White Lies about Biology: Programming Deformable Surfaces

Micah Brodsky ICCS 2011

Fields vs. Geometry

Spatial patterning:

Courtesy of J. Langeland, S. Paddock, and S. Carroll, HHMI, Dept. of Molecular Biology, University of Wisconsin. Noncommercial, educational use only.

Geometric patterning:

- Dynamic, nonlinear substrate
- Complex, overlapping actuation mechanisms

(copyrighted picture – drosophila embryo during germ band extension)

Parkhurst lab, Fred Hutchinson CRC

A Simplified Laboratory?

- Goal:
 - Capture essential physical / computational problems
 - ...Without quantitatively mimicking details of any particular system
- Must confront deformation, 3D

Low-Fidelity "21/2-D" Modeling

- Surfaces instead of volumes
- Discrete cellularization
- Transparent control parameters

Cell Control

• Area (A_{0, k_A})

• Surface tension ($\sigma_{p,q}$)

• Bending $(\theta_0, \Delta \theta_{ij}, k_{\theta})$

(and a few more minor ones)

Collective Behaviors (I)

• Elastic convergence

Collective Behaviors (II)

• Plastic yielding:

Implementation

- ~10kLoC C++
 - Pthreads / Windows threads
- Adaptive gradient descent

Challenges and Possible Solutions

- Convergence Timing
- Forming and Fighting the Material
- Spatial-Mechanical Leakage

Convergence Timing (I)

Regulatory networks take time to converge:

Convergence Timing (II)

- Spatial patterning can be feed-forward (or self-stabilizing)
 - Here, temporary input glitches don't matter

$$\begin{array}{c} \text{Input} \longrightarrow & f_1() \longrightarrow & f_2() \longrightarrow & f_3() \longrightarrow & \text{Spatial} \\ \text{conditions} & & & & & & & & & \\ \end{array}$$

• But, deformation causes spurious feedback loops

- And, plastic deformation is irreversible
- Now what?

Convergence Timing: Solutions?

- Safety margins
 - Cons: Development speed is precious
- Self-stabilizing geometry
 - (E.g. hydra?)
 - Cons: Really hard, especially with plastic yielding?
- Self-timed circuits
 - Cons:
 - Has anyone ever seen this?
 - How do you do self-timed gradients???

Forming and Fighting the Material

- Material response is complicated
 - Too many sensitive dependencies
 - \Rightarrow Not robust or evolvable
- Solutions?
 - Feedback control
 - Multi-modal actuation

Spatial-Mechanical Leakage

- Stress & strain are non-local
 - Deformation in one place affects the whole structure
 - \Rightarrow Not very robust or evolvable
- Solutions?
 - Feedback isolation
 - Self-stabilization
 - Mechanical restraints

Conclusions

- Lightweight "2½-D" surface modeling captures many key developmental phenomena
- Developmental theory is missing answers to deep questions raised by deformation
- Got any good hypotheses? 😳

Questions?

Related Work

- Amorphous computing
 - Origami Shape Language [Nagpal01]
 - Growing Points Language [Coore99]
 - Modular robotics work...
- Mechanical hypothesis modeling
 - [Odell81], [Jacobson86], [Davidson95], ...
 - Taber et. al.

— ...

- Multi-scale, data-driven modeling
 - Brodland et. al. ([Brodland06], [Chen08])
- Robustness in developmental systems biology
 [Eldar04], ...
- Classical developmental patterning theory
 - Meinhardt et. al., ...