BLENDENPIK: SUPERCHARGING LAPACK’S LEAST-SQUARES SOLVER
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ABsTRACT. Several innovative random-sampling and random-mixing techniques for solving prob-
lems in linear algebra have been proposed in the last decade, but they have not yet made a significant
impact on numerical linear algebra. We show that by using an high quality implementation of one
of these techniques we obtain a solver that performs extremely well in the traditional yardsticks of
numerical linear algebra: it is significantly faster than high-performance implementations of existing
state-of-the-art algorithms, and it is numerically backward stable. More specifically, we describe a
least-square solver for dense highly overdetermined systems that achieves residuals similar to those
of direct QR factorization based solvers (LAPACK), outperforms LAPACK by large factors, and scales
significantly better than any QR-based solver.

1. INTRODUCTION

Randomization is arguably the most exciting and innovative idea to have hit linear algebra in
a long time. Several such algorithms have been proposed and explored in the past decade (see,
e.g, [23, 12,9, 22, 17, 11, 21, 8, 5| and the references therein). Some forms of randomization have
been used for decades in linear algebra. For example, the starting vectors in Lanczos algorithms are
always random. But recent research led to new uses of randomization: random mixing and random
sampling, which can be combined to form random projections. These ideas have been explored
theoretically and have found use in some specialized applications (e.g., data mining [15, 5|), but
they have had little influence so far on mainstream numerical linear algebra.

Our paper answers a simple question: can these new techniques beat state-of-the-art numerical
linear algebra libraries in practice?

Through careful engineering of a new least-squares solver, which we call Blendenpik, and through
extensive analysis and experimentation, we have been able to answer this question: yes.

Blendenpik beats LAPACK’s direct dense least-squares solver by a large margin on essentially any
dense tall matrix. Blendenpik is slower than LAPACK on tiny matrices, nearly square ones, and on
somie sparse matrices. But on a huge range of matrices of reasonable sizes, the answer is an unqual-
ified yes. Figure 1.1 shows a preview of our experimental results. On large matrices, Blendenpik is
about four times faster than LAPACK. We believe that these results show the potential of random-
sampling algorithms, and suggest that random-projection algorithms should be incorporated into
future versions of LAPACK.

2. OVERVIEW OF THE ALGORITHM

Let zopy = argmin, ||[Az — b||, be a large highly overdetermined system, with A € R™*™ and
b € R™. Can we sample a small set of rows, R, and use only those rows to find an approximate
solution? That is, is the solution xr = argmin,, ||Ag «= — br||, a good approximation of zop;? The
following simple experiment in MATLAB |16] illustrates that for random matrices z is indeed a good

approximation in some sense as long as R is big enough:
1
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larger matrices. Graphs show the ratio of LAPACK’s running time to Blendenpik’s
running time on random matrices with two kinds of aspect ratios.

>> rand(’state’, 2378)

>> randn(’state’, 23984)

>> m = 20000; n = 100;

>> A = rand(m, n); b = rand(m, 1);

>> [U, S, V] = svd(4, 0);

>> S = diag(linspace(1l, 1076, 100));

>> A =0 %85 x V?;

>> sampled_rows = find(rand(m, 1) < 10 * n * log(n) / m);

>> Al = A(sampled_rows, :); bl = b(sampled_rows);

>>x =4\ b; > x1 = At \ bi;

>> norm(A * x1 - b) / norm(A * x - b)

ang =

1.0084
The norm of residual is within 1.01 of the optimal residual. In general, under certain conditions on
A, a uniform random sample of Q(nlog(m)log(nlog(m))) rows leads to a residual that is within a
factor of 1 + € of the optimal with high probability [12]. These conditions hold in the experiment
above, and the residual is indeed small. The paper [12] also proposes a more sophisticated algorithm
that leads to a small residual for any matrix, but a small uniform sample does not work on any
matrix.
There are two problems with this approach. First, the analysis in [12] bounds the relative error

in residual norm, that is

[Azg = bll2/||[Azopt — bll2 < 1+ €

where gy is the true solution, and zg is the computed solution. Drineas et al. show that this
implies a bound on the forward error,

—”%pt — x> < tan(0)x(A)Ve
”%pt‘b

where 0 = cos™ (|| Azopt ||2/]|b]|2). While such an analysis might be useful in some fields, it is difficult
to relate it to standard stability analyses in numerical linear algebra. The standard stability analysis
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of least-squares algorithms is done in terms of backward error: an approximate solution Z is shown
to be the exact solution of a perturbed system

Z =argmin||(A+ 0A)x — b||,

where ||0A|| < €||A]|. This implies a bound on the forward error

lzop: — [l (,{( A+ than@> :
||330pt”2 Ui

where n = ||Al|2]|z]|2/||Az||2- The two forward error bounds are not comparable in an obvious way.
Moreover, the /e appears to make it difficult to prove small forward error bounds in well conditioned
cases.

Second, running time depends on e~!. The backward stability requirements (e.g., value of €) of
linear-algebra software may be a constant, but it is a tiny constant. So to achieve the required e the
constants in the asymptotic bounds in [12| might be too large.

Rokhlin and Tygert [22]| use a difference approach. They use the R factor of the sampled rows as
a preconditioner in a Krylov-subspace method like LSQR [19]:

>> [Q, R] = qr(A1, 0);
>> x1 = 1sqr(A, b, eps, 100, R);
lsqr converged at iteration 17 to a solution with relative residual 0.5

A uniform sample of the rows is not always a good strategy. If A has a column j that is zero except
for A;; # 0, any subset of rows that excludes row 4 is rank deficient. If m > n, the algorithm needs
to sample close to m rows in order to guarantee a high probability that row 7 is in the subset. If the
row sample is too small, the preconditioner is rank deficient and LSQR fails.

>> A(l:end-1, end) = 0;
>> Al = A(sampled_rows, :);
>> [Q, R] = qr(Al, 0);
>> x1 = 1sqr(4A, b, eps, 100, R);
Warning: Matrix is singular to working precision.
> In sparfun\private\iterapp at 33
In 1lsqr at 217 In overview at 35
lsgr stopped at iteration O without converging to the desired tolerance 2.2e-016
because the system involving the preconditioner was ill conditioned.
The iterate returned (number O0) has relative residual 1

Uniform random sampling works well only when the coherence of the matrix is small, which is equal
to maximum norm of a row in @, where ) forms an orthonormal basis for the column space of A
(e.g., the leftmost factor in a reduced QR or singular-value decomposition; a formal definition of
coherence appears in Section 3). The coherence of the matrix is between n/m and 1. The lower it
is the better uniform sampling works.

>> [Q, R] = qr(4, 0);
>> coherence = max(sum(Q .~ 2, 2))
coherence =

1.0000

The coherence of our matrix, after the insertion of zeros into column 1, is the worst possible
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The coherence of matrices with random independent uniform entries tends to be small, but as we
have seen, other matrices have high coherence. We can use a randomized row-mixing preprocessing
phase to reduce the coherence [12, 22].

>> D = spdiags(sign(rand(m, 1)), O, m, m);
>> B = det(D * A); B(1, :) =B, :) / sqrt(2);
>> [Q, Rl = qr(B, 0);
>> coherence = max(sum(Q .~ 2, 2))
coherence =
0.0083

First, we randomly multiply each row by +1 or —1, and then apply a discrete cosine transform
(DCT) to each column. The first row is divided by v/2 to make the transformation orthogonal.
With high probability the coherence of B is small. In the example above, it is less than twice the
minimal coherence (0.005). There are many ways to mix rows to reduce the coherence. We discuss
other methods in Section 3.2.

With high probability, a uniform sample B1 of the rows of the row-mixed matrix B makes a good
preconditioner. In the code below, we use the R factor of the sample, to allow LSQR to apply the
preconditioner efficiently.

>> Bl = B(sampled_rows, :);

>> [Q, R] = qr(B1, 0);

>> x1 = 1sqr(4, b, eps, 100, R);

lsqr converged at iteration 15 to a solution with relative residual 1

3. THEORY

This section explains the theory behind the algorithms that this paper investigates. The ideas
themselves are not new; they have been proposed in several recent papers [12, 22, 17]. We do present
some simple generalizations and improvements to existing results, but since the original proofs are
strong enough for the generalizations, we omit the proofs, but they appear in [3].

3.1. Uniform sampling preconditioners. The quality of uniform sampling preconditioners de-
pend on how much the solution depends on specific rows. For example, if the sample is rank deficient
unless row 4 is in it, then the size of a uniform sample must be too large to be effective. Coherence (6]
is the key concept for measuring the dependence of the solution on specific rows.

Definition 1. Let A be an m x n full rank matrix and let U be an m X n matrix whose columns
form an orthonormal basis for the column space of A. The coherence of A is defined as

u(4) = max||U; .|

The coherence of a matrix is always smaller than 1 and bigger than n/m. If a row contains the
only non-zero in one of the columns of A then the coherence of the matrix is 1. Coherence does not
relate in any way to the condition number of A.

Uniform random sampling yields a good preconditioner on incoherent matrices (matrices with
small coherence). For example, if ;(A) = n/m, then a sample of ©(nlogn) rows is sufficient to
obtain a good preconditioner. The following theorem describes a relationship between the coherence,
the sample size, and the condition number of the preconditioned system.

Theorem 2. Let A be an m x n full-rank matriz, and let S be a random sampling operator that
samples v > n rows from A uniformly. Let T = C\/mu(A)log(r)/r where C is some constant
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defined in the proof. Assume that 6~'1 < 1. With probability of at least 1 — § the sampled matriz
SA is full rank, and if SA = QR is a reduced QR factorization of SA, we have

_1 1+ 5717'

MART) < 5=

This result does not appear in this exact form in the literature, but its proof is a simple vari-
ation of results in [12, 22]. Therefore, here we give only a sketch of the proof; the full version of
the proof appears in [3]. The first phase is to bound HIan — (m/T)QTSTSQH2 with high prob-
ability, using the proof technique of Lemma 5 from [12]|, in two steps. The first step bounds
E (HIan - (m/r)UTSTSUHQ) using Lemma 4 from [12], and the second step uses Markov’s in-
equality to bound ||Zxp — (771/7")QT‘S'T«S'QH2 with high probability. Using a simple Rayleigh quo-
tient argument we then bound x(SQ) with high probability. Finally, Theorem 1 in [22] shows that
k(AR = k(SQ).

Remark 3. Notice that the condition number of the original matrix A does not affect the bound on
the condition number of the preconditioned matrix.

Remark 4. Theorem 2 describes a relationship between sample size (r), probability of failure (¢)
and the condition number of the preconditioned system. With a small sample, the probability of
obtaining a high condition number is high. A high condition number may lead to a large number
of iterations in LSQR, but the number of iterations may also be small: the convergence of LSQR
depends on the distribution of the singular values of AR™!, not just on the extreme singular values.
In fact, [4] use the fact that a few very large or very small singular values do not effect convergence
much.

If the coherence is high, uniform sampling produces poor preconditioners. One alternative is to
use non-uniform sampling. Let A = UR be a reduced QR factorization of A. Drineas et al. [10]
suggest sampling row i with probability p; = ||U;||3/m, where U; is row i of U. Computing these
probabilities requires too much work (a QR factorization of A), so to make this approach practical
probabilities should be, somehow, approximated; to the best of our knowledge no efficient approx-
imation algorithm has been developed yet. Therefore, in the next subsection we turn to a simpler
approach, the one used by our solver, which is based on mixing rows.

3.2. Row mixing. Theorem 2 implies that even if there are important rows, that is even if co-
herence is high, if we sample enough rows then with high probability the preconditioner is a good
preconditioner. The higher u(A) is the more rows should be sampled. This poses two problems.
First, finding pu(A) is computationally hard. Second, if u(A) is high too, then many rows need to
be sampled. Indeed, if u(A) =1 (the worst) then as many as O(mlogm) rows need to be sampled
in order to get a bound on the condition number using Theorem 2. When p(A) = 1, there is a row
in the matrix that must be included in the sample for R to be full rank. We do not know which
row it is, so no row can be excluded from the sample; this is not useful. If u(A) = n/m (minimal
coherence), on the other hand, then only O(nlogn) rows need to be sampled to get xk = O(1) with
high probability.

In general, we cannot guarantee a bound on u(A) in advance. The solution is to perform a
preprocessing step in which rows are mixed so that their importance is nearly equal. The crucial
observation is that a unitary transformation preserves condition number, but changes coherence. If
F is a unitary transformation and R is a preconditioner F A, then R is an equally good preconditioner
for A because the singular values of AR™! and FAR™! are the same. But u(A) and u(FA) are
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not necessarily the same; if we select F so that pu(FA) is small, then we can construct a good
preconditioner by uniformly random sampling the rows of FA.

Any fixed unitary transformation F leads to a high u(FA) on some A’s, so we use a random
unitary transformation. We construct F from a product of a fixed seed unitary transformation F
and a random diagonal matrix D with +1 diagonal entries. The diagonal entries of D are random,
unbiased, independent random variables. The following theorem shows that with high probability,
the coherence of FA is small, as long as the maximum value in F' is not too large. It is a simple
generalization of Lemma 3 in [12] using ideas from [17]; we omit the proof.

Theorem 5. Let A be an m X n full rank matriz where m > n. Let F be an m x m unitary
matriz, let D be o diagonal matriz whose diagonal entries are i.i.d Rademacher random variables
(Pr(Dy = £1) =1/2), and let F = FD. With probability of at least 0.95 we have

uw(FA) < Cnnlogm ,
where n = max |Fj;|? and some constant C.

Note 6. A must be full rank for the u to be well defined. The theorem can be generalized to success
guarantees other than 0.95. A higher probability leads to a higher constant C.

A seed matrix F is effective if it is easy to apply to A and if n = max|F;;|? is small. The minimal
value of 7 is 1/m. If nis 1/m, then all the entries of F' must have squared absolute values of 1/m. A
normalized DFT matrix has this property, and it it can be applied quickly, but it involves complex
numbers. A normalized Hadamard matrix has entries that are all £1/4/m, and in particular are all
real. Hadamard matrices do not exist for all dimensions, but they do exist for powers of two, and
they can be applied quickly at powers of two. The Walsh-Hadamard series

1 /1 1 L (H H
e (1 ) a5 (% %)
enables the Walsh-Hadamard Transform (WHT). Two other options for F' are the Discrete Cosine
Transform (DCT) and Discrete Hartely Transform (DHT), which are real, exist for every size, and
can be applied quickly. Their n value is 2/m, twice as large as that of the WHT.

If we use one of the transformation described above, we need a sample of ©(n log(m) log(nlog(m)))
rows to obtain k = O(1) with high probability. In practice, smaller samples are sufficient. In Sec-
tion 4 discuss implementation issues and considerations for selecting the seed unitary transformation.

A possible alternative mixing strategy is a Kac random walk [14]. We define

F= GT(m,n)GT(m,n)—l T G3G2G17

where each G, is a random Givens rotation. To construct G, we select two random indices 7; and
j¢ and a random angle 6;, and apply the corresponding Givens rotation. The number of rotations is
chosen to make the coherence of F A sufficiently small with high probability. How small can we make
T(m,n)? Ailon et al. [1] conjecture that T'(m,n) = O(mlogm) will suffice, but they do not have a
proof, so we do not currently use this approach. We propose an even simpler random walk where
instead of using a random angle 0; we fix 6, = w/4. We conjecture that still T'(m,n) = O(mlogm)
will suffice and we have verified this conjecture experimentally.

3.3. High coherence due to a few rows. The coherence is the maximal row norm of U, an
orthonormal basis for the column space of A. If all the rows of U have low coherence, a uniform
random sample of the rows of A leads to a good preconditioner. We now show that even if a few
rows in U have a large norm, a uniform random sample still leads to an effective preconditioner. The
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fundamental reason for this behavior is that a few rows with a large norm may allow a few singular
values of the preconditioned system AR™! to be very large, but the number of large singular values
is bounded by the number of large rows. A few large singular vectors cause the condition number
of AR™! to become large, but they do not affect much the convergence of LSQR [4].

Lemma 7. Let A be an m X n full rank matriz where m > n, and suppose we can write A = [ﬁ;}

where Ag has | < min(m —n, n) rows. Let S € REX(m=0) e o matriz such that SA; is full rank. Let
SA; = QR be the QR factorization of SA1. Then at least n — [ singular values of AR™" are between
the smallest singular value of AyR™" and the largest singular value of A{R™".

To prove Lemma 7 we need the following simplified version of Theorem 4.3 in [4].

Theorem 8. (Simplefied version of Theorem 4.3 in [4]) Let A € C™*™ and let B € CF*™ for some
1 < k < n be full rank matrices. Let M € C"*™ be a symmetric positive semidefinite matriz. If

all the eigenvalues of (AT A, M) are between o and 3 then so are the n — k smallest eigenvalues of
(ATA+ BTB, M).

Proof. (of Lemma 7) The singular values of A;R~! are the square root of the generalized eigen-
values of (AT Ay, (SA1)T(SA1)). The singular values of AR™! are the square root of the gen-
eralized eigenvalues of (AT Ay + AT Ay, (SA1)T(SA1)). The matrix ATA = ATA; + AT A5 is a
l-rank perturbation of AT A; so according to Theorem 8 at least n — | generalized eigenvalues
of (ATA; + AT Ay, (SA1)T(SA;)) are between the smallest and largest generalized eigenvalues of
(AT Ay, (SA)T(SAY)). O

Suppose that A; is incoherent but A is coherent. In this case, coherency can be attributed to
only a small number of rows (I rows). If A; is incoherent and full rank then random sampling will
produce a good preconditioner without row mixing. Lemma 7 implies that the same preconditioner
will be a good preconditioner for A as long [ is small. In practice, we do not know the partition of A
to A1 and As. We simply sample from all the rows of A. But if m is large and the sample is small,
the probability of missing any specific row is large; in particular, if [ is small then rows from As are
likely to be missed. The lemma shows that R is still a good preconditioner. If rows from Ag are in
the sample, the preconditioner is even better.

The lemma assumes that the row sample is full rank. In fact, almost the same result applies even
if the sample is rank deficient, as long as we perturb R to make it full rank; see [4] for details.

4. ALGORITHM AND IMPLEMENTATION

In this section we summarize the three major steps of the algorithm: row mixing (preprocessing),
row sampling and QR factorization, and iterative solution. We also discuss how we handle random-
sampling failures. The overall solver is presented in Algorithm 1.

Implementation. Our solver currently runs under MATLAB 7.7 [16], but it is implemented almost
entirely in C. The C code is called from MATLAB using MATLAB’s CMEX interface.

Row mixing. In 3.2 we suggest five row mixing strategies: DFT, DCT, DHT, WHT and Kac. We
chose not to implement DFT and Kac. The DFT of a vector is a complex vector even if the vector
is real. Thus, using DFT entails operation-count and memory penalties on subsequent phases when
applied on real matrices. Therefore, it is unlikely that an FFT-based algorithm would outperform
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one based on DCT or DHT. Kac’s random walk appears to suffer from poor cache locality due to
random index selection.

WHT is theoretically optimal, in the sense that its n value is 1/m, but it can be applied only if
the number of rows is a power of two. By padding the matrix with zeros we can apply WHT to
smaller matrices. This causes discontinuous increases in the running time and memory usage as m
grows.. We use SPIRAL WHT [13] to apply WHT. To get good performance it is essential to use the
package’s self-optimization feature, which incurs a small one time overhead.

Instead of using WHT, any Hadamard matrix can be used. If H; and Hy are Hadamard matri-
ces then so is H; ® Ha, so using kernels of small Hadamard transforms efficient large Hadamard
transforms can be implemented. But to the best of our knowledge, there is currently no efficient
implementation of this idea.

DCT and DHT are near optimal alternative (their n value is 2/m). Their advantages over WHT
is that they exist for all vector size and that in principle, they can be always applied in O(mlogm)
operations. However, in practice these transforms are quite slow for some sizes. The performance of
fast transforms (DCT and DHT) depends on how the input size m can be factored into integers. The
performance is not monotone in m. Also, the fast-transform library that we use (FFTW) requires
tuning for each input size; the tuning step also takes time. To address these issues, we used the
following strategy. During the installation of our solver, we generate tuned DCT and DHT solvers
for sizes of the form m = 1000k where k is an integer. The information used by FFTW to generate the
tuned solvers (called “wisdom” in FFTW) is kept in a file. Before the solver uses FFTW to compute
DHT or DCT, this information is loaded into FFTW, so no additional tuning is done at solve time.
Before applying DCT or DHT to a matrix, we pad the matrix to the next multiple of 1000, or
to a slightly higher multiple if the tuning step suggested that the higher multiple would result in
higher performance. One can imagine more sophisticated strategies, based on knowing what kernel
sizes FFTW has fast building blocks, and using sizes that are multiple of those building block. The
method that we used is not optimal, but it does deliver good performance while keeping tuning time
reasonable.

We tune FFTW using aggressive settings, so tuning takes a long time (hours). We also exper-
imented with milder tuning setting. If FFTW’s weakest tuning is used, the tuning time of DHT
reduces to about 11 minutes, but the time spent in computing DHTs is sometimes doubled. As we
shall see in Section 5.6, this slows our solver, relative to aggressive setting, by at most 15% (usually
less).

Sampling rows and QR factorization. We sample rows by generating a size m vector with
random uniform entries in [0, 1], where /m is the number of rows after padding. We use MATLAB’s
rand function to generate the vector. A row is sampled if the corresponding entry in the vector is
smaller than yn/m, where v is a parameter. The expected number of rows that are sampled is yn,
but the actual value can be higher or smaller. This is the same strategy that was suggested in [12].
Once the rows are sampled we compute their QR factorization using LAPACK’s DGEQRF function.

Row sampling can be combined with row mixing to improve the asymptotic running time. Any
k indices of the FFT of a m element vector can be computed using only O(mlog k) operations [24].
This is also true for WHT [2]. If we select the sampled rows before the row-mixing we can compute
only the mixed rows that are in the sample. We do not use this strategy because the libraries that
we used do not have this option.



BLENDENPIK: SUPERCHARGING LAPACK’S LEAST-SQUARES SOLVER 9
Iterative solution. We use LSQR to find the solution. Given an iterate x; with a corresponding
residual 7; = b — Az, stopping the algorithm when
1A 75112 )
[Al[ il —

guarantees that x; is an exact solution of

(4.1)

xj = argmin [[(A+6A)x — b,

where ||0A||r < p||A||r. That is, the solution is backward stable [7]. The value of p is a parameter
that controls the stability of the algorithm. To use this stopping criterion, we need to compute r;
and ATr; in every iteration. It is therefore standard practice in LSQR codes to estimate 7|2 and
|ATrj||2 instead of actually computing them. The estimate formulas used are accurate in exact
arithmetic, and in practice they are remarkably reliable [19]. If a preconditioner R is used, as in our
algorithm, ||AT7;||2 cannot be estimated but || (AR_l)Terg can be. Preconditioned LSQR codes
estimate || AR™!||r as well, and use the stopping criterion

VA
I (ARTY)™ 2 )
AR e llrsll2 —

that guarantees a backward stable solution to

1y = angmin | AR~y — ],

and return z; = R‘lyj. We use the same strategy in our solver. We set p = 10~ which is close
t0 €machine, but not close enough to risk stagnation of LSQR . This setting results in a solver that is
about as stable as a (QR-based solver.

Most of the LSQR running time is spent on multiplying vectors by A and A”. If A is sparse and
very tall, using a sparse matrix-vector multiplication code can reduce the LSQR running time, even
though R is dense. We have not exploited this opportunity in our code.

Handling failures. The bounds in Section 3 hold with some probability bounded from below.
With some probability, the algorithm can fail to produce an effective preconditioner, in one of two
ways: (1) the preconditioner can be rank deficient or highly ill conditioned, or (2) the condition
number k(AR™') can be high. When the condition number is high, LSQR converges slowly, but
the overall algorithm does not fail. But a rank deficient preconditioner cannot be used with LSQR.
To address this issue, we estimate the condition number of the preconditioner R using LAPACK’S
DTRCON function. If the condition number is too high (larger than e L .. /5) we perform another
row mixing phase and re-sample. If we repeat this three times and still do not get a full rank
preconditioner we give up, assume that the matrix itself is rank deficient, and use LAPACK. This
never happened in our experiments on full-rank matrices, but on some matrices we had to mix and
sample more than once.

5. NUMERICAL EXPERIMENTS

We experimented with the new algorithm extensively in order to explore its behaviors and to
understand its performance. This section reports the results of these experiments (Figure 1.1 above
shows additional results).
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Algorithm 1 Blendenpik’s algorithm
r=Dblendenpik(A € R™*",b € R")

> m > n, A is non-singular

> parameters: v and transform type

9[logy m] , WHT
[m/1000] x 1000 , DCT or DHT

M — 1(4)1 € Rmxn

while not returned
M — F;(DM)
> D is a diagonal matrix with £1 on its diagonal with equal probability
> Fy, is the seed unitary transform (WHT/DCT/DHT), ©(mnlogm) operations
Let S € R™*™ be a random diagonal matrix:
s 1, with probability yn/m
" lo , with probability 1 — vn/m
Factorize: SM = QR, reduced QR factorization (R € R"*")
R “— Kestimate (R), condition number estimation (LAPACK’S DTRCON)
if £71 > Bemachine
r «— LSQR(A,b, R,1071%)
return
else
if #iterations > 3
failure: solve using LAPACK and return
end if
end if
end while

5.1. Experimental Setup. We compare the new solver, which we call Blendenpik, to a high-
performance dense QR solver and to LSQR with no preconditioning. The dense QR solver is
LAPACK’s DCGELS: a high performance, high quality, portable code. We call LAPACK from MATLAB
using a special CMEX interface that measures only LAPACK’s running time. No MATLAB-related
overheads are included; MATLAB is used here only as a scripting tool.

Running times were measured on a machine with two AMD Opteron 242 processors (we only used
one) running at 1.6 GHz with 8 GB of memory. We use GOTO BLAS 1.30 and LAPACK 3.2.1 for
basic matrix operations and FrTw 3.2.1 for the DCT and DHT.

The measured running times are wall-clock times that were measured using the ftime Linux
system call.
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We evaluated our solver on several classes of random matrices. Random matrices were generated
using MATLAB’s rand function (random independent uniform numbers). Ill-conditioned matrices are
obtained by generating their SVD decomposition: two random orthonormal matrices and an equally
spaced diagonal matrix with the appropriate condition number.

Our solver relies on automatic tuning of the fast-transform libraries that it uses (FFTW and SPI-
RAL). This is an installation time overhead that is not included in our running-time measurements.
Automatic tuning is a technique of growing importance in various numerical libraries, such as the
ATLAS [26] implementation of the BLAS.

Theoretical bounds relate to the coherence, which is the maximum row norm in the orthogonal
factor of the matrix. Our experiments suggest that in practice running time is related to the number
of rows that have a large norm in the orthogonal factor. Therefore, we experimented with three
types of matrices: incoherent matrices, semi-coherent matrices and coherent matrices. Incoherent
matrices X,,xn, either well conditioned or ill conditioned, are generated using the rand function
with no restriction on the structure. Semi-coherent matrices are of the form

1 ... 1

B _
Ym><n—|: :|+1O 8

I : .

n/2 1 ... 1
where B is a (m —n/2) x n/2 rectangular random matrix and I,, /2 i a square identity of dimension
n/2. Yyxn s, in fact, coherent (14(Yy, <) = 1), but only n/2 rows have a large norm in the orthogonal
factor. Our coherent matrices have the form

1 ..o 1
DTLXTL

(m—n)xn

Zmxn = |: 0 :| + 10_8

1 - 1

where Dy, is a random diagonal matrix. The orthogonal factors of these matrices have n rows
with a large norm. In both semi-coherent and coherent matrices, the constant 10~% matrix is added
to make the matrices dense. Some solvers, including LAPACK’s (in version 3.2.1), exploit sparsity.
Our solver does not. We added the constant matrix to avoid this source of variance; we acknowledge
the fact that for some sparse matrices LAPACK’s dense solver is faster than our solver.

5.2. Tuning experiments. The behavior of our solver depends on the seed unitary transformation
that mixes the rows, on the number of row-mixing steps, and on the sample size. These parameters
interact in complex ways, which is not fully captured by asymptotic analyses. We begin with
experiments that are designed to help us choose these parameters in the algorithm.

5.2.1. Unitary transformation type. The row mixing phase uses a fixed seed unitary matrix that only
depends on the row dimension of the problem. In 3.2 we suggested five different seed unitary matrices.
As explained in Section 4, we implemented only three of them, all using external libraries: the
Walsh-Hadamard transform (WHT), the discrete cosine transform (DCT) and the discrete Hartley
transform (DHT). Figures 5.1 shows the running time of each transformation time on increasingly
larger matrices. WHT is the fastest, but DIIT and DCT comes close.

Different unitary transforms improve coherence in different ways. Figure 5.2 examines the overall
running time of the solver on incoherent, semi-coherent and coherent matrices. For incoherent
and semi-coherent matrices there does not seem to be a significant difference between the different
mixing methods. WHT’s overall time is smaller because it is faster than other methods. On coherent
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FIGURE 5.1. Time spent on the fast unitary transformation (row mixing) for increas-
ingly larger matrices. We tested all three implemented transforms: WHT, DCT and
DHT.
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FiquRrE 5.2. Overall running time of the algorithm with different fast unitary trans-
forms (row mixing) on increasingly larger matrices. We tested on incoherent matrices
(left graph), semi-coherent matrices (middle graph) and coherent matrices (right

graph).

matrices, WHT exhibits poor and erratic performance. Usually, a single WHT phase generated a
very ill-conditioned preconditioner (very close to rank deficiency). This was sometimes detected by
the condition number estimator, in which case a second WHT phase was done. In some cases the
condition number estimator test failed and convergence was very slow. DHT and DCT continue
work well on coherent matrices; the two methods behave the same. It is interesting to note that
from a theoretical standpoint WHT is superior, but in practice DHT and DCT work better.

Clearly, WHT’s advantage (fast application and a low ) are offseted by it’s disadvantages (reduced
robustness and a large memory footprint). We therefore decided to use DHT (which is faster than
DCT) for all subsequent experiments except for the right graph in Figure 1.1, where we used WHT
for experimental reasons.

5.2.2. Sample size and number of row mixzing steps. The theoretical analysis shows that sampling
Q(nlog(m)log(nlog(m))) rows is sufficient with high probability, but we do not know the constants
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in the asymptotic notation. The analysis may give bounds in the probability of failure, but even
if there is failure (e.g., the condition number is bigger than the bound) running time might still
be good. Convergence behavior is governed by the distribution of singular values, and it is not
fully captured by condition number. The contributions of each phase to the running time interact
in a complex way that is not fully predictable by worst case asymptotic analysis. Therefore, we
performed experiments whose goal is to determine a reasonable sampling size.

We also need to decide on the number of row-mixing steps. Row-mixing steps reduce the coher-
ence and improve the outcome of random sampling. Theoretical bounds state that after a single
row mixing step, the coherence is within a O(logm) factor of the optimal with high probability.
Therefore, after the first row mixing step there is still room for improvement. Although there is
no theoretical results that states so, it reasonable to assume that additional row mixing steps will
reduce coherence further, which will cause LSQR to converge faster, perhaps offsetting the cost of
the extra mixing steps.

Figure 5.3 present the results of these experiments. We ran experiments with two matrix sizes,
30,000 x 750 (top graphs) and 40,000 x 2,000 (bottom graphs), and all matrix types, incoherent
(left graphs), semi-coherent (middle graphs) and coherent (right graphs). All the matrices were
ill-conditioned.

We used sample size yn, where v ranges from 1.5 to 10. Although the theoretical bound is
superlinear, it is not necessarily tight. As the results show, for the range of matrices tested in our
experiments the best sample size displays a sublinear (in n) behaviour (which might change for
larger matrices).

For 30,000 x 750 matrices the best sample size is around v = 6. For 40,000 x 2,000 it is v = 3.
Apparently, for larger matrices a smaller sample is needed (relative to n), contrary to the theoretical
analysis. A sample size withy = 4 is close to optimal for all matrices. For incoherent and semi-
coherent matrices there is a (small) advantage for using only one preprocessing phase. For coherent
matrices the best results are achieved when using two preprocessing phases. In fact, using only one
preprocessing phase can be disastrous when combined with a sample size that is too small. But with
sample size v = 4 near optimal results can be achieved with only one preprocessing phase.

Following these experiments we decided to fix v = 4 and to use one preprocessing phase. We used
these setting for the rest of the experiments These parameters are not optimal in all cases, but they
seem to be nearly optimal for most cases. The rest of the experiments in this paper use these values.

5.3. Il conditioned matrices. Figure 5.4 shows that the condition number of A does not affect
our new solver at all, but it does affect unpreconditioned LSQR. On very well conditioned matrices,
unpreconditioned LSQR is faster, but its performance deteriorates quickly as the condition number
grows.

5.4. Easy and hard cases. Figure 5.5 compares the performance of our solver and of LAPACK
on incoherent, semi-coherent and coherent matrices of four different aspect ratios. The number
of elements in all matrices is the same. (LAPACK’s running time depends only on the matrix’s
dimensions, not on its coherence, so the graph shows only one LAPACK running time for each size.)
Our solver is slower on matrices with high coherence than on matrices with low coherence, but not
by much. Even when the coherence is high, our solver is considerably faster than LAPACK. Hard
cases (high coherence) run slower because LSQR converges slower, so more LSQR iterations are
performed (the other phases of the algorithm are oblivious to coherence). It appears that a single
row mixing phase does not remove the coherence completely.
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FI1GURE 5.3. Running time as a function of sample size and number of row mixing
steps for 30,000 x 7, 500 matrices (top graphs) and a 40, 000 x 2, 000 matrices (bottom
graphs). We run the same experiment on incoherent matrices (left graphs), semi-
coherent matrices (middle graph) and coherent matrices (right graphs).
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FIGURE 5.4. Running time on increasingly ill conditioned matrices.

5.5. Convergence rate. In the experiments whose results are shown in the left graph in Figure 5.6,
we examine the LSQR convergence rate on a single matrix. The graph shows the norm of the residual
after each iteration. Except for the final iterations, where the solver stagnates near convergence, the
convergence rate is stable and predictable. This is a useful property that allows us to predict when
the solver will converge and to predict how the convergence threshold affects the running time. The

rate itself is slower on coherent matrices than on incoherent and semi-coherent ones This is the same
issue we saw in Figure 5.5.
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FIGURE 5.5. Running time on different coherence profiles.
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FIGURE 5.6. Convergence rate experiments. The left graph shows

AT @5 /|| Al p|lr@ |2, where () is the residual after the ith iteration of
LSQR, on three 100,000 x 2,500 matrices of different coherence profiles. The right
graph shows the number of LSQR iterations needed for convergence on increasingly
larger matrices.

The graph on the right examines the number of iterations required for LSQR to converge as a
function of problem size. On incoherent and semi-coherent matrices the number of iterations grows
very slowly. On coherent matrices the number of iterations grows faster.

5.6. The cost of the different phases. Figure 5.7 shows a breakdown of the running time of our
solver for incoherent matrices (left graph) and coherent matrices (right graph) of increasingly larger
size. The row mixing preprocessing phase is not a bottleneck of the algorithm. Most of the time
is spent on factoring the preconditioner and on LSQR iterations. The most expensive phase is the
LSQR phase. The asymptotic running time of the row mixing phase is ©(mnlogm), and for the
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FIGURE 5.7. Breakdown of running time on increasingly larger matrices. The plotted

series shows the running time of each phase. The left graph shows the breakdown

for incoherent matrices, while the right graph shows the breakdown for coherent
matrices.

QR phase it is ©(n3). Each LSQR iteration takes ©(mn) time and the number of iterations grows
slowly. In both graphs n = m/40, so the QR phase is asymptotically the most expensive.

The dominance of the LSQR phase implies that considerable speedup can be achieved by relaxing
the convergence threshold. In our experiments the convergence threshold was set to 10714, If
a convergence threshold of 1079 is acceptable, for example, we can roughly halve the number of
iterations of the LSQR phase, thereby accelerating our solver considerably.

The row mixing phase takes about 15% of overall solver time. Even if we double row mixing time,
our solver will still be faster than LAPACK on nearly all of the matrices used in our experiments.

5.7. No row mixing. If a matrix is completely incoherent to begin with, we do not need to mix its
rows. On such matrices, row mixing takes time but does not reduce the running time of subsequent
phases. The left graph in Figure 5.8 shows that this is essentially true on random matrices, which
have low (but not minimal) coherence; the algorithm runs faster without mixing at all.

The right graph in Figure 5.8 examines performance on coherent matrices whose coherence can
be attributed to a small number ¢ of rows. The matrices are of the form

g | So S1
(m+c)x(n+c) — 0 103 x I.

where Sy € R™*("=9and §; € R"™*¢ are random rectangular matrix, and I, is a c-by-c identity.
When ¢ is tiny (1 and 2), row mixing does not improve the running time substantially. But for
¢ > 2, with row mixing the running time remains constantly low, while a performance of random
sampling without mixing deteriorates as the size of the 103 x I, block grows.

The reason for the deterioration is numerical inaccuracies, and not poor preconditionning. The
basis vectors generated by LSQR loses orthogonality because a short recurrence (Lanczos recurrence)
is used. A celebrated result of Paige [18] shows that loss of orthogonality is large only in the
directions of converged or nearly converged Ritz vectors. As long as no Ritz has converged a
satisfactory level of orthogonality is maintained. This result explains why isolated singular values
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FIiGURE 5.8. Experiments examining strategies with no row mixing vs. the regular

strategy. The left graph compares the solver without a row mixing phase to the solver

with a row mixing phase on incoherent matrices. The right graph compares the same
two solvers on matrices with a few important rows.

in the preconditioned matrix cause numerical problems: the algorithm tends to converge fast for
the isolated eigenvalues. Possible solution for this problem are full orthogonalization (expensive),
selective orthogonalization [20] and others (see §5.3 in [25]). We have verified this observation by
running LSQR with full orthoganlization (graph not included).

6. DISCUSSION AND RELATED WORK

Experiments show that our solver is faster than LAPACK and faster than LSQR with no pre-
conditioning. The algorithm is robust and predictable. The algorithm is competitive in the usual
metric of numerical linear algebra, and it demonstrates that randomized algorithms can be effective
in numerical linear algebra software. We have not encountered cases of large dense matrices where
the solver fails to beat LAPACK, even in hard test cases, and we have not encountered large variance
in running time of the algorithm on a given matrix. Even the convergence rate in the iterative phase
is stable and predictable (unlike many algorithms that use an iterative method).

Although, the numerical experiment demonstrate the validity of the worst-case theoretical analy-
sis, they also demonstrate that actual performance is not fully described by it. In some issues actual
performance acts differently than suggested by theoretical bounds, or the observed behavior is not
explained by the analysis:

e The theoretical analysis suggest that WHT is better in reducing coherence. In practice DHT
and DCT work better, even though it takes longer to compute them. In fact, on highly
coherent matrices, WHT sometimes fails to mix rows well enough (so we need to apply it
again), while this never happened for DHT and DCT.

e The algorithm may fail with some small probability. It may fail to produce an incoherent
matrix after row sampling, and important rows may be left out of the random sample (thereby
producing a poor preconditioner). Some failures may slow down the solver considerably
(for example, when the preconditioner is rank deficient and another row mixing phase is
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necessary), but it is practically impossible for the algorithm not to finish in finite time on
full rank matrices. Current theory does not guarantee that the probability of slowdown is
negligible. When using WHT for row mixing, the solver did slow down sometimes due to
such failures. When the DHT is used for row mixing, we have not encountered such failures,
running time was always good, with a small variance. Apparently the actual probability of
failure is much smaller than the theoretical bounds.

e Theoretical bounds require a superlinear sample size. In practice, a linear sample works
better. It is unclear whether the reason is that the bounds are not tight, or whether constants
come into play.

e The theory relates performance to the coherence of the matrix. Coherence uses the maximum
function, which from our experiment, is too crude for analyzing random sampling. Actual
performance depends on the distribution of row norms in the orthogonal factor, not just the
maximum values. In a sense, the role coherence is similar to the role of condition number
in Krylov methods: it provides bounds using extreme values (easy to handle) while actual
performance depends on intern values (hard to handle).

The algorithm used by our solver is new, but its building blocks are not. We chose building blocks
that are geared toward an efficient implementation. Using WHT for row mixing (and padding the
matrix by zeros) was suggested by Drineas et al. [12]. Their complete method is not suitable for
a general-purpose solver because sample size depends on the required accuracy. Using DCT or
DHT for row mixing in low-rank matrix approximations was suggested by Nguyen et al. [17]. Their
observation carries to least-squares solution. DHT has a smaller memory footprint than WHT, and
it works better than WHT and DCT, so we decided to use it. Using the sampled matrix as a
preconditioner for an iterative Krylov-subspace method was suggested by Rohklin et al. [22]. They
use CGLS; we decided to use LSQR because it often works better. The row mixing method in |22]
uses FFT, which forces the solver to work on complex numbers. Furthermore, their analysis require
two FFT applications.

Our observation that the solver can work well even if the post-mixing coherence is high, as long
as the number of high-norm rows in U is small, is new.

Unlike previous work in this area, we compared our solver to a state-of-the-art direct solver
(LAPACK), showed that it is faster, and explored its behavior on a wide range of matrices. Drineas
et al. [12] do not implement their algorithm. Rokhlin et al. [22] implemented their algorithm, but
they compared it to a direct solver that they implemented, which is probably slower than LAPACK’s.
They they also experimented only with a small range of matrices (incoherent matrices whose number
of rows is a power of two).
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