

Nooks for NT

by

Micah Z. Brodsky
&

Eric K. Kochhar

A senior thesis submitted in partial fulfillment of

the requirements of the degree of

Bachelor of Science
With Departmental Honors

Computer Science & Engineering

University of Washington

March 2006

Presentation of work given on May 13, 2005

Thesis and presentation approved by ________________________
 Professor Henry M. Levy

Date ________________

University of Washington

Abstract

Nooks for NT

Micah Z. Brodsky
&

Eric K. Kochhar

Advisor:

Professor Henry M. Levy
Computer Science & Engineering

Today’s computer users can expect their computers to fail frequently, forcing restarts,
loss of data, and loss of time. On commodity systems such as Windows, 85% of failures
are caused by bugs in device drivers [Swift05]. Device drivers are privileged software
modules that control hardware devices, such as disks and audio cards, and are extremely
complex and difficult to build. Unfortunately, that complex code is often written by
inexperienced programmers at device companies, rather than by experienced kernel
programmers in the company that wrote the operating system.

The goal of Nooks for NT is to demonstrate the feasibility of an isolation system to
greatly reduce the number of Windows system failures by inserting a new protection
layer between device drivers and the core of the operating system kernel. We create a
new environment for driver execution, using memory isolation to ensure that driver bugs
do not corrupt the rest of the system. Once Nooks detects a driver failure, it unloads the
failed driver and reloads a working version of the driver without any user intervention.
Nooks for NT is based upon the original version of Nooks developed for Linux by Mike
Swift in his thesis work at the University of Washington. We reimplemented the
architecture in Windows 2000, which has a much more sophisticated kernel environment
and a much more complex driver and memory management model. This brought to light
some important lessons about the interactions between reliability and complexity and the
prospects for bringing backward-compatible reliability subsystems to the mass market.

In this thesis, we begin by explaining the concepts and architecture behind Nooks. We
then discuss the differences between kernel development in Linux versus Windows, with
a focus on driver related issues. Next, we cover our partial implementation of Nooks in
Windows 2000, focusing on our design choices, the notable challenges we encountered,
what we did and did not complete, possible future improvements, and a brief evaluation
of our results. We conclude with some ideas for expanding the scope of Nooks and
possible paths for future work.

i

Table of Contents

Acknowledgements .. iii

1. Introduction... 1

1.1. The Problem ... 1
2. The Nooks Approach .. 2

2.1. Architecture.. 2
2.1.1. Protection Domains... 2
2.1.2. Wrappers ... 3
2.1.3. Resource Tracking .. 3
2.1.4. Error Detection ... 3
2.1.5. Clean-Up and Recovery.. 4

2.2. Discussion.. 4
2.2.1. Why Best Effort Only ... 4
2.2.3. Why LPDs?.. 5

3. Operating System Environments Background .. 5
3.1. Linux ... 5
3.2. Windows.. 6

3.2.1. Programming Style ... 7
3.2.2. Windows Driver Model .. 7

4. Nooks for NT ... 8
4.1. Goals.. 8
4.2. The Design Under Windows ... 9

4.2.1. Binary Compatibility .. 9
4.2.1.1. NT Binary Ecology... 9
4.2.1.2. The Nooks Loader.. 9
4.2.1.3. Macros and Object Tracking .. 10
4.2.1.4. Challenges ... 11

4.2.2. Libraries and Driver-Driver Interactions .. 11
4.2.2.1. NT IO Management ... 11
4.2.2.2. Boundary of Isolation .. 13

4.2.2.2.1. Introduction... 13
4.2.2.2.2. The Kernel / Driver Boundary... 13
4.2.2.2.3. The Driver / Driver Boundaries... 14

4.2.2.2.3.1. Optimization ... 15
4.2.2.3. Reference Counting and Crash Recovery.. 16

4.2.3. Memory Management .. 16
4.2.3.1. NT Memory Management ... 16
4.2.3.2. Nooks for NT Memory Management Implementation....................... 17
4.2.3.3. Handling User-Space Access ... 18
4.2.3.4. Memory Management: Picking The Right Approach 19
4.2.3.5. Out of Memory Corner Cases... 21

4.2.4. Asynchrony .. 23
4.2.4.1. NT Asynchrony .. 23

ii

4.2.4.2. Synchronization Interoperability & Asynchrony Safety.................... 23
4.2.4.3. Asynchrony in the Driver Model .. 24
4.2.4.4. Leveraging Asynchrony to Reduce Domain Transitions 24
4.2.4.5. Kernel Preemptability and SMP Support ... 24

4.3. Evaluation and Limitations... 25
5. Expanding the Scope: Flyweight Isolation ... 26

5.1. Introduction.. 26
5.2. Justification .. 26
5.3. Supporting Data ... 27
5.4. Conclusions ... 29

6. Future Work.. 29
6.1. Nooks Performance.. 29

6.1.1. Breakout Access .. 29
6.1.2. Memory Reservation Service ... 30
6.1.3. Video Drivers... 30

6.2. Quality and Generality of Isolation.. 30
6.3. Integrity Beyond Domains .. 31

7. Conclusion ... 32

Bibliography .. 34

iii

Acknowledgements

This project would never have been possible without the support, advice, and time of a
large group of people. Professor Hank Levy taught the operating systems course that got
us started in the first place and served as our faculty advisor throughout the project,
keeping us honest about our progress and deadlines. We are deeply in debt to him for all
his assistance and especially his patience with us completing this thesis!

Without Mike Swift there would be no Nooks. But, he provided more than just a
research topic; his support, careful guidance, and genuine interest in our work were
invaluable. Mike constantly challenged us when things were going well and provided
inspiration during difficult stretches. Over the years we worked with him he became
more than just an advisor, he became our friend.

We would also like to thank Gary Kimura, who lead the Operating Systems Capstone
course, offering us his many years of experience and the Windows source code. Without
this, Nooks for NT would have been impossible. Gary was always available to help us,
and when he couldn’t answer our questions, he found people who could. He also brought
in several of his old colleagues from Microsoft to speak to us, which proved extremely
helpful to our project. We would like to thank Landy Wang in particular, for his
excellent suggestions and his additional assistance by email.

We would like to thank Jordan Hom, Jai Patel, and James Crompton for working with us
during the early stages of the project and for their contributions to object tracking,
recovery, wrapper generation, and debugging.

We also would like to thank our parents for the lifelong support and guidance they have
provided us. Without them we would never have been as successful as we have, and
none of this would have been possible.

Eric would also like to thank Melanie Madden for putting up with him working on this
project on weekdays and every Saturday in addition to all of his undergraduate classes.
She was always extremely supportive despite never getting to see him and helped
motivate him to complete this thesis.

 1

1. Introduction
1.1. The Problem

Today’s computers fail far too often. These failures result in interruptions, loss of data,
and loss of time. Computer crashes cost over 250 billion dollars in damages each year
for small businesses alone, according to the London Business School’s 2002 estimates

[Butler02]. The high costs of crashes, and the resulting frustration of computer users, is
one of the main shortcomings of today’s computer technology.

These days, far more problems are attributable to software than hardware [Gray86]
[Chou97]. A large portion of these software failures result from third-party extensions
added to the operating system, such as device drivers. User applications running on a
system are isolated from each others’ faults, and the kernel is isolated from application
failures, but in commodity operating systems, no such protection is afforded to kernel
extensions. Device drivers, because they often require close coupling with the kernel and
with low-level hardware resources, are typically implemented as kernel extensions rather
than user-mode components. The resulting high privilege of device drivers means that a
failure or a crash in a device driver typically brings down the whole system. Thus, the
reliability of a system’s device drivers has a critical impact on the reliability of the
system as a whole.

Unfortunately, a powerful array of causes conspires against high standards for device
driver quality. As low-level systems code, drivers present an extreme technical challenge
to develop, especially for highly sophisticated kernels like NT. Besides simply
supporting their hardware, drivers must deal with the complexity of the operating system
environment and interface, with concurrency and asynchronous requests, with
multiprocessor platforms, with power management, and with dynamic hardware
insertion, configuration, and removal (“Plug and Play”). Furthermore, drivers are largely
developed by third-party hardware manufacturers who often have little interest in
software and who lack the kind of in-house expertise available to the system vendor. For
many of these hardware companies, driver development is simply an afterthought. Such
hardware manufacturers are often not held responsible for writing reliable code, because
the system vendor typically gets blamed for any problems that appear. Finally, driver
code has a much shorter lifecycle than kernel code, as hardware is replaced every few
years, but kernels last for decades or more. The net result is that driver code tends to be
of far lower quality than kernel code [Chou01], with a greatly disproportionate impact on
system stability.

Indeed, in Windows XP, 85% of total system failures are caused by device drivers
[Swift05]. As the core components of commodity operating systems have become more
and more reliable over the years, the increasing significance of kernel extensions for
system unreliability has come to the attention of Microsoft and the research community.
Traditionally, the research community has explored safe kernel extension through radical
new approaches to system design [Bershad95] [Engler95] [Seltzer96], without addressing
the question of how to make kernel extensions safe in existing commodity systems.
Vendors of commodity systems, for the most part, have been hesitant to implement such

 2

radical, all-or-nothing solutions. Indeed, with such a broad market, not all Windows
customers are likely to be interested in trading performance for reliability. Compatibility
constraints would also demand that the system continue supporting existing, unsafe driver
models. Furthermore, the Windows team’s experience has shown that hardware
companies are rarely willing to take extra steps to assure the reliability of their drivers,
especially when it comes at the expense of their devices’ performance [Wang04], and
hence they would prefer to continue using their existing code bases and the old driver
models. Radical solutions would thus be simultaneously expensive to implement and
unlikely to gain any foothold. With more than 35,000 Windows drivers on the market

[Swift05], there’s little hope of fixing them all.

With no reasonable means to fix so many existing drivers and with driver bugs causing so
many crashes, any attempt to improve system reliability must do so in spite of buggy
drivers. Any attempt via improving driver reliability must be able to handle the
numerous drivers on the market today and still protect the system from driver failures. In
order to achieve these goals, such a reliability system must be transparent to existing
drivers. In order to be practical, it must be also efficient, and for the most part,
transparent to the rest of the kernel. Only then does it have a chance of truly impacting
commodity operating systems.

2. The Nooks Approach
2.1. Architecture

Nooks is a driver-reliability subsystem created to improve system reliability while
satisfying the goals listed above. It is invisible to drivers, largely invisible to the normal
operation of the kernel, and does not impose an enormous performance cost, at the same
time greatly increasing system reliability. Nooks improves driver-reliability by isolating
drivers from the rest of the kernel. This allows each driver to be monitored carefully,
tracking all its interactions with the rest of the system. If a driver fails, Nooks is able to
tear down and remove the isolated driver and then restart a new instance so that the
system is able to continue running without a reboot. On an unprotected system, such a
failure would propagate into the kernel, causing a system crash. The Nooks architecture,
designed to achieve all of these goals, is made up of five main components: protection
domains, wrappers, resource tracking, error detection, and clean-up and recovery.

2.1.1. Protection Domains

A protection domain consists of a logical container for one or more drivers with a single
shared fate. Hardware memory protection and well-defined cross-domain calling
semantics define the boundaries of the domain, so that a fault in one driver may crash
them all, but failures are contained within the domain. Thus, conceptually, a protection
domain can be thought of as a barrier surrounding a group of drivers or a “driver sub-
process”. Although the drivers run under the same address space as the kernel, their
access to the address space is limited by the protection domain’s memory management
code so that they can only write to addresses they specifically need access to. Placing
such a barrier around drivers allows us to see all control and data transfers in and out of

 3

the drivers. Combining protection domains with wrappers, we can track calls into the
driver, the system resources it allocates, the system resources it has access to, etc., and
any actions it may take that could propagate a fault into the kernel. Thus, protection
domains are the most fundamental part of Nooks, upon which all the other abstractions
and components are built.

2.1.2. Wrappers

Protection domains alone, however, are not particularly useful, because their strong
isolation breaks compatibility with existing interfaces between kernel and driver. To
allow drivers to seamlessly operate within protection domains, we provide interface
“wrappers”, adapter functions matching the original driver-kernel interfaces on either end
but explicitly crossing the protection domain boundary in the middle. Besides serving as
gateways, wrappers also provide crucial points for monitoring driver-kernel interactions,
because they are the sole means of control transfer in and out of a domain.

Two conceptually similar classes of wrappers exist, one for kernel to driver calls and one
for driver to kernel calls. The two classes require different mechanisms to attach to their
respective interfaces, however. While installing kernel to driver wrappers is often a
matter of making simple changes to the associated private kernel source code, modifying
third party drivers to call out only through wrappers is somewhat more complicated. This
is accomplished using a special binary loader which remaps statically imported kernel
function calls to their respective wrapper routines. Using these statically interposed
wrappers, the remaining cases, function pointers provided at run time, can be handled
dynamically by substituting them with dynamically generated stubs.

2.1.3. Resource Tracking

Centrally tracking the driver’s resource usage serves as an important infrastructure
subsystem within the Nooks architecture. While a driver runs, it creates, acquires, and
modifies system resources; resource tracking (or “object tracking”) uses code invoked by
the wrappers to maintain a comprehensive table of all such resources used by the driver
and any interrelationships among them. Since errors in a driver can cause it to misuse or
corrupt system resources, risking a crash, the object tracker is used to duplicate and
synchronize mutable objects, such that the kernel never sees the driver's changes to an
object until they've been verified to be safe. This same verification is also used to check
invariants about driver's behavior, for example, preventing double-frees, so that a fault
can be raised and the driver removed and restarted. Finally, when a driver fails, any
resources it owned need to be released. The object tracker maintains all the information
necessary to safely free shared resources one-by-one after a driver crash. It is important
to note that the object tracker itself is a rather unintelligent service, however; it serves
only as a warehouse of information about a protection domain. Higher-level services,
like error detection and recovery, use the object tracker as a primitive tool.

2.1.4. Error Detection

 4

Error detection is a crucial, high-level service provided by the system as a whole, based
upon checks distributed throughout the wrappers. Using the tools provided by wrappers,
resource tracking, and memory protection, error detection is responsible for catching any
driver failures and triggering the recovery process before system corruption can occur
(and, ideally, before the user is inconvenienced by a major service lapse). Error detection
in Nooks is something of an approximate process, because of its best-effort design and
because the interfaces isolated are rather complicated and ill-specified. There are roughly
six classes of errors Nooks can detect: non-continuable processor exceptions (including
memory protection violations), resource invariant violations, invalid parameters,
corrupted objects, resource consumption limits, and broken service guarantees. The first
two are relatively straightforward to implement comprehensively, but the others are more
ill-defined and are implemented approximately or on an as-needed basis. Error detection
will never be perfect, but given enough effort, it can be improved to cope with an
arbitrarily wide space of errors and a broad variety of drivers.

2.1.5. Clean-Up and Recovery

Once a driver fault is detected, Nooks begins a rather elaborate procedure for safely
unloading and reloading the driver. Conceptually, the key elements of this process are
getting all threads of execution safely out of the driver, synchronizing, disentangling the
driver from the rest of the system, freeing up the driver’s resources, and triggering an
appropriate unload/reload sequence. Much of this process revolves around repeatedly
walking through the object tracker, releasing resources and disconnecting relationships, a
process we casually refer to as “garbage collection”. The details are complicated, nasty,
and highly system-dependent, but for the most part, they follow the same basic recipe.

2.2. Discussion
2.2.1. Why Best Effort Only

Nooks was designed around two core principles: be resistant to faults, not impervious to
them, and be robust against mistakes, not malicious abuse. Nooks is not intended to
handle all imaginable failures; it is a best-effort-only system that tries to protect against
the common case and thereby make a practical improvement in system reliability.
Success is gauged not in terms of theoretical correctness-by-construction, but rather, as a
measurable improvement in the end-user’s experience. Handling all possible failure
cases would be an irrelevant and impossible goal, and trying to do so would likely impose
unreasonable performance degradation in a system designed for backward compatibility.

Nooks also does not attempt to protect against deliberate abuse. Protecting against abuse
requires a much more complex and involved isolation system than one just protecting
against bugs, and trying to protect against malicious kernel extensions at this level makes
little sense. Few unprivileged users have any need to install kernel extensions. As the
history of Windows applications shows, few application developers are interested in the
extreme effort associated with building a kernel extension. Most legitimate kernel
extensions are drivers, virus scanners, server modules, and other privileged or
administrative services tightly coupled with the operating system. Furthermore, it is

 5

virtually impossible to prevent such extensions from abusing the system once they are
loaded; a network driver can always send spam and forward worms; a keyboard driver
can always sniff passwords. Instead of imposing draconian restrictions on legitimate
kernel modules, it makes much more sense to secure the mechanism used to load kernel
modules and prevent abusive modules from being installed in the first place. Compared
to restricting abuse once modules are loaded, this is an easy problem.

2.2.3. Why LPDs?

Besides the above two core principles around which Nooks was designed, another key
design goal was to make the system adoptable and attractive for existing commodity
operating systems. In particular, this means easy integration into existing OS code bases,
support for existing drivers without modifications, and low runtime overhead. In order to
meet these constraints, Nooks uses a novel approach based around lightweight protection
domains. While many other research architectures for safe kernel extensibility have been
explored, none of them meet all the constraints to the extent that LPDs can. The
Software Fault Isolation (SWFI) memory isolation mechanism [Wahbe93] has been used
successfully as the basis for safe kernel extensions [Seltzer96], but typical
implementations have depended upon special compilers and were unable to isolate
arbitrary existing binaries. Also, SWFI alone does not address the problems of safe,
transparent integration and recovery, which requires either re-architecting the driver
interfaces or implementing a LPD-like structure based on SWFI (which may well be
possible). Type-safe languages similarly provide a memory isolation mechanism, as well
as some level of interface safety, but they require completely re-architected interfaces and
support for an entirely new programming model in the kernel [Bershad95]. User-mode
drivers have also been used in some systems [Herder06] [Hunt97], but they are
exceedingly difficult to retrofit into an existing operating system due to deadlock and
performance considerations, to say nothing of backward compatibility [Microsoft05_2].
The most viable alternative to the LPD is perhaps the virtual machine. Whole-system
VMs partitioning the user applications are not useful, because they inappropriately tie
together the fates of drivers and applications, but per-driver VMs are a reasonable
possibility [Erlingsson05] [LeVasseur04] [Fraser04]. However, VMs are rather costly
structures to use, and they offer surprisingly few advantages as well as some new
compatibility hazards, the drivers running in the environment of the wrong kernel.
Unlike these alternatives, Nooks and its LPDs do not require any major shift in operating
system or driver development, allow for easy integration with current platforms, are fairly
lightweight, and properly handle driver recovery.

3. Operating System Environments Background
3.1. Linux

The Linux 2.4.18 kernel, under which Nooks was originally developed, is a far simpler
and more simplistic system than NT. Little time went into original system engineering,
since the kernel was developed from what was began as a toy system. Linux has since
grown in large part by accretion as new demands and new markets appeared. The 2.4
kernel environment is relatively simple and unsophisticated compared to systems like

 6

NT. Although SMP is supported, the kernel is non-preemptable, and many operations still
hide behind a single master lock. Kernel code and data is not pageable, and most of the
system memory space is simply direct-mapped.

Device driver interfaces are similarly simplistic and accreted. Each driver interface is
designed as a domain-specific plug-in specification for the kernel. The driver interface
protocols and object models are much less complicated than a powerful, centralized
interface like NT’s, though the individual, unique models are far more numerous. Support
for power management and Plug and Play is limited and is largely implemented in user-
mode in an ad-hoc manner. This simplicity may have a silver lining, however, in that it
may make driver development easier and hence potentially result in more reliable
drivers.1

Another distinct feature of Linux is its open-source development model. Unlike
Windows, which operates on a binary-only economy, the Linux kernel lacks a
standardized binary extension interface, and so the kernel and practically all its
extensions are distributed in source form. Source code for the kernel and drivers is thus
readily available for anyone to study from or modify, facilitating both learning by
example and hack-like constructions. Leveraging this source-only environment, the
kernel also relies heavily on compile-time configuration in lieu of a run-time
configuration store like the Windows registry. An incredible variety of configuration and
customization choices are available at compile time, often effected through preprocessor
source code transformations, but comparatively few options can be set given a pre-
existing binary, and almost none can be set at run-time.

From a research perspective, the net result is that Linux 2.4 is friendlier to budding
research projects but less representative of a modern operating system. With its
simplified, partitioned architecture, Linux 2.4 makes it easier to focus on the core
concepts and feasibility assessment of a new research system, without succumbing to the
greater challenges and overwhelming details necessary for a mass-market production
implementation. However, the same simplicity also limits the efficiency, power, and
growth potential of the operating system. Because of this, the Linux system architects
have been pushing more and more in the direction of an NT-like design in recent years.
The most recent version, 2.6, incorporates a number of elements characteristic of NT,
such as kernel preemptability and a unified driver object model. While still
comparatively simplistic, Linux remains a rapidly moving target.

3.2. Windows

Windows, based on the NT kernel, is a very feature rich and complicated operating
system, providing a significantly more complex programming environment than Linux.
Unlike Linux, which was a reimplementation of the UNIX tradition, NT was designed in
the spirit of the Digital VMS operating system. NT was designed from the beginning
with high goals, to be robust, secure, efficient, and concurrent, to be a server, a client, and
much more. The combination of these goals led to a solid but complicated system, with

1 For an interesting counterpoint, see [Semack04].

 7

strong binary compatibility, kernel code paging and preemption, and multiprocessing and
asynchrony all playing a prominent role in the operating system.

3.2.1. Programming Style

Windows, like its contemporaries, was built largely without object-oriented or type-safe
programming languages. Nonetheless, it was built using a strong foundation of
modularity and abstractions with well-defined binary interfaces. Besides being good
software engineering practice, much of this work was done to support the proprietary
binary ecology commercial operating systems are generally intended for. Being a
proprietary operating system, driver writers would have limited knowledge about the
internal implementations of the system, and given proprietary drivers, Microsoft would
have little opportunity to manage or maintain the drivers’ implementations. Therefore,
Microsoft had to provide a coherent, well-specified interface that provides everything
driver writers need.

This black-box approach has its good sides as well as its bad. Driver writers have limited
knowledge of the system and are left at the mercy of the interface designers, which can
make their job harder, but it also limits their ability to misuse implementation details of
the operating system to build their drivers. This, in theory, prevents drivers from using
operating system features they are not supposed to use and breaking when those
behaviors change as the system evolves. Unfortunately, many driver developers still
discover and exploit aspects of the operating system that they shouldn’t, simultaneously
making their drivers fragile and impeding the evolution of the system. Thus, it seems to
be an open question whether full access to source or access only to interface
specifications leads to better drivers in the antagonistic third-party driver development
model.

Two additional key strategies Microsoft used to enable the system’s binary-only ecology,
as well as to improve the system’s overall modularity, were the use of explicit binary
modularity and the exposure of heavyweight infrastructure services such as the object
manager, the security reference monitor, and the registry. Binary modularity, where the
kernel itself and its suite of core drivers are divided up into multiple loadable modules,
means that a single suite of binaries covers most every realizable configuration, and
installing or upgrading drivers and services never requires recompilation. Similarly, the
registry provides a centralized, structured store for configuration information, available
even as the system is bootstrapping itself, which means recompilation is never necessary
for reconfiguration either. This stands in stark contrast to the UNIX world, where
recompilation is a regular event, and driver source is provided not because it can be but
because it must be.

3.2.2. Windows Driver Model

The main interface Microsoft exposes to driver writers is known as the Windows Driver
Model (WDM) [Oney02]. WDM is the primary driver model for most classes of
hardware. Based on the ancestral driver model of NT, it closely parallels the internal

 8

structure of the IO manager. The core idea of WDM is an asynchronous messaging
model based around “IO Request Packets”, where requests generated on behalf of users
are satisfied by propagating these packets through a stack of handler drivers. This model
allows fast, efficient handling of both synchronous and asynchronous IO but also
provides the basic foundation for an extensible binary driver interface. In particular, the
layered structure encourages separation of concerns and supports extensibility via packet
filters, both crucial for a viable binary ecology. The messaging model also serves as the
basis for the higher level functionality provided by the WDM infrastructure, such as
device discovery, configuration, and power management.

WDM is a complicated system, however, and the interactions between threading and
asynchrony, plug and play and power management, serve to make driver development a
rather tricky task. Threading and asynchrony create problems because drivers must
internally queue and later process asynchronous events delivered concurrently in multiple
threads, all the while being prepared for request cancellation and device state changes.
This makes for a rather painful exercise in concurrent programming [Oney02]. Plug and
Play and power management also create their own set of problems, because each are
presented as two conceptually separate state machines, yet whether the device is
configured and providing service to the system, Plug and Play concept, is inherently
coupled to the physical power state of the device, a power management concept. The net
result is that Plug and Play and power management, when implemented together, form a
notoriously confusing hybrid API [Oshins04].

These services provided by WDM form an indispensable part of the system, helping to
make Windows hardware support efficient and relatively seamless, but the APIs and
programming environment it presents makes driver development unduly challenging and
error prone. Microsoft is well aware of these issues and has put a lot of effort into
mitigating them, in the form of better abstractions, a sophisticated test harness [DV05],
static analysis [PREfast03] and model checking tools [SDV06], and most recently, an
entirely new driver development interface known as Windows Driver Foundation (WDF)
[Microsoft06]. WDF is essentially a wrapper around the core WDM interface, providing
a much friendlier suite of abstractions and turnkey solutions for many of the tricky
problems. Not only is WDF generally expected to significantly decrease the number of
WDM-related bugs, the relative simplicity and clean, encapsulated design of its interface
will likely make Nooks-style transparent isolation noticeably easier. Nonetheless, the
Windows driver interface remains a complex beast and a significant source of driver
bugs, above and beyond what one would expect with more simplistic driver interfaces
such as Linux’s. Unfortunately, to support the majority of the market and the features it
demands, this is the kind of complexity Nooks must handle.

4. Nooks for NT
4.1. Goals

The original Nooks project proved very successful under the simpler environment
furnished by Linux, but we wished to demonstrate that it would be effective not only
there but on commodity systems in general. Windows, given its ubiquity, complexity,

 9

and deep dissimilarity from Linux, was the obvious choice. The goal of the Nooks for
NT project was thus to re-implement under Windows the architecture embodied in Nooks
for Linux and to understand and document any new challenges and design questions that
arose. A successful implementation under Windows would demonstrate soundly that the
principles behind Nooks hold across operating systems. Building the system on
Windows required significant design changes to the implementation of the Nooks
subsystems, but the basic architecture held. Although we stopped short of a complete
implementation, we were able to demonstrate most of the basic principles. We discuss
our implementation and the lessons learned below.

4.2. The Design Under Windows
4.2.1. Binary Compatibility
4.2.1.1. NT Binary Ecology

Binary compatibility is the defining challenge for Nooks on NT. In Linux, the lax,
source-based approach to configuration and module distribution makes it easy to
implement quick-and-dirty approaches to compatibility. The Linux kernel is largely
monolithic, using preprocessor source-level configuration and exposing few standard
binary interfaces. Link-time binary interfaces, and sometimes even source-level
interfaces, change from release to release. Given this unsteady foundation, few
application and driver providers rely on binary distribution, and most are prepared to deal
with periodic breakages as interfaces change. The original Nooks implementation took
advantage of this flexible environment, altering macros, changing macros into functions,
and occasionally modifying a few lines of driver source code.

NT, however, is based around a commercial binary-only ecology, where system
interfaces are stable and compatibility is assured by Microsoft for large spans of time.
Application and hardware vendors, each guarding their own trade secrets, provide a
variety of binary-only modules that must ultimately cooperate to produce a working
system. This is possible only because NT maintains persistent, well-defined binary
interfaces, with long term bug-for-bug compatibility. Subsystems are then constructed
out of layers of binary modules, loaded at boot or dynamically, where configuration and
layering relationships are maintained in the registry. This yields predictable behavior and
solid binary compatibility across versions and provides mechanisms for third parties to
extend subsystems without access to the source code. Unfortunately, it also proves to be
a major source of compatibility, interaction, and misconfiguration bugs. Third party
kernel modules interacting with each other and with the kernel, often with incorrect
implementations of incompletely documented interfaces, are a principal source of bugs.
The rigidity imposed by strict binary compatibility also makes evolutionary progress
difficult to realize. The problem faced by Nooks thus becomes one of treading lightly,
preserving binary interfaces with high fidelity yet protecting the system from
innumerable mis-implementations of those same interfaces by third party drivers.

4.2.1.2. The Nooks Loader

NT drivers are dynamically loaded and linked into the kernel by the kernel memory
manager. Because driver source code is unavailable, we interpose our wrappers to track

 10

allocations and maintain isolation by modifying the kernel’s loader. All driver binaries
list by name the routines they import from the kernel and from other libraries. At load
time, the kernel loader traverses these import lists and places the routines’ absolute
address in the driver’s “import address table” (IAT). Rather than introduce our
interposition logic into the complicated core of the loader, we use the standard technique
of replacing entries in the IAT with pointers to wrapper routines, after the kernel loader
has finished its work. We use this mechanism to apply wrappers to all nontrivial kernel
routines, allowing us to track control flow out of the driver.

Although this load-time interposition mechanism makes tracking control flow out of the
driver straightforward, tracking control flow back in is more difficult. Kernel interfaces
often employ callbacks or tables of function pointers. In many cases, we can make simple
changes to all points in the operating system code which call into these entry points. In
some cases, however, the function pointers are passed around arbitrarily, sometimes even
to other third party drivers. It also may not be obvious statically whether a function
pointer belongs to an isolated driver or to trusted code. Our solution to this problem was
to dynamically generate wrapper stubs for every new function pointer and, using the
existing wrappers, swap out the original pointers for the new stubs at runtime. In this
way, we are able to interpose on all control flow in and out of the driver, allowing us to
maintain kernel-driver isolation, track the resources exchanged across the boundary, and
verify the correctness of the interactions.

4.2.1.3. Macros and Object Tracking

In NT, global data structures typically cannot be changed, which makes tracking shared
resources more challenging (as well as impeding kernel evolution in general). Even data
structures whose internals are intended to be private to the kernel often cannot be
modified, because drivers do not always respect the official interface boundaries.
Sometimes it is possible to make backward compatible changes to structures, such as by
adding new fields at the end, but this too fails when drivers allocate the memory for
structures on their own. This means that very rarely can we insert any new fields into
existing shared structures in order to help us track their lifecycles, verify correctness, and
clean up garbage. Instead, all tracking must be external to the objects, based on lookups
in a large dictionary structure. An equivalent structure existed in the Linux
implementation, but in NT it took on a greater role. Unlike under Linux, the NT object
tracker was designed in a highly structured form with well defined interfaces. It was used
to store a variety of information, including object type, lifecycle status, information for
garbage collection, ownership, reference count, and any translations necessary across the
boundary of isolation. This information was maintained continuously by the shell of
wrappers surrounding the driver, tracking objects’ lifecycle events as they flowed in and
out.

As an alternative to functions, the use of macros in public interfaces is not inherently
problematic for Nooks, but frequently their purpose is to manipulate shared objects and
shared state. Because macro invocations are unobservable and cannot be wrapped, and
unlike under Nooks for Linux, macros cannot be retrofitted into function calls, object

 11

tracking on macro invocations is impossible. Instead, the effects of macros must be
inferred after the fact from the changes they produce. In particular, many objects may
come “out of nowhere”, having been initialized by macros in driver-allocated storage and
then provided to the kernel. These must be validated and tracked on demand. Also,
unexpected state changes due to macro calls may occur on opaque objects already
tracked. These changes must be detected, validated, and responded to the next time the
object is passed back to the kernel.

4.2.1.4. Challenges

Although we successfully produced a promising start, binary compatibility for Nooks or a
Nooks-like system on NT remains haunted by two challenges: a plethora of semantically
rich interfaces that are difficult to wrap and numerous third party drivers that abuse those
interfaces. The driver interfaces on NT are very carefully engineered, but not in the style
of a typical kernel-user interface or an RPC interface. Indeed, they look much like high-
performance internal interfaces rather than public interfaces.2 Interfaces frequently
employ semantically rich, complex shared data structures, often with embedded control
information such as function pointers. These structures typically combine both public
and private regions, with the private regions manipulated by macros. Some of these
structures are even placed in driver-allocated memory, where their birth and death are
unobservable. Although we’ve been successful at wrapping the interfaces we considered
so far, such interface designs make the work far more difficult and the resulting system
far more complicated than it needs to be.

Unfortunately, the complexity of these interfaces also makes them easy to confuse and
very tempting to misuse. Driver authors frequently misunderstand the interfaces or leave
significant bugs in their released implementations. Indeed, we observed special patches
in the kernel to accommodate bugs in certain popular drivers. Our object tracking logic
also discovered a notable (albeit benign) bug in the Windows 2000 PS2 keyboard/mouse
port driver’s initialization code (in handling of the notorious “pending bit” in a particular
class of IO request packet). Even worse is the case of intentional abuse of the interfaces,
where driver authors can’t figure out how to achieve their goals legitimately or don’t
have time to implement a properly engineered solution and so they violate protocols and
abstraction boundaries in order to implement the driver’s core functionality. One popular
example is system call hooking, which has so frustrated Microsoft that they are taking
steps to disallow it completely in the Vista release [Microsoft05]. In wrapping many
interface corner cases, we found ourselves asking the question not “is this allowed?”, but
“is this hack used?” Nooks must support a substantial fraction of what is actually done,
not what is formally intended by the interface design. It remains an open question how
flagrantly the majority of drivers violate the interfaces and how much of a barrier the
diversity of violations would be to a large-scale Nooks implementation.

4.2.2. Libraries and Driver-Driver Interactions
4.2.2.1. NT IO Management

2 We were told off the record that the interfaces in fact were not originally designed for the public, that
Microsoft originally intended to write all drivers in house.

 12

In NT, IO support is built up in a structured hierarchy of interacting drivers. The kernel’s
centralized IO manager interface is common to almost all drivers, responsible for service
requests and communication, system state changes, device enumeration, and resource
allocation. Even core bus subsystems like USB and PCI are implemented as ordinary
drivers. All hardware devices and buses in the system belong to a single global
hierarchy, with each parent responsible for enumerating and connecting its children (see
figure 1 below).3 Further, each node in the tree consists of a layered stack of cooperating
driver instances (called “devices” in Microsoft literature). User requests propagate from
top to bottom through the device stack. The bottommost layer in each stack is provided
by the parent bus’s driver, above which lies the driver specific to the device itself.
Additionally, there may be one or more “filter drivers” in the stack, which modify or
generalize the functionality of the device. Typical examples of filter drivers are antivirus
and data encryption programs, which usually lay above the file system in order to
intercept and manipulate file IO requests. Another important sort of filter driver is the
“class driver”, a generic filter provided by Microsoft which exposes standard interfaces to
the rest of the system. For example, keyboard and mouse services are provided through
the “keyboard class” and “mouse class” filter drivers, respectively.

Figure 1 - Sample device tree, highlighting mouse device stack

This centralized IO manager interface is based around a mechanism known as the “IO
request packet” (IRP). IRPs are an asynchronous communication mechanism, roughly
analogous to a call stack divorced from any owning thread context. IRPs are used as a

3 This hierarchy is rendered rather faithfully by Device Manager in the “View devices by connection”
mode.

Mouclass
(Mouse class driver)

SynTP
(Synaptics proprietary filter driver)

I8042prt
(PS2 keyboard/mouse driver)

ACPI
(ISA bus driver)

Root
Device

ACPI

ACPI
fan

PCI
Bus

Modem … USB

…

ISA Bus

PS2
Touchpad

Mouse

PS2
Keyboard

…

 13

generic communication mechanism, employed for user IO requests, internal driver-to-
driver requests, and system state notifications. It is IRPs that are passed down device
stacks, created by the IO manager on behalf of users or by drivers in need of lower-level
services. An IRP is sent to the top of the target device stack and, like the current
execution context in a stack of function calls, propagated recursively downward until a
driver instance completes it and returns it back upward. This mechanism is then used to
implement a series of standard protocols for device attach and detach, reads and writes,
IO control, and the like.

However, despite this centralized interface, a number of device classes use special,
device-specific interfaces known as “miniports”. Miniports are typically wrappers
around the central IO manager interface, intended to provide either a simpler, more
straightforward interface or cross-platform compatibility. By the same token, however,
miniports constitute distinct, largely redundant interfaces that driver writers must learn
and Nooks must support. While Microsoft has recognized this concern and is working to
solve it in their new Windows Driver Foundation driver model [Microsoft06], miniports
remain a thorn to deal with in any backwards compatible reliability system.

4.2.2.2. Boundary of Isolation
4.2.2.2.1. Introduction

The key defining feature of an isolation system is where the boundaries it creates are
drawn. From this perspective, virtual machines, processes, and nooks form a continuum,
differing primarily in the boundaries they provide. In most systems, two kinds of
boundaries are present: the supervisor-child boundary and child-child boundaries. For
transparent driver isolation, placement of the former, the system / driver boundary, is a
nontrivial architectural question, though largely a tractable one. Since the system
interfaces are reasonably well defined and complete source code for one side is available,
the design can concentrate on the end goals of reliability, simplicity, and performance.
Among Nooks-like architectures, the key challenge becomes where to put miniports,
shared libraries, and system library services.

On the other hand, where to place the boundaries among the individual black-box drivers
is inevitably an open question, one which may not always be answerable even at runtime.
The simplest model for driver-driver isolation would be to place each driver module in its
own protection domain, able to fail without disturbing other drivers. Unfortunately, this
model is unrealistic under NT, where drivers interact directly and layer upon one another.
As far as end-to-end functionality is concerned, this interaction necessarily ties the fates
of different drivers together, regardless of any isolation policy. Further, it is
commonplace for hardware vendors to provide multiple cooperating driver modules that
share undocumented, proprietary communication channels, which cannot be marshaled
across domains. Hence, it is necessary to support multiple drivers and multiple binary
modules within a single protection domain, and somehow, to decide which modules to
isolate together.

4.2.2.2.2. The Kernel / Driver Boundary

 14

Although the overall notion of where the system / driver isolation boundary belongs is
established by the Nooks architecture, the finer details must be resolved as
implementation questions. In particular, miniports and shared libraries may be isolated
along with their corresponding drivers, treating the entire monolith as a client of the
central IO manager interface, or they may remain with the kernel, their module-specific
interfaces split across the boundary. Such decisions are important, because the
alternatives may be drastically different in terms of interface complexity and overhead.

One would prefer the isolation boundary to cross whichever interface is narrowest and
simplest, to improve the odds of producing a robust, bulletproof implementation. For
example, we were able to isolate our 3c905B-TX Ethernet card by wrapping about 60
functions from the NDIS network driver miniport interface. This was simpler than
wrapping NDIS as a WDM driver, even though we already had a large set of WDM
wrappers, because as a driver, NDIS is extremely complicated and broad, requiring on the
order of 200 wrappers.

Alternatively, one would prefer that the boundary crosses the interface with the lowest
rate of invocation, to reduce the overhead of cross-domain control transfer. This is
particularly important for libraries that include simple, frequently used runtime services
that, in principle, need not involve any kernel-driver communication. In some cases, it
may even be worth factoring out and duplicating such code within the protection domain
– we pursued this route for our heap allocator. Finally, it’s desirable to minimize false
dependencies and unnecessary shared fate, to make the granularity of failure and
recovery as fine as possible. This becomes an issue particularly when libraries are used
by multiple, independent client drivers yet maintain centralized shared state. In such
cases, the library must be hacked to sever the shared state, must reside with the kernel, or
must be isolated together with all dependent drivers in a single, unnaturally large domain.

4.2.2.2.3. The Driver / Driver Boundaries

Although the same issues of simplicity, efficiency, and fate sharing apply to the case of
driver / driver boundaries as well, here they are largely overshadowed by the problem of
compatibility and the tension between compatibility and adequate fault isolation. Since
third-party driver modules can expose arbitrary undocumented, unmarshallable interfaces
to each other, it is imperative to know which drivers communicate using such interfaces
so that they can be isolated together. If this is not done correctly, serious failures can
occur. If two cooperating drivers are isolated in separate domains, their communication
is generally interrupted, and the drivers will likely stop functioning or crash. Even worse,
if one driver is isolated and the other is not, the unprotected driver may crash and bring
the system down. The trivial solution to this problem would be to isolate all drivers and
put them in the same domain, but this leads to wildly shared fates, where a single driver
failure causes a massive interruption in system functionality. This is further complicated
by the separate but related problem that some drivers on the system may not be fully
supported by Nooks; this means that neither they, nor any drivers they secretly cooperate
with, can be isolated by Nooks. Thus, it becomes a crucial problem to be able to divide

 15

the system’s drivers into sets that do not separate any inseparable drivers but are
otherwise reasonably fine-grained.

Unfortunately, for existing drivers, this problem cannot be solved by static inspection,
and in the most general case, is extremely difficult even at runtime. The means of
bootstrapping a communication relationship are varied, all of which are observable, but
not all of which are easily interpreted. For example, a driver could send out an ioctl-type
IRP with a proprietary function code; this would indicate an attempt to employ an
unmarshallable interface. Unfortunately, it’s not always easy to determine which driver
is the target of such an IRP. Since IRPs are addressed to driver stacks, not drivers, any
layer in the stack could be the destination4. Another conceivable problem case is the use
of presumed “safe” shared stores for driver-driver communication. For example, two
drivers could bootstrap their communication by passing pointers through the registry or
the filesystem. Although we have never observed such a disgusting abuse of the
interfaces, it remains a possibility. Thus, in general, this problem seems to be intractable.

In practice, however, there remain a few special cases we can handle easily. The most
obvious solution is simply to have drivers ship with metadata listing their relationships.
Although this is not a backward compatible solution, it is a very simple change for
hardware vendors to add. Also, in some cases, cooperating drivers directly link against
each other; this is trivial to detect at load time. Finally, it is straightforward to recognize
the common special case of drivers that simply don’t attempt to employ any proprietary
interfaces. Although determining which drivers to isolate together remains a challenging
issue for Nooks and an important question for future work, we think it unlikely to be an
insurmountable obstacle. In practice, we expect that using conservatively large groups of
drivers, and in the future, using driver-associated metadata, will prove to be sufficient.

4.2.2.2.3.1. Optimization

For driver-driver interactions, even though the problem of compatibility largely
overshadows issues of efficiency and optimization, one can still say a few interesting
words about the latter. One might expect that, with NT’s heavy emphasis on driver-
driver interaction, it would be necessary to optimize all cases. In practice, we find that
domain-domain interactions are actually relatively rare. This is because, typically, a
driver stack includes a few well-tested, trustworthy layers from Microsoft, and only one
or two third party drivers, which are generally best kept in the same domain -- since they
already share fate you typically lose nothing, yet you potentially gain better performance
and compatibility. Hence, most interactions are either within the confines of a domain or
between a domain and the kernel. For driver-driver interactions inside a domain, it’s
straightforward and worthwhile to streamline any Nooks overhead; typically, little

4 This issue is somewhat mitigated by the fact that all driver instances in a stack have naturally shared fates;
interrupting service on any one of them necessarily interrupts service for the whole stack. Thus, lumping
together all untrusted drivers of a stack is not out of the question. There remains a problem, however, if
some of the drivers in the stack are not supported by Nooks or if a single driver binary is instantiated in
multiple separate stacks.

 16

interference is needed. Thus, as with Nooks on Linux, the hot spot remains at the kernel /
driver interface; anything to reduce the number of calls is a potential win.

4.2.2.3. Reference Counting and Crash Recovery

NT’s uniform approach to kernel object management introduces a new challenge for the
process of unloading a crashed driver. All standard “kernel objects,” drivers included,
are managed and reference counted by the centralized object manager service. Once a
driver’s hardware is removed or Nooks reports that the driver has failed, driver unload
occurs automatically when the reference count reaches zero – but the system flatly
refuses to unload any sooner (and with good reason). Unfortunately, referencing is a
highly generalized mechanism; references can be held by user processes, by kernel
objects and services, and even by other drivers. It’s hard, perhaps impossible in some
circumstances, to hunt down all reference holders and safely release their references.
Instead, the solution is to convert the failed driver into a zombie, nonfunctional and
invisible except for an object shell, its resources released. Then, a new copy of the driver
can be loaded, and the driver’s clients can reconnect.5

4.2.3. Memory Management
4.2.3.1. NT Memory Management

In this section, we discuss the NT memory manager, the impact of its design on the
Nooks architecture, and our limited implementation of Nooks memory management. The
NT memory manager provides the system with paged virtual memory with four gigabytes
addressable on 32-bit x86 machines. Under the standard configuration, the low two
gigabytes are reserved for user space and the upper two gigabytes are reserved for system
space. Internally, the hardware’s two-level lookup system is used to find the page table
entry (PTE) for a specific virtual address, where each PTE stores permission and
translation information. The user half of the address space is specific to the current
running process, whereas most of the system half of the address space is global to all
processes. All kernel code and loadable modules (including drivers) run in system space
and are given mostly unchecked access to all addresses.

The most notable design element of the NT memory manager is the fact that it uses a
virtually mapped kernel, with pageable code and data where possible. Up to half of
system address space is dedicated to the large unified file cache, handled by the same
paging mechanisms as kernel code and data. Unlike most UNIX variants (e.g. [Shah04]),
physical memory is not mapped at all, except temporarily in small views for I/O requests.
In general, the system handles physical memory relatively efficiently, and that is not
normally a kernel bottleneck. On the other hand, kernel address space is very tight on 32-
bit machines, given the large footprint of the file cache and other pageable structures.

5 The situation would be somewhat simpler with shadow drivers [Swift04], however, where it’s unlikely
anyone but Nooks would ever have a reference to the real driver. Outside clients would probably only
reference the proxy. Unfortunately, due to legal considerations, we could not explore shadow drivers under
NT.

 17

For Nooks, the most important aspects of this architecture are the synchronization and
dependency constraints imposed by pageability, the precious nature of address space, the
unusual means to access user memory, and the highly dynamic nature of the system
address space. A few important questions also remain from the original Nooks work,
relevant to NT and Linux alike, such as possible hardware optimizations and the
challenge of reliably providing memory for object tracking and cloning even when free
physical memory runs out. We discuss these in more detail in the following sections.

4.2.3.2. Nooks for NT Memory Management Implementation

The memory management architecture we implemented for Nooks was fairly simple and,
due to time constraints, did not fill the requirements for a complete Nooks
implementation. It allows us to specify special read-only or read-write permissions for
each driver for every individual page of system space. There is no intelligent control
over user address space – in principle, drivers are still allowed full access to user space
addresses. Our current implementation is incomplete in particular because privileges are
set statically when a driver is loaded into the system, and no changes are made as the
system is running. Such privileges are assigned based on the major regions of the
memory map; for example, drivers are never allowed to write to page tables or the file
cache.

To specify permissions, each protection domain has a bit vector that represents its write
privileges for system space. Each bit represents whether the isolated driver has read and
write access or just read access for each PTE. When the system enters a protection
domain, it switches over to the PTEs for that domain, but instead of just using a copy of
the system’s PTEs, it also checks the bit vector and masks off the write-enable bits as
appropriate. While the driver is running, any attempt to write to address space protected
by the bit vector results in an access fault. This access fault is then handled and treated as
a fatal driver error, which the error detection subsystem catches, triggering driver
recovery. It is important to note that, if memory protection is comprehensive, invalid
memory accesses are never successful and hence no memory is corrupted before the
driver can be unloaded.

We implement this architecture with a simple lazy management scheme. Rather than
integrate tightly with the NT memory manager, we hook the TLB flush and page fault
handlers, otherwise treating the NT memory manager as a black box. Each protection
domain maintains a private copy of all the PTEs representing system address space,
updated only when necessary. TLB flushes are used to trigger updates for PTEs that
were previously valid, while page faults are used to trigger updates for PTEs that were
previously invalid. In this scheme, new addresses are imported lazily, a potentially
significant win since most drivers never touch more than a fraction of system address
space. When a page fault occurs, the page fault handler checks to see if the page is valid
in system space but not in the domain’s private page tables, and if so, lazily imports the
PTE.

 18

Entire TLB flushes are also handled lazily. Individual TLB entry flushes do trigger
synchronous updates across all domains, but when the whole TLB is explicitly flushed,
Nooks instead sets a special dirty bit on each domain. Whenever a dirty domain is called
or returned into, the entire page table is re-copied. Because copying page table entries for
all of system address space, 2MB in all, is an expensive operation, laziness is a crucial
optimization for the common case of multiple protection domains where only a few are
active at a time. Indeed, although our performance is normally good, TLB flush intensive
tasks can make the system noticeably jerky under this scheme. Fortunately, we do not
need to consider ordinary address space context switches as TLB flushes, because all the
pages in system space which drivers need access to are marked global and hence are not
flushed.6

In all, the current implementation has three major limitations. The first is that there is no
direct access to user space addresses; this is discussed more fully below. The second is
that our address protection is entirely static, based on memory regions, not based on
individual objects like the original Nooks system; the latter requires some additional
infrastructure, including proper cloning of shared objects and a private, domain-local
heap allocator, which we ran out of time to complete. Finally, our performance is
somewhat less than optimal, because of our black-box treatment of the NT memory
manager. Even within the black-box scheme, there was room for significant optimization
which we did not exploit. These limitations were mainly a result of time restrictions,
however, and do not reflect any fundamental incompatibility between the Nooks
architecture and the NT memory manager.

4.2.3.3. Handling User-Space Access

Due to time limitations, we did not attempt to implement a complete and correct system
for handling user-space access. Although limited support is straightforward, supporting
complete access to user memory in Nooks is much more complicated under Windows
than under Linux, and thus anyone building a Nooks-like system for Windows must
carefully consider their mechanism for user-space accesses.

Under NT, access to user-space addresses through the Nooks architecture is not at simple
as it might seem. Unlike Linux, NT does not provide special macros or functions to
access user addresses but instead allows kernel code to execute arbitrary instructions
manipulating user addresses, so long as it obeys the simple precautions of calling an
access rights verification function and wrapping accesses in a try/catch block.

Because of time constraints, we did not implement proper access to user space addresses.
This is not as much of a limitation as it might seem, however. NT provides drivers with
three different mechanisms to exchange data with user processes. The simplest
mechanism is buffered IO, where the kernel automatically double buffers user requests,
and the driver never touches user memory. The next method is known as direct IO,

6 On the other hand, the flushes associated with domain transitions impose a significant performance
penalty of their own, since Nooks must switch address spaces and explicitly flush global pages on every
entry and exit from a domain.

 19

where the kernel provides the driver with a list of physical frame numbers to either pass
on to hardware DMA or map into kernel address space. Finally, under special
circumstances, drivers may use the so called “neither IO method” and directly manipulate
user addresses as described above. This is relatively uncommon. Indeed, among the
many sample and live drivers in the driver development kit (Server 2003 edition),
virtually none use the neither IO method to communicate with user space. Unfortunately,
this access method is also very difficult for Nooks to handle.

Under Linux, because all accesses to user addresses must go through special macros, it’s
straightforward to replace those macros with general purpose functions that automatically
handle all the issues for user-space access. Under Windows, however, arbitrary driver
code is more like a black box, and there are no such quick fixes. The driver’s pagetables
must provide access to user-space as appropriate, and they must be kept in synch with
context switches as well as address space updates. Because the NT kernel is
preemptable, this is difficult even on a uniprocessor, unless you are willing to maintain
one set of pagetables for every protection domain / user process pair. The overhead of
implementing this directly would seem to be prohibitive. Although we have some vague
ideas (e.g. laziness), we do not know if there are any good solutions to this problem.

One additional concern is how to set the isolation policy between drivers and user mode
processes. In most cases, the interfaces used between client processes and drivers will be
standardized and wrapped, and so the memory access policy will be handled by wrappers.
However, it’s always possible that an undocumented channel exists between a driver
module and a user process, for example, as with an antivirus filter driver and its user-
mode counterpart. This is not such a catastrophic situation as a hidden channel between
drivers, because a mistake cannot crash the system, but for proper compatibility, the
system needs a policy that allows the driver appropriate, unchecked access to the specific
processes with which it cooperates. Conceptually, this problem needs to be treated
similarly to the more dangerous undocumented driver-driver interactions, where multiple
drivers are placed in the same protection domain, but the mechanism required here is
different.

4.2.3.4. Memory Management: Picking The Right Approach

Even though we did not implement all the memory management features needed for
Nooks, the basic TLB-based mechanisms we developed were largely capable of
supporting them – though not necessarily efficiently. Our design favored above all
simplicity of implementation – a valuable goal, but one of many in practice. Besides
simplicity, the principal concerns we encountered for a practical, efficient
implementation are memory overhead for storing the page tables, CPU overhead for
keeping the page tables up to date, page locality, and address space consumption.

The first main implementation consideration is memory overhead. The current system
uses 2MB per domain to keep separate, pre-allocated copies of the kernel portion of the
page tables. Though 2MB is not egregious, it can easily add up for a user wishing to
preemptively isolate most of the drivers in their system. In fact, however, this 2MB is

 20

mostly wasted, since large portions of address space may never be mapped by the system.
Worse, the vast majority of address space is never even accessed by any one driver. One
possible way to save most of this overhead is to use a more sophisticated memory
management scheme that lazily allocates page table space when the driver first touches
memory pages, although this may raise new concerns associated with inconveniently
timed requests for more memory (a problem discussed more below). Alternatively, it is
possible to share a single, read-only copy of system’s page tables across all domains,
creating private copies of page table pages only when a driver needs to be granted write
access to some associated page.

The next potential concern is the overhead associated with keeping domain page tables
synchronized with changes to the system’s page tables. In our lazy, black box
implementation, this becomes a serious issue because of the high cost of copying
complete page tables after TLB flushes. It should be possible to greatly optimize this by
invalidating en masse large chunks of the page tables rather than copying them, at the
cost of some tricky implementation details. Alternatively, a scheme that integrated more
directly with the NT memory manager and synchronously updated all domains’ page
tables together might be more efficient. This may not be as clear a winner as it was under
Linux, however, because unlike Linux’s rather static system address space, NT updates
many thousands of system PTEs per second under normal load. A third, intriguing
possibility is to segment system address space such that isolated drivers occupy their own
designated region. Since no page table pages will ever map both kernel pages and driver
pages, they can be maintained quite independently. This maximally leverages a single set
of read-only system page tables shared across all drivers, saving both update overhead
and memory.

Two final concerns are the locality of driver pages and the consumption of address space.
A memory management scheme may keep a domain’s pages in special, contiguous
regions, or it may simply use the system’s normal page allocator, leaving them scattered
across the system address space. Contiguous regions offer the opportunity to use large
pages to map the domain’s memory, potentially saving on TLB misses inside the driver
and during copy-in / copy-out. On the other hand, they consume more memory and more
address space, due to internal fragmentation. System address space is a particular
concern for NT on 32-bit machines, and with its added system memory consumption due
to page tables and isolation overhead, Nooks does little to aid the situation. The
contiguous region strategy suggests a possible countermeasure, however: rather than
mapping all drivers in memory at once, swap them in and out of a single common region
of address space7. Whether or not the savings justify the added complexity is debatable,
but since Nooks causes isolated drivers to communicate through the kernel rather than
directly among each other, swapping now becomes a viable option.

If we allow ourselves to imagine some simple improvements to the x86 virtual memory
architecture, the landscape changes dramatically. Adding a tagged TLB would virtually
eliminate the bursts of TLB misses due to domain transitions and, if the Nooks for Linux
experience is any guide, result in a massive speed-up. Moving to a 64-bit address space

7 This is similar to the “session space” mechanism already used in NT for multiple graphical login sessions.

 21

would render address space consumption a non-issue, although page table memory
consumption could become significantly more troublesome. A dramatic solution to both
TLB misses and page table memory consumption would be to separate permission
checking from address translation at the architectural level. Address translation
necessarily lies on the critical path for memory I/O; permission checking does not and
could be performed lazily before instructions commit. Separating shared, bulky
translation tables from private, compact permission tables should eliminate most of the
memory overhead of protection domains and replace expensive, frequent TLB misses
with cheap, infrequent PLB misses. Finally, taking this to the extreme, Mondrian
Memory Protection [Witchel02] could even eliminate much of the data copying
associated with cross-domain calls, making lightweight protection domains almost free.

Time constraints did not allow us to pursue any of the more sophisticated approaches to
Nooks memory management, and our approach was clearly far from optimal. In order to
determine which design would serve best, it would be necessary to gather data on the way
drivers utilize memory and estimate the overhead of each scheme or to implement some
of the alternative approaches and measure which had the best tradeoffs. Regardless, it’s
clear there is room for substantial improvement in software beyond our current scheme,
and even more room with hardware changes as well. So, besides the problem of user
space access (discussed above), it appears that the memory management requirements of
Nooks do not present any serious obstacles for NT.

4.2.3.5. Out of Memory Corner Cases

Black box isolation techniques, which require cloning and tracking objects on demand,
inherently demand memory allocations be made at arbitrary and potentially inconvenient
times. In particular, allocations are required when new objects from the kernel are first
passed to the driver or when stack-allocated or driver-initialized objects are passed to the
kernel. Allocations are also needed on occasion for new thread stacks for the driver, new
callback wrappers, and the like. These allocations can be rather difficult to fulfill at high
priority level or when the system runs out of memory. In general, the system needs to be
prepared to handle low memory situations gracefully. Unfortunately, even well-hardened
code becomes vulnerable to memory shortages when wrapped by black box isolation. It
is generally possible to restart the affected driver when memory runs out, but this
potentially pushes the ill effects to user mode clients. This memory sensitivity is thus a
new reliability hazard introduced by adding isolation.8

Although we suspect there is no practical solution to the entirety of this problem, we have
devised (though not yet implemented) mechanisms we believe mitigate the problem to an
acceptable level of risk. Allocation requests at high priority level, potentially higher than
the system allocator can correctly handle, are the easiest to handle; we simply redirect
them to a privately maintained heap. This then reduces the high priority problem to the

8 Indeed, this was one of the principal concerns about Nooks voiced by members of the NT kernel team.

 22

out of memory problem, with the caveat that paging activity is impossible.9 We can
address this out of memory problem with four different mechanisms: reserving a pool of
memory in advance, speculatively pre-allocating memory, deferring requests, and
gracefully downgrading protection.

The standard technique for dealing with unavoidable emergency memory demands is to
maintain a pre-allocated reserve pool. A key difficulty with this method, however, is
determining the right size for the pool; too large is wasteful, but too small risks running
out. Fortunately, for Nooks, there appears to be straightforward solution to robustly
scaling the size of the pool. Nooks unexpected allocations are not random; some of them
correspond to tracking and cloning kernel resources being passed to the driver, and some
of them correspond to driver resources being passed to the kernel. For the most part, there
already exist readily exploitable failure paths associated with the former cases, and so
only the latter cases present a problem. However, the corresponding driver resources
must necessarily reside in memory already allocated to the driver, and so the amount of
memory currently granted to the driver is directly proportional to an upper bound on how
much Nooks could need unexpectedly in the worst case. Hence, by keeping in reserve a
certain amount of memory for every page allocated to the driver, one should be able to
satisfy unexpected allocations with reasonably high assurance.

For certain cases, it’s also possible to avoid the problem of unexpected allocations by
speculatively performing the allocations early, when the priority level is often low. For
example, kernel objects placed in driver-allocated memory often have an initialization
routine and various routines for handing off the object to the kernel. Because it’s
possible to deallocate such an object silently by re-using or freeing its memory, Nooks
cannot begin tracking the object immediately when initialized. Instead, it must wait until
the object is transferred to the kernel, which may occur at an inconveniently high priority
level. However, one could speculatively allocate the necessary memory at initialization,
leveraging the common case where such objects are used repeatedly. For drivers that do
follow this common case, every such object now has two chances for a successful
allocation, the first of which is usually at a low enough priority to allow paging activity.
Only if we observe too many old, unused speculative allocations building up do we need
to begin freeing the likely mis-speculations.

Another possible solution to handling out-of-memory when a new request is passed to the
kernel is to leverage NT’s ubiquitous asynchrony and defer processing the request until
later. For example, when memory is scarce, objects such as work items, deferred
procedure calls, and IRPs can be chained onto a private linked list for later processing,
rather than immediately allocating memory and transferring them to the kernel. Some of
these requests can be deferred indefinitely, in hopes of more memory being available.
Others can be deferred to low priority level, allowing paging activity to resume. Either
way, deferral gives the system more opportunities to find enough memory to allow Nooks
to satisfy the request.

9 A particularly troublesome case, allocation of stacks at high priority level, actually disappears entirely.
Since thread context switching is disabled at high priority levels, we simply pre-allocate one stack per
processor for use at high priority.

 23

In cases where enough memory simply isn’t available, a final possible choice is to
gracefully downgrade protection. Certain allocations, such as object clones and private
thread stacks, are necessary for proper protection but not for correctness. If memory is
unavailable for a clone, it is often possible to share the original instead, at the expense of
diminished integrity guarantees. If such steps are taken, it may no longer make sense to
assume that the system is adequately protected from driver faults such that automatic
recovery is safe. However, even when all else fails, this largely eliminates the problem of
unexpected memory allocations introduced by Nooks.

4.2.4. Asynchrony
4.2.4.1. NT Asynchrony

NT is, by design, a highly asynchronous and concurrent system. Unlike Linux,
multiprocessing support was included in the kernel from the very beginning. Also, the
driver model and IO request processing are totally asynchronous, using the IRP
mechanism. Asynchrony and concurrency significantly change the landscape and the set
of tools available within the system. They are often challenging to work with, though
except for one concern, by and large they do not introduce any fundamental changes to
the Nooks approach. In some cases, native asynchrony even presents new opportunities
for optimization.

4.2.4.2. Synchronization Interoperability & Asynchrony Safety

Although the Nooks code base is relatively simple and lightweight, it cuts across many
layers of the system and levels of synchronization. Core services such as the object
tracker must run at an extremely high synchronization level, since they may be invoked at
any time by drivers running at arbitrary synchronization levels. In particular, NT assigns
each processor a synchronization priority level known as the Interrupt Request Level
(IRQL), a sort of fine-grained generalization of the interrupt enable flag. IRQLs are the
primary global synchronization mechanism exposed to drivers, representing a series of
concentric per-processor locks. Because drivers may demand Nooks services from a high
IRQL, Nooks must synchronize against that level internally. This makes the affected
Nooks code trickier to construct, but more importantly, the cross-cutting nature of Nooks
means that kernel services which were never expected to be needed at a high priority
level must somehow be shoehorned in.

One particularly troublesome example is the recovery and garbage collection code.
Because recovery may be invoked from an extremely high synchronization level, and
because the garbage collector must synchronize with the object tracker, many recovery
and garbage collection routines must run at high IRQL. Unfortunately, few kernel
routines for freeing resources were written with this requirement in mind. Also, many
important library routines, such as those for manipulating Unicode names, are capable of
running only at low priority level. These constraints have an important impact on how
Nooks services are structured, demanding an intricate dance between high and low
priority levels. Although we managed to work around the specific instances of this

 24

problem we faced, there seems to be no guarantee that a subsystem as cross-cutting as
Nooks will never encounter unsolvable cases.

4.2.4.3. Asynchrony in the Driver Model

The heavy use of asynchrony in the driver model, combining both threaded and event-
driven programming, represents a significant source of complexity. Basic request
processing is tricky, but the semantics of complications such as IO request cancellation,
Plug & Play, and power management are nightmarishly intricate in the asynchronous
framework [Oney02] [Maffeo04] [Oshins04]. The state machines for drivers and
associated objects are thus incredibly difficult to implement correctly, representing a
significant source of driver bugs. Although these bugs are generally straightforward to
handle in Nooks, it is rather challenging to properly implement the wrappers and
validation code to enforce correct driver behavior.

4.2.4.4. Leveraging Asynchrony to Reduce Domain Transitions

In one respect, however, heavy use of asynchrony in the standard NT driver model may
prove to be an asset. As with most hardware-based isolation schemes, given the present
state of commodity hardware, the single most expensive operation for Nooks is the
domain transition. Hence, the principal goal in optimizing such an isolation system is to
reduce the number of domain transitions. One effective way to do this is to batch
requests, amortizing the cost of a single domain transition across multiple requests. This
is only possible if the semantics of the requests allow them to be deferred, however.
Fortunately, these are precisely the semantics of IRPs, the principal mechanism both for
issuing requests to drivers and for driver-driver communication. Other common
asynchronous mechanisms, such as “deferred procedure calls” and thread pool “work
items”, also may be deferred and batched with later requests. How much of an
improvement such batching would provide in practice depends on what proportion of
cross-domain calls are deferrable and also how often drivers synchronously wait on the
results of such requests, but we suspect the improvement could be significant. This may
be an interesting question for future implementation work.

4.2.4.5. Kernel Preemptability and SMP Support

Because NT was designed with fine-grained concurrency and SMP support from the
beginning, we made an effort to determine just what would be necessary to make Nooks
fully compatible with such an environment. In particular, Nooks must synchronize with
the rest of the system and synchronize within itself; simply disabling interrupts is no
longer adequate. As it turns out, however, for internal synchronization, what we ended
up having to do amounted to almost the same thing. As discussed before, because Nooks
must support the driver executing at its device’s IRQL, it must synchronize against that
IRQL. This leaves most device interrupts disabled, except for the most crucial ones such
as the clock. Furthermore, because Nooks must synchronize across all processors, and
because blocking synchronization is impossible at such a high IRQL, it must use
spinlocks instead. Thus, we protect internal structures such as the object tracker by
raising the IRQL extremely high and acquiring a domain-wide spinlock. Of course, we

 25

try to hold such locks for as short a time as possible, but it’s conceivable they could be
become a bottleneck for multiprocessor scalability.

Another key concern on multiprocessor systems is the ability to bail out and restart a
driver regardless of how many different CPUs it may be running on. In general, it is
crucial to prevent old driver code from continuing to run after reload, because it could
interfere with the restarted driver on the hardware. Furthermore, it is desirable to unwind
as quickly as possible all threads that called into the driver, so that resources associated
with the domain can be freed and lost user requests can be properly aborted. On a
uniprocessor system, aborting and unwinding other threads involves a somewhat tricky
and messy process, but it is guaranteed that all other threads are waiting. On a
multiprocessor system, one must also be able to abort running threads, located on other
processors. Fortunately, although we have not tested this, it does not seem too
challenging, because all threads are probed periodically by timer interrupts, and a thread
can easily be unwound during an interrupt handler epilogue. In NT, driver code almost
never disables interrupts, relying on IRQLs to restrict them instead. In the case of a very
stubborn driver thread that had interrupts illicitly disabled, one could un-map and
overwrite all of its memory, which would boot it out in short order.

4.3. Evaluation and Limitations

Although a lot of work went into the project, there simply wasn’t enough time to
complete a full Nooks implementation. Instead, we followed a bottom-up approach,
emphasizing the key infrastructure components and adding skeleton implementations of
the higher layers sufficient to demonstrate a functional system. Basic infrastructure
components we completed include the loader and associated interposition mechanisms,
protection domains and cross-domain control transfer, object tracking, and garbage
collection. On top of this we built a substantial library of wrappers and added object
lifecycle logic for a number of core objects, including IRPs. These were sufficient to
demonstrate complete crash recovery for the i8042prt driver (PS2 keyboard/mouse) and
partial functionality for null, beep, and mouhid (USB mouse). We also made substantial
progress towards supporting el90xbc5 (3com EtherLink), notable because it was an NDIS
miniport driver, not a native driver, and because we did not have access to driver source
code.

The principal limitations of our implementation were significant but mostly due to time
constraints. Most notably, our memory management component provided very little
isolation, and we allowed drivers to work directly with kernel objects, rather than cloning
them. We also did not support multiple driver modules per protection domain, in spite of
the strong argument we developed for its necessity. Our selection of wrappers and fully
tracked objects were limited as well, though this is a task of arbitrary size; each additional
driver demands a few, and each additional interface demands a significant number. We
also cut corners on performance and did not make any rigorous measurements. Finally,
had we had more time and been able to address the licensing issues, we would have also
liked to try implementing shadow drivers [Swift04], a mechanism for protecting client
applications from the disruption associated with the loss of driver state during a restart.

 26

Our goal originally was to complete most of the above and conduct rigorous performance
and reliability measurements of the resulting system, so that we could make concrete
claims about the commercial viability of Nooks beyond the UNIX world. Unfortunately,
our time proved too limited. In particular, we were unable to complete proper memory
isolation and object marshalling, the two most critical components for meaningful
performance measurements. Hence, we did not attempt any formal measurements,
although our informal tests seemed reasonable and the system was usable, despite the
lack of tuning. While we did not reach our original goal, we did manage to demonstrate
most of the basic building blocks, and we believe our experience suggests that the
remainder would not be too difficult to implement.

5. Expanding the Scope: Flyweight Isolation
5.1. Introduction

In addition to our work applying the fundamental components of Nooks to NT, we also
examined ways to modify the Nooks architecture to be more appealing to commodity
system vendors and consumers. Unfortunately, our Windows implementation was not
complete enough to support meaningful modifications and comparison measurements,
but we were able to perform preliminary experiments on Linux. We noted that, while the
performance of Nooks on Linux is generally very good, its overhead is not entirely
negligible. For some groups, particularly the benchmark-sensitive commodity OS
vendors, it may yet be too large. Given the incredibly high success rate of Nooks
recovery, we decided to investigate whether weaker forms of isolation could provide
reasonable reliability improvements with significantly reduced performance costs. Our
initial results proved quite encouraging. The crucial questions, then, are how much
isolation is truly necessary to provide solid reliability improvements, and how much
performance can reduced isolation buy?

We propose that operating systems can tolerate driver faults without memory isolation, in
spite of driver code written in type-unsafe languages. By executing drivers only on
copies of kernel data structures, and by segregating driver memory from kernel memory,
drivers are unlikely to corrupt the kernel when they fail. Existing Nooks recovery
techniques can then recover the failed driver and allow the system resume execution.

5.2. Justification

Fundamentally, tolerating driver failures requires that the OS first detect driver failures
and then recover from the failure. Failures can be detected in many ways, including
hardware memory protection, explicit software checks on memory accesses, or higher
level checks interposed at the kernel-driver interface. Recovery requires that the system,
as a whole, be moved to a clean, un-corrupted state. This may be done by rolling
backwards and undoing any corruption caused by a failed driver, or by rolling forwards
and repairing any corruption.

 27

Memory isolation, as provided by Nooks and other systems, provides error detection by
trapping illegal memory accesses, and aids recovery by limiting the scope of corruption
to data within the driver’s protection domain. Hence, failure recovery consists of
discarding the contents of the driver’s domain and then recreating its contents by
restarting the driver. However, memory isolation alone is not sufficient to ensure that the
corruption is limited to the driver’s domain. Data passed out of the driver could still
cause corruption in the OS or applications, because driver interfaces do not strictly check
for all possible bad outputs.

While simplifying recovery, full memory isolation comes at a cost, which is a result of
the domain transition required on every call form the kernel to a driver. In Nooks for
Linux, given the current state of commodity hardware support, nearly half of the
overhead is due to memory isolation. The total overhead is negligible for most drivers
(0-15%), but in particularly demanding drivers this cost may be too high. Full memory
isolation is also complex and resource intensive, because it requires maintaining either a
whole virtual machine running a separate kernel [Erlingsson05] [Fraser04]
[LeVasseur04] or a copy of the kernel page tables. In both cases, providing memory
isolation requires substantial code and many megabytes of kernel memory. Finally, full
memory isolation may pose compatibility problems for devices or components that use
non-standard, memory-based interfaces, because they may no longer have access to user
memory and shared objects or, in the case of virtual machines, may access the wrong
object, i.e. in the guest instead of the host system.

Even without full memory isolation, recovery is possible for the wide variety of common,
non-corrupting driver failures [Microsoft03] [Maffeo04] or if the scope of corruption is
limited to the driver’s private data structures. External manifestations such as bad
parameter usage, violations of protocols, unresponsiveness, corrupted private heap
headers, and invalid memory accesses can be detected at the interface between the driver
and the kernel. The existing recovery mechanisms from Nooks are still able to unload,
reload, and restart a failed driver. For errors that are detected before the kernel or
application is corrupted, the recovery ability is equivalent with and without memory
isolation.

In general, then, if corruption is confined to a driver’s private data, the OS can recover by
unloading and reloading the driver. As a result, it is possible to greatly improve system
reliability by executing drivers on private copies of kernel data, but without the expense
of full memory protection. We call this limited isolation flyweight isolation.

5.3. Supporting Data

For flyweight isolation, we rely on separating in space the driver’s working data from
kernel data, giving the driver separate thread stacks, a separate heap, and private copies
of shared kernel data structures. Whenever data is passed between kernel and driver, we
use wrappers and the cross-domain calling mechanism to carefully validate all
parameters, translating and synchronizing between kernel and driver copies of shared
objects as necessary. The removal of memory isolation may seem rather dangerous, but

 28

this approach makes for a reasonable strategy because most memory errors are not in fact
random “wild writes” [Sullivan91], and most instances of wild corruption turn out to be
harmless [Messer01]. Instead, most significant corruption occurs within data structures
already being manipulated or in nearby blocks of memory, the manifestations of common
bugs like off-by-one errors, buffer overrun/underrun, dangling references, and race
conditions. By separating driver data from kernel data, we protect against the first-order
effects of these errors, confining the corruption to within the driver. As long as the faults
are then detected before multiple external manifestations begin to appear, the driver can
be swept away and the system can continue running without any adverse consequences.

In a first attempt to compare how flyweight isolation behaves compared to Nooks we
performed two experiments. First, we conducted synthetic fault injection experiments
demonstrating that flyweight isolation detects and recovers from most of the failures
detected by full memory isolation. Second, we compare the performance of flyweight
isolation to Nooks to demonstrate the performance benefits of flyweight isolation over
full isolation. Both of these tests were done under Linux.

In the first tests, we performed a set of random fault injection experiments on the pcnet32
100Mb Ethernet driver. We chose this driver because it is emulated by VMware,
allowing us to perform these tests within a virtual machine. We loaded the driver into
memory, injected five realistic bugs into the program text, and then tested the system to
see if it failed. We performed these tests on three platforms: Native Linux, a system
without any isolation or recover, Nooks, a system with the Nooks driver-fault isolation
subsystem, and flyweight Nooks, a system with Nooks object tracking and recovery
mechanisms but no memory isolation. We performed 900 hundred fault injections across
9 different types of synthetic bugs injected into the driver.

 Native

Linux
Nooks Flyweight

Nooks
Crashes 163 2 3

Table 1 – Fault injection outcomes.

Table 1 shows the number of system crashes experienced on the three platforms. The
flyweight Nooks system experienced only one additional crash beyond Nooks and
prevented 160 crashes as compared to native Linux. These results demonstrate that full
memory isolation is not required for tolerating at least a large number of driver failures.
Rather, fault detection and recovery are the critical ingredients.

To evaluate the performance benefits of flyweight Nooks, we ran a driver on the same
three platforms and compiled the Linux kernel source tree. These tests were done on a
1.7 GHz Pentium 4 with 900 MB of RAM. Because the pcnet32 driver uses little CPU,
we instead chose the VFAT file system driver (although, unfortunately, we were unable
to perform new reliability tests on it). We note that compared to most drivers, VFAT is a
worst case because of the amount of sharing with the operating system, and hence the
amount of data copying. In Table 2 we show the number of seconds spent in the kernel
on our three test platforms (the time spent in user mode was unchanged). The results
demonstrate the savings of removing lightweight kernel protection domains with their

 29

inherent page table changes and subsequent TLB misses. The cost of the remaining
flyweight Nooks isolation mechanisms is not negligible, however, because it still requires
many additional data copies and lookups in the object tracker.

 Native

Linux
Nooks Flyweight

Nooks
Time in
Kernel

38 s. 105 s. 67 s.

Table 2 – Time spent in kernel mode when compiling the Linux kernel.

Overall, these experiments demonstrate first, that flyweight isolation can provide a
tangible benefit to system reliability by recovering from non-corrupting failures. Second,
they demonstrate that there can be a sizeable performance benefit to removing hardware-
based memory isolation, because it avoids the single largest overhead source in isolation
systems.

5.4. Conclusions

Although the concept of flyweight isolation shows promise, as yet it raises more
questions than it answers. Most fundamentally, how often do wild writes occur across
drivers in general, and how many distinct external manifestations do typical faults cause?
Is it reasonably safe to conclude the first external manifestation observed is in fact the
first one experienced? These are basic questions about the behavior of commodity code
reacting to type-unsafe corruption, for which only rough hints exist in the literature.

Another important question flyweight isolation raises is the issue of policy. Most
operating systems today treat failure handling as a matter of pre-ordained mechanism.
NT, for example, immediately halts the system and writes a crash dump when it detects a
null pointer dereference. Linux, on the other hand, responds to the exact same fault by
terminating the active process and printing a message to the console. What accounts for
the difference? Not any documented difference in robustness to corruption, as far as we
are aware. Rather, we contend that this illustrates that failure handling behavior is an
issue of policy, not mechanism, and that different user communities have different
preferences. Nooks adds the option of driver isolation, but it comes at a performance
cost, which may be unacceptable for some users. High-end, video-intensive applications
may be a perfect example, very sensitive to driver performance but also plagued
incessantly by driver bugs. Flyweight isolation adds a new point in the reliability
spectrum, allowing users to reap most of the reliability advantages of Nooks with
significantly less cost. Of course, as with any policy, someone must be prepared to make
the choice.

6. Future Work
6.1. Nooks Performance
6.1.1. Breakout Access

One intriguing possibility for improving Nooks performance despite the lack of hardware
support for low-cost domain transitions is to leverage the lightweight nature of the

 30

protection domains to allow partial domain exits. Consistent with Nooks’ best effort
design, entry and exit from a lightweight protection domain are voluntary. The procedure
does not depend on special secure traps or call gates but rather on a particular sequence of
privileged operations extremely unlikely to be executed by accident. In this vein, it’s also
reasonable to consider partial transitions, which when invoked allow partial write access
to kernel memory. By exploiting obscure aspects of the x86 architecture, it is possible to
implement such mechanisms, unlikely to be triggered by accident, but much faster than
completely switching page tables and flushing the TLB. Possible mechanisms include
segment limits – reloading the segment registers could allow access to the top of memory
– and toggling the processor’s write-protection-enable bit. This could then be exploited
to provide accelerated implementations of critical-path system services or cross-thread
synchronization inside the protection domain, without the overhead of full domain
transitions. Whether this might be worthwhile would depend on the particular
mechanism chosen, the particular hot spots of interest, and how sensitive their
implementations would be to the integrity of the execution context. If hardware
manufacturers continue to disregard efficient support for lightweight protection, this may
be an interesting question for implementers of Nooks-like services to explore.

6.1.2. Memory Reservation Service

An interesting possibility for reducing the performance impact of memory reserved for
unexpected allocations is to allow reserved pages to be used for non-dirty pageable
memory while they’re not needed. This could be encapsulated as a “memory reservation
service,” which would allow clients to reserve quantities of memory and then guarantee
its availability at any time, any priority level, regardless of free memory levels. When the
number of free or non-dirty pages in the system exceeded the sum of all reservations, the
memory would be utilized as normal. Only when the number of claimable pages dropped
to the number reserved would the pages be explicitly evicted, allocated, and locked down.
While we don’t necessarily expect a large amount of memory to be required to render
negligible the risk from unexpected allocations in Nooks, this service could be useful
generally, as well as helping to make the cost of Nooks more palatable to the most
demanding of users.

6.1.3. Video Drivers

Although not fundamentally different from other devices, isolating video drivers
represents an important unexplored direction, since video drivers are notoriously
complex, buggy, and extremely performance sensitive. Early attempts at isolating video
drivers using Nooks for Linux were abandoned, because Linux’s split video driver
architecture, involving both kernel modules and a user mode X11 library, makes adapting
the Nooks mechanisms unnecessarily complicated. Fortunately, NT video drivers appear
to be amenable to the ordinary Nooks isolation mechanisms, but whether the performance
will be adequate or whether it might require special considerations such as flyweight
isolation remains unanswered.

6.2. Quality and Generality of Isolation

 31

An important question left unanswered by our work under NT is, how often do real-
world, third party drivers violate the basic interface specifications, working only by virtue
of system implementation details? In principle, Nooks can provide virtualization for
most any interaction, but if every driver used its own, distinct hacks, the complexity of
supporting most drivers could quickly become overwhelming. Until Nooks became
widely deployed and driver writers had to test against it, this issue might represent a
serious practical obstacle.

A related question is, how much does a cleaner, more naturally isolatable interface help
Nooks? Typical driver interfaces make heavy use of shared data structures and cross-
domain pointers, client-allocated memory, mutator macros, and other unpleasant
complications for isolation. Cleaner interfaces designed around opaque handles and
abstract data types, such as the new WDF interface, could potentially eliminate many
kinds of hacks and driver misbehaviors, simplify the complexity of Nooks, and, at the
same time, reduce its overhead. How large these possible benefits prove to be is a
question of significant practical importance.

Another possible direction for the future might be to solicit assistance from drivers
themselves to facilitate isolation, error detection, and recovery. If drivers explicitly
identified what other drivers and user processes they shared fate with and communicated
with over nonstandard interfaces, it would eliminate the problem of deciding which
modules to isolate together. Alternatively, if drivers employed self-describing RPC-like
interface styles, automatically isolating drivers in spite of proprietary, one-of-a-kind
interfaces might be possible. Drivers might even provide lightweight integrity or
functionality probes, signaling Nooks to restart them more promptly, minimizing
downtime and the internal spread of corruption.

A final practical question not yet addressed is how to decide which drivers to isolate at
all. Ideally, one might imagine isolating all drivers, but this is neither necessary nor
practical. Anecdotal evidence suggests some drivers are significantly more reliable than
others; isolating them incurs a small performance hit in exchange for no real benefit.
Furthermore, there will always be some number of drivers incompatible with Nooks, and
attempting to isolate these drivers will cause them to fail. In some cases Nooks will be
able to detect these failures, but it other cases they may be too subtle. What other
techniques are available to help determine which drivers to isolate, besides trial and
error? Perhaps online repositories could provide compatibility information, or
collaborative aggregation of fault data could help determine which drivers are most bug-
prone?

6.3. Integrity Beyond Domains

How do Nooks and other isolation and recovery systems behave in the presence of
genuine hardware problems, kernel bugs, or other unconstrained sources of corruption?
Do they provide any benefit, helping to keep corruption confined? Or, do they make the
situation worse, by recovering and continuing to run when the system should be shut

 32

down, masking the true problem while allowing damage to propagate? Is it even possible
to recognize the difference between isolated and global corruption?

One interesting solution to this problem might be to attempt kernel data structure
integrity checking. Besides being useful for offline crash dump analysis, integrity
checking could be a valuable online tool, serving a complementary role to Nooks.
Integrity checking could help distinguish local, isolated corruption from global problems,
informing Nooks whether to reboot the system or to continue recovery with confidence.
Integrity checking could also complement flyweight isolation, allowing the system to
perform only minimal isolation and decide after the fact whether outside corruption had
occurred. Integrity checking might even be a helpful debugging and analysis tool,
shedding light on when and where corruption first appears.

7. Conclusion

Operating system reliability remains a serious problem. Over the past several years,
much work has gone into improving the reliability of Windows and its device driver
ecosystem. In spite of this, device drivers remain the number one cause of crashes and a
principal source of other, less well quantified failures including hangs and loss of
functionality. In this thesis, we investigated the viability under Windows of the Nooks
approach to withstanding driver failures. As with Nooks on Linux, we implemented a
best effort system for handling the most common driver failure scenarios, with the
potential to make a drastic improvement in the overall health of the system.

Nooks for NT had essentially the same subsystem components as Nooks for Linux, with
most of the implementation differences stemming from the vastly more complex
operating system environment and driver ecosystem in Windows. While substantial work
remains to demonstrate a commercially viable implementation of Nooks on NT, we
believe our work has shown that the basic Nooks architecture is equally applicable to NT
as it was to Linux. We successfully demonstrated the core functionality for wrappers and
protection domains, resource tracking, garbage collection, and recovery. Challenges
remain, but it appears that most of the basic problems can be overcome. Binary
compatibility, though tricky, appears to be solvable. Driver-driver communication
introduces new issues, but these issues can for the most part be handled. Isolation-
induced out of memory cases cannot be solved perfectly, but with sufficient attention
they need not cause unnecessary disruptions.

We also highlighted some of the key uncertainties and difficulties that remain.
Synchronizing with the system in spite of the cross-cutting nature of Nooks, though
tamed so far, remains a potential snag. Providing drivers direct access to user space
addresses is an outstanding problem. Inferring proprietary communication relationships,
though easily solvable with metadata, remains tricky for existing driver binaries. Finally,
drivers that misuse and abuse the interfaces could furnish a long string of headaches. We
are optimistic at the prospects for handling these challenges, however. At worst, it would
mean only a subset of legacy drivers would be supported under Nooks, and driver writers

 33

would need to make some changes going forward. We suspect the reality will be
substantially better.

While a large amount of work remains to produce a commercially viable version of
Nooks for Windows, the benefits are likely to be substantial. Even as crashes become
less frequent with ongoing reliability improvements elsewhere, other Nooks-amenable
problems such as driver hangs, power management and shutdown disruption, and loss of
device functionality remain as serious as ever. We believe the argument for lightweight
driver isolation and recovery is a persuasive one. Now, Nooks removes backward
compatibility as an excuse.

 34

Bibliography

[Bershad95] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski, D.

Becker, C. Chambers, and S. Eggers. Extensibility, safety and performance in the
SPIN operating system. In Proceedings of the 15th ACM Symposium on Operating
Systems Principles, Copper Mountain, CO, Dec. 1995, pages 267–284.

[Butler02] Butler Group. Organizations lose five weeks in a year. OpinionWire. 04 April

2002.

[Chou01] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An empirical study of

operating system errors. In Proceedings of the 18th ACM Symposium on Operating
Systems Principles, pages 73–88, Oct. 2001.

[Chou97] T. C. Chou. Beyond fault tolerance. In A. Somani and N. Vaidya,

Understanding Fault Tolerance and Reliability. IEEE Computer, 30(4) pages 45-50,
1997.

[DV05] How to Use Driver Verifier to Troubleshoot Windows Drivers. Q244617,

Microsoft Corp., 2005. Available at http://support.microsoft.com/?kbid=244617.

[Engler95] D. R. Engler, M. F. Kaashoek, and J. O'Toole Jr. Exokernel: an operating

system architecture for application-specific resource management. In Proceedings of
the Fifteenth ACM Symposium on Operating Systems Principles, Copper Mountain,
CO, Dec. 1995.

[Erlingsson05] U. Erlingsson, T. Wobber, P. Barham, and T. Roeder. VEXE'DD: Virtual

EXtension Environments for Device Drivers. Available at
http://research.microsoft.com/research/sv/vexedd.

[Fraser04] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and M. Williamson.

Safe hardware access with the Xen virtual machine monitor. In Proceedings of the
Workshop on Operating System and Architectural Support for the On- Demand IT
Infrastructure, Oct. 2004.

[Gray86] J. Gray. Why do computers stop and what can be done about it? In Proc. 5th

Symposium on Reliability in Distributed Software and Database Systems, Los
Angeles, CA, 1986.

[Herder06] J. Herder, H. Bos, and A. Tannenbaum. A Lightweight Method for Building

Reliable Operating Systems. Vrije Universiteit Technical Report IR-CS-018, January
2006.

 35

[Hunt97] G. Hunt. Creating user-mode device drivers with a proxy. In Proc. 1997
USENIX Windows NT Workshop, Seattle, WA, Aug. 1997.

[LeVasseur04] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz. Unmodified device driver

reuse and improved system dependability via virtual machines. In Proceedings of the
6th USENIX Symposium on Operating Systems Design and Implementation, Dec.
2004.

[Maffeo04] G. Maffeo and N. Ganapathy. Driver Hangs – Detection and Prevention.

Windows Hardware Engineering Conference 2004. Slides available at
http://download.microsoft.com/download/1/8/f/18f8cee2-0b64-41f2-893d-

a6f2295b40c8/DW04011_WINHEC2004.ppt.

[Messer01] A. Messer, P. Bernadat, G. Fu, D. Chen, Z. Dimitrijevic, D. Lie, D. D.

Mannaru, A. Riska, and D. Milojicic. Susceptibility of Modern Systems and Software
to Soft Errors. HPL-2001-43. Computer Systems and Technology Laboratory, HP
Laboratories Palo Alto, 2001.

[Microsoft03] Microsoft Corp. Common Driver Reliability Issues. 2003. Available at

http://www.microsoft.com/whdc/driver/security/drvqa.mspx.

[Microsoft06] Microsoft Corp. Windows Driver Foundation. Available at

http://www.microsoft.com/whdc/driver/wdf/default.mspx.

[Microsoft05] Microsoft Corp. Kernel Enhancements for Microsoft Windows Vista and

Windows Server Longhorn. 2005. Available at
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-

d599bac8184a/kernel-en.doc.

[Microsoft05_2] Microsoft Corp. Introduction to the WDF User-Mode Driver

Framework. 2005. Available at
http://www.microsoft.com/whdc/driver/wdf/umdf_intro.mspx.

[Oney02] W. Oney. Programming the Microsoft Windows Driver Model, Second Edition.

Microsoft Press, 2002.

[Oshins04] J. Oshins and D. Holan. WDF - Overview of PnP and Power Management

Model. Windows Hardware Engineering Conference 2004. Slides available at
http://download.microsoft.com/download/1/8/f/18f8cee2-0b64-41f2-893d-

a6f2295b40c8/DW04036_WINHEC2004.ppt.

[PREfast03] PREfast for Drivers. Microsoft Corp. Available at

http://www.microsoft.com/whdc/devtools/tools/PREfast.mspx.

[SDV06] Static Driver Verifier. Microsoft Corp. Available at

http://www.microsoft.com/whdc/devtools/tools/sdv.mspx.

 36

[Seltzer96] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing with disaster:
Surviving misbehaved kernel extensions. In Proceedings of the 2nd USENIX
Symposium on Operating Systems Design and Implementation, Oct. 1996, pages 213--
227.

[Semack04] M. Semack. Linux's (Lack Of) Driver Architecture. 2004. Available at

http://www.semack.net/Articles/LinuxsDriverArchitecture.html.

[Shah04] A. Shah. High Memory In The Linux Kernel. 2004. Available at

http://kerneltrap.org/node/2450.

[Sullivan91] M. Sullivan and R. Chillarege. Software defects and their impact on system

availability-a study of field failures in operating systems. In Proceedings of the 1991
Symposium on Fault Tolerant Computing (FTCS), pages 2-9. IEEE, June 1991.

[Swift04] M. M. Swift, B. N. Bershad, and H. M. Levy. Recovering device drivers. In

Proceedings of the 6th USENIX Symposium on Operating Systems Design and
Implementation, San Francisco, CA, Dec. 2004.

[Swift05] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the reliability of

commodity operating systems. ACM Transactions on Computer Systems, 23(1), Feb.
2005.

 [Wabhe93] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient software-

based fault isolation. In Proceedings of the 14th ACM Symposium on Operating
Systems Principles, Dec. 1993, pages 203–216.

[Wang04] Landy Wang, Distinguished Engineer, core operating systems division,

Microsoft Corp. Private communication.

[Witchel02] E. Witchel, J. Cates, and K. Asanovic. Mondrian memory protection. In

Proceedings of the Tenth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 304–316, Oct. 2002.

