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Abstract

This exposition gives a simplified version of Radhakrishnan’s construction of a PCP
gap amplification transform [4], which is itself a simplified version of Dinur’s construc-
tion [3]. The preprocessing and alphabet reduction transforms are left unchanged, and
are thus not addressed here. Briefly, we simplify the analysis by pretending that all
vertices have opinions about the color of all other vertices. This helps avoid condi-
tioning in the analysis of the non-truncated random walk, and makes our arguments
conceptually crisper. The “truncation argument” is reduced to a couple of lines as
opposed to over two pages in [4]. We also include a proof, due to [6], to a somewhat
counter-intuitive random walk lemma used in [4]. Our exposition contains various fixes
of small “bugs” as well as restated, clarified and detailed versions of the more important
arguments in [4].

1 Gap amplification

1.1 Notation

We use I[·] to denote the indicator function.

1.2 Setting

In this essay we give a simplified exposition of Radhakrishnan’s PCP gap amplification trans-

form [4], which is itself a simplified, slightly modified and conceptually cleaner version of

Dinur’s original amplification transform [3]. Recall that out starting point is an instance of

the Generalized Graph Coloring (GGC) problem. In particular, we are given an undirected

graph G = (V,E), together with an alphabet Σ of “allowed colors.” Each edge e = (u, v) of G

is associated with a constraint ce : Σ×Σ→ {0, 1} which determines whether any particular

coloring of u and v is valid or not. To be more precise, we define that the first argument to

ce to be the color of the vertex that comes first in lexicographic order. We will not specify

the representation of ce here, because it is not essential for the purposes of this proof. We
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briefly mention that [3] represents the constraints via boolean formulas, while [4] represents

them via systems of quadratic polynomials.

We further restrict our attention to GGC instances G with the following properties:

1. Each vertex of G has d/2 self-loops

2. G is an (η, d)-expander

We abuse notation a little by using G to refer both to the underlying graph as well as to

the problem instance. Let ω : V → Σ be a coloring. Define:

unsatω (G) = Pre=(u,v)∈E
[
ce(ω(u), ω(v)) = 0

]
and unsat (G) = min

ω
unsatω (G)

When G is satisfiable unsat (G) = 0, otherwise unsat (G) ≥ 1/|E|. The goal of this section

is to construct a GGC instance Gt, for any t ≥ 1, with the following properties:

1. Gt is only linearly bigger than G. More precisely, Gt is defined on the same vertex set

V , the number of edges in Gt is at most dt times the number of edges in G, and each

original constraint ce is repeated (typically in conjunction with others) at most dt times

in Gt.

2. If unsat (G) = 0, then unsat (Gt) = 0, otherwise unsat (Gt) ≥ ε for some universal

constant ε related to t.

1.3 Construction

Before we proceed to the definition of the new GGC instance Gt, we would like to highlight

the “isomorphism” between a GGC instance and the corresponding PCP. For each GGC

instance G, the natural corresponding PCP is one where:

1. The proof Π : V (G)→ Σ corresponds to a coloring of G.

2. The verifier V picks one random edge e = (u, v) ∈ E(G), queries the proof for the

colors at vertices u and v, say ω(u) and ω(v) respectively, and verifies that the colors

satisfy the constraints at e, i.e. ce(ω(u), ω(v)) = 1.

We now describe the construction of the GGC instance Gt:

1. Gt is defined over the same vertex set V as G itself

2. The alphabet of Gt is Σdt+1
. The intention is that if G is satisfiable, the only correct

coloring of Gt is the one where each vertex v ∈ Gt “knows” the satisfying coloring of

all vertices in G that are no more than t steps away from v. This we call the intended

coloring of Gt. In this setting, for an arbitrary coloring ωt : V → Σdt+1
of Gt we let

ωta(u) be the “opinion” of a ∈ Gt about the color of u ∈ G for a purported satisfying

assignment of G. Whenever dG(a, u) > t, we define ωta(u) = ? alluding that v has no

opinion about u’s color.
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3. To define the edges of Gt consider the following random walk process on G that outputs

two vertices a and b:

(a) Pick a u0 ∈ V uniformly at random and set a := u0. Repeat the following step

until a stopping condition is reached:

(b) Having chosen u0, u1, . . . , ui−1 let ei be a random edge leaving ui−1 and arriving

at ui. Add ui to the walk and stop this process with probability 1/t, in which case

set b := ui, otherwise repeat.

Now consider the outcomes (a, b) of the above process. We would ideally like each

such outcome to correspond to an edge (a, b) in Gt. However, we need to take extra

care in ensuring that the walk corresponding to each edge in Gt occurs with the same

probability across all edges and furthermore we would like to “discard” all walks of

more than t steps (because otherwise we would have to have infinitely many edges).

This is achieved using the following technical trick. We think of the choice of a random

walk as a uniform sample from W = [n]× [d]t× [t]t, which encodes the choice of initial

vertex, out-edges at every step as well as stopping conditions (should they occur within

the first t steps). A walk ends within t steps if we encounter “1” in the [t]t dimension

of W , otherwise we say that the walk is truncated (or discarded). The edges of Gt are

now in 1-to-1 correspondence with the elements of W in the following way. If w ∈ W
represents a walk of at most t steps, than the corresponding edge in Gt simply connects

the starting and ending vertices of the walk. Otherwise, the walk corresponds to a

self-loop at the starting vertex with an always-accepting constraint. (Note that the

same random walk may be represented by more than one element of W .)

4. An edge (a, b) ∈ Gt is associated with the following constraints. Let (e1, . . . , eT ) be the

edges in the walk from a to b in G. We say that ωta and ωtb pass the test at ei = (ui−1, ui)

if at least one of the following conditions holds:

(a) ωta(ui−1) = ? or ωtb(ui) = ?

(b) ωta(ui−1) = ωtb(ui−1) and ωta(ui) = ωtb(ui) and c(ui−1,ui)(ω
t
a(ui−1), ωta(ui)) = 1

The constraint at e = (a, b) ∈ Gt, denoted ct(a,b)(w
∗
a, w

∗
b ), simply ensures that w∗a and

w∗b pass the test at all e1, . . . , eT .

This completes the construction of Gt. Claims regarding the size of Gt are straightforward

to verify.

1.4 Analysis

The main technical result is now the following “amplification” lemma:

Lemma 1.1 (Lemma 6.1 in [3], Lemma 5.7 in [4]). Given a GGC instance G such that G

is an (η, d)-expander and each vertex of G has at least d/2 self-loops, the following hold true

for all t ≥ 1:
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1. If G is satisfiable, then so is Gt under the intended coloring.

2. If G is unsatisfiable, then:

unsat (Gt) ≥ 3−
√

5

8
· 1

1 + d2/η2
· t ·min(unsat (G), 1/2t)

The first part is straightforward.

For the second part, let ε =unsat (G). Fix a coloring ωt of Gt. We would like to argue

that q = Pr(a,b)∈Gt [cte(ω
t
a, ω

t
b) = 0] is sufficiently large (as desired by the lemma). Deriving

a lower bound on q is equivalent (by construction) to deriving a lower bound on the event

that the corresponding random walk fails a test or is longer than t steps. The latter occurs

with probability (1− 1/t)t � 1/e. We will however analyze the random walk as if it were not

truncated, and at the end we will argue that truncation does not change the outcome by a

lot.

Since we will be analyzing the “ideal” not-truncated walk, we will have to pretend that each

vertex of Gt has an opinion about the colors of all vertices of G. And thus this imaginary

coloring of Gt will be of the form ω∞ : V → Σ|V |. We will assume that ω∞ is any such

coloring which agrees with ωt in the natural way (i.e. in terms of opinions about colors of

vertices). At the end of our probabilistic analysis we will apply a “truncation argument”

which will ensure that we do not consider any outcomes that might have been produced by

looking at the parts of ω∞ not present in ωt.

From here onwards we shall use κ to denote a random walk over vertices (w0, . . . , w`(κ))

and edges (e1, . . . , e`(κ)) as defined above, where `(κ) is the length of the walk. Let W#
κ,u→v

be the number of i’s for which wi = u and wi+1 = v. We use κa = w0 and κb = w`(κ).

We distinguish two flavors of random walks: an after-walk and a before-walk. The former

denotes a walk as defined above. The latter differs from it in that stopping decisions are

made before edge traversals. We use κ∗ to denote a before-walk. Central to our analysis is

the next lemma:

Lemma 1.2 (Random Walk Lemma). Let G be an undirected d-regular multi-graph with at

least one self-loop at each vertex. Let κ be an after-walk on G, and let Qk = W#
κ,u→v. Then

for all a, b, u, v ∈ V and k ∈ Z+:

1. κa and κb are independent conditioned on Q = k

2. Prκ[κb = b | Q = k] = Prκ∗ [κ
∗
b = b | κ∗a = v]

3. Prκ[κa = a | Q = k] = Prκ∗ [κ
∗
a = u | κ∗b = a]

Since the statement of this lemma (in particular part 2) is somewhat counter-intuitive, we

give a detailed proof here:

Proof of Lemma 1.2. This proof is borrowed from [6]. Part 2. It is straightforward that:

pb = Prκ[κb = b | Q ≥ k] = Prκ∗ [κ
∗
b = b | κ∗a = v]
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This is so since once (u, v) is traversed k times there are no additional restrictions on the

walk. Thus pb is independent of k.

pb = Prκ[κb = b | Q ≥ 1]

=
Prκ[κb = b ∧Q ≥ 1]

Prκ[Q ≥ 1]

=
Prκ[κb = b ∧Q = 1] + Prκ[κb = b ∧Q ≥ 2]

Prκ[Q = 1] + Prκ[Q ≥ 2]

But we know that:

pb =
Prκ[κb = b ∧Q ≥ 2]

Prκ[Q ≥ 2]

And thus Prκ[κb = b | Q = 1] = pb. Applying the above argument inductively produces

Prκ[κb = b | Q = k] = pb.

Part 3. An after-walk is represented by a sequence κ = (a, e1, s1, . . . , e`, s`) with a ∈ V , ei ∈
[d] and si ∈ {0, 1}, where each entry is chosen independently. We obtain a new distribution

by applying the probabilistic isomorphism κ 7→ (κb, e`, 0, . . . , e2, 0, e1, 1). Let the walk τ be

drawn according to the new distribution, then:

Prκ[κa = a | Q = k] = Prτ [τb = a | W#
τ,v→u = k] = Prτ∗ [τ

∗
b = a | τ ∗a = u]

Part 1. It is easily seen that the value of κa conditioned on Q = k depends only on u.

Similarly, the value of κb conditioned on Q = k depends only on v. Therefore κa and κb are

independent. z

We start by defining a fictitious coloring ω of G (induced by ω∞) which will be used only

for analysis purposes. For every u ∈ V define:

ω(u) = arg max
σ∈Σ

Prκ∗ [ω
∞
κ∗b

(u) = σ | κ∗a = u]

Let F ⊆ E be a maximal set of unsatisfied edges of G under ω such that |F | ≤ 1/t. Since G

is ε-far from satisfiable, we have that min(ε, 1/2t) ≤ |F |/|E| ≤ 1/t.

Let us now consider the random walk κ taken by the verifier. We call an edge ei faulty if

ei ∈ F and ω∞(a) and ω∞(b) fail the test at ei. Let X be a random variable that equals the

number of faulty edges on the verifier’s walk. We will show the following two claims:

Claim 1.1 (Average analysis). E[X] ≥ αt · |F |/|E|, where α =
√

5−1
2

.

Claim 1.2 (Variance analysis). E[X2] ≤ 4βt · |F |/|E|, where β = 1 + d2/η2.

Lemma 1.3 (Theorem 4.3.1 in [5]). For every integral non-negative random variable X:

Pr[X > 0] ≥ E[X]2/E[X2].
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Together they give us our main result:

Pr(e1,...,eT )[some ei is faulty] ≥ Pr[X > 0] ≥ E[X]2

E[X2]
≥ α2

4β
· t · |F |
|E|
≥ α2

4β
· t ·min(ε, 1/2t)

In the following two sections we prove the two claims. Then in the final section we give an

argument that explains why the truncated random walk (simulated by Gt) behaves essentially

identically to the “ideal” non-truncated one analyzed so far.

1.4.1 Average analysis

In this section, when we talk about an edge e ∈ E traversed by the verifier’s walk we silently

do not distinguish the direction of traversal. This makes the exposition cleaner. To complete

the argument one must apply it twice: once for each direction. Or, equivalently, assume that

G is directed where each undirected edge is replaced by two opposing directed ones.

Let κ be the random walk of the verifier, and condition on the event that a fixed edge

e = (u, v) ∈ F is in κ. e is faulty if at least one of the following three events holds:

1. A1 = I
[
ω∞a (u) 6= ω∞b (u)

]
, or

2. A2 = I
[
ω∞a (v) 6= ω∞b (v)

]
, or

3. A3 = I
[
ω∞a (u) = ω(u) ∧ ω∞b (v) = ω(v)

]
. (In this case ce(ω(u), ω(v)) = 0 since e ∈ F

by assumption.)

Since the above events are not independent, we have:

Pr[e is faulty | e ∈ κ] ≥ max
(
Pr[A1],Pr[A2],Pr[A3]

)
Let pa be the probability that ω∞a (u) = ω(u), and pb be the probability that ω∞b (v) = ω(v),

both of which are independent from each other by Lemma 1.2. Thus Pr[A3] = papb.

We turn our attention to A1 now. A little thought would convince the reader that:

Pr[A1] = Pr[ω∞a (u) 6= ω∞b (u)] ≥ 1−Prκ′ [ω
∞
κ′b

(u) = ω(u) | κ′a = u] = 1− pa

This follows from the fact that if ρ1, ρ2 : Z→ R are two distributions over the integers, then:

Prx∼ρ1,y∼ρ2 [x 6= y] ≥ max
i∈[2]
{1−max

z
ρi(z)}

Similarly Pr[A2] ≥ 1− pb. Thus:

Pr[e is faulty | e ∈ κ] ≥ max (1− pa, 1− pb, papb) ≥
√

5− 1

2
= α

Now, let e be a directed version of e = (u, v) ∈ E. Let the random variable Xe equal the

number of faulty occurrences of e in the verifier’s walk in the specified direction, and let Ye
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denote the number of all occurrences. (Note that if one occurrence is faulty, then all are.)

Since the stationary distribution of this walk is uniform, it is easily checked that Ye = t/2|E|.
Also let Ze indicate whether e has any faulty occurrences in the walk, hence Xe = YeZe.

Observe that Ze depends solely on κa and κb, which are independent of k as implied by

Lemma 1.2. Thus:

Pr[Ye = k ∧ Ze = 1 | Ye ≥ 1] = Pr[Ye = k | Ye ≥ 1] ·Pr[Ze = 1 | Ye ≥ 1],

which we prove shortly, we have:

E[X] =
∑
e∈F

E[Xe]

=
∑
e∈F

E[YeZe]

=
∑
e∈F

∑
k≥1

Pr[YeZe = k] · k

=
∑
e∈F

Pr[Ye ≥ 1]
∑
k≥1

Pr[Ye = k ∧ Ze = 1 | Ye ≥ 1] · k

=
∑
e∈F

Pr[Ye ≥ 1]
∑
k≥1

Pr[Ye = k | Ye ≥ 1] ·Pr[Ze = 1 | Ye ≥ 1] · k

=
∑
e∈F

Pr[Ze = 1 | Ye ≥ 1]
∑
k≥1

Pr[Ye ≥ 1] ·Pr[Ye = k | Ye ≥ 1] · k

=
∑
e∈F

Pr[Ze = 1 | Ye ≥ 1] · E[Ye]

= αt · |F |
|E|

1.4.2 Variance analysis

To prove the variance claim, we will need to use the expansion properties of the graph G using

the following theorem, which is a restatement of the well-known “bit-recycling” theorem:

Theorem 1.1. For j > i:

Pr[ej ∈ F |ei ∈ F ] ≤
(

1− 1

t

)j−1
(
|F |
|E|

+

(
1− η2

d2

)j−i−1
)

This theorem roughly says that in the random walk the events of the form ei ∈ F are

approximately pairwise independent.

7



Let Bi = I[ei ∈ F ]. Then Pr[Bi = 1] = |F |/|E| ·
(
1− 1/t

)i−1
, and:

E[X2] = E

( ∞∑
i=1

)2


≤ 2
∑

1≤i≤j≤∞

E[BiBj]

= 2
∞∑
i=1

Pr[Bi = 1]
∑
i≤j

Pr[Bj = 1 | Bi = 1]

≤ 2
∞∑
i=1

Pr[Bi = 1]

(
1 +

∑
l≥1

(1− 1/t)l
(
|F |/|E|+

(
1− η2/d2

)l−1
))

≤ 2
∞∑
i=1

Pr[Bi = 1]

(
1 +

∑
l≥1

(1− 1/t)l · |F |/|E|+
(
1− η2/d2

)l−1

)

≤ 2t · |F |
|E|

(
1 + t

|F |
|E|

+
d2

η2

)
The variance analysis completes after recalling that |F |/|E| ≤ 1/t.

1.4.3 Truncation argument

We have thus far shown that the ideal verifier, who takes a random walk of unlimited length,

rejects every bad coloring with constant probability:

Prκ[X ≥ 1] ≥ Q · t ·min(unsat (G), 1/2t)

for some constant Q. Let `(κ) denote the length of the random walk κ. Observe that for any

fixed t ≥ 1 we have:

Prκ[X ≥ 1] = Pr[`(κ) ≤ t]︸ ︷︷ ︸
A

·Pr[X ≥ 1 | `(κ) ≤ t]︸ ︷︷ ︸
B

+ Pr[`(κ) > t]︸ ︷︷ ︸
C

·Pr[X ≥ 1 | `(κ) > t]︸ ︷︷ ︸
D

We can choose t = t(Q) so that C becomes arbitrarily small. Thus, AB would have to

account for most of the mass in Prκ[X ≥ 1]. This can be re-interpreted as saying that: If

the verifier automatically accepts whenever the random walk exceeds t steps, it still has a

high probability of rejecting unsat instances.

So as long as each vertex keeps opinions about all vertices’ colors in radius t, the real

verifier will work just as well as the ideal one. Note that by discarding all walks longer than

t we are ensuring that the fictitious coloring ω∞ is only ever queried in its restriction to ωt.
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