
A Pligg Query!
Recent Public Links!

SELECT link_id FROM links   
LEFT JOIN groups ON links.link_group_id = groups.group_id  
WHERE  link_status='published'  AND link_category in (1) 
AND (groups.group_privacy!='private' OR ISNULL
(groups.group_privacy))    
ORDER BY link_published_date DESC LIMIT 0,8 

Goals!

•   Help high-traffic web sites 
cache and partition data for better 
performance"
•   Offer performance comparable 
to a customized memcached + 
MySQL database"

Neha Narula* and Robert Morris  
MIT CSAIL, *Google"

Current State!
•   Analyzed Pligg queries"
•   Implemented Partition Managers "
•   Designing modular toolkit"

Designing A Toolkit for Distributed Storage in Web 
Applications!

Current Practice!

•   LAMP stack (Linux, Apache, 
MySQL, PHP)"
•   Memcached for caching and 
multiple MySQL databases to 
partition the write workload"
•   Caching avoids recomputing 
expensive queries and spreads 
read load"
•   Partitioning allows concurrent 
writes"

MySQL MySQL MySQL 

Toolkit 

PHP 

HTTPD 

Toolkit 

PHP 

HTTPD 

Toolkit 

PHP 

HTTPD 

Cache 

User User User User 

Cache Cache 

New Pligg Queries!

JOIN 

MySQL 

Application 

Toolkit 

Recent Public Links Query Object 

FILTER FILTER 

JOIN 

MySQL 

Application 

Toolkit 

FILTER FILTER 

CACHE 

Recent Public Links Query Object 

Cache 

MySQL MySQL MySQL 

JOIN 

Application 

Toolkit 

Recent Public Links Query 

FILTER FILTER 

CACHE 

Partition Manager 

Cache 

FILTER 

Column, Values 

(id: 13287,  
category: 2,  

status: published,  
date: 2009-10-10) 

Filter f = Filter(column c, value v); 

Class Filter implements Module { 
   next(): 
      while (tuple) { 
          if tuple.column( c ) == v { 
             return tuple; 
          } 
       } 
      return; 
} 

JOIN 

Application 

Toolkit 

FILTER FILTER 

CACHE 

MySQL 

WRITER 

Update  a group Recent Public Links Query Object 

Registered 
with Group 
WRITER 

Write to group 

INVALID 

1"

2"

3"

4"

Simple"

With Caching"

With Caching and Partitioning"

Updates and Invalidation"

Challenges!

•   Caching is hard due to invalidation"
•        Programmer must decide 
freshness policy"
•   Partitioning is hard due to 
tradeoffs"
•        Web app data doesnʼt 
necessarily cleanly partition"
•        You only get one partition plan"
•        Often unclear which is best"
•   Change to data layout is hard but 
necessary"
•        Changes of caching and 
partitioning often require extensive 
application modifications"

Approach!

•   Separate application logic from 
data plan"
•        Allows changes to data plan 
w/o app changes"
•   Application logic:"
•        Can choose from a set of 
pre-defined queries"
•   Data plan defines those 
queries"
•        Configured by developer"
•        Constructed from a toolkit of 
query execution modules"
•        Modules for caching, 
partitioning, joins, etc"
•        Developer composes 
modules to define queries"

Related Work!

•   Existing frameworks for 
horizontally partitioning MySQL DBs"
•       MySQL NDB, HiveDB, 
Hibernate, HSCALE"
•       Still hard to change partitions or 
manage caches."
•   Simply structured key-value stores"
•       CouchDB, Amazonʼs SimpleDB"
•       Less structured model"
•   Facebook uses precomputed 
JOINs on memcached      "


