
Synthetic Morphogenesis: Space, time, and

deformation

by

Micah Z. Brodsky

B.S., University of Washington (2005)
S.M., Massachusetts Institute of Technology (2009)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2014

c© Massachusetts Institute of Technology 2014. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 29, 2014

Certified by. .
Gerald Jay Sussman

Panasonic (Matsushita) Professor of Electrical Engineering
Thesis Supervisor

Accepted by .
Professor Leslie A. Kolodziejski

Chair, Department Committee on Graduate Students

Synthetic Morphogenesis: Space, time, and deformation
by

Micah Z. Brodsky

Submitted to the Department of Electrical Engineering and Computer Science
on August 29, 2014, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract

Synthetic biology has presented engineers with a fascinating opportunity: can we
understand the principles of our origins – animal embryonic development – by re-
engineering it in the laboratory? I investigate, from an engineer’s perspective, some
of problems that arise in developing geometric form in a deformable substrate. More
abstractly, I attack the problem of establishing spatial patterns, when rearranging
and deforming parts of the system is inherent to the process.

Deformable, foam-like cellular surfaces are developed as a model for embryonic
epithelia (polarized cellular sheets), one of the principal tissue types in early animal
development. I explore ways in which simple agent programs running within the
individual cells can collectively craft large-scale structures. The mechanical properties
of the substrate prove crucial to the patterning process.

In such a distributed, heterogeneous substrate, little can be assumed about the
progress of time. In one branch of my work, I develop patterning techniques where
convergence is transparently and locally detectable, drawing insights from clockless
digital circuits and casting the problem as distributed constraint propagation. In
another branch of work, I avoid the problem of timing by making all patterns self-
correcting.

In self-correcting patterning, I attempt to understand “canalization” – how de-
velopment is naturally robust to perturbations. I formulate a model for regional
patterning, inspired by regeneration experiments in developmental biology, and using
mathematical principles from classical models of magnetic domains and phase sep-
aration. The problem again becomes a form of distributed constraint propagation,
now using soft constraints. I explore some of the resulting phenomena and then apply
the mechanism to crafting surface geometries, where self-correction makes the pro-
cess robust to both damage and self-deformation. I conclude with a look at how this
naturally leads to an example of partial redundancy – multiple systems that partly
but not completely overlap in function – yielding confusing responses to the effects
of virtual knock-out experiments, reminiscent of the confusing behavior of knock-out
experiments in biology.

Thesis Supervisor: Gerald Jay Sussman
Title: Panasonic (Matsushita) Professor of Electrical Engineering

3

Acknowledgments

With a journey this long, it becomes impossible to enumerate all the indi-
viduals and fellow travelers whose hospitality made it possible to reach this
point.

I’d like to acknowledge the brief but eye-opening contribution made when
I was an undergrad by the crew of organizers and speakers at Caltech’s 2004
Computing Beyond Silicon Summer School, especially André DeHon, Erik
Winfree, Michael P. Frank, and Tom Knight. Tom, in particular, made me
realize that biology was really about systems, and not just glorified stamp
collecting. This marked the turning point where I began to explore the pat-
terns in living systems, instead of avoiding biological studies like the plague.

Mike Swift, also during my undergrad, led me through my first serious
research project while he was finishing his doctorate. I ultimately followed a
different path, but the early experience was invaluable (and surely crucial in
getting accepted at MIT).

Around the lab, discussions with Robert Berwick (reader), Arnab Bhat-
tacharyya, Alexey Radul, Pavel Panchekha, Norman Margolus, Mitchell Char-
ity, Mark Tobenkin, and Ian Jacobi proved crucial in finding my way and
overcoming obstacles. In my previous life with the systems and networking
crowd, Max Krohn, Hariharan Rahul, Nate Kushman, Austin Clements, and
Russ Cox filled a similar role. It’s a blessing to be accompanied by people
so much more accomplished than I, who seem to scatter food for thought
wherever they go.

The role of Jake Beal was especially important, both for his inspiring
work on spatial computing and for his time and effort showing me through
the academic game. Radhika Nagpal’s work was also profoundly inspiring,
and I only wish she could’ve found more time for me ;). Her work, along
with the book by Marc Kirschner and John Gerhart [36], were the germ that
gave rise to this thesis.

Of course, none of this would’ve amounted to anything without my ad-
visor, Gerry Sussman. Gerry was the reason I came to MIT, even though
it took four years before I had the guts to drop everything and set up shop
with him without any money. I have never worked well in sink-or-swim en-
vironments, and Gerry has never believed in education by attrition. Gerry
taught me to be judiciously over-optimistic in planning my goals, and he
helped nurture my ideas along until they amounted to something (and then
helped nurture me along until I realized they amounted to something). Gerry

5

has a special talent for freeing up friction-locked thinking, and I hope I have
learned something from him about how to think beyond “allowed” bounds.
It’s not going to be easy walking away from his office.

Outside of academics, I owe a great debt to Jamie Spangler, Brett Shapiro,
Vivian Hecht, Ethan Sokol, Isaac Oderberg, Eliad Shmuel, Rabbi Michelle
Fisher, and the rest of the crew around MIT Hillel, whose tireless community-
building efforts made the Institute a place I could call home.

I must acknowledge my wife, Andrea Gillespie, who in addition to putting
up with me all this time, also contributed several key technical insights to
this work.

I’m not even going to try to enumerate all the teachers who had a lasting
impact on me; there are too many of you. I hope you know who you are.
This thesis is dedicated, above all, to the teachers, mentors, and family who
accommodated my quirks and refused to give up on me, even when times
seemed dark. I hope I’ve proved your efforts worthwhile.

This thesis is based on work supported in part by the National Science
Foundation under Grant No. CNS-1116294, in part by a grant from Google,
and in part by MIT’s EECS department via a heck of a lot of TAing.

6

Contents

1 Introduction 9
1.1 Approaches to Patterning Geometry 10
1.2 Philosophy: An Engineer’s Perspective 17

1.2.1 Flexibility, Robustness, and Evolvability 17
1.2.2 Pursuing Flexible Systems 19

2 Model: Foam-Inspired Surface Mechanics 22
2.1 Model Overview . 23
2.2 Foam Cell Mechanics . 25

2.2.1 Two-Dimensional Mechanics 26
2.2.2 Three-Dimensional Mechanics 32
2.2.3 Topological Interchange and Plastic Flow 38

2.3 Technical Details of Energy Minimization 40
2.4 Elementary Examples . 42

2.4.1 Introductory Example 42
2.4.2 More Examples of Organized Proliferation 44

2.5 Related Models . 48

3 Self-timed patterning 51
3.1 Introduction . 51
3.2 Self-Timing . 53
3.3 Simple Computations . 55

3.3.1 Gradients . 55
3.3.2 Growing Points . 57

3.4 Putting the Pieces Together 58
3.4.1 Composition . 58
3.4.2 Actuation and Checkpointing 59

3.5 Self-timed vs. Self-correcting 61

7

3.6 Conclusion . 63

4 Normal neighbors patterning 64
4.1 Adjacency Graphs . 65
4.2 Potentials and Probabilities 67
4.3 Constructing the Energy Function 68
4.4 The Stochastic Algorithm . 69

4.4.1 Examples . 70
4.5 The Mean-Field Algorithm . 73

4.5.1 Examples . 75
4.6 Problems and Local Minima 76
4.7 The Continuum Limit . 86
4.8 Analytical Properties from the Continuum Limit 87
4.9 Abstracting the Strategy . 93
4.10 Comparing with Other Patterning Mechanisms 96
4.11 Future Directions . 100

5 Morphological homeostasis 102
5.1 Decomposing the Problem . 103
5.2 Building Distributed Sensors 105
5.3 Sensing Curvature . 106
5.4 Actuating Curvature . 107
5.5 Complex Structures from Simple Pieces 111
5.6 Evaluation . 115
5.7 Future Work . 117

6 Conclusion 119
6.1 Energy Minimization . 119
6.2 Constraint Propagation . 121
6.3 Biological Questions and Implications 123
6.4 Going Forward . 125

8

Chapter 1

Introduction

In recent years, computer scientists have begun seeking insight among natural
phenomena for the design of robust systems and spatially-embedded compu-
tations (“spatial computing”) [1, 7, 67, 2, 8]. Animal and plant development,
in particular, have provided a trove of novel ideas [15, 71, 45, 17, 20]. Devel-
opment, however, entails deformation and reinvention of the spatial substrate
itself, into which the computation is embedded; deformation, in a sense, is
the heart of development. Thus far, little attention has been paid to this cru-
cial but complicated aspect, even restricted to the case of idealized surfaces,
which capture the most interesting elements.

Nature is a master craftsman of surfaces. From the leaves of carniv-
orous pitcher plants to the imaginal disks that give rise to limbs and an-
tennae in flies, nature demonstrates the extraordinary repertoire that can
be algorithmically sculpted from 2-dimensional surfaces. Indeed, given the
long and intricate story of the primordial germ layers in animals, much of
embryonic development can be cast as the elaboration and interaction of
2-dimensional surfaces with their environments. Although considerable at-
tention has been focused on processes involved in laying down patterns on
existing surfaces, under such banners as pattern formation [50], amorphous
computing (e.g. [1, 45, 15]), and cellular automata, little seems to be under-
stood about the development of dynamic substrates and surface geometries
themselves. In most natural examples, this involves the reshaping and elab-
oration of preexisting surfaces by locally mediated changes. Complicating
this process, substrate deformation seems to cross-couple any algorithmic
elements in unexpected ways, with large-magnitude strains distorting the re-
sults of prior patterning steps and leaking beyond the boundaries of regions.

9

Nature’s resiliency in producing viable structures in spite of evolutionary
and environmental perturbations, and in spite of this complexity, put hu-
mankind’s rigid engineering techniques to shame. What sorts of algorithmic
tools does nature use to ensure robust, reliable, and evolvable development
of the desired structures? Can we exploit these techniques ourselves, either
for engineering applications or to better understand the methods of nature?

1.1 Approaches to Patterning Geometry

I set out to explore the question of how a deformable sheet of cells might
fashion itself into the kinds of complex geometries naturally produced by
the processes of embryonic development. One might naively imagine that
the problem could be divided into two steps: patterning the sheet in its
initial configuration with a pre-pattern describing the geometric features to
be crafted and then sculpting the features according to the pre-pattern. If
such a strategy were adequate, then the existing body of research studying the
patterning of fixed substrates, e.g. Amorphous Computing, Turing patterns,
and so forth, would provide solutions to the first half of the problem, and
my research could focus merely on the actuation of pre-specified geometric
features.

However, it turns out that the pre-patterning strategy alone is neither
necessary nor sufficient. It is not necessary because there exist reliable mecha-
nisms for producing feature patterns directly as geometry, without any prior
reflection in the logical states of the cells. The most notable example is
compressive buckling. In theory, on a mathematically ideal manifold, pre-
patterning is nonetheless sufficient, but in practice it encounters a host of
complications. Because the ability to separate where features go from how
to construct them offers such conceptual advantages, and because ample evi-
dence demonstrates biology indeed using such strategies [36], the bulk of my
research (aside from developing my numerical surface model) became devoted
to avoiding and overcoming the complications inherent to pre-patterning.

The simplest, least abstract approach to pre-patterning would be to paint
a full mathematical description of the geometry. In other words, a pattern-
ing cascade would construct a set of pattern fields that described all the
local geometric properties of the surface. The mechanical properties of the
substrate would then be modified locally to match the pre-pattern stencil’s
prescription.

10

This is immediately nontrivial, because deforming the substrate may en-
tail stretching and rotation, deforming and reorienting the pre-pattern in the
process. If these distortions are predictable, the pre-pattern may be cor-
rected in advance. However, if pre-patterning computations are not finalized
and suspended prior to actuation, the pre-patterning process itself will be
perturbed through geometric feedback, greatly increasing overall complexity.
This can be avoided by globally checkpointing the pattern at completion of
pre-patterning, before any actuation, or by using pre-patterning mechanisms
that are insensitive to the kinds of deformations that will appear.

As a first attempt at pre-patterning, one might construct pattern fields
that described the direction(s) in which the surface was to be curved and
the associated radii of curvature. Such “extrinsic” curvatures could then be
created by driving the surface to bend accordingly, for example, via apico-
basal constriction. This proposal, however, suffers from two serious flaws: it
both incomplete and inconsistent. It is incomplete because distinct shapes
may be described with indistinguishable curvature fields, for example, a 2x2
square curved along a cylindrical arc and a 1x4 rectangle with the same radius
of curvature. Given a particular algorithm and initial conditions, some shape
will of course be produced, but it may not be be possible to fully specify
which one. Worse, however, this scheme is inconsistent, for the same reason
one cannot flatten an orange peel without tearing it: extrinsic curvatures
require, in general, non-Euclidean geometries within the surface. Distances
between points within the surface must change in order to accommodate
the extrinsic curvature. As the surface deforms extrinsically, such “intrinsic
curvature” will necessarily be generated, by elastic deformation, plastic flow,
and other passive material responses, at the cost of high stresses, stress-driven
distortions to the final curvature, and possible material failure.

The complementary strategy, patterning only intrinsic curvature, e.g. by
adjusting cell sizes and in-plane eccentricities, is similarly limited, both in-
complete and inconsistent. Purely cylindrical curvatures cannot be specified,
and the inverted forms of curves are indistinguishable. Stresses and bending
torques again accumulate, this time in order to force the material to bend ex-
trinsically, fighting against its flexural rigidity. Like extrinsic pre-patterning,
intrinsic pre-patterning is functional but severely limited.

The flaws of inconsistency and incompleteness can be avoided by simul-
taneously patterning the surface both intrinsically and extrinsically. Mathe-
matically, this entails patterning the first and second fundamental forms of
classical surface geometry, that is, the metric tensor and the shape tensor.

11

Such a description is complete, but it is also highly redundant – most features
need to be specified twice, in different ways. The relationship between the
two representations is complicated and nonlocal (the Gauss-Codazzi equa-
tions). Any inconsistency between the two manifests as before, in stresses
and distortions. Such redundant description bodes ill for both engineering
and evolvability: adding and changing features is no longer simple, because
changes must be made two different ways simultaneously. One might term
this “embrittling redundancy”.

Even with consistent, simultaneous patterning, and more so without, a
subtle flaw remains. While the final state of a consistently and simultane-
ously patterned surface may be stress-free, the intermediate states during
convergence need not be. Some deformations, such as dimpling a sphere (i.e.
invagination), naturally entail elastic snap-through [59], passing through a
high-stress, unstable state. Even under less challenging transformations, high
stresses can arise due to timing skew across the substrate, where some changes
are actuated before others. While such stresses will eventually recede, they
may nonetheless cause permanent deformations to the substrate by exceeding
the yield limit, triggering plastic flow. Plastic flow is problematic because
it is discontinuous, irreversible, and somewhat unpredictable, and hence is
very difficult to accommodate in a fixed pre-pattern. Even fully consistent
deformations may be subject to transiently induced plastic distortion.

For sufficiently large deformations, plastic flow can also be a necessary
tool, as a result of the discrete, cellular nature of the substrate. Without
plastic flow, large deformations such as evaginating a tentacle out of a sheet
would entail cells stretching into strands of spaghetti. However, cells can
only deform so far. Further deformation requires that cells be rearranged
or destroyed and created anew.1 Without new cell growth, actuation must
purposefully trigger plastic flow in order to achieve large deformations.

Stress-driven plastic flow and other forms of cell rearrangement are thus
all but inevitable for large deformations, and patterning algorithms must be
prepared for them. Small deformations can be achieved approximately with
naive pre-patterning, and accuracy can be improved by incorporating local
feedback in actuation. However, large deformations entail poorly predictable
rearrangement of the substrate during the patterning process, and such rear-

1In the special case of reducing a single large cell into many small cells, it is also possible
to generate large deformations through directed division, although this often produces
plastic rearrangement as well.

12

rangement rearranges the pre-pattern itself. This fundamentally changes the
nature of the pre-patterning problem. Rather than pre-patterning once and
checkpointing static stencils, patterning must be a continuous, self-correcting
process that operates concurrently with actuation.

I explored two general strategies for large deformation patterning, one
based on direct geometric control without pre-patterning and one based on
self-correcting pre-patterns. In the first strategy, organized proliferation pat-
terning, cells are grown or rearranged according to some control law, gen-
erally based on outside feedback. Geometric features result largely from
buckling, with the mechanical properties of the substrate playing an impor-
tant role. In the second strategy, self-stabilized pre-patterning, a pre-pattern
is established by a symmetry-breaking, feedback-based patterning process,
which continues operating throughout actuation. As actuation distorts the
surface, the pre-pattern readjusts itself to fit. Actuation applies feedback
control to local geometric properties, such that the desired final geometry
becomes a stable attractor of the system. These two general strategies, in
addition to naive pre-patterning for small deformations, characterize most of
my successful experimental results.

Naive Pre-patterning

Although limited in scope, naive pre-patterning is still a useful technique,
and its key concepts are relevant to more sophisticated patterning strategies.
Naive pre-patterning can also be used to assist in bootstrapping and com-
bining more sophisticated algorithms, by arranging patterning modules and
pre-breaking symmetries.

The most immediate problem in implementing naive pre-patterning is de-
termining when pre-patterning has converged so that actuation may begin.
In a centralized algorithm this would be trivial, but in distributed setting
it is less so. If the size of the domain and the speed of computation are
known (or at least known to be consistent, and hence measurable), time
to completion can be estimated in advance for some algorithms (e.g. [45]),
although such dead reckoning estimates can be a form of embrittling redun-
dancy. Other algorithms are more problematic, such as Turing patterning,
which is inherently metastable. If size and speed are variable, e.g. due to
growth, nutrient, and temperature variation, even well-behaved algorithms
defy timing by dead reckoning. Without knowing when the pattern has
converged, naive pre-patterning is limited to weak, non-disruptive actuation

13

(e.g. Figure 1.1), unable to safely modify cellular topology. In Chapter 3, I
demonstrate how to solve this problem for a broad class of patterning algo-
rithms, using a method of computation such that convergence is detectable
locally.

(a)

(b)

Figure 1.1: Example of small-deformation naive pre-patterning. (a) Initial
conditions, consisting of a uniform cylinder of polarized cells (taper is a
passive effect of surface tension at cut ends). (b) Final structure, a corrugated
cylinder. The pre-pattern is series of segments, each partitioned in half, such
that cells in the left half are instructed to enlarge and cells in the right
half are instructed to shrink. The segments themselves are produced by
a somitogenesis-inspired clock-and-wavefront mechanism [47] (effectively, an
implementation of the modulo function on a gradient that does not require
multiple thresholds). The magnitude of deformation shown is approaching
the disruption-free limit.

Organized Proliferation Patterning

In organized proliferation patterning, cells are directed to grow and divide
according to their proximity to organizer regions and according to the values
of gradients both confined within the surface and emanating through the
ambient medium. Proliferation leads to both buckling and yielding, along
with displacement of the organizers and motion relative to external gradients.

14

The combination of all these effects produces the final shape; no pre-pattern
is ever constructed.

Organized proliferation algorithms are among the easiest large-deformation
programs to implement, often requiring only a few lines to specify. They are
also among the hardest to predict in detail, relying heavily on complicated
mechanical effects and feedbacks. I lack a general theory of the mechanism,
although mechanical intuition can serve as a useful guide. I explore this pat-
terning mechanism through a series of examples in Section 2.4, showing how
to produce a family of assorted axisymmetric and branching structures (as
in Figure 1.2).

Figure 1.2: Example of an allotropically-scaled, randomly branching tree,
produced by organized proliferation.

Self-Stabilizing Geometry

In naive pre-patterning, a structure, once produced, is static. In organized
proliferation patterning, a structure may continue to grow, and a branched
structure may, like a plant, grow additional structures to replace ones that are
lost or enlarge existing structures that face increased load, but the particulars
of a structure cannot be regenerated. Most animals, however, develop fairly
particular structures and have at least some ability to regenerate when dam-
aged. Some, such as freshwater hydra, can reconstruct themselves even after
complete disaggregation [27]. In self-stabilizing geometry, I finally attack
the problem of morphological homeostasis – how to produce and maintain a

15

consistent, particular structure in spite of developmental uncertainty and a
lifetime of insults and changing circumstances.

The general strategy is a combination of decomposition and feedback.
Based on a high-level, topological specification (e.g. Figure 1.3a), a pre-
pattern is constructed and maintained by a novel feedback patterning al-
gorithm developed in Chapter 4. With such a pre-pattern, stable to both
external insults and disruptive actuation, aggressive feedback algorithms for
controlling geometry can be layered on top. These algorithms, along with
the final results of the cascade, are discussed in Chatper 5. The results,
as in Figure 1.3c, are a first, elementary demonstration of programmable
morphological homeostasis.

1

2

3

4

5

6 7

(a)

##########################
#444444666666666666555555#
#444444666666666666555555#
#444444666666666666555555#
#444444666666666666555555#
#444466666666666666665555#
#666666666666666666666666#
#666667777777777777766666#
#777777777777777777777777#
#777777777777777777777777#
#777777777777777777777777#
#777777777777777777777777#
#777777777777777777777777#
#111117777777777777711111#
#111111111111111111111111#
#333311111111111111112222#
#333333111111111111222222#
#333333111111111111222222#
#333333111111111111222222#
#333333111111111111222222#
##########################

(b) (c)

Figure 1.3: Example developing a four-lobed, self-stabilizing structure,
shaped via normal neighbors patterning and closed-loop curvature control.
(a) Normal neighbors graph, a topological specification for the pre-pattern,
or “body plan”, of the structure. (b) Example realization of the body plan
pattern on a static, regular square lattice. (c) Self-stabilizing 3D geometry
produced by combining the body plan with mechanical actuation.

16

1.2 Philosophy: An Engineer’s Perspective

Why should engineers care about biology and development?

Traditionally engineered systems are brittle. Despite modern know-how
and materials, it has proven hard for engineers to design and construct robust,
flexible systems: systems that have acceptable behavior over a wide range
of situations, anticipated or otherwise. Instead, our artifacts are specified
with narrow tolerances and precise interfaces, pushed beyond which they
fail, often spectacularly. Furthermore, efforts to rebuild and redesign them
to accommodate a widened scope tend to be costly and time-consuming.

By contrast, the natural world is filled with examples of robustness and
flexibility: wounds that heal, bones that strengthen (anisotropically) from
stress, behaviors that survive rich times and lean times, microbes that evolve
to resist antibiotics, clades of species of all kinds that survive changing envi-
ronments over and over again. From single-celled organisms through entire
ecosystems, nature seems to know something we don’t about flexibility.

This research is an investigation into design principles for flexible phys-
ical systems, both natural and engineered. I use the medium of abstract
programmable deformable surfaces, as an approximation of both natural de-
velopmental epithelia and synthetic smart materials. Through mathemat-
ical modeling, simulation, and theoretical analysis, I develop and charac-
terize algorithmic techniques capable of producing and maintaining three-
dimensional structures by local surface deformation. The most sophisticated
of the techniques show flexibility to mechanical and environmental variabil-
ity and successful regeneration even in the face of massive damage. These
techniques and the experience of developing them can provide insight into
how engineered systems can mimic natural flexibility.

1.2.1 Flexibility, Robustness, and Evolvability

Pondering flexibility more closely, we may articulate two distinct forms. Ro-
bustness is the tolerance exhibited by an artifact for varying parameters, cir-
cumstances, and insults, internal and external. Critical to achieving this is
adaptivity, the ability of an artifact to self-adjust its structure and/or behav-
ior to variability. Evolvability, by contrast, is the ease with which an artifact’s
specification can be altered by minimal increments to specify a new artifact
capable of performing in new and different circumstances. In engineering,

17

this corresponds to the ability to efficiently re-design an updated version. In
biology, this corresponds to the ability of a population of organisms produce
new and different mutant lineages when circumstances demand. Where ro-
bustness involves only the behavior of an artifact, evolvability concerns also
the representation used for its specification and what constitutes a minimal,
“easy” change.2

While human engineering uses different sorts of specifications and differ-
ent kinds of incremental changes from biological species, the parallels run
deep. In biology, major leaps and re-designs are limited by the low probabil-
ity of hitting mutations that make large changes and yet preserve viability.
In engineering, major leaps and re-designs are limited by their cost and the
difficulty of ensuring continued functionality, or in other words, preserving
viability. Just as in biology, strings of small, incremental changes that can
be validated along the way are a far easier path to follow. In biology, po-
tential changes are also restricted by the compatibility requirements of the
pool of prospective mates and of symbiotic and ecological relationships. In
engineering, potential changes are restricted by the compatibility require-
ments of physical and logical interfaces with existing systems. Compatibility
constraints extend within systems as well, inasmuch as the systems can be
decomposed into subsystems and modules that must cooperate. Co-evolution
is as much a fundamental problem in engineered ecosystems as it is in natural
ones.

Another notable parallel between biological and engineered systems is the
significance of neutral space, the freedom of variation in specification and be-
havior lacking any observable impact on the system’s objectives. In software
engineering, the exploitation of neutral space is known as refactoring, the
functionality-neutral restructuring of code that nonetheless facilitates subse-
quent functional changes. In biology, the phenomenon of neutral drift allows
a population to explore a range of genotypic and phenotypic variations, all
while carefully skirting non-viable regions. Some of these variants will prove
useful under altered circumstances or as starting points for functional muta-
tions unreachable from the original starting state. In both cases, the effective
result of neutral exploration is to increase the feasible range for incremen-

2The distinction is slightly blurred when speaking of self-replicating artifacts that are
ultimately responsible for (mis)duplicating their genomes, but this only becomes a concern
at the population level: numerous individual organisms will die off, their robustness failing
them, in the quest of the larger population to adapt and produce an improved individual
specification.

18

tal changes to the system: larger viable changes are possible than with a
specification where every possible adjustment is meaningful.

Neutral space, however, is not merely a function of specification encod-
ing. The encoding must ensure that a small, local change does not cause
catastrophic, long-distance effects having no chance of being neutral, but it
need not ensure a complete absence of side effects. If the encoded behaviors
of a system are sufficiently robust, the system can adapt around any dele-
terious effects of small modifications, rendering an ostensibly non-neutral
specification change phenotypically neutral or neutralizing the unintended
side effects of an intentional change. Thus, the behavioral robustness of an
artifact facilitates its evolvability.

Robustness facilitates evolvability in other ways as well. Robustness facili-
tates compatibility, by tolerating variations seen along the interfaces. Where
compatibility constrains evolvability, robustness helps to release it.3 Also,
robustness through adaptivity allows a system to accumulate behaviors cor-
responding to a wider range of environments. As the environment shifts,
these alternative behaviors can be cemented as the new default via simple
changes to the specification. Adaptivity thus facilitates evolvability towards
new parameter regimes. The concept that robustness facilitates evolvabil-
ity is not new [36], but in this line of research, we have the opportunity to
investigate it constructively.

1.2.2 Pursuing Flexible Systems

A key goal of the work presented here is the pursuit of a deeper understanding
of flexible systems, both for scientific insight and engineering applications.
Nature furnishes us a tremendous number of examples and existence proofs
of flexibility, but interpreting them remains a challenge. This work inves-
tigates such natural examples by re-engineering solutions under simplified,

3It is worth noting, however, that a contrary phenomenon is sometimes also observed
in long-lived engineered systems: Broad, forgiving interfaces on one artifact can allow
other artifacts to establish relationships via otherwise fragile means. As these relation-
ships proliferate, they haphazardly constrain the interface from multiple points, depriving
it of neutral space. A variety of engineering techniques exist to combat this accumulation
of unnecessary constraints, such as the publishing of written specifications and standards,
linguistic and mechanical mechanisms that enforce information hiding, ex-post-facto com-
patibility and virtualization layers, and so on, and yet it remains a source of considerable
consternation in industry. It would be interesting to investigate whether biology too suffers
from the compatibility entrenchment problem and if it employs any protective weaponry.

19

simulation-friendly models of the underlying problems and comparing the
results against what is known about the biological solutions. Using the same
models, I also investigate related engineering problems, particularly those
that arise in the pursuit of robust and adaptive physical devices.

In the pursuit of flexible physical devices, we rapidly run up against the
limitations of today’s engineering materials: fashioned top-down, all at once,
they’re built for a specific, macroscopic purpose and last a limited time.
Fortunately, a suite of novel, adaptable substrates are on the horizon, in-
cluding shape-memory actuated foldable surfaces [32], smart textiles [31, 60]
and artificial muscle fibers [60], modular robotics [73] and catoms [28], pro-
grammable self-assembly [41], and synthetic cells and engineered epithelia
[65, 4]. These incipient technologies offer new opportunities for flexible de-
vices and programmable manufacturing, but they also force us to face the
challenge of how to control them. In this research, I focus primarily on pro-
grammable deformable surfaces, as embodied in engineered epithelia, because
they are a powerful, versatile medium that nicely match nature’s own media
and because the control problems they present are novel and substantial.

How do we approach the sculpting of a deformable surface for adaptive
physical artifacts? Some applications might be able to rely on external tool-
ing and bracing for shaping, but in general this may be inflexible, heavy, or
otherwise infeasible and cannot be depended upon. Similarly, some applica-
tions may be able to rely out outside computation and control, but in general
it can be impossible to gather all sensory information centrally and distribute
detailed actuation commands globally. Such is the case with synthetic biol-
ogy, and as electronic active components miniaturize and proliferate in num-
ber, electronic smart materials too will be subject to such restrictions. This
leaves us with the amorphous approach to computing and control [1], which
assumes unreliable components furnished with local sensing, local computa-
tion, local actuation, and local communication. This model is, not coinci-
dentally, quite reminiscent of biology.

The central focus of this research is the control of such amorphous de-
formable surfaces, from the standpoints of basic algorithmic techniques for
basic goals and robust and evolvable control for robust and evolvable devel-
opment and behavior. In fact, these different perspectives on the problem
are intertwined, robustness with evolvability for the reasons explored above
in 1.2.1 and robustness with basic techniques because of the inherent risk
of local component failure and the likelihood of structural irregularity when
managing countless cooperating active elements. The latter issues have long

20

been a defining challenge in the field of spatial computing [6], on which this
research builds. Dynamic development and deformation of the underlying
substrate increase the need for robust approaches even more.

What gives rise to robust control? No simple, universal answer is known.
In spatial computing, this question has been met with such techniques as sta-
ble geometric constructions (e.g. gradients and geodesics [15, 45]), high level
specification languages (e.g. Growing Points Language [15], Origami Shape
Language [45], and circle networks [37]), spatial redundancy (e.g. [5, 37]),
neighborhood feedback and relaxation methods (e.g. [3]), and self-stabilizing
algorithms (demonstrated in, e.g., [3]). In natural patterning systems, no-
table claims for robustness motifs include cooperative degradation of mor-
phogens and stable attractors but also fairly complicated multi-component
schemes whose rationale is not immediately obvious [21]. A common theme
in many though not all of these techniques is a deep and general strategy:
the use of feedback control. The recent functional blueprints concept [7]
formalizes this idea in a manner particularly apt for spatial computing and
structural development. Less explored, though easily integrated into the
functional blueprints framework, is multimodal control, the use of partially
redundant actuation methods. This has been observed many times in bio-
logical processes (e.g. multiple sperm exclusion, blood coagulation) and in
homeostasis control, and I suspect it also lurks within developmental pattern-
ing. These and other robustness methodologies are explored in my research
on deformation control.

21

Chapter 2

Model: Foam-Inspired Surface
Mechanics

A variety of well-established models are used to assist in exploring spatial
computing and pattern formation on a static substrate, e.g. amorphous
computing, cellular automata, agent swarms, and dynamical systems. The
same is not true for the more complicated case of deformable substrates. Yet,
computational models are all the more necessary here, because the more
complex dynamics are less tractable both analytically and intuitively, and
surprises abound.

Is it possible to construct a simple model with the kind of universal char-
acter exhibited by cellular automata and amorphous substrates? Since the
nature of the kinds of active manipulations and passive mechanical dynamics
present within a substrate vary significantly, possibly not; the same model
may not work equally well for animal embryos, adult plant tissues, and smart
fabrics. However, the essential elements should be specifiable in terms of how
the substrate is divided into agent domains, how the domains deform, and
under what circumstances they rearrange.

I set out to develop a model that would be most appropriate for embry-
onic and synthetic epithelia, with side-applications to other domains. To
this end, I idealized the substrate as a two-dimensional surface deformed in
3D and divided it up into polygonal, approximately planar agents (“cells”).
Each cell has an energy function that describes the favorability of different
mechanical conformations, and the dynamics are computed by energy mini-
mization, simulating the ultra-slow, quasi-static regime. A set of topological
rules inspired by the physics of 2D foams [64, 46] allows cells to rearrange

22

their neighbor contacts, simulating the processes of cell migration and plastic
flow.

2.1 Model Overview

How should a virtual tissue be decomposed into agents? For many adult
tissues, with mechanically important components in the extracellular ma-
trix, the answer isn’t immediately clear, but for embryonic tissues, especially
epithelia, cells are the obvious choice. In epithelial tissue, cells are packed
tightly together and represent a discontinuous grain in both material and
computational properties. Each cell constitutes a single, coherent nuclear
and cytoplasmic environment, with limited neighbor communication, and
thus naturally corresponds to a computational agent. Cells may also slide
past one another with reasonable ease, particularly in embryonic epithelia,
but a single cell can be deformed only so much. With sophisticated ma-
terial models, one can construct efficient, approximate mechanical models
with a coarser grain than cells [11, 13], but cells as agents remain ideal from
a control perspective, particularly when cell migration and the associated
transportation of computational state is concerned.

What about the deformability of individual cell domains? A cell is neither
quite solid nor liquid. Like a liquid, it is incompressible but easily deformed,
yet like a solid, it resists shear forces. Unlike volume elements of both liq-
uids and solids, cells have boundaries, and cell-cell contacts support normal
forces far better than shear forces. As a result, a cell will deform nonuni-
formly under shear, and with sufficient strain, may slide past its neighbors.
A cell is, in many ways, better modeled as bubble or liquid droplet, fluid but
confined by a surface tension. Lacking the data or justification to construct
a rigorous model of intra-cellular mechanics, I chose to model cells with a
very simple two-term planar model, combining a cortical surface tension and
an area restoring force, plus an additional term for bending stiffness. Cells
are represented only by their 2-dimensional outlines within the surface, their
thickness merely implicit.

Developmental process take place on long timescales and short length
scales, immersed in a fluid at small Reynolds number. As a result, inertia
is insignificant, and the dynamics of deformation are dominated by viscos-
ity. Even such viscous dynamics are not necessarily significant, however.
Gene regulation and hence most developmental feedbacks take place on the

23

timescale of hours, meaning that faster mechanical behaviors happen all but
instantaneously from a cell’s perspective. For this reason, I keep the model’s
dynamics even simpler, simulating in the quasi-static or “adiabatic” regime.
In this regime, agents are only allowed to execute once the last round of
deformation has largely stabilized. Mechanical conformations can be com-
puted efficiently by energy minimization, and there is no need to supply
viscosity parameters, only an energy function. From an agent’s perspective,
the system is always at mechanical equilibrium.

Unlike volume elements in a homogeneous solid or liquid, cells can ex-
change neighbors when deformed, producing a discontinuous rearrangement
of the substrate. Like bubbles in a foam, contact areas between neighbors
will shrink under appropriate strains. When their contact areas shrink away
entirely, cells pull apart and their neighbors slide into their place (Figure 2.4).
This interchange mechanism is known in the foam physics literature as the
T1 process [64] and is a key point of departure from models appropriate to
textiles, plant tissues, and other substrates with largely fixed neighbor re-
lationships. Individually, the T1 process allows cells to migrate by exerting
tractions on their neighbors. Collectively, it causes bulk plastic flow under
shear stress of sufficient magnitude, imparting a yield limit to the substrate.
Aside from explicit cell division and death, the T1 process is the sole mech-
anism by which cells rearrange in the model.

Whenever the model is sufficiently close to mechanical equilibrium, cell
agents are given the opportunity to intervene. Agents can manipulate the
mechanical properties of their cells, such as size, shape, and elasticity, or
cause them to divide or die, and thereby perturb the surface such that it
deforms into a new conformation. In order to direct such actuation, agents
can sense local geometric and mechanical properties, such as curvature and
stress. They can execute arbitrary computations and keep small amounts
of local state. They can share information with their nearest neighbors by
exchanging morphogen signals, modeled as floating point values. They can
also sense and emit diffusive gradients that propagate through the ambient
medium in 3D.

Collectively, these modeling design choices strive to capture the essentials
of epithelial developmental mechanics, without unnecessary levels of detail
and complexity. The following sections explain the mechanisms of the model
more thoroughly, including the parameters and their physical meanings. I
also discuss the physical situations for which the model is and is not appropri-
ate as well as design decisions that were important for the model’s efficiency

24

and stability.

2.2 Foam Cell Mechanics

The model represents a deformable surface as a complex of simply-connected,
polygonal, approximately planar cells. Cells are affixed to their neighbors
through shared vertices and edges, and the surface deforms by virtue of the
relative motion of the vertices . Vertex motion is governed by a mechanical
energy function spanning the entire surface; vertex locations are adjusted
in order to relax the energy function toward a local minimum. The energy
function is responsible for determining the essential mechanical properties
of the substrate as well as for ensuring the well-behavedness of the cellular
mesh.

The global energy function is constructed as the sum of local contributions
from each cell area. A cell’s energy contribution is a function of the positions
of the vertices belonging to both the cell and its immediate neighbors, along
with a variety of per-cell mechanical parameters.

Within a 2D surface, the per-cell energy functions favor properties com-
mon to embryonic epithelial cells, soap bubbles, and other natural cellular
materials – maintenance of a natural volume and minimal boundary surface
area consistent with volume – and hence produce an emergent geometric or-
der similar to planar versions of such materials. Key features include convex
cells with vertices of degree three and vertex angles near 120◦ [26, 46] – a
close approximation to Plateau’s laws of soap films. Under mild in-plane
stresses, the edge lengths distort, providing an elastic response. The bulk
elastic properties are statistically isotropic for random cell meshes but also
exactly isotropic to first-order in the case of a regular (and necessarily hexag-
onal) lattice [39]. When cell distortion reduces an edge to zero length, the
vertex topology can then invert, a phenomenon characteristic of all these sys-
tems [46, 64], yielding a natural mechanism of cell rearrangement and plastic
deformation.

The energy functions additionally include terms specific to flexible sur-
faces in 3D, such as elastic thin shells and epithelia, to encourage smoothness
and provide flexural rigidity. These terms enforce minimal bending at the
junction between cells (apart from a “wedge angle” setpoint) and minimal
distortion from planarity within a cell. These help to stabilize the mesh
against pathologies, as well as providing elastic bending properties.

25

Term Algebraic form Parameter Description Default Dimensions
Area kA(A−A0)2 A0 Area setpoint 12 L2

restoration kA Area elastic K 0.5 E/L4

Surface
tension

kPP kP Perimeter sur-
face tension

1.0 E/L

Junction kBLedge(Θ− θ0)2 θ0u Angle setpoint 0 rad
bending θ0q Angle setpoint

quadrupole
0 rad

kB Bending elastic
K

0.8 E/Lrad2

Distortion kD
A0

2 εdistortion
2 kD Distortion K 100 E/L2

Contact
force

kC min(Ai,Aj)(
Dr/Dij − 1)2

kC Contact force K 0.01 E/L2

Area guard ki/A ki Collapse guard 0.1 EL2

Table 2.1: Principal mechanical energy terms and their parameters, which
can be custom-specified when initializing a simulation as well as manipulated
online by cell agents. Default values are used in all examples unless otherwise
specified.

Although naturally inspired, the details of the energy functions are syn-
thetic, chosen for simplicity and transparent behavior, rather than attempt-
ing to mimic any specific natural system. The complete set of terms are
enumerated in Table 2.1 and discussed below.

2.2.1 Two-Dimensional Mechanics

To model the first-order elastic behavior of an approximately isotropic sub-
stance in 2D, only two independent parameters are needed, e.g. shear and
bulk moduli. Because we are interested in large deformations, higher-order
terms would ordinarily also be important. However, for a soft, thin surface,
inelastic and 3-dimensional behaviors such as buckling typically take over at
large deformations, and so higher order 2D modeling is only of secondary
concern. Thus, we have a fair amount of freedom in defining a 2D energy
function and can select the simplest mechanism that provides reasonable cell
shapes and interchange behaviors.

In 3D, the simplest plausible energy function might use surface tension to
minimize surface area, in conjunction with a volume constraint. In formulat-
ing a 2D surface idealization, we can often assume that, in addition to a hard
constraint on volume, the thickness of cells is roughly consistent, and so this

26

3D behavior is equivalent to the minimization of 2D perimeter subject to the
constraint of constant 2D area. Of course, thickness is not exactly constant
and can vary about its equilibrium value. Thus, a soft constraint on area,
implying a soft constraint on thickness, is more useful. Taken together, this
suggests the following 2D energy function:

E2d = kPP + kA(A− A0)2 (2.1)

where P is the cell perimeter, A is its area, and A0 is a parameter specifying
the equilibrium area. The soft constraint on area is chosen to be quadratic
as this provides a first-order term, higher terms being less important.

Such an energy function naturally provides the foam-like properties out-
lined above. Vertex angles tend toward 120◦, and junctions of degree greater
than three are generally unstable, in close accord with Plateau’s laws. In
the case of a regular mesh, equilibrium vertex angles are exactly 120◦, even
under stress; only edge lengths distort, not angles. Under sufficient stress,
selected edges will deform to zero length, effectively producing four-fold ver-
tices. Energy then can be further reduced by splitting each four-fold vertex
into two new three-fold vertices – a T1 topological interchange – and al-
lowing the newly created perpendicular edges to grow (see Section 2.2.3).
Such rearrangement is permanent, remaining even after the applied stress is
removed.

Continuum limit properties

At a scale larger than cells, what kinds of mechanical properties can we expect
from such a cellular material? By analyzing the energy function of a single
cell under small deformations, we can derive the linear elastic properties of a
regular lattice of cells, giving a reasonable first approximation to the elastic
properties of an arbitrary lattice. This allows us to relate model parameters
to measurable bulk properties.

For convenience, all derivations here employ 2D elastic moduli rather than
the more common 3D versions; these can be related to 3D elastic moduli given
a known substrate thickness (see Table 2.2a).

In linear elasticity, the shear modulus µ and Lame’s first parameter λ are
defined by

E = µε2ik +
λ

2
ε2ll (2.2)

27

using tensor notation, where ε is the linear strain tensor and E is the strain
energy. In two dimensions, with coordinate axes along the principle axes of
strain, this reduces to

E = µ(ε21 + ε22) +
λ

2
(ε1 + ε2)2 (2.3)

where ε1 and ε2 represent the principal strains – the fractional increments by
which the material is distended along perpendicular axes. Knowing that a
hexagonal lattice is linearly isotropic [39], we can pick any arbitrary axes for
our test deformation. For convenience, we will use axes aligned to the cell’s
hexagon.

We substitute ε1 and ε2 into our 2D per-cell energy function above and
allow the cell to assume whatever shape minimizes the energy consistent with
the strains. This turns out to be a hexagon with 120◦ angles but edges of two
different lengths. Then, by computing derivatives with respect to ε, we can
determine µ and λ, our first order elastic coefficients. Defining 0 <= Q << 1
as

Q = 1− Ar/A0 (2.4)

where Ar is the equilibrium area of the undistorted cell (slightly less than A0

due to surface tension), we can conclude

λ = kAA0(2− 4Q) (2.5)

µ = kAA0Q (2.6)

The Poisson ratio, 2D Young’s modulus, and 2D bulk modulus are then
(see Table 2.2b)

ν =
1− 2Q

1−Q
(2.7)

Y = kAA0
2(2− 3Q)Q

1−Q
(2.8)

K = kAA0(2− 3Q) (2.9)

By setting to zero the partial derivatives of energy for a free cell, Ar (and
Q) are found to be determined by

(A0 − Ar)
√

2Ar/
√

3 = kP/kA (2.10)

28

3D modulus Name 2D expression
Y3d Young’s modulus Y/t
ν Poisson ratio ν
µ3d Shear modulus µ/t

K3d Bulk modulus 3Kµ
3(3µ−K)t

(a)

2D modulus Equivalent

Y 4Kµ
K+µ

ν K−µ
K+µ

λ K − µ
K Y

2(1−ν)
µ Y

2(1+ν)

(b)

Table 2.2: (a) 3D elastic moduli expressed in terms of 2D moduli, such
that an isotropic slab of thickness t (under plane stress conditions) gives the
specified 2D moduli by the conventions used in this analysis. (b) Relations
among 2D elastic moduli.

which is analytically solvable but messy. In the (realistic) limit of small
surface tensions, Q is approximately

Q ≈ kP/(kAA
(3/2)
0

√
2/
√

3) (2.11)

Qualitatively, we can observe that bulk stiffness scales mainly with kAA0,
while shear stiffness scales with kP/

√
A0: kA determines compressibility, and

surface tension determines shearability, while both are scaled relative to the
cell’s dimensions.

Extensions

Optionally, the surface tension term may be varied on a per-edge basis, dif-
fering from neighbor to neighbor. This can be used to model differential
adhesion: cells that have mutual affinity have a lower surface tension along
their contact edges, and vice versa. This captures the surface energy due
to the binding of adhesion domains.1 In the model, differential adhesion is
represented by assigning cells adhesivity type identifiers and then looking up
identifier pairs in a table to determine surface tension adjustments. Cells
with mutual affinity naturally tend to cluster, with sharp boundaries sep-
arating distinct clusters; the effect is much like the segregation of oil and
water in a thin fluid layer (e.g. as in Figure 2.1).

1The same mechanism is also used to model the lack of adhesion at free edges; surface
tension is increased relative to internal cell-cell contacts

29

Figure 2.1: Adhesive phase separation in an initially regular rectangular
array whose cells are randomly chosen among two adhesion classes (each
with self-affinity reducing kP by 80% for internal contacts).

The same mechanism can also be used to model cell-cell traction via
lamellipodia [10]. In this case, rather than modifying a cell’s own edges, a
radial edge between two adjacent neighbors is affected. The surface tension
in that edge is increased by the magnitude of the traction forces exerted
on its terminal vertices (see example in Figure 2.2). In the model, a cell’s
traction forces are thusly specified on a per-vertex basis. When topological
changes occur, e.g. due to traction forcing, per-vertex traction forces must be
modified to apply to the new set of vertices, at least until the cell agent can
re-specify the forces. Tractions from two vertices that merge are summed,
while tractions on a vertex that is split are divided equally between the child
vertices.

In the original energy function, note that, for sufficiently large kP/(kAA
3/2
0),

cell equilibrium area collapses (bulk modulus, Equation 2.9, goes to zero at
Q = 2/3); such parameter regimes lead to unrealistic behavior and are out of
the model’s scope. In practice, it is useful to add an additional small term to
the energy function to guard against complete cell collapse, not to improve
accuracy, but so that when such parameters are inadvertently encountered
the inaccurate modeling remains localized to the affected areas rather than
causing geometric singularities. I include a term of the form ki/A for this
purpose, using a small value for ki.

Cells thus far are naturally isotropic. Sometimes, however, is it important

30

(a) (b)

Figure 2.2: (a) Regular rectangular array elastically distorted by cell-cell
traction forces exerted along the radial edges approximately pointed to by
the arrows (planar polarization vectors). (b) Increased traction leads to
plastic intercalation, permanently rearranging the lattice, as well as causing
substantial churn from cells continuing to grapple in the direction of the
arrow even after they rearrange.

to introduce explicitly anisotropic properties. For example, cells may wish to
differentiate between neighbors for communication and control purposes on
the basis of their relative position, e.g. employing a planar cell polarization.
One can also introduce anisotropic mechanical terms to the energy function,
so that, for example, cells tend to be elongated. For both purposes, it is
useful to maintain a planar cell polarization vector attached to each cell, to
provide a local reference coordinate system.

In the model, a cell’s polarization is maintained as a linear combination
of vertex radial directions, so that the polarization rotates and transforms
with the cell without any reference to global coordinates. Similar to traction
forces, this representation needs to be updated whenever topological changes
occur. I employ a crude interpolation method to produce a new linear combi-
nation whose orientation is as close as possible to the old. However, this has
proven somewhat unsatisfactory, as these linear combinations respond unpre-
dictably to non-uniform (i.e. nonlinear) deformations to the cell shape. It
may be wiser to instead use the same update rule as traction forces, splitting
and combining weights as vertices split and combine. However, how best to
interpolate the weights initially, in order to align the polarization with some

31

external directional stimulus, remains an open question.

2.2.2 Three-Dimensional Mechanics

Now that we have an essentially complete 2D energy function, we can gen-
eralize to 3D behavior. Only one modification is required to the existing 2D
terms: in order to apply the 2D energy function to a 3D polygonal hoop,
we must define what “area” means for a non-planar hoop. I use the magni-
tude of the vector area. The vector area also furnishes a convenient normal
vector, distinguishing apical and basal surfaces. Combined with the planar
polarization vector and their cross product, we have a complete, local 3D
coordinate system.

Next, we must add new energy terms to handle bending, contact forces,
and undesirable, intracellular out-of-plane distortions. The most important
is bending.

Bending

In the model, the bending of a cellular sheet involves both intracellular bend-
ing and bending at the junctions between cells. In a lattice where cells formed
smooth, straight rows, such as a regular square lattice, it would be possible
for lattice-aligned bends to be entirely intracellular or entirely extracellular.
However, for a lattice that follows Plateau’s laws (and is at least two cells
wide), boundaries are inherently jagged, and bending requires changes in
both cell shapes and junction angles, each bearing part of the load.

The model’s cells already possess some intracellular bending resistance
due to surface tension – the perimeter of a bent cell is greater for a given
vector area than a planar cell. However, such resistance is weak, in addition
to being inflexible: it is hard to specify flexural rigidity independent of shear
stiffness, and it is hard to specify a natural setpoint angle, as might be
produced, for example, by apical constriction.

Thus, I introduce an energy term for junctional bending resistance, which
will generally carry the bulk of bending torques. Lacking detailed data, I
model this very simply, as a linear torsion spring. Such a term takes the
general form

EB = kBLedge(Θ− θ0)2 (2.12)

where Θ is the bending angle at the junction, θ0 is the setpoint angle for the
junction, and Ledge is the length of the associated edge. One such term is

32

introduced for each edge in a cell. The scaling by Ledge is critical, particularly
so that bending energy is continuous across a topological interchange, where
an edge shrinks to zero and then disappears completely.

To implement this term, we still need a means to calculate Θ, the angle
between two cells, which is uniquely defined only when cells are completely
flat. A reasonable first attempt for non-flat cells might be to use the angle
between the cells’ normal vectors. However, this measures not only the bend-
ing angle across the junction but also the skew angle parallel to the junction.
Including skew angle causes serious difficulties when attempting to impose a
nonzero setpoint curvature. I cancel skew approximately by projecting the
cross product of the two normal vectors onto the edge vector. Additionally, it
is critical to convert this to a four-quadrant angle, to prevent transient sharp
bends from latching past the discontinuity at 90◦. The resulting, somewhat
Byzantine formula I thus employ is

Θ =
êij · n̂i × n̂j

|n̂i × n̂j|
arctan(|n̂i × n̂j|, n̂i · n̂j) (2.13)

where n̂i, n̂j are the two cells’ normal vectors and êij is the unit vector along
the shared edge. I do not claim that this is the simplest or best possible
formulation of a junction angle, only that it works adequately, while simpler
variants did not.

Finally, to create surfaces that are not naturally flat but have some in-
trinsic curvature, the cells’ θ0 values can be set away from zero. A uniformly
positive value of θ0 causes spherical curvature with outward-pointing normals,
while a uniformly negative θ0 causes spherical curvature with inward-pointing
normals. Elliptical, cylindrical, and hyperbolic curvatures, however, require
that θ0 depend on orientation. To create such curvatures, I allow θ0 to be
controlled by two terms, a uniform curvature θ0u and quadrupole term. The
resulting formula is

θ0 = θ0u + θ0q cos(2Φ) (2.14)

where Φ is a measure of the angle of the edge relative to some specified
quadrupole moment axis in the normal plane of the cell. Setting |θ0u| =
|θ0q| then produces cylindrical curvatures, inward or outward, parallel or
perpendicular to the axis, depending on the signs. The quadrupole axis is
represented as a vector in the local coordinate system of the cell.

The preceding works well for gentle curvatures of any sign and spheri-
cal curvatures even of large magnitude but encounters some difficulties with

33

strong hyperbolic curvature. Spherical curvatures can be represented with
flat or approximately flat cells by “cutting off the corners” (e.g. spheres rep-
resented as regular polyhedra). Hyperbolic curvatures, in general, cannot, at
least without lining up cells in rows with high-order junctions (e.g. cylinders
represented as ruled prisms), in violation of Plateau’s laws.

With three-fold junctions, hyperbolic curvatures entail the presence of
both skew angle and bending angle among the various edges.2 Thus, junc-
tional bending resistance confers flexural rigidity against hyperbolic bending.
However, with four-fold junctions, it is possible to represent hyperbolic cur-
vature exclusively in terms of bending angle or exclusively in terms of skew
angle. With sufficiently strong hyperbolic curvatures, the unfavorability of
four-fold junctions may be overcome by the unfavorability of large bend-
ing angles, driving the lattice towards a mesh of four-fold junctions among
diamond-shaped, highly aplanar cells (see e.g. Figure 2.3).

Figure 2.3: Rectangular array where a central disc of cells (lavender) have
set θ0u = 2/3, bending the central region and its surroundings. In the middle
of the view is a region of the neck with strong hyperbolic curvature, leading
to stable 4-fold vertices (highlighted). kB = 3.2

Whether or not this represents a real effect in hyperbolically-deformed

2The reason is that the traceless (hyperbolic) part of the local shape tensor can be
diagonalized in one and only one orthogonal coordinate frame and off-diagonalized in one
and only one orthogonal coordinate frame; non-orthogonal directions of travel necessarily
must observe both bending and skew angles.

34

cellular surfaces such as embryonic epithelia is unclear. The answer depends
on whether skew angle in the contacts between adjacent cells exacts a similar
energetic penalty as the apico-basal compression and distension associated
with bending angles. It’s easy to imagine that skew angle would be much
less stiff than bending angle, meaning that the effect observed here would be
real, but I am not aware of any experimental data addressing this question.

If one wished to eliminate this effect, one could add additional bending
terms to the 3D energy function to penalize cellular aplanarity or skew angle.
I did not attempt to eliminate the effect, but I did wish to reduce the inci-
dence of pathological aplanar distortion often seen in tight (nearly singular)
hyperbolic curvatures, as these sometimes led to self-penetrating, tangled
meshes, causing the energy minimization algorithm to stall. Thus, I added a
high-order term to the energy function capturing “distortion”:

εdistortion = As/A− 1 (2.15)

Ed = kD
A0

2
εdistortion

2 (2.16)

where A is the magnitude of the vector area and As is the total area of a fan
of triangles covering the cell. To first order these will be the same, but with
large aplanar distortions the magnitude of the vector area will be distinctly
smaller, and thus distortion will be positive. The distortion energy term
penalizes such aplanarity, helping to discourage mesh pathologies without
strongly affecting the small-angle flexural rigidity.

3D continuum limit properties

The flexural rigidity of a regular hexagonal lattice can be estimated straight-
forwardly from kB (though not calculated exactly, because of the contribution
of intracellular bending). This allows us to estimate the thickness of an ep-
ithelium corresponding to the model parameters, showing that the default
parameters give roughly “cuboidal” cells (thickness similar to edge lengths),
and that one can model increasingly columnar epithelia by raising kB.

For simplicity, we assume a uniaxial bend parallel to the edges of the cell
and consider only the contribution of the parallel edges. Each of the two
edges contributes EB = kBLedge∆Θ2 energy. The associated torque is

τ = −dE/dΘ = −4kBLedge∆Θ (2.17)

35

and hence the flexural rigidity of a cell is

Dcell ≈ 4kBLedgeWcell/Hcell (2.18)

=
8
√

3

3
kBLedge (2.19)

where Wcell =
√

3Ledge is the width of a regular hexagon and Hcell = 3
2
Ledge is

the average height of a hexagon.
The flexural ridigity of a complete hexagonal lattice should be less by

approximately a factor of two, because every bent edge is in parallel with the
(weak) intra-cellular flexural rigidity of the adjacent cell. Equivalently put,
every other row of cells does not contribute to flexural rigidity, because its
bends could be assumed to be purely intracellular. Thus,

D ≈ Dcell/2 ≈
4
√

3

3
kBLedge (2.20)

Relating this value to the expression for the flexural ridigity of a uniform
slab of isotropic, elastic material,

D =
Y3dt

3

12(1− ν2)
(2.21)

one can calculate an effective “thickness” t of the modeled surface

t = 4

√
√

3
1− ν2

Y
kBLedge (2.22)

= 4

√√
3
kBLedge

2kAAr
(2.23)

and an equivalent cell aspect ratio

α = 2

√
3
kBLedge

kAA2
r

(2.24)

For default parameters, α ≈ 0.55. Note that α grows with the square root
of kB. Values of α > 2, corresponding to kB > 10 for default values of kA, A0,
and kP , represent highly columnar cells. Values of α < 0.25, corresponding to
kB < 0.16, represent highly squamous cells, for which the model’s assumption
that intracellular rigidity can be ignored is probably a poor choice (and for
which the mesh often behaves badly). The default parameters roughly model
a cuboidal epithelium.

36

Contact forces

In 2D and especially in 3D, it is possible for the surface to meet itself as it
deforms. In 3D, in particular, it is possible for the surface to meet itself face-
to-face, far away from any free edges. In order to prevent self-penetration, it
is necessary to introduce contact forces.

Because the level of abstraction used by the model omits the full 3D shape
of the cells, I chose to implement contact forces very simply, as a finite-range
repulsive force between cell centers. The range is set to be proportional to the
square root of the lesser of the two cell areas (with proportionality constant
5/4 by default). At this distance, the contact force reaches zero, while at
zero separation, it diverges. The form of the term is as follows:

Ec = kC min(Ai,Aj)(Dr/Dij − 1)2 (2.25)

where min(Ai,Aj) is the lesser of the two cell areas, Dr = 5
4

min(
√

Ai,
√

Aj)
is the contact force range, and Dij is the distance between cell centers. This
term is applied pairwise across all cells, excluding immediate neighbors. For
efficiency, it is computed only for cell pairs within a factor of the contact
range (determined using an octree index).

Using this simple form, self-penetration is still possible, because cell cen-
ters need not pass arbitrarily close to one another during penetration and
hence can avoid the divergence. However, with appropriately large choice of
kC , I found that this worked very effectively in practice. More problematic is
how it behaves with extremely tight bends: in principle, contact forces should
prevent a surface from ever folding completely flat. However, since immedi-
ate neighbors are excluded from this formulation, it does not. On the other
hand, including immediate neighbors here would interfere with the modeling
of highly elongated cells. Thus, problems due to flat folds do arise occa-
sionally, albeit uncommonly, because bending resistance already discourages
such sharp curves.

For modeling some processes, it is important not to prevent self-penetration
but instead to selectively facilitate surface fusion. For example, models of
gastrulation, where a spherical topology becomes toroidal, require the fusion
of two opposed surfaces. The lattice topological transformations required are
nontrivial, however, and I have not implemented or tested the process.

37

Figure 2.4: Detailed steps of a T1 topological interchange. From left to right:
(a) Initial, unstressed configuration. (b) Elastically deformed configuration
under shear stress, with edge lengths altered but vertex angles unchanged.
(c) Metastable, degenerate configuration reached with increased stress. (d)
Transient, non-equilibrium configuration as the cells autonomously rearrange
into a new equilibrium. (e) Final configuration, stable even with stress re-
moved.

2.2.3 Topological Interchange and Plastic Flow

When the cellular lattice is under sufficient in-plane stress, whether due to
external forces, internal mismatches, or tractions exerted by the cells them-
selves, the lattice may distort to the point of permanent deformation. Per-
manent deformation occurs when an edge between two cells shrinks to zero
length, becoming degenerate (middle frame, Figure 2.4). This configuration
is metastable, because physically, a degenerate edge in the horizontal di-
rection and a degenerate edge in the vertical direction are indistinguishable.
With negligible provocation, the lattice should be expected to slide down into
the neighboring equilibrium configuration (right frame, Figure 2.4), relieving
a considerable amount of stress. Cells thereby exchange neighbors, and the
lattice deforms hysteretically. Collectively over many cells, this mechanism
provides for plastic deformation of the substrate.

In a mesh-based model, such physically obvious transformations as the
transition between degenerate vertical edge and degenerate horizontal edge
are not automatic. Instead, they must be encoded as explicit topological
transformations applied to the lattice under specific trigger conditions. Fail-
ing to apply a necessary topological transformation typically leaves the lat-
tice in a pathologically degenerate state, such that the energy minimization
algorithm stalls until the problem is corrected.

The above topological transformation is known as the T1 process in the

38

foam physics literature [64]. In the model, I implement it in two steps: a
coalesce step that joins two adjacent vertices into one of high-degree and a
split step that splits one high-degree vertex into two of lesser degree. The
simulator is not smart enough to analytically track the derivative of energy
across these discontinuous transitions, so it simply tries them whenever they
are feasible (checked once every 10 iterations) and reverses them if energy
minimization fails to move the system away from the trigger configuration.
A coalesce is triggered whenever an edge length drops below a particular pro-
grammed threshold, and a split is triggered automatically (after a few time-
steps for relaxation) for any vertex of degree greater than three.3 Preference
is given to splitting in a direction distinct from the last coalesce operation at
that vertex.4

Changes in cell number

In many scenarios, it is important to model cell division and/or death, often
orchestrated as a deliberate part of an organism’s developmental program.
These can be implemented through straightforward transformations to the
cellular lattice. Cell death is particularly easy: when triggered, the target cell
is removed from the lattice, while any vertices it shared with surviving cells
remain in place. As a result, a hole is left in the lattice. Under the influence
of cell-cell adhesion (as captured by the difference in surface tension between
an edge shared by two cells and an edge between a cell and empty space),
such holes typically seal up quickly, so long as the lattice is not under strong
tension. Neighboring cells expand to fill the gap, and the vertices surrounding
the hole are merged together through the ordinary T1 process.

For cell division, the procedure is a little more involved. Cell division
requires the insertion of new edges and vertices, in addition to the creation

3Default threshold is 0.05 length units, which, for typical system parameters, proved to
be a reasonable compromise between too small (unreasonably hindering plastic flow) and
too large (impeding elastic relaxation by injecting too much noise). On split, new vertices
are spaced by twice this distance, providing some hysteresis margin.

4In circumstances where a high-degree vertex is stabilized, such as strong hyperbolic
bending (as discussed in Section 2.2.2) or adhesive interactions that favor population
mixing, the simulator repeatedly makes futile attempts to split the vertex in alternating
directions, hindering the process of global energy minimization. To limit this, I imple-
mented a per-vertex back-off counter, which, with each uninterrupted repeat of the same
futile sequence of split and coalesce operations, doubles the number of time-steps that
must pass before the vertex is considered for splitting again.

39

of a new cell. In general, a division septum will bridge across two previously
unconnected edges, entailing splitting those edges and inserting two new
threefold vertices. The cell can then be cloned and the vertices distributed
as appropriate among the two daughters. Parameterizing this process are
the choice of edges and the positions at which they are split. In the model,
I generally assume cell divisions are symmetrical as far as area is concerned
and so parameterize only on the orientation of the division septum. The
edges closest to intersecting an imaginary line parallel to the specified axis
(passing through the cell center) are selected for the division septum, and
they are simply bisected at their midpoints.

Once a cell has been divided topologically, its mechanical parameters may
need to be adjusted, depending on the situation being modeled. By default,
the area setpoint of each daughter cell is cut in half. To model proliferative
growth, the area setpoint should be restored to its original value. Alterna-
tively, if cells are successively decreasing in size, it may be appropriate to
adjust kA, kP , and kB in order to maintain constant compressibility, shear
stiffness, and flexural rigidity in spite of altered A0; this is not done auto-
matically.

2.3 Technical Details of Energy Minimization

Quasi-static mechanics can be implemented by energy minimization – re-
laxing the mechanical configuration of the surface to equilibrium between
iterations of the cell agents. I have experimented with adaptive gradient
descent, conjugate gradient, and several variant algorithms for energy min-
imization. In most cases, conjugate gradient is the fastest (dramatically so
for large-scale bending) and hence is used for most of the examples here. A
notable exception is systems that spend most of their time close to equilib-
rium and only occasionally experience perturbations, in which case gradient
descent is faster because a single iteration of gradient descent (all that is
needed when little has changed) is much simpler than a single iteration of
conjugate gradient.

In practice, waiting until the minimization algorithm reaches a fixed point
is too slow, and so convergence must be estimated by heuristics. Three ad-hoc
metrics are tracked, all of which must fall below threshold: energy relaxation
rate (mean over vertices), maximum per-vertex energy relaxation rate, and
maximum per-vertex energy fractional relaxation rate. In the simulator, the

40

latter two are hard-wired together by a fixed scale factor, so the adjustment
parameters correspond merely to global and local relaxation thresholds.

I have encountered two major pitfalls when relying on such loose heuris-
tics for convergence. When the system passes through a buckling instability,
progress may be extremely slow in the vicinity of the saddle point (espe-
cially under gradient descent), which can lead to premature detection of
convergence even though the system is really very far from its steady-state
conformation. More generally, premature declaration of convergence leads to
a phantom “viscosity”-like effect, where points distant from a perturbation
lag in responding to it. In the case of gradient descent, the effect is very
similar to a drag force against a still fluid, where the viscosity increases with
the convergence thresholds.

When cells are allowed to compute and actuate on such intermediate con-
figurations, they can produce results that are unrealistic according to model
assumptions and highly sensitive to choice of convergence thresholds. I have
observed this particularly in the case of structures that are both growing
and buckling at the same time (a common situation in organized prolifera-
tion patterning). Such simulations must be re-run with varying convergence
thresholds in order to verify their reproducibility.

In the presence of saddles and multiple minima, energy minimization also
introduces an ambiguity into the dynamics: which minimum? In the case of
gradient descent, the minimum is chosen largely as though the system were
governed by the still fluid drag described above. A real system, with inho-
mogeneities and internal drags, might pick a different local minimum. Con-
jugate gradient may pick yet another minimum, as its trajectories are visibly
somewhat different from gradient decent. However, I have never observed
the differences between conjugate gradient and gradient descent becoming a
significant complication.

A related possible complication is the question of when topological changes
occur – immediately as they are geometrically feasible, or at equilibrium,
more slowly than elastic relaxation? I assume the former, which means that
the trajectory followed, not just the minimum ultimately chosen, can affect
which topological changes take place. In a real system, viscosity might affect
which vertices interchange and which do not. In simulation, the choice of
minimization algorithm might have an effect. However, I have observed that
conjugate gradient and gradient descent are fairly consistent in plastic flow
behavior, perhaps because in 3-space, accidentally bringing two vertices close
enough to invert is both unlikely and energetically unfavorable.

41

2.4 Elementary Examples

2.4.1 Introductory Example

Consider the problem of evaginating a bud from an epithelial surface and
growing it into a long tube. One way to achieve this goal is to elect an
organizer cell to represent the tip of the tube and emit a signal instructing
its neighbors to proliferate. We will need to construct a procedure for all cells
that, fed information about the cell in question and its neighbors, produces
the actions that need to be taken by the cell. In this case, the procedure will
need several different behaviors – leader election, signaling, proliferation, and
quiescence – depending both on the location of the cell and on the global state
of the computation. However, it must select its behavior solely on the basis
of local information – signals emitted by immediate neighbors, prior state
recorded in the cell, and local environmental information.

All cells begin symmetrically, in the leader election phase. On the basis of
random noise, individual cells will unilaterally proclaim themselves leaders at
a very slow rate, recording this in their internal state. Such a leader emits a
message indicating that leader election has completed, which is rebroadcasted
by any cell receiving it. In this way, the system permanently leaves the leader
election phase and enters the growth phase.

In the growth phase, the leader emits a second signal, indicating that
its neighbors should proliferate. This signal is not rebroadcasted. Any cell
receiving the signal adopts the proliferating behavior, and any cell not re-
ceiving it adopts the quiescent behavior, even if was previously proliferating.
In addition, all cells continue to propagate the message indicating that leader
election has finished, so that stragglers are properly informed.

Proliferating cells increase their sizes and periodically divide along alter-
nate axes. The increase in size may be gradual or instantaneous, but division
is always discrete and instantaneous. As a result of either effect, cells may
be displaced, coming in contact with, or more often, sliding away from the
organizer. Similarly, the daughter cells are identical except for location and
geometry, meaning that both or possibly only one will be in contact with the
organizer. Thus, the cohort of proliferating cells changes over time, though
remaining roughly constant in number, while newly quiescent cells accumu-
late in the surrounding neighborhood.

As new, full-size cells accumulate in the neighborhood of the organizer,
mechanical stress builds. Cells must increasingly compress in order to fit

42

among their neighbors; this compression propagates outward through the
sheet in the form of (2D) hydrostatic pressure. Meanwhile, pre-existing cells
farther away are stretched circumferentially as the interior of the sheet ex-
pands. The resulting circumferential uniaxial tension acts to contain the
interior hydrostatic pressure, and so the two stresses decline with distance
from the organizer.

Stress builds over time, and limits are soon reached. Uniaxial tensile
stress is limited by the ability of cells to slide past one another when pulled
or sheared; such stress cannot increase beyond the plastic yield limit. With
increasing pressure at the organizer, rings of cells farther away begin to yield,
thereby relieving some of the pressure but driving yet farther rings into ten-
sion (Figure 2.5a). If such progressive yielding reaches the open edges of the
sheet, the sheet enlarges while remaining flat. If any edge of the sheet is
slightly weaker than the others, that edge will yield and thin preferentially,
until it is unable to support the circumferential tension. The organizer and
a cohort of new cells will then bulge out through the weak spot and grow
laterally.

Hydrostatic pressure, on the other hand, is limited by buckling instabili-
ties. When sufficient pressure covers a sufficiently large area, determined by
the flexural rigidity of the surface, the surface abruptly begins to deflect in
one or the other normal direction. Pressure can now be relieved by expansion
perpendicular to the surface, and so further growth feeds the growth of the
buckle rather than an expanding front of plastic yielding. This leads to the
formation of a dome centered on the organizer, roughly reflecting the present
size of the zone of plastic yielding. Plastic yielding is now confined within
the lateral edges of the dome, and the dome grows into a tube (Figures 2.5b,
2.5c).

This is an admittedly simplistic agent program – multiple leaders may
be elected due to signal propagation delay, a leader that is killed will not
be replaced, and the direction of tube apex growth wanders randomly under
variations in growth rate and cell rearrangement. Open boundary condi-
tions for the sheet are also not always appropriate. Nonetheless, the scenario
illustrates how geometrical patterning behavior depends crucially on the me-
chanical properties of the substrate, in this case flexural rigidity and yield
strength. Nowhere in the agent program is the idea of a tube explicitly
specified, nor is the diameter encoded at all.

43

(a) (b)

(c)

Figure 2.5: (a) After randomly electing an organizer (red) within a rectan-
gular array, neighboring cells have begun dividing, causing local strain to the
lattice but not enough to form a buckle. (b) Soon after, more growth has
caused buckling. (c) Elongating tentacle beginning to drift due to fluctua-
tions in proliferation rate and plastic relaxation.

2.4.2 More Examples of Organized Proliferation

As a first elaboration, let’s consider how to make the tentacle grow towards
some target rather than wandering randomly. In this toy example, the only
control mechanism available is the proliferation rates of the cells adjacent
to the organizer (unlike, for example, plant shoots, which can also transmit

44

Figure 2.6: Tentacle growing along a signal gradient within the ambient
medium (indicated by arrows) via proliferation rate control.

signals down the shoot and elongate existing cells far back from the apical
meristem in response to light/dark signals).

How can proliferation rates be used to control the direction of growth?
When cells proliferate unequally, the tip tends to bend away from areas
of greater proliferation. If the tip is seeking to align with some ambient
gradient, then cells that are already aligned with the gradient should grow
less so that the organizer deflects in their direction, and cells that are badly
misaligned should grow more. If cells can measure the orientation of the
gradient relative to their apical surfaces, a simple control law would be to
scale the proliferation rate by one minus the cosine of the angle (i.e. the dot
product of the cell’s normal vector with a unit vector in the direction of the
gradient). This is quite effective, as seen in Figure 2.6.5

Such a solution does have the potentially unwanted side effect that the
overall growth rate also varies, depending on tip orientation and other factors.
If multiple, rate-controlled processes are operating concurrently, such rate
skew can distort the resulting shape. This problem can be avoided by pacing
total apical growth rate in some way and having cells compete for their shares.
For example, the organizer could emit diffusible growth tokens which are

5Of course, in this simple example, the direction of the original buckle is still inde-
terminate; if it happens to buckle the wrong way, the tip will then grow away from the
gradient – correctly aligning the upside-down organizer with the gradient.

45

competitively consumed by its neighbors depending on their desired growth
rates. Another possibility might be a priority scheme where cells naturally
cycle, but those with higher priority cycle slightly faster and preempt their
neighbors’ divisions.

Other interesting variations are possible on this theme of appendages
by patterned proliferation. For example, the tube diameter can be varied
by allowing a larger annulus of cells around the organizer to proliferate.
Alternatively, allowing cells away from the apex to continue proliferate at
a slow, basal rate enlarges an existing tube. Operating concurrently with
apical growth, the result is a tapered tentacle.

As another example, when the tentacle has grown beyond a certain length
(as determined, e.g., by the decay of a diffusive signal emitted from the
basal cells), the apical cells can be configured to change their behavior. If
they begin proliferating on their own even when no longer adjacent to the
organizer, the result is a ball on a stick (Figure 2.7a). By modulating the
growth rate using orientation information provided by an ambient gradient,
as in the chemotaxis mechanism above, other shapes can be formed. For
example, maximal growth rate perpendicular to the gradient produces a disc
(Figure 2.7b).

Tentacles can also be made to branch, by generating new organizers lat-
erally or by allowing the apical organizer to divide. In the latter case, the
paired daughter organizers are initially clustered together, contributing to a
single growing apex, but eventually they are sheared apart by the prolifera-
tion of their neighbors and subsequently repel due to proliferation between
them. Independent buckles can then form, leading to separate daughter ten-
tacles (although complete separation in the face of curvature-reducing plastic
flow may take some time).

Putting several of these mechanisms together, one can model the growth
of a branching tree network exhibiting allotropic scaling [68, 61]. Branching
tentacles with paced apical growth naturally produce an expanding tree, but
how should one ensure that basal branches are scaled appropriately for the
size of the subtrees beneath? If network growth were uniform and steady,
basal branch cells could simply continue to proliferate according to some
blind, pre-calculated schedule. However, natural networks like roots, shoots,
hyphae, blood vessels, and nerves tend not to be uniform but instead respond
to environmental cues, growing and expanding where they are most needed.
In such cases, proper scaling demands that signals (possibly physical, such as
blood flow rate) back-propagate information about subnetwork size up the

46

(a) (b)

Figure 2.7: Tentacles where apical proliferation behavior changes for cells
sufficiently distant from the base. (a) Non-chemotactic tentacle with a ball
produced by promiscuous apical proliferation. (b) Chemotactic tentacle with
a disc produced by orientation-sensitive proliferation.

tree. We must therefore construct an agent program that back-propagates
some sort of load signal.

A straightforward, botanically-inspired solution is to transport a con-
served “hormone” flow along the tentacle walls, sourced by the apices and
sinked by the root of the tree. The net flux down a tentacle is then propor-
tional to the number of apices it supports. a simple Laplacian diffusive flow
suffices, with sources at the apices and Dirichlet boundary conditions at the
root (although for large networks it helps to use an out-of-band fast Laplace
solver rather than relying on the agents to compute by explicit relaxation at
a painfully slow pace). The tentacle wall cells can then slowly and indepen-
dently proliferate until the hormone flow density falls to some target value.
A fixed target produces a network with constant cross-sectional perimeter
(not constant cross-sectional area, because only the surface carries hormone
– Figure 2.8a). Other scaling laws can be produced by using a target that is
varied as a function of local cylindrical curvature, as an estimate of tube di-

47

ameter. For example, constant cross-sectional area is produced with a surface
flow density target proportional to diameter (Figure 2.8b).

2.5 Related Models

Attempts to gain insight into morphogenesis through mechanical models have
a long history, dating from His’s classic 1874 experiments with a rubber tube
as a model for a chick embryo [33], to modern computational finite element
simulations (e.g. [14, 16, 52]) and the recent, “multi-scale” simulation work of
Brodland et al. [11, 13], which shares several key insights with my deformable
surface model. Contrary to the common sentiment that every particular de-
tail of a living organism must have been selected for some specific evolu-
tionary advantage, many of these works aspired to find simple, over-arching
physical mechanisms that could explain a broad swath of observed forms
merely from physical principles (e.g., [48, 34, 53], and most eloquently [61]).
My work explores a middle ground, neither bare physical simplicity nor ex-
haustive descriptive detail, in search of new, practical insights.

Several investigations in recent years have also used the 2D topological
abstraction for epithelial cells, including T1 transformations, e.g. [46, 10, 9],
yielding insights into the mechanical and topological behavior of epithelia.

In the synthetic biology community, researchers have begun exploring 2D
patterning systems in engineered bacteria (e.g. [4]), driving the development
of models such as Gro [35]. These models necessarily incorporate 2D me-
chanical deformation, because bacteria in culture are constantly proliferating
and filling up the available space, although it is something of an interesting
nuisance rather than an essential part of patterning. Doursat et. al. have de-
veloped several simple morphogenesis models of a similar character [17, 19],
based on point cells with spring interactions, which they have used to explore
simple approaches to simultaneous patterning and deformation, locomotion
control, and morphogenesis-inspired engineering design.

A number of models have explored a pure, rule-based approach to defor-
mation and development, without reference to mechanics. L-systems [49], a
grammar model for plant growth, are the classic example. In the tightly-
coupled world of animal development, however, context-freedom or a restric-
tion to one-dimensional contextual interactions is unreasonable. The most
direct inspiration for this work is Nagpal’s origami-based self assembly [45],
which models caricatures of morphogenesis using flat folds in non-deforming

48

(a)

(b)

Figure 2.8: Allotropically-scaled, randomly branching tentacle trees. (a)
Secondary growth is triggered by the density of hormone flow from the apices,
leading to constant perimeter scaling. (b) Secondary growth is triggered by
an estimate of flow per unit area based on local surface curvature, leading to
scaling with approximately constant cross-sectional area.

49

2D sheets. More recently, the MGS language [25, 56] attempts to capture
fully general contextual interactions with topological rewriting rules, formal-
izing it as the “Dynamical Systems with a Dynamical Structure” approach.
One could likely use such a tool to assist in building a similar surface model.
However, in a physical system such as developing tissue, the structural dy-
namics are not easily expressed in terms of simple local rules. Instead, struc-
tural updates are mediated by mechanical interactions, which, though tech-
nically local, are quite complicated and effectively nonlocal on the relevant
timescales. Thus, I emphasize mechanics as the core mechanism, not topo-
logical dynamics.

50

Chapter 3

Self-timed patterning

3.1 Introduction

In centralized systems, timing is often taken for granted. Clocks are global
and consistent. Tasks block until they are completed. Combining tasks into
sequences is straightforward, implicit in every imperative language.1

In spatially distributed systems, however, time is slippery. Time is rela-
tive, due to communication delay [38]. Clocks are decentralized, conflicting,
and often drifting. Inputs may be available in different places at different
times. Tasks, distributed spatially, complete in some places sooner than in
others. The speed of computation may not even be consistent.

In spatial computing, and in particular developmental patterning, the
problem of time is ever-present. The complications due to timing are often
sidestepped through a mixture of ad-hoc, optimistic assumptions about the
timing properties of the substrate or by pursuing problems that naturally
lend themselves to asymptotic convergence rather than particular results at
definite times.

For example, the Growing Points Language [15] assumes that spatial gra-
dients (e.g. Bellman-Ford distances) may be trusted once they are locally
detectable. This is potentially race-prone if multiple sources appearing in
different places must be considered, because their influences may arrive at
different times, but even in the common case of a single advancing source, it
assumes that spatial distance and propagation time are comparable, or that

1This chapter originally appeared as a submission in the 2014 Spatial Computing Work-
shop [12].

51

propagation time is completely negligible. Temporal irregularities such as a
slow patch of cells will lead to transient errors in magnitude and direction
as the gradient navigates around the irregularity. Even though the gradient
eventually corrects itself, because it is hard for a growing point to correct a
path already traversed, such transients may lead to permanent irregularities.

The Origami Shape Language [45], on the other hand, has many features
that are naturally “feed-forward”, in that transients will ripple through the
calculations and eventually be replaced by the final, steady-state values, be-
cause the computation has no persistent memory in which to retain transient
errors. In time, the outputs will be correct. However, the language does in-
clude some operations that require convergence to be achieved beforehand,
such as the repurposing of reusable communication channels, and so at a cer-
tain point it must stop waiting and accept the answers. The amount of time
to delay is calibrated empirically, based on propagation time measurements
during start-up using test gradients. The wait is configured to be an overes-
timate based on the longest possible propagation distance. So long as timing
is uniform and consistent, this is reasonable, albeit wasteful. However, it will
fare poorly if timing properties vary unpredictably or if the domain size can
enlarge.

When such ad-hoc assumptions are unjustified, and when the structure
of the computation does not naturally forget transient perturbations, the
problem of timing can no longer be ignored. In particular, when irreversible
or difficult to reverse actions must be taken on the basis of the results of
spatial computations, it is imperative that the results be accurate and stable
beforehand. This sort of difficulty arises particularly often in developmental
patterning, where disruptive and destructive primitives such as cell division,
death, and topological rearrangement must be choreographed along complex,
dynamically constructed spatial patterns. Moreover, development time is of-
ten precious, and so hard-coding adequately conservative convergence delays
may be completely unreasonable. This problem has been acknowledged only
rarely (e.g. [17]) and investigated even less.

To illustrate the magnitude of the problem with a natural example, con-
sider the early development of the chick embryo. At the beginning of incuba-
tion, it consists of a mass of largely undifferentiated cells. Within about 24
hours, it has finished gastrulation, begun its neural folds, and assembled its
first somite and the beginnings of a notochord [30]. Yet, given the embryo’s
size on the order of a few millimeters, the diffusion time to establish a typical
morphogen field is expected to be on the order of an hour, and several hours

52

more to reach a close approximation of steady state [54, ch. 3]. With mul-
tiple, sequential developmental steps crammed into such a tiny span, there’s
little time to waste. Furthermore, timing skew is acutely evident, with the
head of the embryo maturing far in advance of the tail.

One can imagine two general approaches to the problem of timing in spa-
tial patterning. One might design the distributed computations such that
correct convergence can be detected by inspecting the output provided. This
can be nontrivial, because the verification process must be significantly sim-
pler and more temporally tractable than the original problem being solved
or no progress has been made. Once correct values have been identified,
they may be checkpointed and passed onto disruptive and irreversible actu-
ation processes. This might be compared loosely with the manner in which
common bilaterian animal body plans such as in drosophila develop, with
successive cascades of gradients and compartment patterns preceding large-
scale morphogenesis. Alternatively, one could design the overall algorithm
such that even though individual steps are effectively irreversible, the large-
scale dynamics follow a self-stabilizing trajectory, and so excursions due to
acting on erroneous transient values will eventually die out like any other
perturbation. This is perhaps reminiscent of the way such exemplary regen-
erating animals as the hydra are thought to maintain their body structure.

In this chapter, I demonstrate a simple methodology for designing spatial
patterning algorithms whose local completion status is implicitly indicated
by the output values themselves. Inspired by the self-timing methodology in
clockless digital circuit design, I term this technique self-timed patterning.
The key insight is the use of partially informative data representations, which
monotonically increase in precision until the true answer is indicated. I show
how they can be used to pattern disruptive, irreversible transformations both
quickly and safely, completely robust to timing pathologies.

3.2 Self-Timing

When a system is decomposed into multiple, simultaneously executing mod-
ules, the modules must communicate in order to coordinate their behaviors,
and their communication protocols must confront the problem of timing. A
self-timed system, loosely speaking, is a system whose modules communi-
cate through a type of asynchronous protocol such that no assumptions need
to be made are made about the latencies of the modules themselves [55].

53

Self-timing naturally lends itself to race-free designs, and additional steps
are often necessary to allow data races. The key insight is that that data
signals must indicate, explicitly or implicitly, when they are ready for use,
and once they have done so must remain fixed until acknowledged. General
self-timed circuits must also treat the acknowledgement signals with similar
care in order that circuit elements may be reused for multiple waves of data,
but for our purposes, focusing on single-use developmental cascades, we can
usually omit the acknowledgement pathways entirely.

The simplest approach to self-timed signaling is to bundle the data sig-
nals with a boolean completion signal that is asserted once the data outputs
can be trusted. This is known as “bundled data” and it is used successfully,
although care must be taken to avoid timing skew between the arrival of
the data and completion signals. However, an alternative scheme, known as
“dual rail”, turns out to be more natural and insightful for our purposes.
In classic dual rail signaling, two separate signals are provided for each bit,
one indicating whether it is true and one indicating whether it is false. This
scheme can articulate four possible status values per bit: true, false, un-
known, and contradiction (generally unused). For multi-bit data values, the
individual bits may become valid at different times, but once a bit becomes
valid it will not become invalid (at least until the next acknowledgement
cycle).

Many variations on dual-rail-style self-timed signaling are possible, but
they share a common insight: glitch-free partial information about the an-
swer accumulates monotonically over time, beginning with complete uncer-
tainty and ending with an unambiguously specified value. This is the concept
of monotonic partial information championed by Propagators [58, 51], and
single-use self-timed systems can be represented most clearly as propagator
networks.

When data values are not limited to raw digital signals but can include
analog values or compound data structures, more complex partial informa-
tion structures may be used, such as interval arithmetic. Modules need not
wait until their inputs have reached complete convergence, either; they may
compute partially informative answers based on partial input information.
When an actuator determines its inputs are sufficiently precise, it may act
on them even before final convergence. (If, however, such actuation may dis-
rupt the upstream computations by triggering non-monotonic changes that
may contradict the existing outputs, then the inputs must be checkpointed
first and the computation disabled; this is discussed in Section 3.4.2.)

54

3.3 Simple Computations

The simplest sort of self-timed computations are those that depend only
on local information, for example, taking local averages or detecting local
maxima of a field. Such computations can simply wait for all their inputs
to be available, locally and from immediate neighbors, and then produce an
output. If a partial set of inputs or partially informative inputs are available,
a partial output may also be computed early, if desired. For example, if
the number of neighbors expressing a signal is to be counted, and two have
responded with the signal, three without, while one response remains to be
received, the output count can be expressed as the interval [2, 3]. When the
final response is received, the output is narrowed to an exact answer. On the
other hand, sometimes partial inputs are sufficient to produce a complete
output. For example, the boolean OR of binary inputs is known to be true
as soon as the first positive response is received.

Implicit in this formulation is that cells must be able to enumerate their
set of neighbors or otherwise determine when a complete set of responses has
been received. This is natural for cells in physical contact with one another
but is a slight departure from the classical amorphous computing model [1].

3.3.1 Gradients

Most spatial patterning algorithms are not so simple, relying on long-range
propagation of information from cell to cell. However, the same principle can
be applied, since simple functions are the building blocks used to compute the
outputs that are shared with cells’ neighbors. To illustrate, let us construct
a self-timed version of the Bellman-Ford hop count gradient algorithm, one
of the most useful algorithms in discrete spatial patterning.

Ordinary Bellman-Ford works using a single communication channel, where
each cell broadcasts its best known distance to a source, or zero if it it-
self is a source. Each cell iteratively replaces its best known distance with
minn∈neighbors distance(n)+1. Eventually, distances converge to steady-state
values, but there is no local indicator of convergence.

To reformulate this as a self-timed computation, we must properly ex-
press what is known in the form of monotonic partial information. The best
known distance is just that—an upper bound. If we represent distance as
an interval, we can include a lower bound as well. With no information, a
cell must report that its distance is in the interval [0,∞]. At each local iter-

55

[0,0]

[0,∞]

[0,∞]

[0,∞]

[0,∞]

[0,∞]

[0,∞]

[0,∞]

[0,∞]

[0,∞]

[0,∞]

[0,∞]

[0,0]

[1,1]

[1,1]

[0,∞]

[1,∞]

[1,∞]

[1,∞]

[1,∞]

[1,∞]

[1,∞]

[1,∞]

[1,∞]

[0,0]

[1,1]

[1,1]

[0,∞]

[1,2]

[1,∞]

[2,∞]

[2,∞]

[2,∞]

[2,∞]

[2,∞]

[2,∞]

[0,0]

[1,1]

[1,1]

[0,∞]

[1,2]

[1,3]

[2,3]

[2,∞]

[3,∞]

[3,∞]

[3,∞]

[3,∞]

t = 0

t = 1

t = 2

t = 3

Figure 3.1: Four iterations in the computation of a self-timed gradient, with
source cell at the left (green) and one uncertain or stalled cell (red).

ation, sources broadcast zero for their distance, while non-sources compute
minn∈neighbors distance(n) + [1, 1] and broadcast that. In interval arithmetic,
the minimum value of a set of intervals is an interval spanning from the min-
imum over the lower bounds to the minimum over the upper bounds. As
cells discover paths to sources, the interval upper bound always falls. As
cells learn that successive rings of neighbors are not sources, the interval
lower bound steadily rises. The interval thus brackets the actual distance
between progressively narrowing bounds. When the two bounds meet, local
convergence has been achieved. The time required relative to Bellman-Ford
is essentially unchanged.

The same gradient algorithm works whether there is one source or many.
If the input to the algorithm—the map of sources—is determined program-
matically, it too must be represented as monotonic partial information. In
this case, each cell may be source, a non-source, or undetermined. An un-
determined cell always reports the lower bound of its distance as zero and
hence will be surrounded by a “well” of cells with uncertain distance inter-
vals, waiting to determine whether they’re sitting right near a source (see
Figure 3.1). Once the cell’s source status is finally determined, the uncer-

56

tainty disappears.
Cascading gradients and simple local computations, we have a fairly pow-

erful patterning toolkit along the lines of [18], only now completely self-timed.

3.3.2 Growing Points

Another useful patterning tool is growing points [15]. Growing points are
virtual excitations that move about a substrate according to programmable
tropisms, tracing out paths. With self-timed gradients to direct their tropisms,
we can construct self-timed growing points fairly easily, though some limita-
tions will arise, affecting the tropisms that can be practically implemented.

The output of a growing points computation is a field of “secretions” left
behind in the growing points’ wake. For a complete self-timed formulation,
we must know not only where the secretions are, but where they are not.
Thus, we must be able to determine both the paths traversed by the growing
points and the places that, at the conclusion of propagation, they will not
have traversed. The presence of one or another determination indicates that,
locally, the computation has completed.

The forward propagation of a growing point is straightforward. The cell
hosting the growing tip waits until sufficient tropism-relevant information has
been posted by all of its neighbors and then nominates the most favorable
among them as a successor. Upon noticing the nomination, the designated
successor changes its status from “unknown” to “in path” and performs its
own nomination process. Secretions are then a local function computed on
the path status.

In order to compute the complete secretion field, cells that will never be
in the path must ultimately know to change their status from “unknown”
to “not in path”. The constraints used to generate this information neces-
sarily relate to the global behavior of the growing point (and of all other
indistinguishable growing points from the same family). For example, if the
path has a definite termination condition and it is known that there will be
only one trace of that family, then upon reaching the termination condition
the growing point can broadcast a globally propagated completion message,
signaling to all remaining “unknown” cells they are actually “not in path”.

With more detailed information about the tropism, however, more prompt
constraints can be used. For example, a lone, orthotropic growing point
climbing a gradient can broadcast each level of the gradient passed; all “un-
known” cells below that gradient level can conclude they are not in the path.

57

More locally, any growing point family known not to self-intersect can back-
propagate not-in-path status; any “unknown” cell whose preferred successor
is in path must not be in path. Additionally, any cell whose preferred succes-
sor is not in path must also be not in path. Together, these naturally cover
many cases, with the exception of diatropism (propagation parallel to the
contours of a gradient), where back-propagation must be bootstrapped e.g.
by emitting perpendicular orthotropic growing points to turn off neighboring
cells.

As a consequence of the fact that secretions are a function of partial in-
formation not complete until the growing point has exited the area, it is
also generally not possible to use “auto-tropism”, sensitivity to a gradient
emitted by a trace’s own secretions. Thus, other techniques must be used
for purposes such as inertia and preventing diatropic traces from doubling
back on themselves. Restricting successors to be non-neighbors of one’s pre-
decessor or favoring candidates farthest away from the predecessor are useful
alternatives [44].

3.4 Putting the Pieces Together

3.4.1 Composition

The composition of two self-timed computations is naturally another self-
timed computation. In the simplest case, the downstream function merely
waits for its inputs to arrive before generating an output; more generally,
monotonic partial information propagates from one end to the other. As a
result, local computations, gradients, growing points, and other self-timed
computations can be cascaded seamlessly.

For example, a local computation based on the orientation of per-cell
polarization vectors identifies which cells are on the left edge of the substrate
and which are on the right (Figure 3.2a). Left edge cells are then used as the
source for a left gradient; right edge cells are used as the source for a right
gradient. The difference in value of the two gradients is used to divide the
substrate into two compartments (3.2b). Within each compartment, similar
computations can be nested recursively (3.2c). Note that this can converge
even faster than the traditional feed-forward equivalent, because the gradient
lower bounds allow compartment determination at the far ends well before a
signal can arrive from the opposite end’s source.

58

(a) (b) (c)

(d) (e)

Figure 3.2: 3.2a-3.2d: Steps in patterning a crossbar. 3.2e: Crossbar
patterned without checkpointing inputs prior to cell division and adhesion
changes.

Since self-timed computations must know which neighbors to expect re-
sponses from, nested computations must be made aware of which cells belong
to the same compartment and hence should be expected to participate. Like
the input arguments, this information must be provided in a self-timed fash-
ion.

3.4.2 Actuation and Checkpointing

Eventually, however, it comes time to act based upon the patterns estab-
lished. Some operations, e.g. cell differentiation, are merely irreversible.
These operations may be performed locally as soon as the necessary inputs
are locally available.

Other operations, such as cell division and motility, are disruptive, causing
non-monotonic changes to the properties and neighborhoods of cells. These
must be treated with greater care, as they may cause the very inputs on
which they depend to change, changing their own behavior and giving rise to
race conditions in neighboring cells. To accommodate these in a self-timed
computation, a checkpointing step must be employed.

59

Checkpointing is a process that serves to hand control from one stage of a
patterning cascade to the next, where the stages would interfere if they ever
overlapped in time. Checkpointing can be local to a cell or coordinated across
a wider region, depending on the needs of the computation. Checkpointing
entails halting the previous stage of computation (or at least preventing it
from having further side effects), since subsequent results may no longer be
trusted, and saving its outputs for future reference. This includes saving in-
termediate values shared with neighboring cells, because neighbors of a cell
performing a checkpoint may not yet have completed the computation pre-
ceding the checkpoint and will need access to all their neighbors’ broadcasts.
Once prior computations have been halted and their outputs recorded, lo-
cally or over a sufficiently wide radius, the next stage of computation may
be launched—e.g. a disruptive actuation process. Through checkpointing,
disruptive actuation becomes a form of irreversible actuation.

For example, in Figure 3.2d, the cells in the third compartment are pro-
grammed to change their adhesive properties to reduce their affinity for the
remaining cells and to undergo three rounds of oriented division. This leads
to the formation of a crossbar. In the absence of checkpointing, the resulting
rearrangement and increase in cell number leads to changes in gradient val-
ues and hence changes in the boundaries of the compartment, leading cells to
reassess their fates. Some cells that have already divided will conclude that
they do not belong in the crossbar after all, while other cells may be freshly
recruited, dividing and changing their adhesive properties. The results of
such churn in this example are shown in Figure 3.2e, where values were al-
lowed to converge but checkpointing was disabled; the extent to which this
matters varies, but here it yields a much sloppier result. Without an indica-
tion of a stage’s completion such as provided by self-timing, checkpointing is
impossible, on top of the hazard of actuation based on premature results.

When disruptive effects are merely local, checkpointing and actuation
can be local as well. Neighboring cells may still be continuing to work on
the prerequisite computations, relying on checkpointed copies of the cell’s
broadcasts. On the other hand, when the disruptive effects are non-local, for
example, by exerting forces sufficient to cause neighboring cells to rearrange,
a barrier computation may be needed to ensure that all cells within the radius
of potential disruption have produced and checkpointed their outputs before
the disruptive stage is allowed to begin. In the example above, a short-
range barrier would probably be warranted (although in practice omitting it
produces acceptable results). After actuation, barriers may be used again to

60

verify completion of the disruptive steps, and then another wave of patterning
can be initiated.

If only nearest neighbors are disrupted, the barrier simply waits for all
neighboring cells to indicate completion. More generally, an arbitrarily ranged
barrier can be constructed by the Bellman-Ford lower bound calculation:
completed values are treated as non-sources, and incomplete values are treated
as unknown. As nearby input values converge, the distance lower bound rises
monotonically. When the distance to a source is known to be greater than
the desired range, all cells within that range must have completed. The time
required for such a barrier computation is proportional to its range.

When the effects of actuation are predictable and consistent, one can
reasonably “prepattern” and checkpoint a map of actuations to be per-
formed, then perform them—patterning by dead reckoning. One can expect
to achieve a particular final configuration, albeit with some difficulty in spec-
ification given that the actuation map itself may be distorted by actuation.
If, however, instability, noise, variation in cell layout, and other uncertainties
lead to the actuation being not only disruptive but also unpredictable, such
naive prepatterning can make only small changes before accumulated errors
make a mess of both the structure and the prepattern. This sort of difficulty
often arises, for example, when cells rearrange under stress or after division.
Note how in Figure 3.2d the border of the crossbar is quite irregular.

In the presence of such unpredictability, a single round of patterning fol-
lowed by actuation may be insufficient. Feedback measurements must then
be used to correct the system towards its goal. A second set of barriers
is necessary to verify the completion of the actuation, and then a round
of re-measurement and corrective patterning can begin, driving a round of
corrective actuation. This process may be repeated several times, if neces-
sary. Unlike traditional closed-loop feedback, where error measurement and
actuation take place simultaneously, self-timed feedback control must cycle
through discrete stages (potentially in the form of traveling oscillations when
timing skew is present).

3.5 Self-timed vs. Self-correcting

In the preceding, we have been exploring the technique of static prepatterning—
constructing a spatial template and then performing irreversible and disrup-
tive operations based on that pattern, in order to achieve some desired prod-

61

uct. Self-timed patterning has played a valuable role, facilitating aggressive
actuation that neither jumps the gun nor trips over itself by destroying its
own inputs. Multiple stages of prepatterning and actuation can be cascaded,
facilitated by the barrier mechanism. Results can be used as soon as they are
available, with no need to wait for a conservative estimate of worst-case con-
vergence time. Self-timed patterning and partial information thus improve
the speed, robustness, and composability of the patterning process, compared
to mechanisms that rely on pre-programmed delays or ad-hoc assumptions
about timing.

In prepatterning, the target pattern is not a stationary point of the con-
trol algorithm. Indeed, careful steps must be taken to prevent the control
algorithm from recursing on its outputs. However, prepatterning runs into
difficulties when faced with unpredictable operations. Unpredictability de-
mands closed-loop feedback to correct errors, and such feedback is most eas-
ily phrased in terms of recursion seeking a steady state. Furthermore, in
the face of asynchronous damage (e.g. unexpected rearrangement that may
occur during a patterning stage rather than merely during disruptive ac-
tuation), self-timing becomes only approximate; answers may be forced to
change non-monotonically or to remain stale. Ultimately, the entire notion
of prepatterning breaks down if serious damage can occur at any time, inde-
pendent of the state of the computation. It is possible in this case to create
self-timed, self-correcting loops, but it is not obvious whether self-timing
really aids in solving the problem anymore.

In the next two chapters, I investigate the opposite solution to the timing
problem, self-correcting patterning, particularly as applied to traction-driven
cell rearrangement. In this approach, cells apply forces to their neighbors in
order to incrementally rearrange themselves towards the desired pattern. A
self-correcting template defines the layout of the pattern within the substrate,
while each region of the pattern thus designated runs a closed-loop control
algorithm to enforce desired local features. The results are similarly robust
to timing pathologies, but in many other ways they are dual to self-timed
prepatterning: convergence is slow and indeterminate; completion is difficult
to ascertain, and it is not obvious how to compose sequential stages. Even
if convergence can be reliably identified, sequential composition is likely to
interfere with the self-corrective ability of earlier stages. On the other hand,
unpredictability is assumed, not avoided, and damage naturally heals.

62

3.6 Conclusion

Self-timed prepatterning and closed-loop self-correction represent two ex-
tremes, both useful, both with some precedent in nature. Self-timed prepat-
terning is fast and composable; self-correction is robust and regenerative.
I have demonstrated how the monotonic propagation of partial information
facilitates convergence detection and checkpointing, crucial for implementing
prepatterning. On the other hand, unpredictable operations, noise, and asyn-
chronous damage degrade prepatterning, to the point that it can be come
unviable. Bridging the gap between static prepatterning and self-correction
remains the goal of ongoing work.

63

Chapter 4

Normal neighbors patterning

How might one assemble a creature from un-differentiated tissue or regenerate
a missing piece of pattern destroyed by injury? One of the common themes
observed in developmental biology is the Rule of Normal Neighbors [43]: a
point in a patterned tissue knows what elements of the pattern belong ad-
jacent to it, its “normal neighbors”. If it finds its neighbors are wrong, it
will take steps to correct the situation, such as regrowing a more appropriate
neighbor or changing its own fate to better fit its environment. This general
rule captures many striking experimental results, such as the regeneration of
additional, backward segments in cockroach limbs when the distal portions
of their limbs are excised and replaced with excessively long explants [23].
Though the regenerated leg pattern is dramatically incorrect, the disconti-
nuities are gone.

The simple, above statement of the rule leaves an important question
unanswered, though: How does a cell know what action to take? Even ig-
noring the question of whether to regenerate new cells or re-differentiate old
cells (which I have made little progress elucidating), there are often multiple
possible new pattern elements to choose from. The neighboring environment
may not uniquely identify what is missing, or it may be over-constrained and
contradictory, demanding corrections. One possibility, suggested by Mitten-
thal, is that that cells might attempt to intercalate the shortest path through
pattern space (under some metric) to bridge discontinuities, but with their
limited resources, how would cells even perform such a complicated, nonlocal
computation as a shortest-path search in an abstract space?

I propose one possible mechanism by which patterning and pattern re-
pair under the rule of normal neighbors can be implemented, with minimal

64

and purely local computational resources. I represent the topology of a de-
sired pattern as an adjacency graph over discrete pattern states. Using this
graph, I show how to construct a potential function using local interactions
for which the desired pattern is (usually) a minimum. Cells can then explore
this potential by a process mathematically analogous to thermal annealing,
seeking a minimum. The resulting algorithms show promise for engineering
use in amorphous computing and synthetic biology and may also help elu-
cidate the mathematical and dynamical properties of pattern formation in
vivo.

4.1 Adjacency Graphs

The core idea of the rule of normal neighbors is topological: what can lie
adjacent to what. It turns out that this, alone, is not generally enough to
form a pattern, but it’s a good starting place. For simplicity, we represent
the regions of a pattern as discrete states, a “color-by-numbers” abstraction
of what might really be continuous variation. Each region is assigned a
state, and the adjacency graph captures the neighbor relationships between
homogeneous regions of a single state. An implicit self-edge exists for each
state, in order that the representation be scale-invariant and meaningful both
in continuum and on a discrete lattice.

Example desired pattern: Adjacency graph:

11112222
11112222
11155222
44455333
44443333
44443333

2

/|\
1-5-3

\|/
4

Obviously, the template pattern from which an adjacency graph was con-
structed satisfies the adjacency graph. However, a variety of other patterns
will as well. Indeed, any arbitrary continuous distortion (diffeomorphism) of
the original pattern will satisfy the same adjacency graph. Also, any simply
connected (but possibly overlapping) cut through the pattern, even a spiral
or a wild squiggle that repeatedly cut through the same regions, will still sat-
isfy the adjacency graph, albeit with some regions and neighbors duplicated
and others absent.

65

An assortment of other patterns satisfying the same adjacency graph:

11111111 11111111 11111111 11112222 11115555 11222111
11111111 22222222 22111122 11112222 11115555 45525545
11111111 33333333 22255222 45555552 11122555 44333444
11111111 22222222 33355333 35555553 22222333 45525545
11111144 33333333 33444433 33334444 22233333 11222111
11112553 55555555 44444444 33334444 22233344 45525545

In order to avoid arbitrarily pathological deformations, we might use pat-
terning algorithms that favor compact, blob-like regions and insist that pat-
terns be broken up into convex regions only (requiring non-convex elements
of the pattern to be broken up into approximately convex sister sub-regions).
Such a preference turns out to be easy to implement, as a kind of “surface
tension”.

To avoid the problem of arbitrary cuts with missing regions, we might
impose boundary conditions (assuming there are boundaries, absent in the
spherical and toroidal topologies common in early embryos) that force every
region contacting the boundary to appear in the pattern. This will ensure
that at least all boundary-contacting regions are present, and that no region
that should not be cut by a boundary is. (Indeed, it even lets us weaken the
convexity requirement a little, by allowing non-convex, boundary-attached
regions, as long as the boundary conditions are sufficient to determine the
general shape.) Alternatively, or additionally, we could demand that every
region be uniquely named, and rely on algorithms that strongly favor the
existence of exactly one contiguous instance of each region. Although this
does encounter some complications, it can be accomplished by including a
quorum sensing mechanism.

There remains the issue of duplicated or absent neighbor contacts, even
when all regions are present in the correct numbers. It turns out that this is
already disfavored in most cases by surface tension, but it can arise patho-
logically in some scenarios, particularly around poorly-specified boundary
conditions and undesired local minima. One might be able to augment re-
gion quorum sensing with quorum sensing for each neighbor-neighbor contact
pair. Alternatively, one might be able to add interlayer regions (themselves
quorum sensed) between all true regions. I have not explored these possibil-
ities.

66

4.2 Potentials and Probabilities

Given a starting configuration, how should cells determine what changes to
make in seeking a pattern that fits the given criteria (i.e. the adjacency
graph)? One would like a representation that points the way but avoids
limit cycles and inertia. A plausible choice is the minimization of an en-
ergy function on a bounded configuration space, e.g. by gradient descent.
Moreover, for suitably-constructed energy functions, gradient descent can be
implemented purely locally, with local information and local actuation, a
crucial trait for distributed implementation. However, spatial patterns are
especially prone to getting locked in local minima; gradient descent fails al-
most immediately.

The failure of gradient descent suggests that perhaps a probabilistic strat-
egy is in order. Energetically favorable transitions can be made with high
probability, and unfavorable transitions can be made with low probability;
this allows a gradual, stochastic search of the landscape, unimpeded by small
hills and ridges. Interestingly, with appropriate choice of probability as a
function of energy difference, this becomes quite analogous to the process na-
ture uses in forming crystals, ferromagnetic domains, and other lattice-based
patterns. By computing probabilities weighted according to the exponential
of the energy reduction divided by some constant, which we’ll call “tempera-
ture”, we get a Boltzmann-weighted probabilistic automaton. This may have
a very close physical correspondence with how differentiated cells exhibiting
differential adhesion sort themselves into organized clusters [29] (although
perhaps more complicated than needed [57]). However, I will show how to
use it as an abstract computational mechanism for differentiating cells in the
first place.

The algorithm sketched thus far works fairly well. However, it is noisy.
As a stochastic exploration with no termination condition, it will continue
rattling about the space of reasonable solutions indefinitely, showing fluctu-
ations from the ideal and a fair amount of drift. One solution is to gradually
lower the temperature to zero, “annealing” and freezing in the pattern. This
is a useful strategy which I will address in more detail later, but it has some
limitations. As an alternative, can we formulate a “thermodynamic limit”
to the stochastic theory, where fluctuating discrete states are replaced by
mean field values? Indeed we can, and this appears to be the most useful
and biologically plausible version of the algorithm.

67

4.3 Constructing the Energy Function

On a lattice or other cellular tiling, we can define the energy function to
be minimized as the sum, over all the cells of the domain, of individual
contributions from each cell. Based on the principles above, the following
terms are used:

• For each neighboring cell, an “adhesion” energy if and only if the neigh-
boring cell’s state has an edge connecting to the local cell’s state in the
abstract adjacency graph. For the special case of a neighboring cell
with the same state as the local state, a larger energy bonus used; this
gives rise to surface tension. The adhesion term is averaged over neigh-
bors rather than summed, to limit effects due to variation in number
of neighbors.

We write this as: − 1
|ni|

∑
j∈ni

U(S(i), S(j))

Where ni is the set of spatial neighbors of cell i, S(i) is the state of cell
i, and U is the adhesion energy matrix, equal to the abstract adjacency
graph’s adjacency matrix plus a surface tension constant ks times the
identity matrix.

• A quorum sense energy, reflecting the rarity of the local state across the
whole domain. This is a nonlocal measure, and so to be computed in
terms of local information, it must be re-expressed in terms of some in-
formation sharing mechanism. A diffusion/decay process (i.e., screened
Poisson equation) works well for scale-invariant quorum sensing, pro-
vided the screening length is significantly larger than the domain size.
If each cell emits one diffusible token per unit time when in a given
state, and all cells absorb and destroy tokens at a rate proportional
to their local concentration, the token concentration will converge ap-
proximately to the fraction of all cells in the given state. The screening
length, the rough maximum distance at which cells can sense quorum
members, is determined by the ratio of the token diffusion rate to the
token destruction rate.

With a quorum level qi in hand, we can construct an energy penalty
associated with being in that state. I happen to have used minus its
reciprocal plus some anti-divide-by-zero softening, scaled by a gain pa-
rameter constant. This works, and has the interesting property that

68

gain grows dramatically with dwindling numbers. There might be bet-
ter choices, however.

We write this as: −kq/(qs(i) + ksoft)

Where kq is the quorum sense gain constant, qs is the quorum sense
level for state s, and ksoft << 1 is the softening constant.

• A hysteresis energy, which adds an artificial tendency to keep the the
same state. This is not strictly necessary; in the stochastic case, it
merely serves as a means to adjust the update frequency. However,
a possible generalization under the mean field theory does have some
useful influence on stability and can be used to inject potentially useful
hysteresis behavior.

We write this as: −khδ(S(i), S−1(i))

Where kh is the hysteresis constant, S−1 is the previous state of the
cell, and δ is the Kronecker delta.

The sum of these terms over all cells constitutes the energy function.
Observe that the difference in energy due to changing a cell’s state can be
computed locally by the cell, knowing only the quorum levels and the states
of its immediate neighbors (at least, if quorum sensing is exact rather than
an approximation).

4.4 The Stochastic Algorithm

In the stochastic version of the patterning algorithm, at every timestep, each
cell (possibly with some probability) randomly picks a new state according
to Boltzmann distribution. That is, each cell computes the change in energy
∆E for each possible state and then weights the probabilities of new states
by the Boltzmann factor, e−∆E/T , where T is the temperature parameter.

In practice, for ease of computation and to facilitate strict locality, we
make a slight approximation. Instead of computing the change in global
energy for each possible new state, cells compute the local energy contribution
for each state given the previous neighbor states and quorum sense levels.
Cells then weight states using e−Ei/T . This is quantitatively very similar,
but it ignores the local and global impact of the state change on quorum

69

levels (usually tiny) and it undercounts adhesion energy by a factor of two,
effectively scaling the constants by 1/2 (only approximately, if cells have
varying numbers of neighbors). This difference in formulation is reflected in
the analytical work below. I don’t expect this makes any practical difference
in behavior, but I have not investigated.

4.4.1 Examples

For simplicity, these examples use global quorum sensing rather than screened
Poisson quorum sensing. Essentially the same results can be achieved either
way, provided care is taken that the screening length is much larger than
the domain size and that appropriate numerical finesse is used so that accu-
rate solutions are produced in a reasonable amount of time. (Poor accuracy
thresholds can, in some cases, systematically inject artificial energy into the
system, preventing convergence.)

Example 1

Graph:

#

|

2

/|\
#-1-5-3-#

\|/
4

|

#

The ‘#’ symbol is special marker indicating domain boundary (sensed as
if it were a neighbor state). 1-4 are boundary-compatible states, while 5 is
boundary-incompatible (more on this later).

70

Representative snapshot: (T = 0.125, ks = 0.5, kq = 0.0125)

##########################
#222222222222333333433333#
#222222222222333333333333#
#222222222222233333333333#
#222222222222233333333333#
#222222222222255333333332#
#222222221223555533333333#
#222222255555555233333333#
#222222255555555543333333#
#112112255555555533333333#
#111111555555555533333333#
#411111155555555533334444#
#111111125555555554334444#
#111111115555555553334444#
#111111115555555554334444#
#111111111144555554344444#
#111111111444444444444444#
#111111111144444444444444#
#111111111144444444444444#
#111111441144444444444444#
##########################

Notice how the pattern is clearly realized as specified by the adjacency
graph, albeit with somewhat irregular boundaries. Also note the presence of
small noise inclusions (e.g. the lone ’4’s and ’2’s embedded in the 3 and 1
regions). Both the irregularities and the inclusions are transient consequences
of thermal churn; every few timesteps, they disappear and are replaced anew.

Colder snapshot: (T reduced to 0.0625 from 0.125)

##########################
#222222222222222333333333#
#222222222222222333333333#
#222222222222222333333333#
#222222222222222333333333#
#222222222222222333333333#
#222222222255555333333333#
#222222255555555333333333#
#222222255555555533333333#
#111111255555555533333333#
#111111155555555533333333#
#111111155555555533333333#
#111111115555555544444444#
#111111115555555544444444#
#111111115555555544444444#
#111111111555555544444444#
#111111111444444444444444#
#111111111444444444444444#
#111111111444444444444444#
#111111111444444444444444#
##########################

Notice the smooth boundaries and the complete absence of noise inclu-
sions. The pattern is cleaner and much more stable in time, showing smaller
fluctuations. Quickly producing such a clean result depends on cooling from
a higher temperature, however. Starting out with temperature this low can
lead to slow convergence, with a variety of long-lived defects.

71

Hotter snapshot: (T increased to 0.175 from 0.125)

##########################
#333333344444444411233333#
#333453344444444414553433#
#333353333544444515553533#
#333553333344443312555533#
#333552333344435512522333#
#222233433444455115523333#
#222253444444455515553333#
#111114444444155553555443#
#111144444444445513355444#
#111154145544151544335444#
#111152555554155553332333#
#111111255555555522222544#
#111111255555555552222544#
#411514555534452222222544#
#111151555555322222322344#
#111111233555222252223351#
#111112251552223322223551#
#111111111112222225222221#
#111111111122222222322222#
##########################

Here, the pattern has almost disappeared, though its rough shape is still
somewhat visible. Correlation over time has not completely vanished yet,
but thermal churn is rapid and intense.

Snapshot with fixed 1/2/3/4 boundary conditions and quorum sensing
disabled: (T = 0.125, ks = 0.5, kq = 0)

22222222222222222222222222
11222222222222222222222333
11222222222222222222222333
11222222222222222222223333
11111222222222322222223333
11111212222222222222333333
11111111222222222323333333
11111111222222222333333333
11111311112222222333333333
11115511111553333333333333
11111111111555333333333333
11111111111444433333333333
11111111111444454433333333
11111111444444444433333333
11111111444444444444333333
11111111444444444444433333
11111114444444444444433333
11111444444444444444433333
11444444444444444544333333
14445444444444444454333333
44444444444444444444444444

Notice how being anchored to the boundaries gives states 1-4 a tremen-
dous advantage, while 5 nearly disappears. If the boundaries are not fixed,
in the absence of quorum sensing, states typically disappear one by one until
only one fills the entire domain.

72

Example 2

Graph:

1-2-3-4-5

\ \|/ /

\-6-/

Fixed boundary conditions at 6.

Representative snapshot: (T = 0.125, ks = 0.5, kq = 0.0125)

66666666666666666666666666
66111111116666666666666666
66111111111166655555566666
61111111111666665555555666
61111111111666655555555566
66111111116666655555555566
66111111116665555555555666
66111111216665555555555566
61111111226666555555555566
61111112222366444555555566
66111222222333444444444666
66222222233333344444444666
66222222233333344444446666
62222222233333344444446646
62222222233333333444446666
62222222233333333344444666
66222222233333333344444666
66222222233333333644444666
66222222233333333444466666
66666662333336643444466666
66666666666666666666666666

Notice how the 1-5 chain pattern curls up to fit more comfortably into the
approximately square domain, while the non-convex 6 region attached to the
boundaries acts like a fluid bath. The chain pattern will tend to straighten
out in a wider domain or if anchored to opposite boundaries, but otherwise
it curls under the influence of surface tension trying to contract individual
regions into more symmetrical shapes.

4.5 The Mean-Field Algorithm

To avoid the noise of the stochastic algorithm without incurring the curse
of dimensionality associated with the complete probability distribution over
configurations, we can construct a mean-field theory. This will discard corre-
lations between cell states but preserve the uncertainty inherent in a poorly
constrained choice of state. It may also be more biologically plausible, be-
ing based on continuous variables rather than discrete states with discrete

73

updates, and it offers some rough hints for how final convergence may be
detected.

Instead of a distinct, discrete cell state S, we assign each cell a vector pi
of “probabilities” over the different states, representing the degree to which
a cell is committed to each of the states. Then, in computing the local en-
ergy contribution for an individual, discrete state, we compute the expected
energy given the prior state probability vectors. We use these expected en-
ergies to compute what the Boltzmann-weighted state probabilities should
be locally, and we relax current probabilities towards those values, repeating
until convergence.

Using matrix notation for p and U , the mean field adhesion energy is thus

〈Eadhesion(i)〉 = − 1

|ni|
∑
j∈ni

(p(i)TUp(j)))

The hysteresis energy term has to be reinterpreted somewhat, since in
continuous time there is no notion of “previous state”. Instead, it most
plausibly becomes either a constant expected value (boring) or a quadratic
nonlinear term reflecting how well committed the cell is to a given state. The
latter has some impact on stability, so it is worth exploring. Its contribution
to the mean-field energy takes the form

∑
s∈states khps(i)

2 – i.e., khps(i) in
the pure state energies.

So, in steady state, the system must satisfy

ps(i) = e−Es(i)/T/
∑

t∈states

(e−Et(i)/T) (4.1)

Es(i) = −khps(i)−
kq

qs + ksoft
− 1

|ni|
∑
j∈ni

(êTsUp(j))) (4.2)

where êTsU is the s-th row of U.
The only remaining question is how we tabulate quorum population qs.

The obvious answer, using the sum of all cell probabilities for a given state
instead of the count of cells in that state, turns out to work poorly in prac-
tice. Regions tend to be indistinct, not clearly stabilizing on a preferred
location. To combat this, we can inject a positive nonlinearity into quorum
measurement. I found that squaring the state probabilities before summing
worked well. The rest of quorum sensing, including using a screened diffusion
process for tabulation, is the same.

74

With judicious choice of relaxation step size, trading off speed for con-
vergence stability, we now have a complete mean field algorithm. Unlike the
stochastic algorithm, it has a smooth trajectory and a clear steady state.
The particular choice of steady state solution is determined by initial con-
ditions, through a symmetry-breaking process. With appropriate choice of
temperature, the results are often quite good.

4.5.1 Examples

Maximum likelihood states in representative steady-state solution to
Example 1 under mean field algorithm: (T = 0.1875, ks = 0.5, kq = 0.0125,

kh = 0.125)

##########################
#333333333333444444444444#
#333333333333444444444444#
#333333333333444444444444#
#333333333335544444444444#
#333333333555555444444444#
#333333335555555544444444#
#333333355555555554444444#
#333333555555555555444444#
#333333555555555555444444#
#222225555555555555544444#
#222222555555555555111111#
#222222555555555555111111#
#222222255555555551111111#
#222222225555555511111111#
#222222222555555111111111#
#222222222225511111111111#
#222222222222111111111111#
#222222222222111111111111#
#222222222222111111111111#
##########################

75

ML representative steady-state solution to Example 2 under mean field
algorithm: (T = 0.1875, ks = 0.5, kq = 0.0125, kh = 0.125)

66666666666666666666666666
66666666666666666666666666
66666666622222222111111666
66633333222222222111111166
66633333322222222111111166
66333333322222222111111166
66333333322222222111111166
66333333332222222111111166
66333333333222222111111166
66333333333222222111111166
66333333333332226611111666
66633333333366666666666666
66644444444446666666666666
66444444444444555555566666
66444444444445555555556666
66444444444445555555556666
66444444444445555555556666
66644444444455555555556666
66664444444455555555566666
66666666666666655566666666
66666666666666666666666666

4.6 Problems and Local Minima

The previous sections presented some encouraging results, and indeed, the
desired pattern is almost always a robust attractor for the system, but con-
vergence is not necessarily guaranteed, and complications do arise. In the
stochastic algorithm, improper configurations may appear during conver-
gence and re-appear intermittently at later times. In the mean-field algo-
rithm, successful convergence is generally permanent, but the pattern may
also become permanently trapped at a local minimum.

Convergence is particularly sensitive to temperature. At low tempera-
tures, convergence is slow, and numerous, long-lived (even permanent) topo-
logical defects can appear. At higher temperatures, the pattern becomes
smoother and less sharp-edged (ultimately indistinct in the stochastic algo-
rithm), while defects (apart from stochastic noise inclusions) are rare and
few in number, most disappearing quickly. At sufficiently high tempera-
tures, however, bulk symmetry never breaks, and convergence never occurs;
states share the interior of the domain equally, and one could say the pattern
has “melted”. The complete melting temperature depends mainly on energy
function parameters and is minimally influenced by the adjacency graph and
boundary conditions. The sharpest, most defect-free patterns are produced
by starting with a temperature above the melting point and slowly reduc-
ing it to a temperature well below. The parallels with phase transitions,

76

crystallization, and annealing are obvious.
Just shy of the complete melting point, however, portions of a pattern may

appear melted, with certain unbroken or weakly broken symmetries between
states, while the overall structure remains. Partial melting is a pattern-
dependent phenomenon, occurring where internal, boundary-independent
symmetries need to be broken. The effect arises mainly in two circumstances,
either when the domain size is excessively small or when several identical,
mutually contacting states (sharing all neighbors and all parameters) must
break symmetry. For the effect to be severe, three or more states must be
involved. In such cases, hysteresis is also often observed. Note that none
of the examples above are susceptible (no two states are identical); some
examples will be provided below, along with analytical insights from linear
stability analysis.

Once fully solidified, the kinds of defects characterizing poor convergence
fall into a few common patterns. Completely missing regions are very rare
(unless quorum sense is disabled), as are erroneous contacts between incom-
patible regions. Instead, an apparent improper contact will typically have a
thin sliver of states spanning the gap, duplicate regions reduced to minimal
size but unable to disappear completely. This often occurs in the context of
a “twist”: a 4-cycle (or larger) in the adjacency graph in which two differ-
ent segments have chosen opposite chirality. For example, if quenched too
rapidly,

2

/|\
1-5-3

\|/
4

may converge to

2

/|?

1-5-4

?|/

3

where the question marks indicate improper or ambiguous contacts. In prac-
tice, these “contacts” are usually either occupied by thin slivers of an inter-
vening state (1 or 3 in the upper right and 2 or 4 in the lower left), or they are
four-fold junctions, where, for example, 2, 4, a distorted 5, and the boundary
all meet at a single point. The latter situation is illustrated below.

77

ML plot of twisted solution to Example 1: (T = 0.1875, ks = 0.5,
kq = 0.0125, kh = 0.125)

##########################
#222222222222444444444444#
#222222222225544444444444#
#222222222255554444444444#
#222222222255554444444444#
#222222222555555444444444#
#222222225555555444444444#
#222222225555555544444444#
#222222255555555554444444#
#222222555555555555444444#
#222222555555555555333333#
#111111555555555555333333#
#111111155555555553333333#
#111111115555555533333333#
#111111111555555533333333#
#111111111555555333333333#
#111111111155553333333333#
#111111111155553333333333#
#111111111115533333333333#
#111111111111333333333333#
##########################

Notice how the 5 region is vertically distended and how the four-fold
contacts at the top and bottom are different from the ordinary three-fold
contacts on the left and right. Such a solution occurs perhaps one in three
times for this pattern started at the above parameters with no annealing.

A closely related defect is twinning. Here, regions or entire segments of
the pattern are repeated, possibly with the same chirality, more commonly
with flipped chirality. In this case, redundant regions are stabilized, probably
geometrically, and do not shrink down to slivers. The precise causes that can
allow twinning to persist stably remain unclear. Twinning is often seen as
a defect when twists are impossible due to absence of vulnerable 4+cycles
(particularly when partial melting hysteresis disrupts annealing) or if the
algorithm is extended to include chiral preferences at 3-way junctions, but
it also seems to appear with some frequency simply when patterns become
sufficiently large and complicated. Twinning is also a common symptom of
insufficiently long screening length under screened Poisson quorum sensing.

Twisting and twinning are the most common convergence-related defects,
and are amenable to cure by careful choice of temperature or by annealing.
They typically arise when convergence proceeds by domain wall migration:
temperature is low enough that symmetry breaks quickly and regions rapidly
stabilize and saturate, so any reduction in defects takes place by slow move-
ment of the boundaries between regions. This is a highly local process, and
global defects such as twists, exhibiting baked-in symmetries, are largely im-
mune to domain wall migration. Twinning is often eliminated by domain

78

wall migration, but the result may be a twist rather than a correct pattern.
Alternatively, twins may be stabilized if the twinned region has floating sub-
regions that are partitioned among the two halves (because neither twin can
be continuously eliminated).

On the other hand, if temperature is high, symmetry breaking works
globally, in the weakly unstable, sub-saturation regime. Just slightly below
the melting point, symmetry-breaking is extremely slow, but twisting and
twinning are largely absent from the result. Typically, with careful annealing
from a melt, twisting and twinning can be avoided completely.

Domain size, interestingly, also seems to have a strong effect on twisting
and twinning. Small domains are more forgiving about temperature and tend
to break symmetry completely in the sub-saturation regime for a wide span
of temperatures below the melting point. Large domains, however, must be
kept closer and closer to the melting point in order to achieve a clean, global
symmetry break before saturating and transitioning to domain wall migra-
tion. There is, in some sense, a correlation length associated with a given
temperature. In practice, precisely picking the right temperature to achieve
fast, defect-free convergence for the whole domain may be impractical. More
robust strategies for preparing large domains include annealing slowly from
a melt and growing slowly from a small domain size.

Example 3

A pattern immune to twisting but prone to fairly clean twinning. (Other
patterns, such as example 1, will twin under the same temperature conditions,
but in complicated ways that often involve a mix of multiple twinning and
twist defects.) This pattern is also notable for showing partial melting with
hysteresis in the 1-2-3 ring (three identical states) and hence is somewhat
difficult to anneal, probably contributing to the twinning.

Graph:

2----+

/|\ |

/ 4 \ |

/ / \ \ |

1-----3 |

| \|
+-------5

79

Fixed boundary conditions at 5.
Representative solutions: (T = 0.1325, ks = 0.5, kq = 0.0125, kh = 0.125)

Correct:

55555555555555555555555555
55555555555555555555555555
55555555511111111111155555
55555333311111111111115555
55533333311111111111111555
55533333311111111111111555
55333333444441111111111555
55333333444444111111111555
55333334444444411111111555
55333334444444441111111555
55333334444444442222222255
55333334444444442222222255
55333334444444442222222255
55333333444444422222222255
55333333444444222222222255
55333333344442222222222255
55533333333222222222222255
55533333333222222222222555
55555333333222222222225555
55555555555555555555555555
55555555555555555555555555

Twinned:

55555555555555555555555555
55555555555555555555555555
55551111111111555555555555
55511111111111333333335555
55111111111111333333333555
55111111111144443333333355
55111111114444444333333355
55111111114444444333333355
55111111144444444433333355
55111111444444444422222255
55111111444444444422222255
55111111444444444222222255
55511111444444444222222255
55553333344444442222222255
55553333334444422222222255
55553333333332222222222255
55553333333332222222222255
55555333333332222222222555
55555533333332222222225555
55555555555555555555555555
55555555555555555555555555

Note the duplication of region 3.

Example 4

A more complicated pattern, with several twistable cycles.

80

Graph:

#

| | |

1---4---7

|\ /|\ /|

| 5 | 6 |

|/ \|/ \|
2---3---8

| | |

#

Representative steady state annealed from melt in two steps:
(T = 0.375→ T = 0.25→ T = 0.1875)

##########################
#777777744444444441111111#
#777777744444444441111111#
#777777744444444441111111#
#777777744444444441111111#
#777777664444444455111111#
#777776666444444555511111#
#777766666644445555551111#
#777666666644445555555111#
#776666666664455555555511#
#886666666663455555555511#
#886666666663355555555522#
#888666666633335555555222#
#888866666633335555552222#
#888886666333333555522222#
#888888663333333355222222#
#888888833333333332222222#
#888888833333333332222222#
#888888833333333332222222#
#888888833333333332222222#
##########################

81

Annealed from melt in one step: (T = 0.375→ T = 0.1875)

##########################
#222222233333333387777777#
#222222233333333366777777#
#222222233333333366777777#
#222222233333333666777777#
#222222553333333666677777#
#222225555333333666677777#
#222255555533333666677777#
#222555555533336666667777#
#225555555553336666667777#
#115555555553366666666777#
#115555555554446666668888#
#111555555544446666668888#
#111155555444444666688888#
#111115555444444666688888#
#111111554444444666688888#
#111111144444444666888888#
#111111144444444466888888#
#111111144444444466888888#
#111111144444444478888888#
##########################

Note the single twist defect (with marginal sliver twinning), corresponding
to an erroneous topology:

#

| | |

2---3???7

|\ /|\ /|

| 5 | 6 |

|/ \|/ \|
1---4???8

| | |

#

Without annealing:

##########################
#777777778333333222222222#
#777777766333333222222222#
#777777666633333522222222#
#777777666633335552222222#
#777776666633335555522222#
#777766666633355555552222#
#777766666633355555552222#
#777666666633555555555222#
#777666666633555555555522#
#776666666644555555553333#
#444466666444555555533333#
#444444444444455533333333#
#444444444444443333333333#
#111114444444443333338888#
#111111144444446338888888#
#111111114444466688888888#
#111111114444466888888888#
#111111111444466888888888#
#111111111444478888888888#
##########################

82

Now there is rampant twinning, and it’s hard to see how the result even
relates to the intended pattern. Without annealing, sometimes the pattern
comes up perfectly (frequently on a diagonal) or close to perfect with recog-
nizable twists, and sometimes it’s a total mess.

Example 5

A complicated pattern but with fewer vulnerable cycles.

Graph:

+-+----+-+------+

| | | | |

6 | | 7 |

\| |/ |

1----2 |

/ \ / \ |

+--A--5----B---3--8---|

| / \ | / \ |

+---/ \--4-/ \----+
| /| |

| | 9 |

| | | |

+--------+-+----------C

Fixed boundary conditions at C.

83

Representative steady state annealed from melt in two steps:
(T = 0.375→ T = 0.25→ T = 0.1875)

CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCC666666CCCCCCCCCC
CCAAAACCCC666666CCCC7777CC
CAAAAAACC66666666CC777777C
CAAAAAA511666666112777777C
CAAAAA5511116611112277777C
CAAAAA5551111111122277777C
CCAA55555111111112222277CC
CC5555555111111112222222CC
CC5555555511111122222222CC
CC5555555BBBBBBBB2222222CC
CCC555555BBBBBBBB222222CCC
CCC444444BBBBBBBB333333CCC
CCC4444444BBBBBB3333333CCC
CC999444444BBBB333333888CC
CC9999444444BB3333338888CC
C999999444444333333888888C
CC9999944444433333388888CC
CC9999994444433333888888CC
CCC9999CCCCCCCCCCCC8888CCC
CCCCCCCCCCCCCCCCCCCCCCCCCC

Without annealing:

CCCCCCCCCCCCCCCCCCCCCCCCCC
CCC9999CCCCCCCCCCCCAAAACCC
CC9999994444445555AAAAAACC
CC99999444444455555AAAAACC
CC99999444444455555AAAAAAC
CC999944444444555555AAAACC
CCC994444444BB55555555AACC
CCCCC44444BBBBBB5555555CCC
CCCCC33BBBBBBBBBB555555CCC
CCCC222BBBBBBBBBB1111111CC
CCC22222BBBBBBBBB1111111CC
CC22222223333BBBB1111111CC
CC2222222333333BB1111111CC
CC7222222333333321111111CC
C7777222233333333C1166666C
C7777722233338883CC666666C
C7777722333888888CC666666C
C7777722333888888CC666666C
CC77777CC38888888CCC6666CC
CCC77CCCCCC88888CCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCC

Notice the single twist defect.
Several other common pathologies not related to convergence or annealing

are worth mentioning:

• Boundary stiction: The previous examples all treated boundary condi-
tions very carefully, either by identifying boundary-compatible states
in the adjacency graph, by clamping the boundaries at the appropriate
states, or by providing a special boundary-attached state which served
as a sort of lubricating fluid bath for a free-floating pattern. If such
steps are not taken, regions may become inappropriately “stuck” to the

84

boundary, resulting in missing neighbor contacts. Boundary contact,
especially corner contact, also provides a strong foothold to regions,
even under open boundary conditions; it can be unusually difficult to
dislodge a region inappropriately stuck on an edge or corner, and high
quorum sense gain is needed to prevent appropriately attached regions
from becoming inappropriately large.

• Topological incompatibility: It is entirely possible to construct an adja-
cency graph that is incompatible with the patterning domain. A planar
domain must be patterned with a planar graph, a toroidal domain with
a toroidal planar graph, and so on. If the graph is incompatible with
the domain, duplicated regions and missing neighbor contacts will typ-
ically result.

• Steric hindrance: Even if an adjacency graph is topologically com-
patible with its domain, given a set of quorum sizes and boundary
conditions, the pattern may require so much distortion of the regions
from their equilibrium shapes and sizes that some neighbor contacts
will never form or some regions will be duplicated. For example, the
graph

7-----+

/|\ |

1-2-3-4-5 |

\ \|/ / |

\-6-/---+

with boundary conditions fixed at 6 and uniform quorum sizes, will,
in some orientations, produce a pattern that is too “fat” around the
middle to bend and fit within its domain. In that case, 3 or 7 may be
duplicated, may be missing a contact with 2 or 4, and/or may show
patches of poor symmetry breaking. (3 and 7 are also examples of
completely identical, mutually contacting states, subject to the partial
melting effect, which exacerbates poor symmetry breaking.) In general,
the solution is to prescribe a pattern that is not only topologically but
also metrically compatible with its domain, and, if necessary, to im-
pose boundary conditions that prevent a pattern from inappropriately
wedging itself into the domain and curling up. Careful annealing may

85

also help but is sometimes insufficient to ensure an orientation that
avoids steric hindrance.

4.7 The Continuum Limit

In order to help better understand and predict the melting point and cor-
relation length phenomena, we can construct a continuum limit version of
the mean field theory and study it analytically in special cases. In the con-
tinuum limit, the only important difference from the mean field formulation
is that there are no longer discrete cells. Instead, the pi become fields over
some continuous spatial domain, one probability field for each state. Quo-
rum sensing can be generalized straightforwardly, using the screened Poisson
equation. The only term seriously affected by this change is the neighbor
adhesion energy.

How, in this version, should we formulate adhesion energy, given that we
no longer have any clear idea what a neighbor is? Since the adhesion term
in the mean field theory is linear over neighbor state probabilities, we can
re-interpret it as the expected adhesion energy for the “average” neighbor. In
the continuum, we can attempt to measure the average state over some closed
surface surrounding each point and interpret that as the average neighbor
state. A simple two-term Taylor expansion for the average over a sphere
of radius l in D dimensions is (1 + l2

2D
∇2)f . Indeed, when discretized to

lowest order on a square mesh, this turns into precisely the average neighbor
calculation used by the mean field theory. The length scale l corresponds to
the size of a cell in the mean field algorithm.

With this construction, we can write the steady state equations for the
continuum limit:

pi = e−Ei/T/
∑

j∈states

e−Ej/T (4.3)

Ei = − kq
qi + ksoft

− khpi −
∑

j∈states

((pj +
l2

2D
∇2pj)U(i, j)) (4.4)

∇2qi = −p2
i + γqqi (4.5)

where i ranges over states.
Unfortunately, this system of PDEs is quite hairy, with two equations for

every state and fully nonlinear. In the general case, it may be difficult if not

86

impossible to study. In the special case of a two-state system, however, we
can manipulate it into a much more tractable form.

Noting that
∑

i∈states(pi) = 1, we can model a two state system with only
one independent probability field, p, letting p = p1 and 1− p = p2. Carrying
the exponential term into the denominator, we can write

p = 1/(1 + e(E1−E2)/T)

=⇒ E1 − E2 = T ln(1/p− 1) (4.6)

We can expand E1 − E2 into

E1 − E2 =kh(1− 2p)+

kq(1/(q2 + ksoft)− 1/(q1 + ksoft))+

(p+
l2

2D
∇2p)(2U(1, 2)− U(1, 1)− U(2, 2))+

(U(2, 2)− U(1, 2)) (4.7)

This can be solved explicitly for the derivative terms, yielding an ellip-
tic equation that is no longer fully nonlinear but rather semilinear, easily
amenable to linear stability analysis.

4.8 Analytical Properties from the Contin-

uum Limit

The form of the continuum limit probability equation is very much like an
inhomogeneous Helmholz eqution or screened Poisson equation, with a non-
linear logarithmic term added. The character of the solutions, either oscilla-
tory (Helmholz) or exponential (screened Poisson), depends both on choice
of parameters and on the value of p, acting through the nonlinear term.
This dichotomy provides an analytical explanation for the melting point phe-
nomenon, for the near scale-invariance of steady state patterns, and for other
details of behavior.

If we further simplify things by ignoring quorum feedback (kq = 0), a
reasonable assumption for symmetric or nearly symmetric solutions, we’re
left with a single PDE:

87

l2

2D
∇2p =− T

U∆

ln(1/p− 1) +
kh
U∆

(1− 2p)− p

+ (U(2, 2)− U(1, 2))/U∆ (4.8)

with
U∆ = U(1, 1) + U(2, 2)− 2U(1, 2)

which is typically positive as a result of surface tension terms. If U is con-
structed as prescribed above, with states 1 and 2 symmetric, U∆ = 2ks =
2(U(2, 2)− U(1, 2)). In that case, the right hand side becomes

− T

2ks
ln(1/p− 1) +

kh
2ks

(1− 2p)− p+ 1/2 (4.9)

In 1D, or for problems with planar symmetry, ∇2p = d2p/dx2, and this
formula is just an ODE. It is well-behaved as a boundary value problem,
albeit a little twitchy to solve numerically, given the explosive singularities
at p = 0 and p = 1.

For low temperatures, p′′ has three stationary points: two unstable points
corresponding to saturation in one or the other state, and one stable point
corresponding to a balanced mix (p = 1/2, assuming the states are symmet-
ric) – see figure below. An ideal domain wall between regions corresponds
to a heteroclinic orbit from one unstable point to the other. Such an orbit
can spend arbitrarily long escaping from one unstable point and arbitrarily
long approaching at the other, but the space devoted to crossing the middle
is fairly consistent. This captures, in a nutshell, why steady state patterns
are approximately scale-invariant, and yet why there is a definite correlation
length and domain wall thickness.

88

Figure: Plot showing the three stationary trajectories at low temperature
and an example boundary value trajectory going from (1− ε) to ε.

(T = 0.1875, ks = 0.5, kh = 0.125)

We can derive an analytical estimate for the domain wall thickness W
from the wavelength of low-amplitude oscillations about the stable point.

Noting that λ = 2π/
√
− d
dp
p′′, we have

l2

2D

d

dp
p′′ =

T

2ks

1

p− p2
− kh
ks
− 1

and hence, defining W as the half-wavelength,

W = πl/
√

2D(−2T/ks + kh/ks + 1) (4.10)

In the case corresponding to the discrete examples above (T = 0.1875,
ks = 0.5, kh = 0.125, l = 1, D = 2), this comes out as W ≈ 2.2.

The smallest possible value of W is πl/
√

2D, fairly close to l – a domain
wall can be no narrower than a cell. As temperature increases, W increases,
first slowly, then rapidly, until T reaches

Tm = (kh + ks)/2 (4.11)

where W diverges and the three stationary points collapse into one unstable
stationary point. This Tm is the melting point. In the example above, Tm ≈
0.31. Above the melting point, instead of lingering indefinitely in saturation,
orbits rapidly collapse to a symmetric mixture, linger there indefinitely, and

89

only depart for the opposite boundary condition at the last minute (see figure
below). Just below the melting point, the saturated states remain distinct
but are only minimally differentiated from each other and from a symmetric
mixture.

Figure: Plot showing the lone stationary trajectory at high temperature
and an example boundary value trajectory going from (1− ε) to ε.

(T = 0.375, ks = 0.5, kh = 0.125)

Within a domain – below the melting point – probabilities decay exponen-
tially toward the associated (unstable) stationary point. The characteristic
1/e length scale of this decay can be thought of as an intra-domain corre-
lation length, indicating how quickly the interior of a domain forgets about
the domain’s neighbors. The intra-domain correlation length is not conve-
niently analytically solvable (the associated p values can only be determined
implicitly), but it can be seen to approach zero as T approaches zero and to
diverge similarly to W as T approaches Tm (illustrated in the figure below).

Beyond the melting point, a similar correlation length can be defined,
about the lone unstable point. This “melt correlation length” describes how
far information about boundary conditions penetrates. It can be seen to
diverge at the melting point and then fall away toward zero as temperature
rises further (see figure).

90

Figure: Domain wall thickness and correlation length versus temperature.
(ks = 0.5, kh = 0.125)

Thus far, we have explained the emergence of discrete domains separated
by domain walls of a characteristic thickness and a melting point at which
the domains disappear, in terms of the state correlations propagated by cells
to their neighbors.

What about partial melting? Some insight into the phenomenon of partial
melting can be gained by now analyzing the boundary-independent case:
patterning under either periodic boundary conditions or boundaries clamped
to a symmetric mixed state (i.e. p = 0.5). This yields a symmetry-breaking
problem, and by analyzing a time-dependent version of the continuum theory,
we can determine what circumstances will cause symmetry to spontaneously
break.

A simple time-dependent formulation (omitting quorum sense) is

Ei = −khpi −
∑

j∈states

((pj +
l2

2D
∇2pj)U(i, j)) (4.12)

Pi = e−Ei/T/
∑

j∈states

e−Ej/T (4.13)

dpi/dt = Pi − pi (4.14)

91

For the symmetric 2-state case, we can again reduce to a single p variable
and consider solutions of the form

p = 1/2 + εeik·x+ρt +O(ε2)

Solving to first order yields

ρ =
1

2T
(kh + ks(1−

l2

2D
|k|2))− 1 (4.15)

When ρ > 0, perturbations grow exponentially and symmetry sponta-
neously breaks. For uniform perturbations, k = 0, this condition is identical
to T < Tm. However, if perturbations are constrained to be symmetric (e.g.
by quorum sense), then the temperature at which symmetry will break de-
pends on how much space is available. The wavenumber of the longest wave
that will fit determines the reduced temperature of partial melting:

Tm|k = (kh + ks(1−
l2

2D
|k|2))/2 (4.16)

This explains why partial melting affects interior symmetry breaks but
not domains constrained by boundary conditions. It does not, however, ex-
plain the surprisingly low partial melting temperatures seen in competition
among identical, mutually compatible states. For this, we must take into
account more than two states.

To keep the algebra tractable, we consider a special, restricted N -state
problem. Two states are modeled in full, while the other N − 2 states are
assumed to act completely independently, such that their particular values
have no effect on the probabilities associated with the two distinguished
states. It is assumed that the two distinguished states always share a total
probability of R and the remaining N − 2 states share 1 − R (their energy
functions constrained to keep this steady). Under these assumptions, the
two distinguished states can be represented with p and R − p, and we can
perform a similar (albeit messier) analysis, yielding

Tm|k,R = (kh + ks(1−
l2

2D
|k|2))R/2

= Tm|kR (4.17)

92

This surprisingly simple result shows that, when more than two states
compete during symmetry breaking, the partial melting temperature is de-
pressed by a factor of R. When the states are completely identical, R = 2/N .
This accurately predicts the dramatically low partial melting temperatures
seen when many identical, mutually compatible states are set in competi-
tion independent of any boundary constraints. However, the appearance of
hysteresis, frequently seen when N > 2, remains unexplained.

4.9 Abstracting the Strategy

So far, I have described our normal neighbors patterning method in concrete
terms, based on specific mathematical operations. Can the principles be
generalized beyond this particular system? Can they be applied in synthetic
biology or even in the study of natural organisms? In this section, I demon-
strate how the normal neighbors strategy can be implemented without the
details of the Boltzmann distribution, without the requirement of cell-cell
contact, and without the rigid state encoding we have assumed. The limits
have yet to be reached.

Our patterning strategy can be re-expressed as the combination of five
core mechanisms:

• State representation: A means of locally identifying the possible roles
an element may take in the pattern. We have already seen two differ-
ent representations – a discrete, n-ary value and a vector of likelihood
weights. More abstract representations are possible, for example, by
partitioning some large state space into basins of attraction. Given an
existing state representation and a new, “desired” one, there must be
some means to update the existing representation to make it more like
the desired one – e.g. by relaxing or randomly updating. For continu-
ous state representations, this leads to one important restriction, which
will be discussed below.

• State sharing: A means of propagating state information to nearby
points. Thus far, we have assumed this meant sharing the local state
representation with a cell’s nearest neighbors, but the information could
be encoded differently, perhaps imperfectly, and the range over which
it is shared, though it needs to be locally biased, need not have an

93

absolute cut-off. Decay-diffusion based mechanisms, for example, are
a viable alternative.

• Quorum sense: A means of detecting whether a given state occupies
a globally appropriate fraction of the domain. Not all states will re-
quire quorum sensing; some may already be adequately constrained by
boundary conditions or neighboring states. For regions with some op-
erating function (e.g. an organ), quorum sense may simply be based on
a measure of whether the function is keeping up with the organism’s
needs. In such circumstances, quorum sizes will vary depending on
how much demand there is for their different functions. Quorum sens-
ing must generally converge quickly compared to state update times,
to prevent oscillations.

• “Suitability” function: A metric indicating how favorable a given state
is given the prior state, the neighborhood, quorum feedback, and other
environmental cues, abstracting the idea of an energy function.

• Discriminator function: A mechanism for picking out the most favor-
able state(s) according to their relative suitability metrics. The Boltz-
mann distribution provides the prototypical example, but the essential
function is that of a differential amplifier exhibiting saturation (and
its generalization to more than two inputs). The different suitability
metrics are compared, and the largest one is selected if a clear winner is
present. If several are similarly suitable, they are all partially selected,
with some gain applied to their differences. The “temperature” param-
eter describes the sharpness of discrimination – the differential gain –
determining how close is close enough to be ruled an approximate tie
and how much the remaining differences are amplified. Such residual
variation facilitates symmetry breaking and annealing.

As an example of how these mechanisms can be realized differently, con-
sider how normal neighbors patterning might be implemented in a reaction-
diffusion system, as a prototype for how it might be realized biochemically
in a synthetic bacterial colony. Quorum sense and energy functions can be
implemented as before (aside from the requirement that quorum sense mor-
phogens have high diffusivity compared to state sharing morphogens, or are
otherwise faster to converge than state updates) but state sharing, the dis-
criminator function, and possibly state representation must be revisited.

94

State sharing presents several problems. There is no corresponding no-
tion of a cellular neighborhood with which to share state, and the Taylor
interpolation trick is not clearly feasible. Instead, we can use a family of
decaying, diffusible morphogens to share state, defining the neighborhood
to be their response kernel. The source density and attenuation rates may
not be uniform, however, e.g. as cells proliferate. The size and shape of a
neighborhood can tolerate some variation, but the energy functions expect
to be fed a consistent state representation, without wild variations in magni-
tude. Rather than directly feeding in morphogen levels, a simple solution is
to add a normalization step – an automatic gain control – on the receiving
end. Automatic gain control can be realized through competitive binding or
negative feedback motifs.

Because exponentials are a rarity in chemical kinetics, the Boltzmann dis-
tribution is probably impractical as a discriminator function. The tremen-
dous virtue of the Boltzmann distribution is its unlimited dynamic range
– it is completely insensitive to common mode inputs. During symmetry
breaking, as the environment goes from completely indeterminate to fully
determined, the energy functions can easily vary by an order of magnitude.
Thus, wide dynamic range is an important feature. The Boltzmann distribu-
tion also provides the option to configure extremely high gains, by reducing
the temperature parameter. A replacement must, at a minimum, be able to
produce sufficiently high gains in order to chill beneath the melting point.

Lacking a convenient design for a biochemical differential amplifier, we
can construct an adequate discriminator function by cascading three stages:
compressing the dynamic range, applying gain, and normalizing the results.
The first and last stages can both be implemented with automatic gain con-
trol circuits, while the gain stage can be implemented with a cooperative
Hill function. Typical cooperative binding interactions (e.g. tetramerization)
cannot provide sufficiently high gains, so we increase the gain by applying
positive feedback. This can be internal to the discriminator or embedded
in the energy functions via the hysteresis term. Given that cooperativity
is not usually adjustable, the feedback term can also be used to adjust the
effective temperature. The result is not nearly as clean as the Boltzmann dis-
tribution, and it is probably still too complicated for a practical biochemical
implementation, but it works.

Given that transcription factors and signal transduction pathways are
scarce resources in a cell, it may also be desirable to revisit state representa-
tion and the representation used for state sharing. The vector of weights used

95

previously is an extremely verbose encoding, and much denser encodings are
possible, using, for example, random sparse combinatorial encoding. How-
ever, an important restriction must be observed: if two states have an edge
in the adjacency graph, their intermediate mixtures must be uniquely rep-
resentable. That is, their basins of attraction in representation space must
contact each other, and the interpolation path connecting the two states
must cross directly from one basin to the other, confusable nowhere with
any other states. We may term such an encoding “conflict-free”. As an ex-
ample, if states are placed on the vertices of a hypercube in Rn and linear
interpolation is used for adjusting states, then the (possibly diagonal) line
connecting two vertices representing adjacent states in the adjacency graph
must never venture closer to any other state’s vertex than its endpoints. This
means the smallest sub-hypercube containing both endpoints must contain
no other states. If the adjacency graph is a subgraph of a hypercube, then
all 2n vertices can be used to represent states. If the adjacency graph is
completely arbitrary, however, it may be necessary to use significantly fewer
than 2n/2 vertices in order to avoid conflicts.

The reason for the conflict-freedom restriction is that, in general, a do-
main wall cannot form if its intermediate states are not representable or
cannot identify which domain wall they are part of. If the intermediate
states are confusable with another state, that state will typically insert itself
instead. The only observed exception is when the temperature is sufficiently
low that domain walls are significantly thinner than a single cell, in which
case intermediate states are not needed. However, such temperatures are, by
necessity, far too low for effective annealing.

4.10 Comparing with Other Patterning Mech-

anisms

Spatial patterning strategies can be roughly classified by the properties of
their method of computation. Three obvious categories stand out, which
could be termed as follows: feed-forward algorithms, feed-back algorithms,
and imperative algorithms.

Feed-forward algorithms, e.g. [45] (excluding a few features), [18], employ
positional information encoded in boundary conditions, planar polarizations,
or prepatterns, and compute a cascade of spatial functions based on this in-

96

put. In the steady state limit, none of these functions have any memory,
and as there are no cycles in the computation, their composition is mem-
oryless as well. Such algorithms cannot break symmetry, lacking memory
and a global cone of influence. However, they are often scale-invariant by
virtue of deriving all scale measures from boundary information, and may
be approximately invariant under much more general transformations (e.g.
the restricted class based on diffusion under Dirichlet boundary conditions
is completely invariant under arbitrary conformal transformations). They
show some limited self-repair due to their memorylessness but often respond
poorly to damage to their boundary information.

Feed-back strategies, such as Turing patterns and their many relatives
[62, 50, 42, 24], on the other hand, typically generate their own positional
information through instabilities, or bootstrap it from weakly asymmetric
initial conditions. They typically have baked-in length scales associated with
their instabilities and show very limited transformation invariance, apart
from some response to boundary shape and a little scale flexibility when
trapping a partial wavelength. However, they exhibit extremely robust self-
repair, recovering even from the loss of boundary information. Historically,
there seems to have been little work on fully programmable feed-back algo-
rithms, but it’s not clear whether this reflects any fundamental difficulties.

The normal neighbors algorithm presented here is a feed-back algorithm,
but it shows a mixture of properties typically seen among feed-back and feed-
forward algorithms. It is strongly symmetry-breaking, yet it shows approx-
imate scale invariance (at least, if annealing is allowed) and transformation
invariance (within the limits of surface tension and quorum sensing). It also
shows excellent self-repair, even the ability to re-construct missing boundary
information.

Locally checkable patterning [71] is another unusual, programmable feed-
back strategy, with some important similarities, although it is tightly wed-
ded to a discrete, static world. Normal neighbors patterning is, in a sense,
locally checkable patterning adapted to an isotropic continuum without an-
gular discrimination (albeit using completely different algorithms). However,
as I argued, non-local constraints such as quorum sensing are inevitable if
scale invariance or boundary independence are goals. Yamins does demon-
strate some discrete “scaffolding” constructions for providing approximate
scale invariance via geometric constructions (e.g. bisection), but they ap-
pear extremely fragile, in addition to relying crucially on anisotropic angular
discrimination.

97

A third category of algorithms might be termed “imperative”. In a sense,
this is just the generalization of feed-back algorithms to include discrete, mu-
table state, but such algorithms often show a distinct character, with strict
spatial and temporal sequencing and hand-offs of control, e.g. [15, 65]. Al-
though the most general category computationally, typical examples of such
algorithms rely on external positional boundary information and do not show
any automatic self-repair without significant design effort. They often show
an interesting feature, however: the ability to signal their completion. Some
feed-forward algorithms can signal completion given static, known domains
(e.g. [45]) but not on dynamically changing domains. As far as I know,
completion detection for feed-back algorithms, including the algorithms pre-
sented here, is largely unsolved. The absence of outright adjacency errors
can be detected, but it is less obvious how to distinguish a stationary state
from slow domain wall migration.

Of course, it is not necessary to use these different techniques in isola-
tion. A complex patterning process might use all three. For example, normal
neighbors-type feedback patterning might be used to establish initial coor-
dinates and a layout of compartments, providing the necessary boundary
information for feed-forward patterning to fill in details. Sub-compartments
thus defined might then be textured with additional Turing-type feed-back
patterning. Cross-cutting networks like nerves might be traced out by a
growing point-type imperative mechanism but then maintained by a high-
hysteresis normal neighbors controller, allowing for the correction of simple
defects.

Feedback patterning such as normal neighbors patterning is probably bet-
ter suited to highly curved surfaces than typical feedforward and imperative
systems that reckon based on distance and direction to landmarks, due to
the effect of physical bottlenecks in the geometry, e.g. at a budding struc-
ture. With only a narrow connection to the base substrate, one needs need
to re-amplify the asymmetry cues, or even break symmetry all over again,
unless out-of-surface landmarks are available.

Additionally, normal neighbors patterning may be better suited to ac-
tively deforming surfaces (e.g. as in Chapter 5) because distances and angles
may change wildly, but in-surface adjacency rarely changes. Quorum sensing
will be an issue if area changes, however, as will surface tension if boundaries
become eccentric or convoluted. Further refinement of the algorithm may
still be worthwhile.

When large-scale surface deformation is directed by the patterning al-

98

gorithm itself, feed-forward control per se is probably impossible. Because
changes to the substrate feed back into the behavior of the spatial commu-
nication mechanisms used by the patterning algorithm, the algorithm is no
longer properly feed-forward and can develop hysteresis and instability. I
have not identified under what circumstances this is manageable. Normal
neighbors patterning, however, behaves fairly stably.

The basic normal neighbors phenomenon, the consistency of adjacency re-
lationships, is not the exclusive province of patterning algorithms that treat
such normal neighbor relationships as first-class entities. A similar prop-
erty can be found in several other patterning processes, albeit without the
full regenerative, bootstrapping, and scale invariance powers seen in biology
and in our normal neighbors algorithm. For example, any pattern computed
as a function of a non-redundant coordinate system will preserve normal
neighbors when that coordinate system is disrupted by a continuous pertur-
bation. (The same is not true of redundant coordinate systems, which can
be perturbed off of the constraint surface used by the normal pattern.) Also,
coupled dynamical systems may be found to converge into typical normal
neighbor relationships, in space and in time [24].

Physically, the discrete normal neighbors algorithm has a lot in common
with Winfree tiling [69] and the kinetic tile assembly model [70]. It might
even be possible to implement a physical variant of the stochastic algorithm
with DNA tiles, using limited tile concentrations in a small fluid volume to
provide quorum feedback. (I have not investigated whether this could be
practical.) Winfree et. al. have pursued a very different direction with their
mechanism, however, using a one-pass imperative patterning style to produce
precisely-defined, fixed-scale patterns.

The stochastic algorithm is also closely related to the classic Ising cellu-
lar model of ferromagnitism (of which it is a generalization), and similarly,
the mean-field algorithm overlaps much with the Ising model’s mean-field
approximation. The melting point phenomenon seen in the normal neigh-
bors model is mathematically equivalent to the 2nd-order phase transition
representing the Curie point in the Ising model, complete with critical fluc-
tuations. Other generalizations of the Ising model, such as the cellular Potts
model [29], share important similarities, although typically designed for dif-
ferent purposes. Their potential as a model for spatial signal regeneration in
patterning seems to have gone unnoticed.

Algorithmically, the stochastic algorithm is closely related to the opti-
mization technique of simulated annealing, while the mean field algorithm

99

has close parallels with loopy belief propagation [72].

4.11 Future Directions

A variety of interesting open problems remain in relation to normal neighbors
patterning. The chief such problem I have been investigating is the applica-
tion of normal neighbors patterning to controlling active surface deformation
(Chapter 5). However, much more remains to be understood about normal
neighbors patterning itself.

Several natural extensions to the model remain to be explored. Anisotropic
patterning using substrate polarization may prove useful and biologically
insightful, probably in association with angle discrimination in neighbor-
neighbor relationships and pattern-driven control of polarization. Tempera-
ture gradients may also yield interesting effects and may be useful in modeling
gradients of developmental maturity, as seen in some embryos.

Pattern composition is an important space that remains to be investi-
gated. One might wish to hierarchically nest normal neighbors patterns, so
that coarse structure is laid out before fine structure and opportunities for
topological defects are minimized. Another strategy for minimizing the com-
plexity of patterning stages might be to layer multiple planes of patterning,
combinatorially encoding the regions of interest. Additionally, patterns of
indefinite depth with repeated or nested elements are not obviously possible
with single passes of normal neighbors patterning, but they may be possible
with iteration and recursion. It is not immediately clear how to provide such
mechanisms with finite state and communication resources. In all such cases,
context free nesting and composition may sometimes be appropriate, but
other times some communication between the pattern layers will be needed.
Bidirectional constraints may re-introduce the problems of undesired, topo-
logically unresolvable local minima (e.g. twists); unidirectional constraints
from coarse to fine may prove more robust.

A formal understanding of the properties of reliable and unreliable pat-
terns would be valuable in order to combat defects. Other defect-control
strategies might include self-paced annealing and weakly pre-breaking sym-
metries. Such strategies may even prove useful in elucidating the robustness
of natural developmental patterns.

The combination of quorum sense and surface tension provides a stable
geometry from an otherwise purely topological adjacency graph. This raises

100

the question, what other mechanisms might there be that can provide stable
geometry? Not all patterns embodying normal neighbor relationships are
necessarily characterized by scale invariant, mostly convex blobs. In Tur-
ing patterns, finite wavelengths help provide stable geometries; can this be
incorporated? It is also possible to produce interesting stabilization effects
at high hysteresis, where regions no longer need be blob-like and do not
spontaneously form and anneal; instead, they must be initially traced out,
for example, by a growing points mechanism; subsequent corrections will be
highly local.

Finally, and perhaps most importantly, does all this have anything to do
with biology? I have shown how the mechanisms here can be generalized
to much more biologically realistic encodings and functional operations. (An
important detail not yet addressed is the question of what happens when dif-
ferent state components have different neighborhood ranges, likely the case
in biology.) Biological cell fates are surely not arranged so formally, but
do the same principles apply? Can we identify, for example, the notions
of temperature, melting point, correlation length, surface tension, geometric
stabilization, conflict-free encodings, and topological defects in developmen-
tal patterning and regeneration? Formulating experiments to probe for these
phenomena may be the next great challenge.

101

Chapter 5

Morphological homeostasis

The physical forms of multicellular organisms are amazingly robust, de-
veloping correctly in spite of substantial environmental and genetic varia-
tion. This phenomenon was dubbed the “canalization” of development by
Waddington [63], reflecting the notion that there seems to exist some sort of
restoring force pulling developing organisms back to their expected pheno-
type whenever perturbed. The most dramatic example may even span entire
phyla, as organisms within a single phylum start from dramatically different
initial conditions yet converge to a common “phylotypic” stage of develop-
ment, before differentiating into their characteristic larval forms [36]. Similar
convergence effects in spite of environmental perturbations can also be seen
to varying degrees in the adult forms of animals, ranging from wound heal-
ing, to limb regeneration, to complete body reassembly after disaggregation,
as in the hydra [27].

Waddington’s hypothetical “restoring force” cannot be completely hypo-
thetical. For the dynamics of a physical system, such as an organism, to con-
verge to a common attractor, the dynamics must be sensitive to the present
state of the system – there must be feedback. In particular, the dynamics
must be sensitive to the relevant variables that characterize the expected
equilibrium state, or to strong predictors thereof, regardless of disturbances.
Though such sensitivity can be a natural consequence of inanimate dynamics,
for example, the surface tension that draws a droplet into a sphere, with the
complexity of biological forms, it is strongly suggestive of explicit feedback
control. We might dub Waddington’s phenomenon, as extended to the adult,
“morphological homeostasis”.

The aim of this chapter is to explore this problem of morphological home-

102

ostasis from the perspective of forward (re-)engineering, focusing on the
specific problem of self-stabilizing surface geometry. We can expect a self-
correcting approach based on feedback control to be valuable for engineering
and evolvability alike, since it helps to buffer adverse interacting effects of lo-
cal changes (pleiotropy), in addition to responding to environmental insults.
Attempted modifications are not necessarily themselves neutralized away;
instead, selected control points become “orthogonal” in a sense, achieving
their aims while leaving other vital properties unaffected. Morphological
homeostasis thus embodies not only an elusive engineering vision but also a
valuable design strategy for complex systems.

5.1 Decomposing the Problem

Natural biological structures are complicated, combining multiple subparts
with differing characteristics. We can simplify the problem of engineering
morphological homeostasis by breaking it into a cascade of two subproblems:
“what goes where” and “what happens here”. “What goes where” represents
a pure patterning problem with no actuation, a body plan for the structure.
“What happens here” is the problem of actuating within a region to produce
some desired local result, given that the high level, global pattern is already
specified. Of course, these problems are not independent – patterning and
pattern updates affect the downstream actuation, while actuation changes
the substrate and thereby changes both the pattern and the informational
signals on which the patterning process depends. However, I show that,
given suitably robust and self-stabilizing solutions to the two problems, able
to withstand such cross-talk effects by treating them as perturbations, if
the controllers’ goals are compatible, their combination can yield a complete
solution that retains stability.

The presence of conserved compartment maps in animals, an invisible
and highly conserved pattern of gene expression prior to detailed morpho-
genesis [36], suggests that nature may use a similar decomposition strategy.
Since perturbations in early, pre-morphogenesis development as well as local
injuries to the final form can heal, global patterning and local actuation are
both likely to involve feedback mechanisms.

The first problem in our factored approach to morphological homeostasis,
“what goes where”, can be solved by a patterning mechanism that is robust
to fairly general substrate geometries including narrow bottlenecks and pro-

103

Parameter Description Value
T Virtual temperature 0.2
ks Virtual surface tension 0.5
kq Quorum feedback 0.0125
kh Hysteresis feedback 0.125
γq Quorum signal decay coefficient 10−4

pmin p threshold allowing actuation 0.5
(Tm) Theoretical melting point (derived) 0.31

Table 5.1: Parameter values for the mean field thermal normal neighbors
patterning algorithm used throughout this chapter. Parameters are constant
except where specified.

duces meaningfully consistent patterns both before and after deformation.
The patterning mechanism must also self-correct in the face of perturbations,
without requiring a clean slate restart; incremental corrections to pattern
and geometry must eventually converge, after all. These requirements all
but eliminate self-timed pre-patterning and likely disfavor fixed-wavelength
Turing-type mechanisms. However, the normal neighbors patterning mecha-
nism of Chapter 4 fits almost perfectly.

Throughout this chapter, I use the mean field normal neighbors algo-
rithm to construct and maintain a body plan pre-pattern. For simplicity,
temperature and other parameters are left fixed (see Table 5.1; temperature
annealing remains a refinement for future work). In order to keep simulation
running time reasonable while allowing diffusion-based quorum sense to con-
verge faster than cell state updates (necessary for stability), quorum sense
morphogen concentrations are computed out-of-band by a physics module
using successive over-relaxation, rather than by the cell agents themselves.

The core of this chapter, then, will be devoted to the problem of “what
happens here”: how to produce and maintain simple geometric features in
spite of perturbations. We have at our disposal several actuation mecha-
nisms, including cell shape change, apico-basal constriction, and neighbor
traction forces (for simplicity, I don’t consider changes in cell number here).
We already know something about how to produce geometric features using
these mechanisms, given a known initial state. However, given perturba-
tions, the initial state is not known. Instead, we must find techniques that
respond appropriately to the system’s pre-existing state.

Sensitivity to the state of the system – feedback – requires either that
the intrinsic physics of the system be sensitive to system state (e.g. me-

104

chanical restoring forces) or that explicit feedback sensors be deployed by
the control algorithm. Geometric structure involves numerous degrees of
freedom, and many of these degrees of freedom are uninteresting (e.g. the
relative arrangement of equivalent cells) or undesirable (e.g. high-frequency
Fourier components). It can be valuable to leave such degrees of freedom to
autonomous energy-minimization dynamics, for example, viscous relaxation,
avoiding the control algorithm having to treat them explicitly. On the other
hand, certain degrees of freedom represent key control targets. For these, we
require sensors.

5.2 Building Distributed Sensors

Within a region, the key control targets for morphological homeostasis tend
to be distributed properties. Even simple properties like area, length, aspect
ratio, and total curvature are measurable only in a distributed sense. When
cells are largely indistinguishable, some of these distributed quantities are a
challenge to measure, because they entail a subtle requirement for symmetry
breaking.

To illustrate, consider the problem of quorum sensing. Suppose you
wished to measure the total number of “blue” cells in a region. How would
you count them? If cells were indistinguishable except for their colors and
relative positions, and the topology of the surface were cylindrical but the
exact size was unknown a priori, how would you avoid re-counting the same
blue cells over and over again? The obvious answer is to somehow break the
symmetry and elect a leader cell. By a variety of means, the leader cell can
then facilitate a count (e.g. by establishing a spanning tree and perform-
ing a tree sum). Without breaking symmetry, however, the problem seems
impossible.

By contrast, the closely related fractional quorum sensing problem is eas-
ily solved without symmetry breaking. For example, blue cells each emit a
diffusible morphogen at a defined rate. All cells, blue or not, degrade the
morphogen at a slow rate proportional to the morphogen’s local concen-
tration. The equilibrium morphogen concentration is then approximately
proportional to the fraction of blue cells. The approximation can be made
as good as needed by suitable choice of decay rate (slower for larger regions
– the characteristic exponential decay radius must be much larger than the
region size). A variation on this solution can also be applied to the absolute

105

quorum sensing problem – only the leader decays the morphogen – but again,
a leader is required.

This limitation can be summarized in a general principle: an extensive
quantity over a network can be measured only relative to some reference,
which can be no more selective than the finest broken symmetry.

In the case of an average, the entire region is used as the reference, re-
quiring no symmetry breaking. In the case of a sum, a leader appears to
be required as a reference. As an example of an interesting intermediate
case, although total area of a region apparently cannot be measured without
electing a leader, the ratio of area to perimeter (the 2D analogue of surface
area to volume ratio, inverted) can be measured if cells are aware of whether
or not they are on the region boundary. The boundary cells can act as a
reference, relying only on the intrinsically broken radial symmetry. Similar
discrete quantities, such as the maximum distance to an interior cell, can
also be measured using this broken symmetry.

Note that the choice of units is a separate issue from the nature of the ref-
erence. If cells can measure their own dimensions (e.g. by virtue of internal
references), one can equally easily compute average cell area (dimensions L2),
average cell perimeter (L), and average cell aspect ratio (1), all referenced
against the region as a whole. Averages can also be arbitrarily weighted, e.g.
by cell number or by area. For coarse body plan structure, dimensionless
measures are often preferable, so that the structure can be produced equally
well in different sizes.1 For similar reasons, measures that are also inde-
pendent of total cell number are preferable. Such measures can be termed
“scale-invariant”.

5.3 Sensing Curvature

As a simple, 1-parameter control target for geometry, let’s try to control
spherical curvature, to produce spherical caps of varying curvature radii (and
hence varying subtended angle). First, we need to construct a scale-invariant
measure of curvature.

Classical local measures of spherical curvature, such as Gaussian curva-
ture (intrinsic) and mean curvature (extrinsic) are not scale-invariant but

1Fine, repeated features with a characteristic size, such as intestinal villi or epidermal
scales – “textures” on top of the coarser structural elements – must not, of course, be
blindly re-scaled.

106

instead are expressed in terms of curvature radii; they reflect how tightly
curved the surface is locally but not how much curvature the surface as a
whole encompasses. Gaussian curvature can be integrated over the entire re-
gion area to produce a dimensionless invariant related to the subtended angle
(by the Gauss-Bonnet theorem), but this is an extensive quantity, requiring
leader election to measure. It would be preferable to avoid introducing this
complication unless absolutely necessary.

Another approach is to consider global properties based on length and
area. For example, on a spherical cap, the ratio of area to the square of
some linear dimension (e.g. perimeter or radius) uniquely identifies the angle
subtended. Radius is measurable, though somewhat awkward. On the other
hand, the ratio of area to perimeter is easily measured (as explained in the
preceding section), providing an additional non-scale-invariant measure of
curvature. This can be combined with an average of one of the local measures
of curvature – for example, multiplying by the average mean curvature – to
produce a scale-invariant measure of global curvature.

I have not rigorously studied all the possible combinations of measures
here, but by trial and error I found an interesting variation that worked par-
ticularly well. Rather than combining the ratio of area to perimeter with
another global measure, I combined it with a purely local measure of cur-
vature, producing a hybrid metric that is partly local, partly global. This
appears to be useful for controlling actuation, because the effects of actu-
ation are also partly local, partly global. The particular measure I found
most reliable was the product of the area-perimeter ratio and the extrinsic
radius of curvature along the axis parallel to the region boundary – that is,
the local circumferential curvature. The necessary axis is determined from
level curves of a decaying gradient emitted by the boundary.

5.4 Actuating Curvature

Now that we have a sensor for curvature, how do we build an actuator? The
answer is not obvious. As noted before, surfaces have numerous degrees of
freedom; all of them need to be stable, and some of them need to reach par-
ticular control targets. In almost any representation, they are cross-coupled,
due to the constraints of surface geometry and the complicated dynamics of
deformation and flow.

For example, as a first attempt, one might instruct each cell to locally

107

bend in accordance with the sign of the error reported by the curvature
sensor. Such “extrinsic” curvatures can be driven by mechanisms such as
apical/basal constriction. This approach, however, suffers from two serious
flaws: it both geometrically inconsistent, and it does nothing to keep undesir-
able degrees of freedom under control. It is inconsistent for the same reason
one cannot flatten an orange peel without tearing it: extrinsic curvatures
require, in general, non-Euclidean geometries within the surface. Distances
between points within the surface must change in order to accommodate
the extrinsic curvature. As the surface deforms extrinsically, non-Euclidean
“intrinsic curvature” will necessarily be generated by elastic and plastic de-
formation, at the cost of high stresses, which in turn fight the original the
extrinsic curvature and often lead to buckling instabilities, oscillations, and
worse.

As a simple example, a sufficiently small circular disc subject to uniform
extrinsic bending will produce a spherical cap, but beyond a certain critical
size, it will spontaneously buckle cylindrically. The spherical conformation
becomes unstable, and artificially stabilizing it requires high-gain, online con-
trol, analogous to supporting an inverted pendulum – not a practical mor-
phogenesis strategy. Ideally, plastic deformation would set in before buckling,
and the equilibrium intrinsic curvature would relax to allow the symmetric,
spherical configuration without elastic instability. This is difficult to achieve,
however, requiring surfaces that are plastically soft yet flexurally quite stiff,
and regardless, the high stresses involved remain a liability.

The complementary strategy, actuating on intrinsic curvature, is similarly
geometrically inconsistent but has some notable properties worth investigat-
ing. Unlike extrinsic curvature, which cells can very directly manipulate, the
relationship between what a cell can do locally and the resulting effects on
intrinsic curvature is quite nontrivial (given by the Brioschi formula), mak-
ing the engineering design and control problems more complicated. Small
changes to curvature can be produced by each cell changing its size and
shape – adjusting its aspect ratio, for example. The effect on curvature is
then a function of the differences in changes expressed by nearby cells. How-
ever, in order to avoid demanding that cells flatten into pancakes or stretch
into spaghetti, large changes must be achieved by plastically rearranging cells
rather than simply distorting them. A more useful actuator for large intrinsic
curvatures is thus cell-cell traction, by which cells can intercalate with their
neighbors.

How should cells exert traction forces in order to produce a given cur-

108

vature? This is, in general, quite complicated. For the particular case of
axisymmetric curvature, however, as in a spherical cap, the “purse string”
strategy is a viable option: if curvature is too small, cells near the edge should
pull on their circumferential neighbors, so as to shrink the circumference of
the mouth of the region. If curvature is too large, cells should pull on their
radial neighbors, so as to enlarge the circumference.2

This sort of boundary-focused purse-string traction can be orchestrated,
for example, by having the boundary emit a decaying gradient proportional
in strength to the locally reported curvature error. The shape of the gradient
then informs cells which direction and how hard to pull on their neighbors.
The simplest approach might be to derive the orientation from the level
curves or the gradient vector (choosing depending on the sign), and this
works. I used an alternative source, the principal axes of the Hessian (nega-
tive axis along the boundary (due to sources), positive axis elsewhere), which
seemed a little more effective in informal experiments.3

The effects of such purse-string traction are several. The application of
traction forces leads to net stresses and bending moments in the surface,
tending to open up or close the mouth of the region precisely as intended.
In response, cells intercalate as expected, circumferentially or radially, lead-
ing to changes in intrinsic curvature. However, so long as curvature error
persists, e.g. due to competing forces, the rearrangement is incessant. Re-
orienting after each rearrangement, cells continue to grapple on one another,
rearranging repeatedly. This continuing churn nullifies the yield strength of
the lattice and leads to viscous-like relaxation, a phenomenon which is both
an asset and a liability. Such churn relaxation is helpful because, as alluded
to previously, it provides a natural mechanism for uninteresting and unde-
sired degrees of freedom to relax and stabilize, without explicit control. It
is problematic because the desired target degrees of freedom relax as well,
making it difficult to sustain more than small deformations.

Additionally, there is a subtle mathematical limitation to purse-string

2Interestingly, one cannot use a similar mechanism to produce hyperbolic curvature.
Just as one cannot push with a string because it will buckle, so I have observed that
pushing with a purse string mechanism causes the boundary of the region to buckle and
foliate. Successful attempts at actuating hyperbolic curvature using traction have required
cells near the center rather than cells near the perimeter to exert traction forces.

3Note that such actuation profiles are not scale-invariant, because of the fixed charac-
teristic length scale of the gradient’s decay. However, because the feedback sensors are
scale-invariant, the resulting control algorithm is still quite flexible across a range of scales.

109

traction and all other intrinsically-based actuation methods: they become
singular when the surface is flat. Starting from a flat conformation, purse-
string traction is weak and has no way to influence which way the surface will
buckle. The sign of its influence depends on the sign of the existing extrinsic
curvature. If the sign of curvature is wrong, it cannot be corrected.

The complementary problems exhibited by extrinsic bending and purse-
string traction suggest that their combination might be more successful than
either in isolation. Indeed, merely running them simultaneously, without any
coordination, produces a drastic improvement. The combination of purse
string traction as described above and an integral controller on extrinsic
bending, both using the same curvature feedback sensor, yields a stable and
robust algorithm for producing spherical caps of arbitrary desired curvature.
Figure 5.1 shows this tandem actuation mechanism in action, illustrating the
results for several different target values of curvature.4,5

At first glance, one might expect that the two actuation mechanisms
ought to be tightly correlated, so that consistent intrinsic and extrinsic cur-
vatures would be correctly produced. However, this is not the case; the pre-
cise combination turns out to be quite forgiving. As the integral controller
governing extrinsic bending ratchets up, intrinsic churn relaxation begins to
lead towards rather than away from the desired equilibrium. At the same
time, as cells rearrange, both autonomously and deliberately, the stresses
generated by inconsistent curvatures are relaxed. Indeed, even without any
coherent direction at all to the traction forces – a traction random walk –
the combination of traction and extrinsic bending is sufficient. Convergence
is slower and stresses are higher, but it works. In general, the relative cali-
bration of intrinsic and extrinsic control affects the time to convergence and
the stress profile, but the ultimate equilibrium is robust.

4The controller expects a complete surface, as in these examples. Boundary condi-
tions matter; results, especially stability, can be quite different with, for example, open
boundaries.

5Note that the example structures in this figure never quite reach steady state – they
fluctuate between several similar conformations. The more complicated examples below
eventually seem to stabilize; I am unsure of the reason for the difference.

110

(a) (b)

(c)

Figure 5.1: Lobes with controlled curvature – spherical surfaces divided into
two regions (via normal neighbors), where green pursues a target curvature
using purse-string traction and extrinsic bending, while blue relaxes passively
(see Section 5.5). Three different target curvatures are illustrated, with ratios
1 : 3 : 5 respectively.

5.5 Complex Structures from Simple Pieces

Now that we have the beginnings of an understanding of geometric control
for simple, homogeneous regions, how might we proceed to more complicated
structures? Rather than developing a slew of more complicated sensors,
actuators, and controllers, each with multiple degrees of freedom, it would
be simpler if we could instead combine multiple regions, each with a simple
control law, to produce a more complex structure. With controllers like
our simple spherical curvature controller above, however, simply cutting and
pasting regions together does not work well. The controllers must behave
compatibly along shared boundaries, or they will fight each other. Even
if curvatures are carefully selected to be matched, evolvability is impaired,

111

because further changes require consistent modifications in multiple places
simultaneously. Were we to employ controllers of heterogeneous character
on neighboring regions, it might not even be possible to achieve a consistent
match.

Instead of directly coupling tightly controlled components to each other,
a better strategy might be to connect them through weakly controlled com-
biner (or “combinator”) regions. Instead of tightly specifying all properties
of the structure, one could specify only certain key regions and features, al-
lowing combiner regions to interpolate between them for the remainder. Such
combiner regions would insulate individual components from the geometrical
and mechanical side effects of other components, allowing their controllers
to operate quasi-independently.

Using the principle of relaxation, it turns out simple combiner regions of
this sort can be implemented quite easily. For sufficiently small structures,
I found that no controller is needed at all, just a simple routine to ensure
cells are reset their default properties. Even though the substrate has a plas-
tic yield limit that must be overcome, the churn injected from the jostling
of neighboring regions is enough to cause mechanical relaxation, producing
smooth connector regions with minimal curvature. For larger structures, I
found it necessary to add a controller that deliberately relaxes the surface
through cell-cell traction. A simple random walk of traction will often suf-
fice. A more aggressive approach, less reliant on mechanical properties and
randomization, is to use a smoothing geometric flow. A flow of this sort can
be produced, for example, by exerting traction along the major axis of the
Hessian of Gaussian curvature.

By definition, a weakly controlled relaxation combiner does little to dic-
tate the relative positions of the regions it connects. Where, then, if not
constrained by external forces, do they end up? The “what goes where”
patterning mechanism may initially lay out the connected regions in some
predictable fashion, but they effectively “float” within the combiner, and in
the long run, they move to occupy positions that minimize mechanical en-
ergy. Typically, this process is dominated by the bending energy. Regions
can be modeled, in a sense, as interacting by virtual forces, dependent on
their curvatures. Regions of the same sign of curvature typically repel, while
those of opposite sign attract. If the global conformation leads to the forma-
tion of a bend in the combiner region, subsidiary regions may interact with
this as well. For example, when several regions of large curvature of the same
sign float within a spherical combiner, they frequently align themselves along

112

2

\
1-4

/

3

(a)

2 4

\ /

1-6

/ \
3 5

(b)

Figure 5.2: Simple compound structures and their associated adjacency
graphs: (a) 3-lobe structure where red, green, and cyan regions control curva-
ture while blue combiner region relaxes geometry. (b) 4-lobe structure where
the lobes are split across two combiners (yellow and blue).

a circumferential ring, evenly spaced. These virtual forces can often be relied
on to produce a particular, final conformation in space.

Figure 5.2 shows several examples of this approach, where independently
controlled lobes are arranged by virtue of their interaction forces within a re-
laxation combiner. The number of lobes, their sizes and curvatures, and the
divisions of the combiner can all be independently specified. However, there
is no direct control available over the relative positions of the lobes. Even
breaking the lobes into groups under different combiners does not meaning-
fully affect their positions; pure relaxation combiners are, to a good approx-
imation, fully associative.

A more sophisticated combiner might try to apply explicit tractions and
bending moments in order to customize the interaction forces among the
subsidiary regions. More simply, however, we can break the associativity
of the combiners with additional passive forces and use the resulting non-
associative combiners to produce more complex shapes. An easy way to do

113

2 4

\ /

1-7-6

/ \
3 5

(a)

2 4

\ /

1-7-6

/ \
3 5

(b)

2 4 3

\ | /

1-6-5

(c)

Figure 5.3: Compound structures using relaxation combiners whose associa-
tivity is broken by surface tension. Leaf nodes control curvature; non-leaf
nodes are combiners. Combiner cells have adhesive self-affinity and mutual
disaffinity such that internal edge tension is reduced and mutual edge ten-
sion increased by (a) 40% and (b), (c) 80%. (The stronger surface tension
in the latter two helps produce more distinct conical features.) Additionally,
the normal neighbors quorum feedback kq is varied on a per-region basis to
adjust relative areas – halved in leaf nodes, and, in (a), doubled in region 7.

114

this is with differential adhesion, such that different combiners have mutual
disaffinity and hence are shaped by the surface tension forces along their
boundaries. Figure 5.3 shows several examples of structures grown this way.

5.6 Evaluation

In spite of our meager toolbox consisting of one control law and two closely
related combiners, the variety of structures we can declaratively produce is
now beginning to get interesting. It remains to be shown that the struc-
tures exhibit the robustness properties I have claimed, including self-repair,
approximate scale invariance, and tolerance of unexpected parameter varia-
tions.

Geometric self-repair follows easily from the feedback control mechanism.
One can even take geometric results of running under one program, switch to
a different program, and watch the structure reform. The results are essen-
tially indistinguishable from structures produced starting from a sphere.

Approximate scale invariance can be demonstrated by running the same
program on different size domains. Figure 5.4 demonstrates the program
of Figure 5.3a running on different sized substrates. Using the same set
of parameters as before), originally tuned for the middle size (400 cells), the
small size (192 cells) works perfectly. The large size (900 cells) has a tendency
to twin lobes but otherwise converges well (Figure 5.4b). In fact, while the
small and middle sizes develop directly with little transient twinning, the
large size develops extensive twinning with fully-actuated curvature, which
only resolves through churn and domain wall migration. The highly curved
lobe regions show a particular tendency to remain twinned, probably due
to the influence of their mutual mechanical repulsion. Such twinning can be
prevented by increasing the screening length of the quorum sense morphogens
(i.e. decreasing their decay rate), as seen in Figure 5.4c, a change perfectly
compatible with the smaller domain sizes, at the cost of longer convergence
times. Alternatively, the normal neighbors temperature parameter may be
increased (not necessarily compatible with small domains), which, even if it
does not prevent twinning, assists in eventually resolving it.

The most interesting case to explore is that of unexpected parameter
variation. For this purpose, I vary the stiffness of the substrate. This also
affords the opportunity to explore the relative roles of the two actuation
mechanisms in tandem. When substrates are stiffer, one should expect the

115

(a) (b)

(c)

Figure 5.4: Program of Figure 5.3a running on different domain sizes. (a)
Small, 192-cell domain. (b) Large, 900-cell domain, showing typical twinning
that fails to resolve. (c) Large, 900-cell domain that avoids twinning via 10x
reduced quorum sense morphogen decay rate.

extrinsic actuation to be more powerful, while on softer substrates, intrinsic
actuation should be stronger.

Table 5.2 summarizes the results of informal trials under several different
values of bending stiffness constant kB and with several different “knockout
variants” of the curvature control algorithm. As claimed, only mechanisms
that combine both extrinsic bending and traction able to succeed in all cases
(and at all with the middle stiffness). A lack of directed traction is a hin-
drance, but only inasmuch as it reduces the speed of convergence. Inter-
estingly, there are cases where each of the other mechanisms still succeed.
With high stiffness, one hardly notices the total loss of traction. With low
stiffness, some patterns develop successfully even without bending (although
their precise shapes are visibly altered).

The tandem actuation mechanism thus exhibits partial redundancy : for

116

kB = 0.8 kB = 2.4 kB = 8
Tandem actuation Default: Faila

Reduced limit stops: Ok
Ok Ok

Bending only Marginal (slow; complex
patterns fail)b

Marginal (slow;
high failure rate)b

Ok

Traction only Marginal (complex pat-
terns are slow or unsuc-
cessful)c

Unsuccessfulc Unsuccessfulc

Bending +
random traction

Slow Slow Ok

aFails by a lobe pinching off. I hypothesize this is due to excessively strong actuation
collapsing the base of the lobe rather than allowing sufficient time for the main combiner
body to slowly relax. Pinch-off can be prevented by putting tighter limit stops on actuation
of either bending angle θ0u or traction strength. The latter gives somewhat more consistent
shapes.

bFails through the development of tight, hyperbolic creases.
cUnsuccessful cases never produce definitive lobes; only slight curvatures form.

Table 5.2: Summary of results with varying substrate bending stiffness for
default algorithm and several “knockout” variants.

many situations, multiple overlapping mechanisms are available, such that
reduced function or complete failure of one pathway is quite survivable. How-
ever, due to the physical constraints of the problem, employing the full com-
plement of mechanisms is often still helpful and sometimes absolutely nec-
essary. The resulting combination mechanism is quite robust but irregularly
so, giving confusing and seemingly contradictory results to knock-out exper-
iments: Is the bending pathway necessary for curvature development? Is
the traction pathway necessary for curvature development? Is the gradient
field that feeds into traction necessary for curvature development? Differing
conditions may produce differing “answers” to these questions. The situ-
ation is surprisingly reminiscent of the difficulties encountered in knockout
experiments on real, live organisms [40].

5.7 Future Work

This chapter, I hope, has shed some fresh insight on the problems of devel-
opmental canalization and regeneration and how they can be achieved. It
has, however, barely scratched the surface of what is possible, even without

117

exploring other mechanical substrates.
There are, of course, many more geometric feature controllers to develop.

Of particular interest are ones that accept multiple neighbor connections,
such as cylinders, as well as combiners that allow a greater degree of control
in shape and placement. An interesting path to explore might be to use
functions on gradients emitted by the subsidiary regions (or their boundaries)
to construct a virtual “stress tensor” that is then actuated through neighbor
traction.

The pinch-off pathology, briefly mentioned in Table 5.2, represents a
larger problem that has only been crudely addressed: physical substrates
have limits, beyond which they fail. Actuation mechanisms for deformation
must be careful not to exceed these limits, or they will destroy their own sub-
strates. The solution used here, enforcing fixed limits on actuator outputs, is
crude because it is both hand-tuned and because it may unnecessarily limit
outputs (and hence speed and control authority) even in situations where
there is no imminent danger of damage. A more elegant mechanism might
be for the substrate to recognize its own limits and express “pain” when
over-exerted, causing actuation to back off.

A significant limitation with the current approach is that all patterning
happens simultaneously in a single stage, which is both biologically unreal-
istic and limits the amount of complexity that can be implemented without
getting stuck in local minima. Hierarchical and cascaded patterning would
alleviate this limitation, but how can such sequential mechanisms be recon-
ciled with regeneration? The answer is not clear, but perhaps a backtracking
process is involved.

118

Chapter 6

Conclusion

The explorations in this thesis do not reveal any magic bullet – a simple,
universal mechanism to explain and control development. If anything, they
cast doubt on whether such a mechanism could exist. In my experiments, no
one mechanism satisfied all possible desiderata. Fast, time-efficient mecha-
nisms required different techniques from robust, self-repairing mechanisms.
Small deformations could be created in a variety of easy ways, but large de-
formations required more sophisticated approaches. The best results, such
as Chapter 5’s tandem actuation, combined multiple low-level mechanisms
to cover for each others’ deficiencies. In many cases, compromises appear
possible by combining multiple mechanisms, although much of the details
remain to be elucidated.

Nonetheless, in spite of the diversity, the mechanisms studied here exhibit
several powerful, unifying themes, even if differently instantiated in different
cases. Two of the most prominent are energy minimization and constraint
propagation.

6.1 Energy Minimization

A key tool that appeared again and again in this work was the use of en-
ergy minimization, whether virtual energy functions or physical mechanical
energy. In Section 2.4, the natural process of physical energy minimiza-
tion allowed us to construct complex, consistent 3d structures with the most
minimal of blunt tools, control over the rate of cell proliferation. The struc-
tures themselves were not so much a record of material deposited by growth

119

processes (as, for example, in anthill fabrication [66]) as they were an energy-
minimizing response of the substrate to particular mechanical provocations.
Energy minimization freed us from having to worry about the minute details
of smooth and mathematically consistent curvatures, at the cost of being
able to specify structures only up to a certain level of precision.

In normal neighbors patterning (Chapter 4), I brought in energy mini-
mization much more prominently, as a mechanism for solving soft constraint
propagation subject to certain “well-behavedness” criteria. This time, the
energy function was programmable, responsible for establishing and main-
taining the key features of the pattern. The well-behavedness criteria and
their resulting energy terms, however, particularly surface tension, served a
similar role as mechanical energy did in Section 2.4, simplifying the level
of detail that needed to be specified and ensuring smooth, self-consistent
results.

For morphological homeostasis (Chapter 5), energy minimization was
once again the great simplifier, in addition to its underlying role in the body
plan produced by the normal neighbors patterning mechanism. Churn relax-
ation – energy minimization explicitly provoked through the injection of noise
or hints – allowed surface curvature to be controlled without precise coordi-
nation of intrinsic and extrinsic actuation. Relaxation combiners – physical
subunits whose sole control mechanism was energy minimization subject to
boundary constraints – allowed heterogeneous modules to be combined into
a single complex structure, shielding them from mutual mechanical interfer-
ence and interpolating between them to form a minimally complex connector
body. Slight adjustments to the mechanical energy properties of the bound-
aries even allowed the combiners themselves to be used as a building block.
Energy minimization appeared at all levels of the system, serving similar,
simplifying roles for each of the different layers.

In both normal neighbors patterning and morphological homeostasis (but
not organized proliferation), the injection of noise (or the mean field equiv-
alent) was critical. These systems operate at nonzero temperature, both
for seeing over ridges in the energy landscape in order to reach the desired
minima and for self-correcting in response to insults. When the minimum
energy of the system, virtual or physical, can be forced to represent the de-
sired structure, noise injection becomes a powerful tool both for convergence
and self-repair.

Organized proliferation, by contrast, lacks a mechanism to force the global
minimum of energy to represent the desired structure. It relies on catch-

120

ing the system in some satisfactory local minimum. As a result, though it
may regrow new substructures, organized proliferation cannot self-correct an
existing structure beyond the basic level provided as a consequence of the
autonomous physics of the substrate (such as sealing holes when individual
cells die). Injecting further noise will cause the details of the structure to
melt away.

Of course, blind energy minimization is not everything. For example,
scramble the cells of one of the multi-lobe structures of Chapter 5 and shut
off the controller; will the desired structure re-assemble, even with mechan-
ical noise injection? Unlikely. Trajectories do matter, as evidenced by the
need for careful annealing in certain patterns. Reasonable perturbations can
be repaired by blind energy minimization, but not arbitrary perturbations.
An important challenge for ongoing work is how to effectively shepherd tra-
jectories, whether for healing severe perturbations (which may require tem-
perature to be locally or temporarily increased) or for guiding the system
through mechanically difficult transitions, such as invagination.

An interesting and unusual feature of the energy minimization techniques
shown here, particularly in the normal neighbors patterning mechanism, is
that the energy function is modular and programmable. The normal neigh-
bors mechanism is, in a sense, like a sort of artificial chemistry. By following
simple “valence” rules, a wide, open-ended variety of complex structures can
be built up. On the other hand, there is a limit to the complexity that can
be practically implemented in a single pass, before “side reactions” (i.e. local
minima) drive down the success rate. To improve the success rate, external
scaffolding mechanisms (“catalysts”) can be used to hint the desired struc-
ture, or the process can be broken down into multiple separate stages (both
subjects of ongoing research). Occasionally, an unusual interaction akin to a
resonance structure is observed (e.g. partial melting), for which the valence
rules fail and additional special rules must be formulated.

6.2 Constraint Propagation

Constraint propagation proved to be a surprisingly apt language for express-
ing problems in distributed patterning. The self-timing strategy of Chapter 3
is, in essence, the expression of pattern computations in the form of hard,
local, quasi-acyclic constraints, with a little bit of cleverness to ensure that
the system is neither under-constrained nor over-constrained and will con-

121

verge by arc consistency alone. Partial information is passed around from
neighborhood to neighborhood and repeatedly merged. Complete informa-
tion – the set of possible values for a node narrowing down to a singleton –
indicates local convergence.

The rule of normal neighbors, too, is all about the propagation of local
constraints. There is, however, no simple rule for unfolding the answers; the
system is loopy and badly under-constrained. Instead, values are conjured
up through a local optimization process, combining soft constraints with
incentives for well-behaved geometry. The system can also be locally over-
constrained due to inconsistent hints and initial conditions, in which case
the optimization process arbitrates among competing claims, providing a
measure of robustness to contradictory information.

One of the great virtues of constraint propagation is the ability to run
a computation in many different directions, exchanging inputs for outputs.
This is used to great effect in normal neighbors patterning, allowing hints to
be derived from any number of sources (reminiscent of the myriad hints that
can be used to cajole stem cells to differentiate) and supporting regeneration
of a partially destroyed pattern. The cost of breaking symmetry without any
hints is slow convergence and a risk of defects if the pattern is complex and
annealing conditions are poor. I observe that adding hints that fully break
symmetry can dramatically improve speed of convergence.

In the self-timing approach, however, multi-directional computation is
largely ignored. The constraints themselves can be multi-directional and
are usually full of cycles between neighboring cells, but any given problem
uses only one particular acyclic chain of dependencies. Such an inflexible
approach is employed because there is no mechanism to arbitrate between
incomplete or conflicting information and because the notion that compo-
nents might fail randomly and asynchronously, necessitating recovery or re-
generation of information, is impossible to reconcile with guarantees that
answers are accurate according to the current state of the system: news of a
failure takes time to arrive. Is it possible to generalize self-timing in a way
that meaningfully accommodates failure recovery or that supports symmetry
breaking for under-constrained problems? The answer is not yet clear.

The reverse problem also remains unsolved. Is it possible to reliably flag
the completion of a symmetry-breaking feedback patterning mechanism such
as the normal neighbors mechanism? This is a critical question, particularly
for constructing cascaded and hierarchical patterning processes. Relying on
conservative, hard-coded delays, though a possibility, would be a disappoint-

122

ing solution.

6.3 Biological Questions and Implications

In software engineering folklore, there is a design strategy known as the
Principle of Least Surprise (or least astonishment). It posits that the best
design is the one that surprises its user least, i.e. that is consistent with
prior design patterns they are familiar with. In essence, it represents a form of
implicit modularity: even when common patterns cannot be factored out into
an explicit module, their consistency provides for a simplified representation
in the mind of the human observer.

Despite the many similarities between engineered artifacts and natural
organisms, as enumerated in Section 1.2.1, this is a major point of depar-
ture. In engineering, there is great benefit to solving different problems in
similar ways, even when the commonality is not abstracted out, because the
modularity still exists in the mind of the engineer. In biology, while it is quite
common to reuse existing components for new solutions, solutions developed
independently using independent parts need not bear any similarity at all.

On the other hand, different-looking mechanisms may nonetheless share
deep mathematical similarities, because of constraints imposed by mathe-
matics and by physical phenomena. Should we expect biological processes
to follow the particulars of the mechanisms proposed in this thesis? Perhaps
not. But, the mathematical phenomena demonstrated may well be quite
common. Constraint propagation and annealing, energy minimization, and
closed-loop morphological control are worth looking out for.

In many cases, these abstract mathematical mechanisms should have ob-
servable experimental signatures. Mean field annealing is suggested by a
sigmoidal transition in upstream cell fate indicators across a region bound-
ary that steadily sharpens over time. Closed-loop morphological control is
indicated when an otherwise resilient morphology can be disrupted by exper-
imentally manipulating only the behavior of a mechanical sensor. Constraint
propagation is a natural model of mutual induction, as, for example, if a swap
of tissue grafts transforms both recipient regions to be more similar to their
corresponding donor environments. Such effects are well known in the case
of organizers, and as a practical matter, some tissues will be more powerful
than others at propagating their influences. Successfully demonstrating that
most tissues have some organizing influence, however, even if weak, would

123

be strong support for the constraint model.
Additionally, closed-loop control is not merely a strategy for robust de-

velopment, it is also a strategy for regeneration. As the results of Chapter 5
suggest, robust, canalized developmental processes may already be 90% of
the mechanism necessary for regeneration. Regeneration is not necessarily
some complicated, add-on feature evolved only in exceptional circumstances.
With closed-loop morphological control, instead, it may be the default, and
rapid procedures for blood loss prevention and infection control are the so-
phisticated addition. Mammalian embryos, for example, show impressive,
scar-free wound healing; it is only with maturity that scar formation occurs.
Evolutionary pressure for good surgical wound healing or recovery from a vi-
olent limb amputation probably never existed; infection, foreign objects, and
blood loss, on the other hand, were very real threats [22]. Of course, there
is much more to investigate; I have only explored single-stage development
using an existing population of cells, not the complex, multi-stage develop-
ment characteristic of higher animals. I expect the principle will generalize,
but questions remain.

In biology, common mathematical motifs aside, not only is there little
reason to solve different problems in similar ways, there is also little reason
to solve each problem in one way only. If the inclusion of multiple solu-
tions provides any benefit, without introducing embrittling redundancy that
impedes evolvability, one can reasonably expect that multiple solutions will
indeed be found; partial redundancy is a common sight in biology. Such re-
dundancy may even improve evolvability, by allowing a wider space of initial
embryo conditions to converge to the desired state. One of the important
observations made in this thesis is that, in patterning, and especially in the
case of pattern-driven mechanical deformation, there is significant benefit to
having redundant mechanisms.

This observation suggests the possibility that a serious lamppost prob-
lem may be obscuring the mechanistic side of developmental biology. In
experiments, model organisms are overwhelmingly favored, and good model
organisms develop extremely rapidly and reliably even in artificial conditions.
Yet, model organisms like drosophila are far from simple. Do organisms like
drosophila really make sense as models for the physical aspects of devel-
opment, given that they are optimized for rapid, reliable development and
exhibit highly derived developmental features (e.g. syncytial development)?
One should expect to find therein not the simplest, essential mechanisms
for mechanical development but instead a wealth of partially redundant, in-

124

teracting mechanisms, for the sake of improved speed and reliability. My
model suggests that experiments aimed at identifying the essential mechan-
ical drivers are likely to be misleading. In search of the deep principles and
simplest, essential elements, one should expect more clarity from organisms
that develop slowly under highly stable environments, lacking evolutionary
pressure to pile on redundancy.

6.4 Going Forward

In this thesis, I showed how to attack the problem of patterning geometric
form in a deformable substrate. I developed a computational model for de-
formable cellular surfaces and showed how simple agent programs running
within the individual cells can orchestrate the development of large-scale
structures. I showed how small deformations could be produced with a vari-
ety of techniques, including naive pre-patterning, but how large deformations
required more sophisticated approaches, implying simultaneous patterning
and deformation. I showed how self-correcting patterning and closed-loop
geometry control can reliably produce structures using large deformations,
while also featuring both symmetry breaking and self-repair.

I hope I have inspired biologically-inclined readers to ponder whether,
where, and how the various mechanisms described may appear in living or-
ganisms – and to question whether conventional explanations of what known
developmental networks accomplish are sufficient to describe a robust arti-
fact living and evolving in the real world. Even if the particular mechanisms
suggested never appear, understanding how the hurdles and bugs are avoided
could furnish a fine, new set of questions.

I hope I have inspired roboticists to consider the potential of distributed,
deformable robotic substrates. We need not restrict our imaginations to
rectilinear arrangements of rigid bodies. Development is, after all, a natural
example of swarm soft robotics.

At present, synthetic biologists have their hands full trying to tame cells
into robust, scalable computational environments, tractable through forward
engineering techniques and computer-aided design. I hope, however, that I
have mapped out some of the path ahead, for when we design synthetic cells
to grow into microstructures and engineered tissues.

Even within this semi-theoretical line of inquiry, the questions are far from
resolved. Can self-timing and self-stabilization be reconciled? How might one

125

demonstrate multi-stage yet self-repairing development? Can these strategies
be extended to iterated features and recursive structures? By what means
can closed-loop developmental trajectories be shepherded through narrow,
difficult transitions?

Somehow, nature has solved these problems. Can we?

126

Bibliography

[1] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight,
R. Nagpal, E. Rauch, G. Sussman, and R. Weiss. Amorphous computing.
Technical Report AIM-1665, MIT, 1999.

[2] Andrew Adamatzky, Benjamin De Lacy Costello, and Tetsuya Asai.
Reaction-diffusion computers. Elsevier, 2005.

[3] Jonathan Bachrach, Jacob Beal, and James McLurkin. Composable
continuous space programs for robotic swarms. Neural Computing and
Applications, 19(6):825–847, 2010.

[4] Subhayu Basu, Yoram Gerchman, Cynthia H. Collins, Frances H.
Arnold, and Ron Weiss. A synthetic multicellular systems for pro-
grammed pattern formation. Nature, 434:1130–1134, April 2005.

[5] Jacob Beal. Persistent nodes for reliable memory in geographically local
networks. Technical Report AIM-2003-11, MIT, 2003.

[6] Jacob Beal. Programming an amorphous computational medium. In Un-
conventional Programming Paradigms International Workshop, Septem-
ber 2004.

[7] Jacob Beal. Functional blueprints: An approach to modularity in grown
systems. In International Conference on Swarm Intelligence, 2010.

[8] Jacob Beal and Jonathan Bachrach. Infrastructure for engineered emer-
gence in sensor/actuator networks. IEEE Intelligent Systems, pages
10–19, March/April 2006.

[9] Guy B. Blanchard, Alexandre J. Kabla, Nora L. Schultz, Lucy C. But-
ler, Benedicte Sanson, Nicole Gorfinkiel, L. Mahadevan, and Richard J.

127

Adams. Tissue tectonics: morphogenetic strain rates, cell shape change
and intercalation. Nature Methods, 6(6):458–464, 2009.

[10] G. Wayne Brodland. Do lamellipodia have the mechanical capacity to
drive convergent extension? International Journal of Developmental
Biology, 50:151 – 155, 2006.

[11] G. Wayne Brodland, Daniel I-Li Chen, and Jim H. Veldhuis. A cell-based
constitutive model for embryonic epithelia and other planar aggregates
of biological cells. International Journal of Plasticity, 22(6):965 – 995,
2006.

[12] Micah Brodsky. Self-timed patterning. In 7th International Workshop
on Spatial Computing (SCW 2014), May 2014.

[13] Xiaoguang Chen and G. Wayne Brodland. Multi-scale finite element
modeling allows the mechanics of amphibian neurulation to be eluci-
dated. Physical Biology, 5(1):015003, 2008.

[14] D. A. Clausi and G. W. Brodland. Mechanical evaluation of theories
of neurulation using computer simulations. Development, 118(3):1013–
1023, 1993.

[15] Daniel Coore. Botanical Computing: A Developmental Approach to
Generating Inter connect Topologies on an Amorphous Computer. PhD
thesis, MIT, 1999.

[16] L.A. Davidson, M.A. Koehl, R. Keller, and G.F. Oster. How do sea
urchins invaginate? Using biomechanics to distinguish between mecha-
nisms of primary invagination. Development, 121(7):2005–2018, 1995.

[17] R. Doursat. Programmable architectures that are complex and self-
organized: from morphogenesis to engineering. In S. Bullock, J. Noble,
R. Watson, and M. A. Bedau, editors, Artificial Life XI: Proceedings of
the Eleventh International Conference on the Simulation and Synthesis
of Living Systems, pages 181–188. MIT Press, Cambridge, MA, 2008.

[18] Rene Doursat. The growing canvas of biological development: Multiscale
pattern generation on an expanding lattice of gene regulatory networks.
InterJournal: Complex Systems, 1809, 2006.

128

[19] René Doursat, Carlos Sánchez, Razvan Dordea, David Fourquet, and
Taras Kowaliw. Embryomorphic engineering: Emergent innovation
through evolutionary development. In Morphogenetic engineering: to-
ward programmable complex systems, pages 275–311. Springer, 2012.

[20] René Doursat, Hiroki Sayama, and Olivier Michel. Morphogenetic engi-
neering: toward programmable complex systems. Springer, 2012.

[21] A. Eldar, B. Z. Shilo, and N. Barkai. Elucidating mechanisms underlying
robustness of morphogen gradients. Current Opinion in Genetics &
Development, 14(4):435–9, August 2004.

[22] Mark W. J. Ferguson and Sharon O’Kane. Scar-free healing: from em-
bryonic mechanisms to adult therapeutic intervention. Philosophical
Transactions of the Royal Society of London. Series B: Biological Sci-
ences, 359(1445):839–850, 2004.

[23] V. French. Pattern regulation and regeneration. Philosophical
Transactions of the Royal Society of London. B, Biological Sciences,
295(1078):601–617, 1981.

[24] Chikara Furusawa and Kunihiko Kaneko. Robust development as a
consequence of generated positional information. Journal of Theoretical
Biology, 224(4):413 – 435, 2003.

[25] Jean-Louis Giavitto and Olivier Michel. MGS: a rule-based program-
ming language for complex objects and collections. Electronic Notes in
Theoretical Computer Science, 59(4):286–304, 2001.

[26] Lorna J. Gibson and Michael F. Ashby. Cellular solids. Cambridge
University Press, 1997.

[27] Alfred Gierer, S. Berking, H. Bode, Charles N. David, K. Flick, G. Hans-
mann, H. Schaller, and E. Trenkner. Regeneration of hydra from reag-
gregated cells. Nature/New Biology, 239(88):98–101, 1972.

[28] S.C. Goldstein, J.D. Campbell, and T.C. Mowry. Programmable matter.
Computer, 38(6):99–101, June 2005.

[29] François Graner and James A. Glazier. Simulation of biological cell
sorting using a two-dimensional extended Potts model. Phys. Rev. Lett.,
69:2013–2016, September 1992.

129

[30] Viktor Hamburger and Howard L. Hamilton. A series of normal stages in
the development of the chick embryo. Journal of Morphology, 88(1):49–
92, 1951.

[31] Mahiar Hamedi, Robert Forchheimer, and Olle Inganas. Towards woven
logic from organic electronic fibres. Nature Materials, 6:357–362, 2007.

[32] E. Hawkes, B. An, N. M. Benbernou, H. Tanaka, S. Kim, E. D. Demaine,
D. Rus, and R. J. Wood. Programmable matter by folding. Proceedings
of the National Academy of Sciences, 107(28):12441–12445, 2010.

[33] Wilhelm His. Unsere Krperform und das physiologische Problem ihrer
Entstehung. Verlag von F.C.W. Vogel, 1874.

[34] Antone G. Jacobson, George F. Oster, Garrett M. Odell, and Louis Y.
Cheng. Neurulation and the cortical tractor model for epithelial folding.
Journal of Embryology and Experimental Morphology, 96(1):19–49, July
1986.

[35] Seunghee S. Jang, Kevin T. Oishi, Robert G. Egbert, and Eric Klavins.
Specification and simulation of synthetic multicelled behaviors. ACS
Synthetic Biology, 1(8):365–374, 2012.

[36] Marc W. Kirschner and John C. Gerhart. The Plausibility of Life: Re-
solving Darwin’s Dilemma. Yale University Press, 2005.

[37] Attila Kondacs. Biologically-inspired self-assembly of 2d shapes, using
global-to-local compilation. In International Joint Conference on Arti-
ficial Intelligence (IJCAI), 2003.

[38] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, July 1978.

[39] Lev Davidovich Landau and Eugin M. Lifshitz. Course of Theoretical
Physics Vol 7: Theory of Elasticity. Pergamon Press, 3rd edition, 1986.

[40] Yuri Lazebnik. Can a biologist fix a radio? – or, what I learned while
studying apoptosis. Cancer Cell, 2(3):179 – 182, 2002.

[41] Hanying Li, Joshua D. Carter, and Thomas H. LaBean. Nanofabrication
by DNA self-assembly. Materials Today, 12(5):24 – 32, 2009.

130

[42] Hans Meinhardt. Biological pattern formation as a complex dynamic
phenomenon. In Alessandra Carbone, Misha Gromov, and Przemys-
law Prusinkiewicz, editors, Pattern Formation in Biology, Vision, and
Dynamics, pages 99–132. World Scientific, 2000.

[43] Jay E. Mittenthal. The rule of normal neighbors: A hypothesis for
morphogenetic pattern regulation. Developmental Biology, 88(1):15 –
26, 1981.

[44] Alyssa S. Morgan and Daniel N. Coore. Modeling intertia in an amor-
phous computing medium. In The 6th International Workshop on Spa-
tial Computing (SCW 2013), May 2013.

[45] Radhika Nagpal. Programmable Self-Assembly: Constructing Global
Shape using Biologically-inspired Local Interactions and Origami Math-
ematics. PhD thesis, MIT, 2001.

[46] Radhika Nagpal, Ankit Patel, and Matthew C. Gibson. Epithelial topol-
ogy. BioEssays, 30(3), 2008.

[47] Andrew C. Oates, Luis G. Morelli, and Saúl Ares. Patterning embryos
with oscillations: structure, function and dynamics of the vertebrate
segmentation clock. Development, 139(4):625–639, 2012.

[48] G. M. Odell, G. Oster, P. Alberch, and B. Burnside. The mechanical
basis of morphogenesis : I. epithelial folding and invagination. Develop-
mental Biology, 85(2):446 – 462, 1981.

[49] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Algorithmic
Beauty of Plants. Springer-Verlag, New York, 1990.

[50] M. I. Rabinovich, A. B. Ezersky, and P. D. Weidman. The Dynamics of
Patterns. World Scientific, 2000.

[51] Alexey Radul. Propagation Networks: A Flexible and Expressive Sub-
strate for Computation. PhD thesis, MIT, 2009.

[52] Ashok Ramasubramanian, Kimberly Latacha, Jessica Benjamin, Dmitry
Voronov, Arvind Ravi, and Larry Taber. Computational model for early
cardiac looping. Annals of Biomedical Engineering, pages 1–15, 2006.

131

[53] Ashok Ramasubramanian and Larry A. Taber. Computational modeling
of morphogenesis regulated by mechanical feedback. Biomechanics and
Modeling in Mechanobiology, 7(2), 2007.

[54] J. M. W. Slack. From Egg to Embryo: Regional Specification in Early
Development (Developmental and Cell Biology Series). Cambridge Uni-
versity Press, 1991.

[55] Jens Sparsø and S. Furber. Principles of Asynchronous Circuit Design:
A Systems Perspective. European low-power initiative for electronic
system design. Springer, 2001.

[56] Antoine Spicher and Olivier Michel. Declarative modeling of a
neurulation-like process. BioSystems, 87:281–288, February 2006.

[57] Malcolm S. Steinberg. Reconstruction of tissues by dissociated cells.
Science, 141(3579):401–408, 1963.

[58] Gerald Jay Sussman and Alexey Radul. The art of the propagator. Tech-
nical Report MIT-CSAIL-TR-2009-002, MIT CSAIL, January 2009.

[59] L. A. Taber. Compression of fluid-filled spherical shells by rigid inden-
ters. Journal of Applied Mechanics, 50(4a):717–722, 1983.

[60] Xiaoming Tao, editor. Smart fibres, fabrics, and clothing. CRC Press,
2001.

[61] D’Arcy Wentworth Thompson. On growth and form. Cambridge Uni-
versity Press, 1945.

[62] A. M. Turing. The chemical basis of morphogenesis. Philosophical Trans-
actions of the Royal Society of London. Series B, Biological Sciences,
237(641):37–72, 1952.

[63] C. H. Waddington. Canalization of development and the inheritance of
acquired characters. Nature, 150:563–565, November 1942.

[64] Denis Weaire and Stefan Hutzler. The Physics of Foams. Oxford Uni-
versity Press, 1999.

[65] Ron Weiss. Cellular Computation and Communications using Engi-
neered Genetic Regular Networks. PhD thesis, MIT, 2001.

132

[66] Justin Werfel. Anthills built to order: Automating construction with
artificial swarms. PhD thesis, MIT, 2006.

[67] Justin Werfel, Kirstin Petersen, and Radhika Nagpal. Designing collec-
tive behavior in a termite-inspired robot construction team. Science,
343(6172):754–758, 2014.

[68] Geoffry B. West and James H. Brown. Life’s universal scaling laws.
Physics Today, 57(9), 2004.

[69] Erik Winfree. On the Computational Power of DNA Annealing and
Ligation. In DNA Based Computers, volume 27 of DIMACS. American
Mathematical Society, 1995.

[70] Erik Winfree. Simulations of computing by self-assembly. In Proceedings
of the 4th DIMACS Meeting on DNA Based Computers, June 1998.

[71] Daniel Yamins. A Theory of Local-to-Global Algorithms for One-
Dimensional Spatial Multi-Agent Systems. PhD thesis, Harvard, De-
cember 2007.

[72] Jonathan S. Yedidia, W.T. Freeman, and Y. Weiss. Constructing free-
energy approximations and generalized belief propagation algorithms.
IEEE Transactions on Information Theory, 51(7):2282–2312, July 2005.

[73] Mark Yim, Paul White, Michael Park, and Jimmy Sastra. Modular
self-reconfigurable robots. In Robert A. Meyers, editor, Encyclopedia of
Complexity and Systems Science, pages 5618–5631. Springer New York,
2009.

133

