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1 Introduction and definitions

Suppose we want to learn a function f : {0, 1}n → {0, 1} from a number m of samples (x1, f(x1)), . . . (xm, f(xm)).
More precisely, we are given (x1, f(x1)), . . . (xm, f(xm)) where x1, . . . xm are drawn from some fixed
distribution D, and we are to produce a hypothesis h : {0, 1}n → {0, 1} such that the error is small:

errD(h) = Pr
x∈D

[h(x) 6= f(x)] ≤ ε

for any ε > 0 given in advance.
In general this is not possible with small m (consider random f). We can then consider the

case when f is in some class of functions C ⊆ {φ : {0, 1}n → {0, 1}} (such as decision trees) – this
problem is called PAC learning class C.

In agnostic learning, we do not restrict the class of functions f but instead weaken the error
guarantee. Given a class of functions C, we want to do as good as the best function from C does to
learn f .

Definition 1.1 (Agnostic learning). Consider any n > 0, a class of functions C ⊆ {φ : {0, 1}n →
{0, 1}}, and input distribution D on {0, 1}n.

An algorithm A agnostically learns C under distribution D if, for any a target function f :
{0, 1}n → {0, 1}, and for any ε > 0, there exists m = poly(n, 1/ε) such that given m samples
x1, x2, . . . xm and the values f(x1), . . . f(xm), the algorithm A produces a circuit h : {0, 1}n → {0, 1}
of size poly(n, 1/ε) satisfying:

errD(h) ≤ min
φ∈C

errD(φ) + ε,

with probability of success ≥ 2/3.

We can view agnostic learning also as follows: take some f∗ ∈ C and flip η < 1/2 fraction of
outputs to obtain the function f (more formally, the set of x’s where f and f∗ has η measure in
D). The goal is to learn f with error at most η + ε. Note that the flips are adversarial.

A third model is classification noise which is as above but the η flips are random. Formally, it’s
easiest to state for D being uniform over {0, 1}n. Then f is obtained from some f∗ ∈ C by flipping
f(x), for every x, with probability η < 1/2.

∗All inaccuracies in this note are due to the presenter.
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Observation 1.2. Suppose D is uniform. If we can learn f in the classification noise model, then
the resulting hypothesis h = A((x1, f(x1)), . . . (xm, f(xm))) is close to f∗, with probability ≥ 4/7,
that is

Pr
x∈D

[h(x) 6= f∗(x)] ≤ ε

1− 2η

holds with probability ≥ 4/7 (over the choice of f).

If we are only concerned with the number of samples, then the three models are asymptotically
equivalent (for fixed D). But not such if we consider the runtime of the learning algorithm A.

1.1 Variants and Related Models

[Note: We will not include any references for this section because we do not know the (accepted)
most representative sources, and it is well beyond this note to list all the nice results in these areas.]

In proper learning we require that the hypothesis h is also from the class C. This requirement
often makes the problems intractable (e.g., NP-hard).

In query model, the algorithm A is allowed to pick the samples x1, . . . xm as it wishes (not drawn
from D).

Another variant is when f is “randomized” function, specifically for any x, f(x) is a distribution
(over {0, 1}). Result presented here actually holds for this variant, but we’ll ignore this aspect.

We can also consider the testing problem, where, given samples (or the query model), one is to
decide whether f ∈ C or minφ∈C Prx∈D[φ(x) 6= f(x)] ≥ ε.

1.2 Noisy parity problem

For S ⊆ [n], a parity function is a function χS : {0, 1}n → {0, 1} with χS(x) = ⊕i∈sxi. From now
on the class C will be the set of parities χS .

The noisy parity problem is to learn the parity class under the classification noise model. Simi-
larly, agnostic parity problem is to learn the parity class under the agnostic learning model.

PAC-learning of parity with m = O(n) samples is trivial: just do Gaussian elimination. Other-
wise, the following are the known:

• [BKW03]: when D is uniform, noisy parity problem can be solved with 2O(n/ log n) samples
and time complexity.

• [Lyu05]: reduced the query complexity of [BKW03] to n1+δ at the expense of increasing the
time to 2O(n/ log log n), for any small δ > 0.

• [FGKP06]: when D is uniform, agnostic noisy parity problem can be reduced to noisy parity
problem, with only polynomial blowup in query and time complexity.

All the above results recover a hypothesis h that is an actual parity function.
Here, we present the following result of Kalai-Mansour-Verbin [KMV08]. It works for any distri-

bution D, and it requires m = 2O(n/ log n) queries and time, matching the performance of [BKW03]
and [FGKP06]. The hypothesis is generally not a parity function.
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Theorem 1.3 ([KMV08], Main Theorem). There exists an algorithm A such that, for any distribu-
tion D and any function f : {0, 1}n → {0, 1}, given m = 2O(n/ log n) samples ((x1, f(x1)), . . . (xm, f(xm))),
outputs a circuit h : {0, 1}n → {0, 1} such that, with probability at least 0.99,

errD(h) ≤ min
φ∈C

errD(φ) + 2−n0.99
.

The runtime of A is 2O(n/ log n).

The noisy parity problem has connections to coding theory and cryptography.
First, note that noisy parity problem is roughly the same problem with decoding a random

linear code. Specifically consider a code of length m with 2n codewords described by the generator
matrix X formed by concatenating vectors x1, x2, . . . xm. Then, the algorithm A gets the matrix
X and “message” (f(x1), . . . f(xm)) which is some codeword corrupted by η fraction of errors.

Second, noisy parity problem, under larger alphabets, has been used as the “hard problem” in
crypto applications [Reg05]. In fact, [Reg05] also showed that better algorithms for noisy parity
problem would give a better quantum algorithms for SVP and SIVP for mild approximation range
(depends on the alphabet size).

2 Proof Outline

We’ll have three steps in our presentation.

2.1 Step 1: Noisy Parity in 2O(n/ log n) time

We’ll go over the original [BKW03] algorithm that learns noisy parity under uniform distribution.
Hereon, we let

η = min
φ∈C

errD(φ).

Theorem 2.1 ([BKW03]). Let a, b be such that ab = n. Then we can solve the noisy parity problem
under uniform distribution in poly((1− 2η)−2a

, 2b) time and sample complexity.

We use the theorem with a = log n
1000 and b = 1000 n

log n , and suppose η < 1/2, then get m =
2O(n/ log n).

2.2 Step 2: Weak learner for agnostic parity

It turns out we can twick the algorithm from above to work for agnostic parity learning under any
distribution D, but we get a weaker guarantee on the error.

Lemma 2.2 ([KMV08]). Let a, b be such that ab = n and 2a = o(b). Then there exists a learning
algorithm A that, for any distribution D, and function f , given m = poly((1 − 2η)−2a

, 2b, 1/ε)
samples, outputs a hypothesis circuit h : {0, 1}n → n such that

errD(h) ≤ 1
2
− (1− 2η)2

a

2
+ 2−b.

Time complexity is poly(m).
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As before, we use a = log n
1000 and b = 1000 n

log n , and suppose η < 1/2. Then

errD(h) ≤ 1
2
− (1− 2η)n0.001

2
+ 2−2

√
n ≤ 1

2
− (1− 2η)n0.001

3
.

In other words, h does a bit better than random guessing. We can exploit this with an agnostic
booster.

2.3 Step 3: Agnostic Boosting

Let 0 < γ ≤ α ≤ 1/2, and let m denote the number of samples.

Definition 2.3 ((α, γ, m)-weak learner). A learning algorithm is (α, γ, m)-weak learner if it satis-
fies the following. For any ε > 0, distribution D, function f , given m labelled samples from D, the
algorithm A outputs hypothesis (circuit) h : {0, 1}n → {0, 1} such that, with probability ≥ 2/3, we
have (

min
φ∈C

errD(φ) ≤ 1
2
− α

)
=⇒

(
errD(h) ≤ 1

2
− γ

)
.

In words, if the best function from C can do α-better than random guessing, then the weak
learner should be able to do a bit better than random guessing. In particular the algorithm from
the the 2nd step is a weak learner with α = n−0.99 (in fact even 1/2− η, but we need a smaller α)

and γ = (1−2η)n0.001

3 .
Using a weak learner, Kalai-Mansour-Verbin design the following agnostic boosting algorithm.

Lemma 2.4 ([KMV08]). There is an agnostic learning algorithm that, given any (α, γ,m)-weak
learning algorithm A, and an ε > 0, outputs a hypothesis circuit h : {0, 1}n → {0, 1} such that,
with probability ≥ 2/3:

errD(h) ≤ min
D

(φ) + α + ε.

The sample and time complexity is poly(m, 1/γ, 1/ε). The number of calls to the weak learner
is poly(1/γ, 1/ε).

Applying this boosting algorithm to the weak learner from Step 2 with α = n−0.99 and γ =
(1−2η)n0.001

3 , we obtain a circuit hypothesis h satisfying:

errD(h) ≤ η + n−0.99 + ε

proving our main theorem.
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