1 Handles

A “handle” h is a random identifier, generated by the operating system. When a process creates a handle, it specifies whether it should be included in the global sets D_a and/or D_r. Those handles in D_a are globally addable to labels. Those handles in D_r are globally removable from labels.

A handle h used for an integrity compartment is specified in D_r by default. A handle h used for a secrecy compartment is specified in D_a by default. A handle used for a top-secret compartment is in neither.

2 Capabilities

A handle h has associated capabilities $a(h)$, $r(h)$ and $g(h)$, which denote “addition”, “removal” and “group selection”, respectively. A process that holds $a(h)$ can freely add h to labels; a process that holds $r(h)$ can freely remove h from labels. A process that holds $g(h)$ also owns all capabilities in the group G_h.

3 Labels

A label is a set of handles. A process can add a handle h to a label L if either $h \in D_a$ or the process owns $a(h)$. Similarly for removal. Each process p has two labels: S_p and I_p, denoting secrecy and integrity, respectively.

4 Groups

A group is a set of capabilities. Each group is named uniquely by a single handle. Unlike labels, groups can be shared across processes. A process can add a capability c to G_h if it owns both c and $a(h)$. That is, if it owns the capability, and the capability for adding to the group G_h. Similarly for removal.

A process can only make changes to a group if its secrecy label is empty — otherwise it could modulate a group as a covert channel.

Each process p has a special group O_p that specifies which capabilities it owns. This group is not shared with other processes. p can remove from O_p arbitrarily. When p is granted new capabilities, they appear in O_p.

We say that for a capability c and a group G_h, that $c \in G_h$ if either c appears in G_h, or of there is a capability $g(h') \in G_h$ such that $c \in G_h'$. That is, we imagine a tree of groups, rooted at the group G_h, and including
a child group $G_{h'}$ if G_h contains the group selection capability for h'. A capability c is in the group G_h if it appears somewhere in the tree rooted at G_h.

Given a group G_h, we can consider all of the removal and addition capabilities contained recursively in G_h. Thus, we have labels $R(G_h)$ and $A(G_h)$:

$$
R(G_h) = \{ h' \mid r(h') \in G_h \}
$$

$$
A(G_h) = \{ h' \mid a(h') \in G_h \}
$$

5 Changing Labels

A process p has a secrecy label S_p, an integrity label I_p, and an ownership group O_p. Let’s say a process wants to update a label L, which is either its secrecy or integrity label. A process can set a label L to be L' if and only if:

$$
L - L' \subseteq R(O) \cup D_r \quad \text{and} \quad L' - L \subseteq A(O) \cup D_a
$$

This is stating more formally what was described above. Handles can be removed from a label if either the process owns the removal privilege for that handle, or if the handle is universally removable. Similarly for addition.

6 Interpretation of Labels

The label S_p describes which secrets a process has seen. For each handle $h \in S_p$, the process is assumed to have seen all secrets associated with h. The larger S_p, the more types of secrets p has seen.

The label I_p describes which integrity levels p belongs to. The larger I_p, the more integrity p has.

7 Messaging

In general, a process p can message a process a if $S_p \subseteq S_a$ and $I_q \subseteq I_p$. That is, p can message q if p has seen fewer secrets than q, and if p is at a higher integrity level than q.

8 Per-Channel Labels

p might be a server, which can talk to many different processes. In that case, p might want to act as if it has many different secrecy and integrity
levels. A process p can speak to q with a per-channel secrecy level $S_{p→q}$ and per-channel integrity level $I_{p→q}$ so long as it is allowed to change its secrecy and integrity levels to $S_{p→q}$ and $I_{p→q}$ respectively, and it is allowed to switch back. We can apply the formulae above to see that a process can use a per-channel label $L_{p→q}$ if:

$$(L \cup L_{p→q}) - (L \cap L_{p→q}) \subseteq (A(O) \cup D_a) \cap (R(O) \cup D_r)$$

For example, say that $S_p = \{\}$, $I_p = \{\}$, $O_p = \{a(x), r(x)\}$ and $S_q = \{x\}$. Then A can set a per-channel secrecy label of $S_{p→q} = \{x\}$. This allows p and q to communicate with the same secrecy level, and therefore, to enjoy bidirectional communication.