
Costs and Benefits of Overlay Support in the Network Layer

Anonymous

Abstract

Overlay networks are virtual networks formed by coop-
erating nodes that share an underlying physical network.
They represent a flexible and deployable approach for ap-
plications to obtain new network semantics without mod-
ification of the underlying network, but they suffer from
efficiency concerns. Two router-based primitives help end-
hosts alleviate these inefficiencies. Packet Reflection allows
end-hosts to request that routers perform routing and dupli-
cation for certain packets. Path Painting facilitates build-
ing overlay topologies that resemble the topology of the
underlying network. We describe detailed implementation
rules for the proposed primitives, and examine the neces-
sary overhead (in time and space) for their implementation,
including hardware implementations.

Simulations with an implementation of application-level
multicast and other overlay applications indicate that when
all routers support the primitives, less than 5% overhead (in
terms of link usage and latency) remains from the purely
end-host implementations. In addition, the benefits gained
from deployment are significant even at low levels. When
intelligent deployment strategies are used, link usage over-
head is less than 30% with less than 10% deployment. Fi-
nally, these benefits apply mostly to the area local to the
deployed routers, providing a deployment incentive to in-
dependent networks.

1 Introduction

Overlay networks are a popular method for deploying dis-
tributed services without having to modify the IP protocols.
Example services that have been implemented as overlay
networks include multi-path and indirect-routing for high
reliability [20, 1], teleconference applications [12], and
reliable single-source multicast [13, 9, 6]. These overlay
networks perform packet routing and duplication in edge
nodes, using only IP unicast between the overlay nodes. In
these systems, cooperating servers throughout the Internet
act as routers in an overlay network.

Just as a physical network has a topology consisting of
the nodes of the network and the links between them, an
overlay network has a virtual topology, which exists by the
agreement of the overlay nodes. Overlays transmit packets
only along the virtual links between the overlay nodes using
the underlying unicast mechanism provided by IP.

The overlay network approach faces two important chal-
lenges. First, overlay networks operate at a disadvantage to

router-based systems because they are located at the edges
of the network. This drawback is both a performance prob-
lem, packets going in and out of external servers waste time
and bandwidth; as well as a functional problem, overlay
nodes are not in a position to observe network traffic that
is not explicitly directed to them. For example, the IP Mul-
ticast (IPM) group joins rely on the ability of routers to ob-
serve passing messages.

Second, it can be difficult to build virtual topologies that
resemble the topology of the underlying network. It is ben-
eficial for the virtual links of an overlay network to connect
nodes that are well-connected in the underlying network.
Choosing well-connected virtual links is akin to supplying
a physical network with a higher bandwidth link-layer. It
is also common to prefer virtual links that share as few
underlying links as possible with other virtual links. This
property leads to independent failures, and less duplicate
traffic on underlying links. Unfortunately, it is difficult to
determine these characteristics today, due to complications
such as temporary network congestion, route flaps, fire-
walls, and route asymmetry. Overlays have relied on waste-
ful and error-prone techniques such as continual bandwidth
probes to learn about the underlying network.

We will use two metrics to evaluate how efficiently an
overlay network is operating. Stress indicates the number of
times that a semantically identical packet traverses a given
link. In IPM, stress is exactly one — a packet is never emit-
ted twice on the same link. On the other hand, traditional
overlay networks can not hope to achieve such efficiencies.
Packets being forwarded by an edge node will traverse (at
least) the node’s local link twice. Stretch indicates the ratio
of latency in an overlay network compared to some base-
line, generally IP unicast or multicast.

The contributions of this paper are:

• Rules for routers that implement Packet Reflection and
Path Painting. These rules provide greater detail and
extend the functionality of previous descriptions. They
allow for partial reflection responses, address privacy
concerns, and allow for flexibility in details which may
be improved over time, or adapted to the needs of a
particular network. (Sections 3 and 2 ).

• A discussion of implementation issues and expected
overhead in software and hardware based routers. We
argue that performance will not be a hindrance to the
adoption of reflection and painting. (Section ??)



R
2

R
3

R
4

E
1

1
S

E
2

R
5

E
3

Figure 1: An application-level multicast distribution tree. Packets are sent
from the source S1 to end host E1 through routers R3 and R4. E1 sends
the packets on to E2 and E3.

• A demonstration of the flexibility allowed by these
primitives in the form of example multicast systems
with varying communication models (Section 5), ex-
amples outside of the realm of multicast, RON and
i3 [21], and a performance evaluation (Section 6) of
these uses.

In contrast to related work (see Section 7), packet reflec-
tion and painting are incrementally deployable and don’t af-
fect correctness (applications will perform correctly in the
face of routing changes). The primitives are for optimiza-
tion only. Overlay networks must be prepared to operate as
if the primitives do not exist. When the primitives are avail-
able, the network will provide explicit signaling to the ap-
plication, allowing it to avoid work that has been performed
in the network.

2 Packet Reflection
In an overlay network each node carries out explicit uni-
cast communication with its neighbors in the topology.
When one overlay node forwards packets between two
other nodes, that packet is transmitted on the same link
multiple times as it reaches the intermediate and is retrans-
mitted toward the final destination. The links near the in-
termediate will have a stress of two, and the stretch of the
packet will exceed one as time is wasted while the packet
approaches and then leaves the overlay router.

When multicasting on an overlay network, the stress
problem is exacerbated. The forwarding node duplicates
packets, forcing semantically equivalent packets to be trans-
mitted on the same link, in the same direction, multiple
times. In such cases, some links will have a stress equal
to the number of packet duplications plus one. For exam-
ple, Figure 1 shows a simple application-level multicasting
tree in which one link, R4E1, has a stress of three, while
another link, R3R4, has a stress of two.

Stretch is also a problem in Figure 1. E2 receives pack-
ets only after they have traversed seven links, rather than
the three of a direct unicast. E3 must wait for five traver-
sals instead of three. Assuming unit latencies, these paths
represent a stretch of 2.3 and 1.7 respectively.

Packet reflection allows an end host to ask an appropriate
router to perform routing and duplication on its behalf. In
Figure 2, end host E1 directs a reflection request toward

R
2

R
3

R
4

E
1

1
S

E
2

R
5

E
3

Figure 2: End host E1 avoids overloading link R4E1 by requesting
reflect(S1 → E1, 1, {(E1 → E2, 0), (E1 → E3}, 0)). R4 will now
duplicate packets for E1 from S1, sending copies to E2 and E3. In both
duplicates the source will be E1.

S1, which takes it to router R4. This optimization alleviates
stress on link R4E1. In addition to performing requested
reflections, routers continue to forward packets using their
normal forwarding rules. Thus, E1 will continue to receive
all packets addressed to it.

The format of a reflection request is reflect(S →
D,T, {(Si → Di, ti)}. Such a request will be addressed to
S, and will take advantage of routing symmetry to direct it
to routers that can fulfill the request. (The real-world effect
of asymmetry is discussed at the end of Section 5.3.) This
notation means, “When a reflectable packet arrives from
S, destined for D, duplicate it once for each Si → Di.
Rewrite the source and destination in each duplicate and
emit each, tagged with the associated ti. Emit the original
packet tagged with T .” Tags are used to ensure that nodes
know when their reflection requests have been honored (we
will see that network asymmetry and route changes can
cause packets to “miss” the router that would reflect them).
Tags are described in detail in Section 2.2. The operation of
a router receiving a reflection request and handling packets
that match the request are formalized in Rules 1 and 2. In
all rules, “address” refers to an IP address and a demulti-
plexing field, similar to a TCP or UDP port.

Rule 1 Upon agreeing to a reflection request, the router
shall install a reflection table entry keyed by the source and
destination addresses of the request. The entry contains a
success tag and a number of copy entries. Each copy entry
contains new source and destination addresses, and a tag
for that copy.

Rule 2 If a reflectable packet (IP Protocol = REFLECT)
matches a reflection table key, duplicate the packet for each
copy entry in the table entry. Each copy receives the ad-
dresses and tag from its copy entry. The original packet is
marked with the tag of the reflection table entry. All pack-
ets, including the original, are then forwarded by normal
unicast rules.

When end hosts initiate reflection requests, they decrease
stress on the link between themselves and the nearest router
to them. When routers themselves make reflection requests,
stress is alleviated within the network. In Figure 3, router

2



R
2

R
3

R
4

E
1

1
S

E
2

R
5

E
3

Figure 3: Router R4 avoids overloading link R3R4 by requesting
reflect(S1 → E1,2, {(E1 → E2, 0)). Note that the tag has been in-
cremented, and a copy has been eliminated from E1’s original request.

R4 takes advantage of packet reflection by propagating part
of its responsibility to reflect packets. By pushing a request
similar to E1’s original request on to R3, R4 reduces the
stress on link R3R4.

If R3 performs the reflection to E2, R4 should not. Tags
allow R4 to know whether a given packet has already been
reflected by R3. This mechanism is formalized in Rule 3
and described in more detail in Section 2.2.

Rule 3 Copy entries are initially marked NORMAL. NOR-
MAL entries are be treated as in Rule 2. The router may
make a new reflection request that asks for some copies
to made on its behalf. Requested copies are marked DE-
MANDED. The success tag in the new request is recorded in
the reflection table entry for the request. The tag is the en-
try’s expected tag. When a packet arrives with the expected
tag, DEMANDED copies are not made.

2.1 Anatomy of a reflection request

A request consists of a three packets: ASK, OFFER, and
DEMAND. An ASK initiates the request. It contains a list of
copies that the requester would like made on its behalf. The
IP destination of the ASK is the source address of the match
criteria. This directs the ASK toward the source through any
number of routers that do not support reflection. When the
ASK reaches a router that does support reflection, the router
intercepts the ASK and responds with an OFFER.

An OFFER contains a subset of the copies requested in
the ASK, and a nonce. The subset of copies are those copies
that the router is willing to make on the requester’s behalf.
An OFFER is addressed to the destination of the match re-
quest, which is not necessarily the originator of the ASK.
The asker must intercept the OFFER on its way to its des-
tination. This is a security precaution that ensures that only
routers that could intercept traffic destined for a host can re-
quest that packets for the host be duplicated and emitted to
a third party. Thus no greater power to eavesdrop has been
created. The nonce is the result of a one-way hash function
run on the match criteria of the request and a router secret
thereby ensuring that a router can not respond to an OFFER
that it has not actually seen.

The router may determine the subset of copies that it is
willing to perform in any way it chooses, though Rule 4 is

a guideline. Generally, a router should be willing to make
a copy if, when consulting its own IP routing table, it de-
termines that the copy would not be emitted on the same
interface as a packet that meets the matching criteria of the
ASK. Rule 4 means that a router would make a copy if doing
so would decrease stress on one of its own links.

Rule 4 A router shall offer to perform all copies in a re-
flection request which will do not require that the copy and
the original packet be emitted on the same interface.

Alternatively, Rule 5 is a recursive approach to determin-
ing what copies a router should offer. In this formulation,
ASK packets would recursively propagate to the source,
then a series of OFFER packets would propagate back to the
original asker. Finally, DEMAND packets would proceed to-
ward the sender. The recursive approach will push requests
further into the network at the cost of more network traffic
during setup.

Rule 5 After receiving an ASK, a router shall pass along
the reflection request (Rule 3) before offering an OFFER
response. The router shall then offer to perform all copies
implied by Rule 4 or offered by the next router.

A DEMAND is the final phase of a reflection request, and
is made by the same node that sent the ASK. A DEMAND is
sent in response to an OFFER, and contains the nonce of the
OFFER. It will also usually contain the same copy informa-
tion as the OFFER. However, the demander may choose to
eliminate some copy requests and, in some cases, must do
so in order to maintain the correctness of success tags. A
rule for constructing DEMAND packets is deferred until tags
are described.

2.2 Tags confirm reflection

Tags allow end-hosts and routers to determine when their
reflection requests have been honored. When reflection re-
quests are not handled by the network, the requester must
perform its own duplications.

In the presence of route assymetry, a router may accept
a reflection request but is not in a position to observe the
packets that match the reflection criteria. Similarly, when
routes in the underlying network change a reflection request
may have propagated to a router that no longer sees the
packets that are to be reflected. The requester must know,
when it observes the packets, that they have not yet been
duplicated.

To address these problems, packet reflection requests
contain a tag, as do all packets forwarded by the reflection
mechanism. When a router performs a reflection, it writes
the value of the tag for that reflection request to the original
packet, which is forwarded toward the original destination.
If a packet is received without the appropriate tag, it is clear
that duplication did not occur, so the receiver performs the
duplication.

3



R
2

R
3

R
4

E
1

1
S

E
2

R
5

E
3

Figure 4: A different underlying topology allows R4 to propagate its en-
tire responsibility to R3. R4 can make make its request using the same
success tag that it has been asked to use by E1.

When choosing a success tag, a router must ensure that
the meaning of the tag is unambiguous. However, using the
same success tag in successive requests mitigates the dele-
terious effects of route asymmetry and route changes. End-
hosts use a success tag of 1 when initiating a request, and
increment the tag when necessary to avoid ambiguity.

In Figure 3, E1 has requested that two copies be made
whenever it receives a packet from S1. R4 agreed to per-
form those copies, but went on to request that R3 should
make one of the copies. The second request incremented
the success tag in case the S1 → E1 packet emitted by
R3 ever makes it to E1 without passing through R4. R4 is
ensuring that R3 will not confuse E1 with a claim that is
not true. A success tag of 1 would indicate that both copies
have been sent, so R3 must use a different success tag after
making only one copy.

Changing success tags is not always necessary. In Fig-
ure 4 R4 was able to request that R3 perform both copies
on its behalf, so the tag was not changed. If the S1 → E1

packet emitted by R3 ever makes it to E1 without passing
through R4, E1 will not be confused. The success tag is
accurate — both copies requested by E1 have been made.
This arrangement also simplifies R4’s responsibilities. R4

has arranged matters so that its operation under Rule 8 has
led to a degenerate case: the incoming packet’s tag is the
same as the expected tag, and no copy entries are NORMAL,
R4 may simply forward the original packet.

Rule 6 When propagating the request associated with a re-
flection table entry, a router shall use a new tag unless all
copy entries of the reflection table entry are offered by the
next router. The new tag shall be chosen by incrementing
the success tag of the reflection table entry.

There is a significant advantage to avoiding unnecessary
tag changes. If a new link were brought up connecting R3

directly to E1, reflection would proceed without difficulty.
The packet would be tagged at R3 in exactly the way that
E1 expects, so E1 would correctly detect that its request has
been fulfilled. The fact that R3, rather than R4, performed
the duplications is irrelevant.

In fact, R4 may safely throw out the reflection table entry
associated with the request as described in Rule 7. Routers
should not eliminate this state without cause, however. If a

new route should be added to the network that skips R3 but
not R4, it would be beneficial for R4 to maintain enough
information to perform the necessary duplications. If the
state has been eliminated, the packet will not be duplicated
until it reaches E1.

Rule 7 A router that has successfully passed on an entire
reflection request may discard the reflection table entry as-
sociated with the request.

Once a router has agreed to service a reflection request, it
is expected to make the appropriate copies or ensure that an-
other router has done so. Rule 8 refines Rule 2 to describe a
router’s forwarding responsibilities in the presence of tags.

Rule 8 To reflect a packet that does not have a success tag
corresponding to the expected tag of its reflection table en-
try, a router shall make all copies, then tag and forward the
original. To reflect a packet that does have a matching suc-
cess tag, make all copies that are marked NORMAL, then tag
and forward the original.

In addition to the tag associated with the request as a
whole, reflection requests also contain a tag associated with
each copy. These tags are necessitated by the interaction of
multiple reflection requests. Suppose that a router has ac-
cepted a request that causes it to emit a packet which would
match another of its table entries. Upon receiving the orig-
inal packet, two table entries would be triggered, and two
success tags would be written - one to the original packet
and one to the packet that triggered the second entry. Sup-
pose further that the router wants to move this responsibility
further into the network. It must be possible to ask that the
next router not only perform the duplication, but also write
the appropriate tag in the duplicated packet. Rule 9 codifies
the way in which these two table entries may be collapsed,
bringing the success tag of the second entry into the copy
entry of the first match.

Rule 9 If a router contains a reflection table entry, R1, in
which a copy entry, C1, matches another reflection table
entry R2, the copies associated with R2 should be added
to the copy entries of R1. The success tag of R2 should be
written to C1. The newly added copy entries of R1 should
be marked NORMAL. A subsequent reflection request may
change them to DEMANDED (Rule 3).

Rule 9 places non-zero tags in the copy entries of a reflec-
tion table entry. Those non-zero tags indicate that additional
copies are being made. Therefore, if they are passed on in
a reflection request, the associated copies must be reflected
as well. This is described in Rule 10.

Rule 10 A router shall only demand a tagged copy if it also
demands the copies that are implied by that tag.

4



R
2

E
1

R
3

R
4

S
1

R
5

E
2

E
3

Figure 5: Three nodes, E1,E2, and E3 send paint requests to S1. E2 has
sent its request first, so the later requests from E1 and E3 are dropped
when the reach a painted router. After notifications, E2 knows about E1

and E3. E1 and E3 know only of E2.

3 Path Painting
Path painting enables nodes to set up efficient overlay
topologies that resemble the underlying network. Overlay
networks generally seek to optimize two attributes of their
topologies. First, nodes that are nearby in the physical net-
work should be nearby in the overlay. Second, virtual links
should be independent of each other in the physical net-
work. Physical independence leads to independent failures
of virtual links, and allows the overlay to deal with network
characteristics more naturally. For example, when links are
independent, a clever overlay network can more easily route
around a slow link.

To build overlays that resemble the underlying network,
nearby nodes should aggregate into small clusters, which
then aggregate into larger clusters, and so on. Path painting
allows this aggregation by taking advantage of the fact that,
in general, the Internet is organized so that nearby nodes
share most of their paths to far away nodes. Locally, the
nodes of a single university dorm share almost all of their
paths. All computers of the university also share most of
their paths, though not necessarily the first few hops. Be-
yond that, all customers of the university’s ISP share paths
once they reach the ISP, and so on.

To use path painting, end-hosts send paint requests to-
ward an agreed upon rendezvous. As the requests move
toward the rendezvous, they meet at routers, and notifica-
tions are sent, informing end-hosts of these “collisions”.
Figure 5 shows the interactions of three paint requests. The
first painter emits a paint request which paints all routers on
the way to its destination. After that, two more painters emit
paint requests that proceed only until they reach a router
that has already been painted.

3.1 Anatomy of a paint request

A paint request begins with a REQUEST packet. A RE-
QUEST packet contains two optional lists, concede and ig-
nore. They are useful for directing the paint process in
greater detail. See Sections 3.2 and 3.3.

The NOTIFY packet, sent in response to the REQUEST,
contains the addresses of nodes that have sent REQUEST
packets to the same destination. A NOTIFY packet will
contain address information about exactly one or two nodes.

The first address will always be the current color of the
router sending the NOTIFY. When responding to a RE-
QUEST from the node that is currently coloring the node,
that will be the only address in the response. When respond-
ing to another node, that node’s address will be the second
address. A separate copy of the NOTIFY is sent to each of
the painters in the response. Rule 11 summarizes.

Rule 11 Upon receiving a paint request, a router consults
its paint table for the packet’s destination. If the router is
not painted, the request is forwarded normally, the router
becomes painted by the requester, and a notification is sent
to the requester containing only its own address. If the
router was already painted, the request is dropped, and the
router sends a notification containing the color of the router
and the address of the requester to the requester and the
current painter of the router.

3.2 Concede

Normally, paint requests are dropped if they match a request
previously made at the same router. Only one “paint color”
continues on from an intersection point. Without applica-
tion hints, the propagated request is arbitrarily chosen to be
the first color observed by the router. Rules 12 and 13 pro-
vide for concession. This mechanism allows application-
level control of paint propagation.

Rule 12 When a paint request is received with a concede
field, it is first treated as in Rule 11, including forwarding
if the paint color is the router’s current paint color. Then,
if the request color matches the current color of the router,
the router notes the value of the concession color.

Rule 13 When a paint request is received from a color that
matches the previously noted concession color, the router
changes to the concession color before following Rule 11.

3.3 Ignore

To avoid a denial of service attack from a node that might
paint to a path but refuse to participate with other nodes
painting to the same destination, a request may contain any
number of ignore addresses. A paint request will continue
even if it encounters a router colored by one of the ignore
nodes. Suppose that E2, the first to paint the path to S1, was
a malicious node. Without ignore, E1 and E3 would have
been unable to rendezvous. Their paint requests would be
dropped, leaving them without knowledge of any coopera-
tive nodes. E1 and E3 are expected ignore E2 when they
detect the difficulty (perhaps E2 is unable to participate in
an application-level authentication mechanism).

Rule 14 A router shall maintain an ordered list of colors.
Previous rules shall be followed as if the current color of the
router is the first color which is not specified in a request’s
ignore list. If there is no such color, the request shall be
treated as if the router is uncolored. In this case, the router
shall add the request’s color to the end of its list of colors.

5



4 Implementation issues
This section address some common details of implemen-
tation among the two primitives. Both primitives rely on a
soft state mechanism to manage storage, and both can be
deployed incrementally.

4.1 Soft state

Routers maintain reflection entries for a finite period of
time. It is the responsibility of end hosts to repeat reflection
requests on a periodic basis in order to maintain the state in
each router. When routers receive a refreshing request, they
should repeat their own attempt to pass on the request by
Rule 3.

As for reflection, paint state is maintained as soft state
and end hosts must repeat their paint requests periodically.
All paint requests return NOTIFY packets as they encounter
enabled routers. These notifications act as acknowledg-
ments so that paint requests may be retransmitted in case
of loss. This reliability allows end hosts to know when a
router’s state was last refreshed, so that the time of the next
refresh can be determined.

This paper does not explore appropriate timeout intervals
for refreshing soft state, though it is expected that timeouts
on the scale of minutes would be appropriate.

4.2 Deployment

Packet reflection and painting are suited to incremental
deployment because there is an immediate gain wherever
they are deployed. Even if only a single router implements
the primitives, application-level multicast nodes attached to
that router can immediately take advantage of packet re-
flection and save bandwidth on their LAN and trimming
latency to their neighbors. In the previous example of Fig-
ure 1, even if only R4 had implemented reflection, stress
would still have been reduced to one on link R4E1.

Further encouraging deployment, a router is likely to ex-
perience less total load compared to a purely end-host based
multicast system. If overlay networks become more com-
mon, network operators will want to support reflection for
their own benefit (cheaper provisioning), not just for their
customers’. Instead of receiving multiple packets, perform-
ing multiple route lookups, and transmitting multiple pack-
ets, a reflecting router receives one packet, performs one
lookup, and transmits multiple copies of the packet. Addi-
tionally, the lookups performed for packet reflection may
be faster than a normal routing lookup, as they are exact
matches rather than longest-prefix matches.

Packet reflection and paint requests are normal IP data-
grams, so requests pass through legacy routers unchanged.
If, for example, only the border router of a large organiza-
tion’s network is capable of packet reflection, then all re-
flection requests for flows originating outside of the organi-
zation would make their way to the border router. The effect
is that all such flows are short-circuited at the border router,
saving the organization from internal resource usage. Simi-
larly, as long as at least one router on the shared portion of

two nodes’ paths to the rendezvous is “paint capable”, infor-
mation will be gained that will allow the overlay topology
to more accurately reflect the underlying topology.

5 Application Level Multicast
The primitives presented are intended to be flexible, sup-
porting overlay networks of all kinds. In some cases, such
usage is obvious. For example, i3 or a RON could use refec-
tion when forwarding packets between two hosts through a
third party. Section 6.3.2 describes experiments of this type
and evaluates their success.

This section presents various uses of the primitives in
multicasting applications. First, an application-level multi-
cast protocol with semantics similar to IP Multicast is pre-
sented. Next we will show that, when using the primitives,
it is easy to extend a simple IPM-like system to handle het-
erogeneity and reliability. This flexibility is in stark contrast
to IP Multicast, in which support for heterogeneity and re-
liability represent significant design efforts.

We begin by describing a mapping between features of IP
Multicast to elements of the emulation that can be provided
with the proposed primitives.

Feature IP Multicast Emulation
Group address Class E IP address (IP address, port)
Rendezvous Core router End host
Join request Graft message Paint request
Data Path Routing table Reflection state

5.1 Group joins

A multicast system requires a rendezvous so that various
potential group members can come together and share pack-
ets. In IP Multicast, the rendezvous point is somewhat hard
to pin down. Various protocols (PIM [7], DVMRP [25],
CBT [4]) have proposed different rendezvous points. In em-
ulation, a simple approach is taken. The rendezvous is ex-
plicitly named as part of the group, as in Source-specific
Multicast or Express. The group name will be the IP ad-
dress of a suitable rendezvous. A port number is added to
the IP address to provide a larger, independently managed
namespace.

As in IP Multicast, a join message is sent to the ren-
dezvous point by new group members. In emulation, the
join message is a paint request. If the paint request encoun-
ters no router that is already painted on its way to the ren-
dezvous, then no action is required; the new node is the only
member of the group. If the paint request encounters an al-
ready painted router, that router notifies the joining node
and the previous painter.

One of these two nodes must become the parent of the
other. Various rules are possible, but one rule that appears
promising is to set the node nearer to the router at which
the collision occurred to be the parent. The nodes can de-
termine their nearness from the TTL field in the collision
reports. In case of a tie, any tie breaker is sufficient, such as
an ordering on the nodes’ IP addresses. More simply, they

6



R
2

R
3

R
4

E
1

1
S

E
2

R
5

E
3

Figure 6: An application-level multicast distribution tree.

can rely on the router to select a paint color, which will be
the first painter.

Once the nodes have decided who will be the parent, the
child begins sending paint request with concede set to the
address of the parent. On the other hand, if the other node
is uncooperative, the emulation adds the node to the paint
request’s ignore list.

In Figure 6, three nodes have joined an emulated mul-
ticast group using S1 as a rendezvous. The end-hosts sent
paint requests in their natural order (E1, E2, then E3), and
the topology induced by that ordering was acceptable. E2’s
paint reached R3, which notified E1 and E2. These nodes
then set up communication by some application-level pro-
tocol. E3’s paint then reached R4, leading to a similar ex-
change between E1 and E3.

The rendezvous, S1, is an active participant in the mul-
ticast group. Thus S1 itself acts as a painting router. When
E1’s first paint arrives at S1, a NOTIFY is sent to E1, in-
forming it that it has reached a router that is colored by S1.
S1 and E1 carry out the same protocol to establish commu-
nication as E1 and its children did.

However, the rendezvous does not need to be an active
member of the multicast group. Suppose S1 were elimi-
nated, but IP routing entries still exist for it in its current
location. E1’s paint would have elicited only the “empty”
NOTIFY packets from R3 and R4 that tell E1 that it has
colored those routers. When E2 and E3 sent their paint re-
quests, the group would be formed in exactly the same way
as before. The group would consist only of E1, with its chil-
dren E2 and E3.

5.2 Forwarding

Whenever a node’s overlay neighbors change, whether be-
cause the node itself is new to the tree, or because another
new node has situated itself as a neighbor, the node sends
new reflection requests. To allow complete connectivity, a
node makes as many reflection requests as it has neighbors
in the distribution tree. Each neighbor will appear once as a
source address on which to match and in all other requests
as the source of the copies to be made. For example, in Fig-
ure 6, after the final node (E3) has joined the tree, E1’s
neighbors have changed. E1 would send the following re-
flection requests:

reflect(S1 → E1, 1, {(E1 → E2, 0), (E1 → E3, 0)})

reflect(E2 → E1, 1, {(E1 → S1, 0), (E1 → E3, 0)})

reflect(E3 → E1, 1, {(E1 → E2, 0), (E1 → S1, 0)})

Any member of the multicast group can send packets to
the group. To do so, it sends packets to each of its neigh-
bors. For example, E2 would need to send one packet, ad-
dressed to E1. E1 would send three packets, one to each of
its children and to its parent, S1.

5.3 Distribution trees

This section describes the topology of the distribution trees
created by IPM Emulation. We will be assuming that all
routers implement the primitives and that each router ac-
cepts all reflection requests that make sense from a topo-
logical perspective. That is, they obey Rule 4 or Rule 5.
They do not reject requests due to space concerns, adminis-
trative decree, or for any other reason. We also assume that
IP routing is symmetric, single-pathed, and stable. A sin-
gle route is always used from A to B and back again. At
the conclusion of the section, we consider the relaxation of
these assumptions.

First, we observe that only one group member in a stub
network will have a neighbor in the distribution tree outside
of that stub network. A stub network is a subnetwork that
is connected to the portion of the network containing the
rendezvous by a single link. A portion of the network that
contains the rendezvous is not considered a stub network.

As the paint requests of the members in the stub network
travel toward the rendezvous, they all traverse their single
connecting link and their border router. Only one group
member may color the border router, and only that paint
color will be seen outside of the stub network.

Our seconds observation is that stress will never exceed
one on the link connecting a stub network to the rest of the
network. The only possible reasons for a packet to traverse
such links are to get to the node, X, that has colored the bor-
der router or from X to one of its (possibly many) children.
Reflection will always eliminate the return packets by push-
ing the copies to the external router connected to the border
router. Consider the propagation of the reflection request.
The request must be of the form (tags elided):

reflect(A → X, {X → B,X → C, . . .})

As the reflection propagates toward the border router, ev-
ery router will offer to perform the copies that name des-
tinations outside of the stub network (foreign nodes). A
router would only refuse to perform a copy if its destina-
tion is in the same direction as X, which is never the case
for foreign nodes.

The fact that a stub network’s link has a stress of one is
surprisingly powerful because our definition of a stub net-
work is quite broad. For example, if the entire network is a
tree, then every subtree of the network which excludes the
rendezvous is a stub network. Therefore there will be no
link with a stress greater than one in such networks. Trees

7



R
4 E

1

R
3

R
5

1
R R

2

E
2

E
3

S
1

Figure 7: E1 has become the parent of E2 and E3. However, E1’s reflec-
tion request stops at R4 rather than propagating to R1 and R2 where its
paint collided with the paint of E3 and E2.

are a common network architecture for networks of small
to medium scale implying that multicast trees built in this
way will be very efficient in many real world scenarios.

However, a portion of the network that is not a tree can
have stress greater than one. This occurs when a reflection
request does not propagate to the router at which the asso-
ciated paint collision occurred. Figure 7 illustrates such a
situation. Assume that routing is by shortest path and that
each link has unit weight. After being the first to paint to
S1, E1 finds itself the parent of E2 and E3. It formulates
the following reflection request (tags elided):

reflect(S1 → E1, {E1 → E2, E1 → E3})

Following Rule 4 R4 offers to perform both copies. How-
ever, when R4 attempts to pass the request further, R3 will
not offer to perform either copy. This choice is because R3

would emit the copies on the R3R4 link, which is the same
link on which it will emit the original (S1 → E1) packet.
The R4R5 link retains a stress of two because it must carry
a packet for each of E3 and E2.

Our assumptions are not necessary for the primitives to
perform well. For example, the assumption that the primi-
tives have been implemented at every router is stronger than
necessary. Only a router that is located at the collision of
two paint requests must implement the primitives. In real-
ity it will be impossible to deploy enabled routers at pre-
cisely the locations that they might someday be needed, so
we consider how well the emulated multicast system will
behave under various deployment scenarios in Section 6.

If the network lacks routing symmetry, some reflection
requests will not reach their intended destination. When a
reflection request reaches a router that emits packets for the
match criteria destination through a different interface than
it receives the request, the router’s OFFER will not be inter-
cepted by the asker. Reflection will work only on the sym-
metric portion of the path. We expect that symmetry is com-
mon from the edges of the network to border routers and
our evaluations demonstrate that even if the primitives are
deployed only at border routers, most of their effectiveness
is retained. Therefore, we expect real-world asymmetry to
have little impact of the effectiveness of reflection.

Unfortunately, too little is known about Internet asym-
metry to support useful simulations. The ability of exist-
ing topology generators to create detailed topologies that

include latency and routing information is limited. Further
complicating the picture by adding asymmetric links gives
one little reason to believe that the generated topologies
would truly resemble Internet topologies with respect to
properties like latency and the location of asymmetries. Al-
though we have conducted initial experiments [2], further
research detailing the sources and locations of asymme-
try in the Internet is needed before any simulation can be
trusted.

5.4 Heterogeneous multicast

Having built an IP Multicast emulation layer in the previous
section, one possible way to handle heterogeneous receivers
is to build RLM [16] on top of the IP Multicast emulation.
However, a simpler and more featureful system can be built
directly by using the proposed primitives. An overlay can be
set up that uses the IP routing infrastructure to do most of its
work, but, when necessary, falls back to explicit forwarding
with transcoding over slow links.

Using path painting, nodes arrange themselves into an ef-
ficient distribution tree as in IP Multicast emulation. Each
node makes reflection requests to forward all traffic among
its neighbors in the overlay network. Each node also ex-
changes congestion information with each of its neighbors.
If an overlay link is found to be suffering from congestion,
then the use of reflection requests to forward along that path
is discontinued. Instead, the stream is thinned at each end
of the overlay link and forwarded with explicit unicast. The
thinning may consist of transcoding to an entirely different
lower-fidelity format or by dropping selected packets that
are less important to the reconstruction of the data stream.

Stream thinning wherever appropriate creates a system
that provides all participants with as much bandwidth as
possible to all other participants. When two separate pools
of well-connected users are joined by a low-bandwidth con-
nection, the users in each pool will experience high-fidelity
contact with the users in their own pool.

5.5 Reliable multicast

Reliable multicast systems built on IP Multicast are more
complex than overlay solutions for two reasons. First, IP
Multicast hides details, so nodes don’t know their parent.
Because receivers know only what group they in, making
it difficult to direct their requests for retransmissions. Sec-
ond, it is possible to design the application-level nodes of an
overlay specifically for the task at hand. Nodes can contain
large disks to support retransmissions long after the original
transmission. The simplicity of the scheme sketched here
drives home the fact that application-level multicast sys-
tems are flexible, and that they retain their flexibility when
using reflection and painting.

The reliable multicast protocol presented here is an ex-
tension to the the previous heterogeneous multicast proto-
col. The distribution tree is set up, and congestion informa-
tion is exchanged in exactly the same manner. Unlike het-
erogeneous multicast, the only possible “thinning” strategy

8



is to drop packets. All packets must be transmitted in order
to transmit a bitwise correct data stream.

Dropped packets must be retransmitted, though the de-
tails are up to the application. If links are uncongested it
is appropriate for the node that detects the loss to immedi-
ately request a retransmission from its parent. When a link
is congested and the packet has been dropped explicitly by
the parent, the best strategy is to wait until the congestion
has subsided before asking for retransmissions.

6 Evaluation
This section evaluates the effectiveness of the proposed
primitives, as measured by decreased stress and stretch, de-
fined in Section 1. The proposed primitives should decrease
stress and stretch in all situations, though they can be ex-
pected to be most effective when widely deployed.

In addition, the primitives are intended to have modest
space requirements in routers. The space required at indi-
vidual routers should scale slowly, if at all, with the size of
the group. Again, we can expect full deployments to meet
these goals more easily than sparse deployments.

6.1 Simulation methodology

The simulations presented here use highly-connected
transit-stub topologies generated by The Georgia Tech In-
ternetwork Topology Models (GT-ITM) [28]. All simula-
tions were conducted over ten different 100 router graphs.
The parameters used to generate these topologies are from
the sample graphs in the GT-ITM distribution. Each of the
nodes in the GT-ITM graphs models an Internet router. An
end host is added at each router to serve as overlay mem-
bers.

We have implemented reflect and paint as three new Otcl
objects for the ns-2 [18] network simulator. ReflectAgent
and PaintAgent accept requests from applications. Prim-
Connector inspects all packets entering a node and imple-
ment the rules described in the previous sections. The ns
implementation of reflect and painting could be ported eas-
ily to software routers or a standard operating system. A
hardware implementation would be more challenging and
is likely to approach the performance of an IPM router but
not meet it [2].

6.2 Link Stress

The most common metric by which overlay networks are
judged, particularly in the context of application-level mul-
ticast, is stress. In the following experiments stress is mea-
sured for a simple single-source ALM system, as described
in Section 5. The experiments look at a number of different
deployment and group membership scenarios.

The first experiment examines the scalability of an ALM
system in the presence of the proposed primitives. The
primitives are expected to allow an ALM system to scale
more gracefully. As more routers support the primitives,
stress should grow more slowly with group size. Fig-
ure 8 demonstrates this claim. Average link stress is plot-

0 20 40 60 80 100

Group Size

0

1

2

3

A
ve

ra
ge

 L
in

k 
St

re
ss

10 enabled routers
50 enabled routers
100 enabled routers

Figure 8: Average link stress as multicast group size increases in a 100
node network at various levels of random deployment. In well-deployed
scenarios, stress is fairly constant (and low) as group size grows. With few
enabled routers, stress increases with group size.

0 20 40 60 80 100

Group Size

0

1

2

3

A
ve

ra
ge

 L
in

k 
St

re
ss

20 stub routers
Half (6) border routers
All (12) border routers
All (4) transit routers

Figure 9: Average link stress is lower in more intelligent deployment sce-
narios. When all border routers or all core routers are enabled, stress is
quite low, yet this requires very few enabled routers (4 or 12). Even en-
abling only half of the border routers allows overlays to create less stress
than a random, stub-only enabling that contains more than triple the num-
ber of enabled routers.

ted against group size for various levels of deployment.
The slope of these plots is clearly smaller in experiments in
which more routers support reflection and paint, indicating
that stress growth is slower when the primitives are more
widespread.

Next we compare network stress under four different de-
ployment scenarios. Figure 9 shows the results. It is clear
that the enabling of certain routers is far more effective
than others. Enabling transit routers, the “core” of the simu-
lated network is extremely effective at reducing stress even
though they represent only 4% of all routers. They are in an
excellent location to be effective as rendezvous points for
painting, and then to duplicate packets with reflection.

Border routers are nearly as effective as transit routers.
When all are enabled, they lie on all of the same paths as
the transit routers, thus they can eliminate inefficiencies in
nearly all of the same cases. They are slightly less effective
for small group sizes because of stresses among the tran-
sit routers that cannot be relieved without enabled routers
in the core. With larger groups, the border routers become
more effective. To understand why, consider the “zone of
responsibility” of a transit or border router. In each case, the
router effectively isolates a portion of the network allow-
ing a single packet arriving at the router to be duplicated
to service all members in its subtree. From that point on,

9



0 20 40 60 80 100

Group Size

0

1

2

3

A
ve

ra
ge

 L
in

k 
St

re
ss

Links in legacy networks
Links in enabled networks

Figure 10: Link stress is shown separately for networks that enable their
border router and those that do not. Networks that enable the proposed
primitives see a local decrease in network stress.

however, there is, essentially, iterated unicast to those mem-
bers from the router. Small groups have few members in
each “zone of responsibility”, so stress remains low. Border
routers lower stress more effectively for larger groups by
splitting the network into smaller subnetworks and avoid-
ing stressing the border-transit link.

The other two scenarios compare deployments that in-
volve some randomness, and do not turn on all routers of
the given type. In one, half of all border routers are en-
abled. In the other, 20 stub routers out of a possible 84,
are enabled. Despite the considerably larger number of stub
routers, the border router strategy is somewhat more effec-
tive (though less consistent as shown by the fact that aver-
aging over 10 topologies was insufficient to smooth the per-
formance of the strategy). In the stub deployment scenario,
nothing can be done to ease stress in the core, including
the “expanded core” consisting of transit routers and border
routers. In addition, many stub routers will be completely
unused because no group members happen to be located
behind them.

Organizations that deploy painting and reflection will be
more interested in the effect on their local portion of the
network rather than the network as a whole. One claim of
incremental deployment is that local deployment will be of
local benefit. To evaluate this claim, we gather more data
from one of the previous experiments. In the “half-border”
scenario, half of the border routers were chosen at random
for enabling. We now examine, as separate functions, the
stress levels in networks with an enabled border router and
networks with a legacy border router. Figure 10 shows that
the advantages of deployment are gained in the areas of de-
ployment. Networks with an an enabled border router have
stresses in the neighborhood of 1.5. Stress in legacy net-
works is approximately 2.5, a three-fold increase in over-
head.

6.3 Stretch

The primitives are also intended to reduce stretch in an
overlay network. To evaluate this claim, we look at stretch
in two scenarios, ALM and simple two-hop routing as used
by RON and i3.

0 20 40 60 80 100

Enabled Routers

0

1

2

3

4

A
ve

ra
ge

 L
at

en
cy

 S
tr

et
ch

Reflected
Unicast

Figure 11: Latency stretch compared to iterated IP unicast in the base
experiment. As more routers are enabled, latency nears that of IP unicast.

6.3.1 Multicast

Stress measures how much an ALM system strains the net-
work, but does not explain how well it is performing its
intended purpose: an ALM system should move packets to
the members of the group quickly.

We examine the effect of the primitives on latency in a
repeat of the experiment of Section 6.2. All end-hosts par-
ticipate in an application-level multicast. A single packet is
emitted from the source and arrival times are noted for all
group members. For each member, these latencies are com-
pared to the time for IP unicast to transmit from the source
directly to the same member. Average stretch is calculated
as by computing a stretch for each receiver (latency in ALM
divided by latency with unicast) and averaging. The results
are graphed in Figure 11.

Figure 11 shows that, as expected, stretch decreases with
increased levels of deployment. At 30% deployment, the
primitives have eliminated approximately 60% of the la-
tency overhead. At complete deployment, they have elim-
inated nearly all added latency.

6.3.2 RON and i3

RON and i3 share the property that they route packets from
A to B using a single intermediate waypoint. Reflection can
reduce the latency of these two-hop routes. The waypoint
sends a reflection request that causes the network to route
the packet more efficiently:

reflect(A → waypoint, 1, {(waypoint → B, 0)})

In the following experiment, three nodes are chosen at
random to act as the endpoints of communication and the
waypoint. Two packet transmissions are timed to set base-
lines before testing reflection. First, normal IP unicast be-
tween the source and destination; then, a two-hop unicast
route that uses the waypoint to route packets. These rep-
resent the two extremes of possible performance. Finally,
after the waypoint sends its reflection request, a third time
is measured that represents how well reflection has reduced
the two-hop situation to IP unicast.

As usual, the experiment is conducted over the 10 transit-
stub topologies at various levels of deployment. In each ex-
periment, 100 triples are randomly selected for measure-

10



0 20 40 60 80 100

Enabled Routers

0

1

2

3

A
ve

ra
ge

 L
at

en
cy

 S
tr

et
ch

Unicast
Reflected
Two-hop unicast

Figure 12: Latency comparison for three ways of sending packets from A
to B. Unicast is a simple IP unicast, normalized to 1.0. Two-hop unicast
consists of two IP unicasts, using a random waypoint. Reflect is the same
as the two-hop unicast case, except that the random waypoint uses packet
reflection to efficiently forward the first hop unicast to the final destination.
As more routers are enabled, using reflection moves from approximating
the two-hop case to approximating a direct unicast.

0 20 40 60 80 100

Enabled Routers

0

2

4

6

A
ve

ra
ge

 S
ta

te
 S

iz
e 100 group members

50 group members
10 group members

Figure 13: Average router state as deployment increases in a 100 node net-
work with various group sizes. Greater deployment decreases the average
state required in enabled routers.

ment. Two stretches are calculated for each triple using the
IP unicast time as a baseline. Figure 12 graphs the result.

As deployment increases the performance of the system
moves smoothly from that of two-hop unicast case toward
that of single unicast. It is encouraging that improvement is
fastest at the early stages of deployment. At 30% deploy-
ment, the primitives have eliminated well over half of the
overhead.

6.4 Router state

A common concern for IP Multicast is the size of multi-
cast routing tables. Large tables increase cache misses and
degrade performance. This section explores the state re-
quirements of the primitives, particularly reflection. Paint
has limited state requirements. Only the current “color” of
the router must be stored, unless uncooperative nodes are
present

First, we examine the size of the reflection tables in the
random deployment experiments of Section 6.2. Randomly
selected groups perform ALM in networks with a random
selection of enabled routers.

Figure 13 shows that the average state requirements de-
crease as deployment increases. This result is unsurpris-
ing. Consider the difference between two networks, one of
which has one extra enabled router. In general, that router

0 20 40 60 80 100

Enabled Routers

0

10

20

30

40

50

St
at

e 
Si

ze

100 group members
50 group members
10 group members

Figure 14: Maximum router state as deployment increases in a 100 node
network with various group sizes.

will receive some amount of state from its downstream
neighbors. The amount of state associated with a single re-
flection request decreases as it is propagated (because some
routers see that they cannot fulfill portions of the request).
Therefore the new node is likely to receive less state that
its downstream neighbors had, bringing the average down.
Furthermore, in small groups, it will be common for added
routers to find themselves completely unused, lowering the
average state requirements.

The maximum state required in any router can be as im-
portant as average state requirements. If the state require-
ments are extremely unbalanced, one router may be forced
to carry too much information and refuse requests or expe-
rience degraded performance. Although the primitives are
designed to degrade gracefully under such circumstances,
they will surely perform better if they avoid it.

Figure 14 examines the maximum state requirement of
any router in the same experiments. Two facts are inter-
esting. First, for smaller group sizes, the maximum state
held in any one router is nearly constant, regardless of de-
ployment levels. Second, large groups disproportionately
load single routers at low deployment levels, but the maxi-
mum state held in any one router decreases as deployment
increases. This decrease indicates that the work is more
smoothly shared when more routers are enabled.

Comparing Figure 14 to Figure 13, we observe that the
shapes of the state requirements are similar in each graph.
Maximum state size requirements appear to scale with the
average state size requirements. This fact indicates that in
very large networks, such as the Internet, maximum state re-
quirements should remain manageable if deployment is suf-
ficiently high to keep average state size requirements down.

7 Related Work
This paper extends previous work [3] by presenting detailed
rules by which routers implement reflection and paint.
These rules, as well as additional protocol details address
several issues of correctness and security. In addition, the
behavior of the multicast system is considered in detail and
then analyzed in an extensive performance evaluation that
was lacking in the original workshop proposal.

Other related work can broadly be divided into three ar-
eas. First, IP Multicast [7] provides a group communication
primitive for IP, and a number of systems [8, 14, 15, 17]

11



have attempted to build additional semantics on top of IPM.
These efforts have seen limited success, in part because of
IPM’s limited deployment, and in part because IPM pro-
vides a difficult base upon which to build — IPM is a mono-
lithic primitive combining all needed mechanisms to pro-
vide a single high-level abstraction. Single-source exten-
sions to IPM, such as Source-specific Multicast [10] and
Express [11] address some of the deficiencies of IPM, such
as security and a limited namespace, but remain special pur-
posed.

REUNITE [22] is a multicast protocol that multicasts us-
ing recursive unicast distribution trees. As in an overlay net-
work, packets are transmitted from point to point using tra-
ditional IP unicast. However, REUNITE uses point to point
unicast transmissions between routers, only involving end-
hosts at the edges of the tree.

REUNITE accomplishes a number of things that the
primitives proposed here also hope to achieve. It is a
fairly simple protocol, it is incrementally deployable, and
state requirements can be managed explicitly by overloaded
routers. REUNITE, however, is aimed strictly at support-
ing multicast. Path Painting and Packet Reflection support
a broader range of applications.

Obviously, existing overlay networks are related, and
complementary to the primitives presented here. Some
overlays are extremely generic, such as RON [1], X-
Bone [23], Dynabone [24], and Yoid [9]. These systems ex-
ists solely to provide an overlay network with “better” prop-
erties than the underlying network, such as lower latency
or quicker response to failures. Application-level multi-
cast (ALM) systems, such as RMX [6], End-System Multi-
cast [12], and Overcast [13], are more specific overlay net-
works. All share the goal of providing the benefits of IPM
without direct router support.

Finally, an active networks [27, 19] inspired system that
provides primitives based on the ability to perform com-
putations on ephemeral state in routers is closely related.
An early version of this work [26] describes a primitive,
dup, that closely resembles packet reflection, and a num-
ber of associated primitives that accomplish goals similar to
packet reflection. A strength of dup is that it handles asym-
metric routes better than painting and reflection. However,
this may come at the cost of scalability – their join mecha-
nism involves an echo packet reaching a central rendezvous
point before being returned to the sender. Large groups may
overwhelm the rendezvous point’s network.

A strength of reflection and painting is that they have
been designed to operate correctly in the face of route
changes and multi-path routing in the underlying network.
Dup is insufficient to handle these cases. For example, if
a route change causes the router maintaining a node’s dup
request to stop receiving the group’s packets (because they
are now taking a different path), packets will be lost. With
reflection, duplications are explicitly confirmed, using suc-
cess tags. If the duplication point is bypassed, the requester

knows it. It can then perform the duplication on its own and
make a new reflection request.

A later version of the work [5] concentrates on the abil-
ity of emphemeral state computations to gather informa-
tion, but avoids the complicates of active routing in the net-
work. This work more closely resembles paint, although the
ephemeral state approach is more general.

8 Conclusions
Overlay networks are an important way for applications
to obtain network behavior that would otherwise require
widespread router modifications. By their very nature, it is
possible to deploy overlay networks with no additional sup-
port. Yet doing so creates inefficiencies. Path painting and
packet reflection address those inefficiencies with simple,
incrementally deployable router extensions that can be used
in creative ways to perform packet routing and duplication
at appropriate locations in the network.

The focus on incremental deployment has created numer-
ous subsidiary benefits. Routers may choose to ignore re-
quests for any reason, ranging from administrative policies,
security concerns, or resource exhaustion. All of these cases
are handled gracefully because they are functionally identi-
cal to routers that do not support the primitives.

Even if only a few routers deploy the primitives, it still
results in significant overall benefit. As overlay networks
grow in importance, we are hopeful that the proposed prim-
itives will be deployed and reduce the inefficiencies of over-
lay networks.

References
[1] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek,

and Robert Morris. Resilient overlay networks. In Proc. of
the 18th ACM Symposium on Operating Systems Principles,
pages 131–145, October 2001.

[2] Anonymous. Network Layer Support for Overlay Networks.
PhD thesis, Anonymous, August 2002.

[3] Anonymous. Network layer support for overlay networks.
In OPENARCH 02, June 2002.

[4] Tony Ballardie, Paul Francis, and Jon Crowcroft. Core based
trees (CBT) an architecture for scalable inter-domain multi-
cast routing. In Proc. ACM SIGCOMM Conference, pages
85–95, September 1993.

[5] Kenneth L. Calvert, James Griffioen, and Su Wen.
Lightweight network support for scalable end-to-end ser-
vices. In Proc. ACM SIGCOMM Conference, pages 265–
278, August 2002.

[6] Yatin Chawathe, Steven McCanne, and Eric Brewer. RMX:
Reliable multicast for heterogeneous networks. In Proc.
IEEE Infocom, pages 795–804, March 2000.

[7] Stephen E. Deering and David R. Cheriton. Multicast
routing in datagram internetworks and extended LANs.
IEEE/ACM Trans. Networking, 8(2):85–110, May 1990.

[8] Sally Floyd, Van Jacobson, Steven McCanne, Chin-Gung
Liu, and Lixia Zhang. A reliable multicast framework for

12



light-weight sessions and application level framing. In Proc.
ACM SIGCOMM Conference, August 1995.

[9] Paul Francis. Yoid: Your Own Internet Distribution, April
2000. www.aciri.org/yoid.

[10] H. Holbrook and B. Cain. Source-specific
multicast. Internet draft (work in progress),
Internet Engineering Task Force, November
2001. http://www.ietf.org/internet-
drafts/draft-ietf-ssm-arch-00.txt.

[11] Hugh W. Holbrook and David R. Cheriton. IP multicast
channels: EXPRESS support for large-scale single-source
applications. In Proc. ACM SIGCOMM Conference, pages
65–78, September 1999.

[12] Yang hu Chu, Sanjay G. Rao, and Hui Zhang. A case for end
system multicast. In Proc. ACM SIGMETRICS Conference,
June 2000.

[13] John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans
Kaashoek, and James W. O’Toole, Jr. Overcast: Reliable
multicasting with an overlay network. In Proc. 4th Sym-
posium on Operating Systems Design and Implementation,
pages 197–212, October 2000.

[14] John C. Lin and Sanjoy Paul. RMTP: A reliable multicast
transport protocol. In Proc. IEEE Infocom, pages 1414–
1424, March 1996.

[15] Chin-Gung Liu, Deborah Estrin, Scott Shenker, and Lixia
Zhang. Local error recovery in SRM: Comparison of two
approaches. IEEE/ACM Trans. Networking, 6(6):686–699,
1998.

[16] Steven McCanne and Van Jacobson. Receiver-driven lay-
ered multicast. In Proc. ACM SIGCOMM Conference, pages
117–130, August 1996.

[17] Jörg Nonnenmacher, Ernst W. Biersack, and Don Towsley.
Parity-based loss recovery for reliable multicast transmis-
sion. In Proc. ACM SIGCOMM Conference, pages 289–300,
September 1997.

[18] Ns. http://www.isi.edu/nsnam/ns/.

[19] Jonathan M. Smith, Kenneth L. Calvert, Sandra L. Murphy,
Hilarie K. Orman, and Larry L. Peterson. Activating net-
works: a progress report. IEEE Computer, 32(4):32–41,
April 1999.

[20] Alex C. Snoeren, Kenneth Conley, and David K. Gifford.
Mesh-based content routing using XML. In Proc. of the 18th
ACM Symposium on Operating Systems Principles, pages
160–173, October 2001.

[21] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker,
and Sonesh Surana. Internet indirection infrastructure. In
Proc. ACM SIGCOMM Conference, pages 73–88, August
2002.

[22] Ion Stoica, T. S. Eugene Ng, and Hui Zhang. REUNITE:
A recursive unicast approach to multicast. In Proc. IEEE
Infocom, pages 1644–1653, March 2000.

[23] Joe Touch. Dynamic internet overlay deployment and man-
agement using the X-Bone. In Computer Networks, pages
117—135, July 2001.

[24] Joe Touch and Greg Finn. The Dynabone (white paper).
www.isi.edu/dynabone/.

[25] D. Waitzman, C. Partridge, and S. E. Deering. RFC 1075:
Distance vector multicast routing protocol, November 1988.
Status: EXPERIMENTAL.

[26] Su Wen, James Griffioen, and Kenneth Calvert. Building
multicast services from unicast forwarding and ephemeral
state. In OPENARCH 01, March 2001.

[27] David Wetherall, John Guttag, and David Tennenhouse.
ANTS: Network services without the red tape. IEEE Com-
puter, 32(4):42–48, April 1999.

[28] Ellen W. Zegura, Kenneth L. Calvert, and Samrat Bhat-
tacharjee. How to model an internetwork. In Proc. IEEE
Infocom, pages 40–52, March 1996.

13


