
A Pligg Query!
Recent Public Links!

SELECT link_id FROM links   
LEFT JOIN groups ON links.link_group_id = groups.group_id  
WHERE  link_status='published'  AND link_category in (1) 
AND (groups.group_privacy!='private' OR ISNULL
(groups.group_privacy))    
ORDER BY link_published_date DESC LIMIT 0,8 

Goals!

•   Help high-traffic web sites 
cache and partition data for better 
performance"
•   Offer performance comparable 
to a customized memcached + 
MySQL database"
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Current State!
•   Analyzed Pligg queries"
•   Implemented Partition Managers "
•   Designing modular toolkit"

Designing A Toolkit for Distributed Storage in Web 
Applications!

Current Practice!

•   LAMP stack (Linux, Apache, 
MySQL, PHP)"
•   Memcached for caching and 
multiple MySQL databases to 
partition the write workload"
•   Caching avoids recomputing 
expensive queries and spreads 
read load"
•   Partitioning allows concurrent 
writes"
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Column, Values 

(id: 13287,  
category: 2,  

status: published,  
date: 2009-10-10) 

Filter f = Filter(column c, value v); 

Class Filter implements Module { 
   next(): 
      while (tuple) { 
          if tuple.column( c ) == v { 
             return tuple; 
          } 
       } 
      return; 
} 
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Challenges!

•   Caching is hard due to invalidation"
•        Programmer must decide 
freshness policy"
•   Partitioning is hard due to 
tradeoffs"
•        Web app data doesnʼt 
necessarily cleanly partition"
•        You only get one partition plan"
•        Often unclear which is best"
•   Change to data layout is hard but 
necessary"
•        Changes of caching and 
partitioning often require extensive 
application modifications"

Approach!

•   Separate application logic from 
data plan"
•        Allows changes to data plan 
w/o app changes"
•   Application logic:"
•        Can choose from a set of 
pre-defined queries"
•   Data plan defines those 
queries"
•        Configured by developer"
•        Constructed from a toolkit of 
query execution modules"
•        Modules for caching, 
partitioning, joins, etc"
•        Developer composes 
modules to define queries"

Related Work!

•   Existing frameworks for 
horizontally partitioning MySQL DBs"
•       MySQL NDB, HiveDB, 
Hibernate, HSCALE"
•       Still hard to change partitions or 
manage caches."
•   Simply structured key-value stores"
•       CouchDB, Amazonʼs SimpleDB"
•       Less structured model"
•   Facebook uses precomputed 
JOINs on memcached      "


