in the
latter case it won’t be easy to analyse and certainly it won’t be possible to apply Kenyon and
Mitzenmacher’s case analysis.

The subtlety of the analysis is really in picking the right configuration space, because once
this is done, the case-analysis is uniquely determined, in a sense. The analysis has to take into
consideration all possibilities for α,w and m in order to be complete. Since these are continous
variables, in practice, all we can do is consider small ranges of these variables, and write a case
analysis for these ranges. The analysis is uniquely determined in the sense that, once we pick
how finely grained our ranges for α,w and m will be, the list of cases is already etched in stone.
When considering each specific case any ambiguity as to what may be the next state is turned
into a choice for the adversary.

The Best Fit case has a relatively simple configuration space and yet it limits the ambiguity
enough so that the tendency of increasing s1 is clearly exhibited. This is also seen in the histogram
for Best Fit on Figure 1. Unlike it, Figure 3 already hints that Random Fit’s s1 is much less
upward biased.

My experiments have shown that a configuration space of the form (Xt, At, Bt), as in Figure 2,
does not suffice for Random Fit because it allows for too much ambiguity and hence a lot of
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power for the adversary. This configuration space allowed me to prove that supersteps starting
with states of Categories 1 and 2 end up increasing s1 with prevailing probability for the cases
when m ∈ [0, 0.05475] and m ∈ [0.33, 1/3]. I used case analysis similar to the one for Best Fit.
Since this proved to be insufficient, my next attempt was to enrich the configuration space.

I attacked the most difficult case, i.e. when m = ξk for ξ = 1/6, because the other cases
would have easily followed from this one. The reason for considering m = k/6 to be the most
difficult case is intuitively as follows. There are two other cases: when m tends to be closer to
0, or when m tends to be closer to 1/3. In the former case, the probability of any tokens falling
in the area [0,m] is very small and so most tokens contribute to adding more possibilities (Xt)
for potentially increasing s1. In the latter case, since m is so big, most of the time the incoming
items don’t result in decreasing Xt because they often fall in [0,m], which helps bias the random
walk upwards. The fact that this is the case can easily be seen in the case analysis for Best
Fit (given in the appendix) which is essentially the same for Random Fit. The configurations
m = k/6 are the most difficult to handle because they are a fine micture between the above two
extremities.

I chose to use configurations of the form (Zt, Yt, At, Bt), where Zt is the number of bins in the
range [m + 1, (1 − α)k], Yt is the number of bins in the range [(1 − α)k, k/2], At is 1 if there is
a light helpful bin and 0 otherwise, and Bt is 1 if there is a light unhelpful bin and 0 otherwise.
This is illustrated on Figure 5.

There are a number of reasons to pick this particular configuration space and not any other
one:

1. By splitting what used to be Xt into Zt and Yt, we gain more information about the state
underlying a configuration, and ultimately we are able to follow more closely the tokens’
path on the histogram.

2. Why wouldn’t we pick an even finer partition of Xt? This is a matter of taste. The size of
the configuration space, and hence the running time of the analysis algorithm, is linear in
C when we use Xt; it is quadratic in C when we use Zt and Yt; and the finer the partition
get, the higher the exponent becomes. It takes about 1 hour to do the analysis (written in
C++) in the case when we are using Zt and Yt and C = 100, which means that any finer
partition would throw us into very lengthy computations.
Similarly, one can ask the question: why not partition At and/or Bt? This would also
increase the running time nearly twice.

3. Lastly: why did I pick the regions of Zt and Yt to be equally sized? There’s to explanation
to this. First, the intuitive explanation: imagine, if we were to gradually shrink Zt’s range
(and thus expand Yt’s range), then we would converge to the case when we simply have
Xt, because when Zt’s range is very small it has almost no impact on our analysis; and of
course this argument is symmetric.
Let’s look at a specific example. Consider the two cases given on Figure 6. In the first one
l(Zt) = l(Yt), where l(·) represents the interval length of the range, and in the second one,
say, l(Yt) = 2l(Zt). Now, e.g. assume we are in a configuration (0, 1, 0, 0) and an item of size
ξk + 1 comes. In the first case, the adversary will only have one option, namely: Xt+1 = 1
and Yt+1 = 0; whereas, in the second case there are two options: Xt+1 = 1 and Yt+1 = 0,
or just Yt+1 = 0.

The actual case analysis is given in the next section. I think, however, that this is the the time
to say what the results were. After I ran the analysis, using the enriched configuration space,
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Figure 5: Regions of the Random Fit histogram, represented by the configuration (Zt, Yt, At, Bt).
In that setting, there is no way to get any tokens past (1− ξ)k, hence Bt’s range stops there.
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Figure 6: Different ways to partition Xt into Zt and Yt.
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for 200 steps the expected value of E
[∑C

t=1Hsm+2(t)+sm+3(t)+···+sj+1(t)/C
conf. at time 0

]
never

went above 0.74, which is quite far from the goal of 1. Moreover, running the analysis for more
steps wouldn’t help wither because the expectation value converges to its equilibrium after the
first 100 steps.

4.5 The dynamic program

Before giving the list of cases, I’d like to emphasize to observations that make this analysis
different than the Best Fit analysis.

First, when an item of size < ξk comes, we give the adversary only one choice which is “no
change.” The reason for this is as follows: we can pick any number ζ < ξ, and say that when an
item of size < ζk comes it gets packed in a bin of capacity < ξk, because as k → ∞ the size of
the region [ζk, ξk] grows so large, that the probability that the incoming item gets packed there
and nowhere else becomes effectively 1. And because we chose any ζ < ξ, we might as well as
that this holds for all incoming items of size < ξk.

Second, suppose we are in a configuration (10, 7, 0, 1) and an item of size 0.30k comes. In this
case, we need to give the adversary two options: either pack the item in a bin with capacity in
the range of Zt or in a bin with capacity in the range of Yt. The subtlety is that there choices
have a limited probability, e.g. the first can happen in at most 1/(1 + Yt +At +Bt) of the time,
and the second choice can happen in at most 1/(Yt + At + Bt) of the time (due to the nature
of the Random Fit packing). In other words, the adversary has the power to decide what the
positions of the tokens with the two ranges Zt and Yt are, but once that is fixed, it has no power
to pack the incoming item in any bin it wishes to. This is reflected in my analysis, which follows:

* If w 5 ξk, no change.

* If ξk 5 w 5 1− α, the adversary has the choices:

– Zt+1 = Zt−1, only if Zt > 0. This choice can be exercised at most Zt/(Yt+At+Bt+1)
of the time;

– Yt+1 = Yt − 1, only if Yt > 0. This choice can be exercised at most Yt/(Yt + At + Bt)
of the time;

– At+1 = 0 and Zt+1 = Zt + 1, only if At = 1. This choice can be exercised at most
1/(Yt +At +Bt) of the time;

– At+1 = 0 and Yt+1 = Yt + 1, only if At = 1. This choice can be exercised at most
1/(Yt +At +Bt) of the time;

– Bt+1 = 0 and At+1 = 1, only if Bt = 1. This choice can be exercised at most 1/(Yt +
At +Bt) of the time;

– Bt+1 = 0 and Yt+1 = Yt + 1, only if Bt = 1. This choice can be exercised at most
1/(Yt +At +Bt) of the time;

– Bt+1 = 1, only if Yt = At = Bt = 0.

* If 1− α 5 w 5 1/2, the adversary has the choices:

– Yt+1 = Yt − 1, only if Yt > 0. This choice can be exercised at most Yt/(At +Bt + 1) of
the time;

– At+1 = 0 and Zt+1 = Zt + 1, only if At = 1.
– At+1 = 0, only if At = 1.
– Bt+1 = 0 and Zt+1 = Zt + 1, only if Bt = 1.
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– Bt+1 = 0 and Yt+1 = Yt + 1, only if Bt = 1.
– At+1 = 1, only if At = Bt = 0.

* If 1/2 5 w 5 α, the adversary has the choices:

– At+1 = 0, only if At = 1. This choice can be exercised at most 1/(At +Bt) of the time;
– Bt+1 = 0, only if Bt = 1.
– Yt+1 = Yt + 1, only if Bt = 0.

Figure 7 shows the pseudo-code of the analysis program.

4.6 Category 4

Let us say that we have just entered a state of Category 4: there exists ν 5 α, such that sνk = 0
and sνk+1 6= 0, sαk+2 = · · · = sb−1 = sb+1 = · · · = sk−1 = 0 and sb = 1 for b > αk + 1.
W.l.o.g. assume that ν is the smallest number that possesses the above property, in which case
νk−1 = m. Assume nothing about the values of s1, . . . , sm and take the worst case when P = 1/j,
which is not even achievable in practice, if we are in Category 4. Denote S̃ =

∑αk+1
i=νk+1 si, then

P =
(
HS̃ + 1/S̃− 1/2

)
/j. P > P only when S̃ 5 5, and hence each difficult state from Category

4 corresponds to some configuration which has Yt + Zt = S̃ 5 5 and At +Bt = 1.

5 Conclusion

Could Random Fit’s waste still diverge for the distributions U{j, k}, with 33k/50 < j < 2k/3?
The overarching philosophy of Kenyon and Mitzenmacher’s approach is to take every difficult
state and prove that a constant number of steps after it s1 would have most likely increased.
Even if we are to believe my guess that their analysis technique won’t help prove Random Fit’s
divergence, there is still one possibility left. It might be the case that there exist difficult states
which take non-constant number of steps to recover from, but these states might be very very
unlikely to happen, which would alleviate the effect of their recovery time on s1. Such a case
would most likely require a different kind of proof technique.
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pre-initialized data
For each of the case-analysis’ ranges r̄ of w we have an array r̄[·] of
triples of the form 〈condition (D),action (A),maximal probability (M)〉;

variables
[A set of variables to hold the expected value of the superstep on
the condition that we are in a given conf. at a given step]
set of float vars named E indexed by t ∈ [0, C] and C ∈ Ψt;

begin

[initialize expectations given that we have 0 steps left]
for C ∈ ΨC begin
E(C,C) := HXC+AC

;
end

[dynamic program]
for t := C − 1 downto 0 begin

for C ∈ Ψt begin
E(t,C) := HXC+AC

;
for r̄ in set of ranges of w from case analysis begin

Create a temporary copy t̄[·] of r̄[·];
Eliminate all triples from t̄[·] whose condition is not satisfied by C;
Sort the remaining of t̄[·] by expectation of the

next step configuration in ascending order;

var float u = 0;
for c := 1 to l(t̄[·]) begin
E(t,C) := E(t,C) + E(t+ 1,W) min{1− u, t̄[c].M}l(r̄)/α where

W ∈ Ψt+1 is W = t̄[c].A(C);
u := u+ min{1− u, t̄[c].M};

end
end

end
end

end

Figure 7: Pseudo-code for the dynamic program of Random Fit’s analysis. Here l(r̄) represents
the length of the range r̄ in the sense of an interval length, and l(t̄[·]) is the number of elements
in the array t̄[·]. At the end of the execution of this program, the variable E(0, (0, 0, 0)) holds
the value of E

[∑C
t=1HXt

config. at time 0
]
, where Xt = Zt + Yt +At.
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A Best Fit adversarial case analysis

In this appendix section, I’m giving a precise description of the dynamic program’s operation
with respect to the analysis of the Best Fit case. First of all, given that any difficult configuration
is of the form (0, 0, 0), i.e. this is the entering configuration of a superstep, and since we are only
looking at C consequent steps, all configurations, reachable from within the superstep, are of the
form (X,A,B), where 0 5 X 5 C, which gives a total of 3(C + 1) different configurations.

In order to compute the quantity E
[∑C

t=1Xt/C
config. at time 0

]
, we need to find the prob-

ability distributions on all of the following spaces of configurations Ψt, where Ψt =
{

(X,A,B) :
0 5 X 5 t, (A,B) ∈ {(0, 0), (1, 0), (0, 1)}

}
represents all configurations reachable at time t from

the beginning of the superstep. This is so because we are working on the condition that problem-
atic events don’t occur, and so the probability distribution on each of Ψt, for 0 5 t 5 C, should
sum up to 1. Our computation of these probability distributions will be based on our knowledge
of the distribution on Ψ0, namely PrΨ0 [(0, 0, 0)] = 1 and PrΨ0 [(0, 1, 0)] = PrΨ0 [(0, 0, 1)] = 0.

If, given that we are in configuration Ct at time t, we could determine the probability distri-
bution of our next step, we could easily compute all distributions on the Ψt’s by starting from
Ψ0 and progressively going up to ΨC . Unfortunately, since a configuration does not contain
complete information about the specific state of the system, a pair of a configuration and an
incoming item does not determine uniquely the next step configuration. In other words, there
is some ambiguity, which however is limited, because not all possible next step outcomes will be
reachable.

Take for example the following scenario. Suppose we are already t steps into a superstep with
m = 0.1k, and we know that we are currently in configuration (1, 0, 0), and that the incoming
item is in the range [0.2k, 0.3k]. There are two possibilities:

a. Either the incoming item is bigger than the capacity of the only useful bin (Xt = 1), in
whichcase we are going into configuration (1, 0, 1);
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b. or not, in which case there are still two possible outcomes: (0, 0, 0) or (1, 0, 0), depending
on what the difference between the incoming item’s capacity and the useful bin’s capacity.

In summary, given our current configuration and the range of the incoming item, we could
end up in any one of three configurations and we have no way of telling which one it will be.
Since there is ambiguity involved, the best we can do is compute the worst-case outcome of
this situation. For this purpose, we need to be able to tell which choice will yield the worst
case overall. And specifically in our example, we need to know which one of (0, 0, 0), (1, 0, 1) or
(1, 0, 0) yields the worst overall value of E

[∑C
t=1Xt/C

config. at time 0
]

given that C − t − 1
steps will be remaining. Hence, before making our choices for step t we should already know what
the superstep outcome would be, if we were in any one of the configurations reachable in time
t+ 1 and had C − t− 1 steps remaining. To achieve this, we need to compute the distributions
on ΨC first, then on ΨC−1, and so on to Ψ0.

The following is the actual case analysis from [4]. The analysis is specific to the case where
1/4k 5 m 5 1/3k. Let the entering item have weight wk, where 0 5 w 5 α. Recall that Xt is
the number of ways to increase s1; At is 1 if and only if there is helpful light bin, and 0 otherwise;
Bt is 1 if and only if there is an unhelpful light bin, and 0 otherwise.

Case 1: At = 0, Bt = 0.

– If w 5 1/4, no change.
– If 1/4 5 w 5 1/3, the adversary decides between setting Xt+1 to Xt − 1 (if possible,

i.e. if Xt > 0) or setting Bt+1 to 1.
– If 1/3 5 w 5 1− α:

* If Xt = 0, set Bt+1 to 1.
* If Xt > 0, the adversary decides between setting Xt+1 to Xt − 1 or setting Bt+1 to

1.
– If 1− α 5 w 5 1/2:

* If Xt = 0, set At+1 to 1.
* If Xt > 0, the adversary decides between setting Xt+1 to Xt − 1 or setting At+1 to

1.
– If 1/2 5 w 5 α, set Xt+1 to Xt + 1.

Case 2: At = 1.

– If w 5 1/4, no change.
– If 1/4 5 w 5 1/3, the adversary decides between setting Xt+1 to Xt− 1 (if possible) or

setting At+1 to 0 (either increasing Xt or not).
– If 1/3 5 w 5 1/2:

* If Xt = 0, set At+1 to 0, and adversary decides whether to increase Xt or not.
* If Xt > 0, the adversary decides between setting At+1 to 0 (either increasing Xt, or

not) and setting Xt+1 to Xt − 1.

If 1/2 5 w 5 α, the adversary decides between setting Xt+1 to Xt + 1 or setting At+1 to 0.

Case 3: Bt = 1.

– If w 5 1/4, no change.
– If 1/4 5 w 5 1/3, the adversary decides between setting Xt+1 to Xt− 1 (if possible) or

setting Bt+1 to 0 (either increasing Xt or not).
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variables
[A set of variables to hold the expected value of the superstep on
the condition that we are in a given conf. at a given step]
set of float vars named E indexed by t ∈ [0, C] and C ∈ Ψt;

begin

[initialize expectations given that we have 0 steps left]
for C ∈ ΨC begin
E(C,C) := XC +AC;

end

[dynamic program]
for t := C − 1 downto 0 begin

for C ∈ Ψt begin
E(t,C) := XC +AC;
for r̄ in set of ranges of w from case analysis begin
E(t,C) := E(t,C) + E(t+ 1,W)l(r̄)/α where

W ∈ Ψt+1 is the one configuration, among the reachable
ones from C on an incoming item in the range r̄, that has
the smallest corresponding E(t+ 1,W);

end
end

end

end

Figure 8: Pseudo-code for the dynamic program of Best Fit’s analysis. Here l(r̄) represents the
length of the range r̄ in the sense of an interval length. At the end of the execution of this
program, the variable E(0, (0, 0, 0)) holds the value of E

[∑C
t=1Xt

config. at time 0
]
.

– If 1/3 5 w 5 1/2:
* If Xt = 0, set Bt+1 to 0, and adversary decides whether to increase Xt or not.
* If Xt > 0, the adversary decides between setting Bt+1 to 0 (either increasing Xt, or

not) and setting Xt+1 to Xt − 1.
– If 1/2 5 w 5 α, set Bt+1 to 0.

Similar analysis applies for the ranges of m: 0 5 m 5 12/100, 12/100 5 m 5 22/100, and
22/100 5 m 5 25/100. Figure 8 provides the pseudo-code of the program that computes the
worst-case E

[∑C
t=1Xt/C

config. at time 0
]

for any case analysis of the above form.
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