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Abstract

Flooding in wireless mesh networks involves distributiogne data from one node to rest
of the nodes in the network. This dissertation proposes &tFla flooding protocol for
wireless mesh networks that targets large file transfexd) ag software updates, where
achieving high throughput (minimizing the time to compléte flood to all nodes) and
low airtime (lower the time each node spends in transmittiagkets, and thus lower the
impact on other wireless traffic) are both important. Therchallenge in good flooding
performance is the choice of senders for each transmispioortunity. At each time during
a flood, some parts of the network will have received more theta others. The set of best
sending nodes lies along the boundaries between thesensegind evolves with time in
ways that are difficult to predict.

UFlood’s key new idea is a distributed heuristic to dynanhycahoose the senders
likely to lead to all nodes receiving the flooded data in tlesteime. The mechanism takes
into account which data nearby receivers already have dsaweélter-node channel qual-
ity. The mechanism includes a novel bit-rate selectionraigm that trades off the speed of
high bit-rates against the larger number of nodes likelyeteive low bit-rates. Unusually,
UFlood uses both random network coding to increase the mesfsiof each transmission
and detailed feedback about what data each receiver alreaglyhe feedback is critical in
deciding which node’s coded transmission will have the rbesiefit to receivers. The re-
quired feedback is potentially voluminous, but UFlood ud#s novel techniques to reduce
its cost.

The dissertation concludes that careful choice of sendeyesaUFlood to achieve
150% higher throughput than MORE, a known high-throughpudiieg protocol, using
65% less time transmitting. UFlood uses 54% lower airtinaatNP, an existing flooding
protocol to minimize airtime, and achieves 300% highertigigout.
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Chapter 1

Introduction

Flooding in wireless mesh networks involves distributiagedfrom a source node to rest of
the nodes in the network. It benefits applications such das/acé updates and information
dissemination [22, 39]. Recent explosive growth in wirelegsh network deployments
has motivated companies such as Motorola, Nortel, andideréd release products that
flood video data in mesh networks, with applications to battegainment and surveil-
lance [7, 17]. Despite being an active research topic for avdecade, existing flooding
schemes [8, 35, 39, 54] leave room for improvement becateserbither fully exploit
wireless properties nor fully consider the limitations ¥y wireless networks. For ex-
ample, no existing flooding schemes for wireless mesh né&svexploit the ability of the
wireless nodes to transmit at different bit-rates. Thiseligation describes the important
factors that should be considered in the design of a floodihgrae for wireless networks
and proposes a new flooding protocol, UFlood, which oversothe drawbacks of the
existing schemes.

UFlood is useful for flooding large files in wireless mesh rats. Its goal is to achieve
high throughput and using low airtime. This dissertatiofiraes throughput as the file size
divided by the total time it takes for all the nodes to recdive whole file. It defines
airtime as the sum over all nodes of the time each node spartdgnsmitting. UFlood

aims to lower the airtimé in order to limit the effect on other traffic. These definiton

Lowering airtime might also help in lowering the total enegpent in the network. However, energy is
not a concern in these networks and all the nodes are assorbecatways connected to an electrical power
source. Thus, the energy spent in transmission, receptidic@nputation is not a concern.
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assumes that all nodes need the file and there is no advaotsgeé nodes getting the file
before the last node gets it. Chapter 8 discusses how UFlagobdeanodified for flooding
applications that use other metrics, for example, maximgizhroughput to a subset of the
nodes.

The rest of this chapter introduces flooding in wireless oéta and outlines the work-
ing of UFlood. This chapter also describes the major coutidins of this dissertation and

its organization.

1.1 Flooding in Wireless Networks

The fundamental problem to be solved in flooding for wirelegsh networks is as fol-
lows. The source has some data to flood to the rest of the nodles network. The nodes
are equipped with broadcast radios and assumed to be spueahaugh that forward-
ing through intermediate nodes often provides better pedoce than direct transmission
from the source. Flooding begins with the source tranamgjttiata that is heard by a sub-
set of the nodes. At any given time during the flood, each nadsgsses a subset of the
data to be transferred. Only some nodes can transmit at aag §ime because of inter-
ference and carrier sense. That is, if a node transmitshhergng nodes usually cannot
transmit simultaneously in the same channel. A protocoltrnheose senders for every
transmission in a way that maximize its throughput and mirénairtime?. For example,

if node X can be heard by a superset of the nodes that can heaivpntiden (all else being
equal)X should send in preference ¥Ya Similarly, X should send in preference Yoif

X has data that other nodes need, Yutoes not. However, the efficient choice of sender
changes from transmission to transmission as nodes acatenddta, in ways that cannot
be predicted practically because receptions are not detistio. In other words, a flood-
ing protocol may need to determine dynamically how usefd@rader’s transmission would
be, which means that the nodes should some how learn the efates other nodes in the

network. The global knowledge of the status of the nodediiactable and a local heuristic

2This dissertation uses “efficient” and “best” sender to dertbe sender for a transmission opportunity,
which maximizes throughput and minimizes airtime of thedliog protocol.
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for sender selection requires neighbor nodes to agree osetider for each transmission
and achieving this with a low overhead is a key challenge éendisign of such flooding
schemes.

In addition, a good sender selection mechanism should ermth high throughput
and low airtime. One way to reduce airtime is to avoid sending the sender is certain
that receivers will benefit, which might require delayingiuall potential receivers have
indicated whether they need the transmission. This approaases transmissions to be
spaced out in time, reducing throughput. Conversely, thipugcan be increased at the
expense of airtime by arranging for nodes to send wheneeggmbtice the channel is idle,
on the theory that it is better to make a potentially reduhdi@msmission than to waste
a transmission opportunity. Nevertheless, it is also tha excessive redundant packet
transmissions affect both throughput and airtime.

Finally, every transmission must be sent at some bit-ratetha choice of bit-rate
affects the performance of the flooding protocol. Simplyngdiigh bit-rates for transmis-
sions might not aid in completing the flooding faster, beeaunsreasing the bit-rate for a
transmission, despite increasing the speed of the indaidacket transfer, decreases the
inter-node delivery probabilities from the sender to theeptal receivers.

A flooding protocol should thus repeatedly make three dewssiwhich nodes should
transmit, what data they should transmit, and what physigadr bit-rates they should
use. The best answers depend on the radio channel qualtedeinodes, the number of

receivers near each potential sender, and what data @dtedeivers already hold.

1.2 UFlood

UFlood aims to achieve high throughput using low airtime byefully selecting senders
for each transmission and by using an efficient feedback aresim that helps it to adapt
rapidly to actual reception patterns with minimal commatien overhead. UFlood com-
bines the opportunistic reception of gossip protocols wigrecise calculation of which
nodes should transmit at any given time and at what bit-vesieg probabilities and knowl-

edge of what data neighboring nodes already have.
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The key to UFlood’s design is its notion afility. Utility is a local heuristic intended
to capture the value of a given node transmitting, in termghefexpected rate at which
receivers would receive new information from such a trassian. A UFlood node com-
putes its utility in the following way. First, it uses a noust-rate selection mechanism
to calculate the efficient bit-rate for its transmissiongc@d, the node uses previously-
measured delivery probabilities to compute the likely nemdif receptions at that bit-rate
among its neighbors, counting only neighbors for whom thedmission would be useful.

Finally, the node’s utility is the likely number of usefulogption times the bit-rate.

A transmission is useful at a receiver if it conveys inforimathat the receiver does not
already know. UFlood implements this notion combining ttwiandomized network cod-
ing (RNC). RNC is well-known to increase the usefulness of iiltial data transmissions.
In RNC-based flooding [8, 34, 41], a sender transmits codedgtsiokhich are linear com-
binations of its existing coded packets. A sender decide=ttven a transmission would be
useful for a receiver based on whether the transmissionddoeillinearly independent of
the packets the receiver already has. This requires theesetmknow the coded packets
already received by the potential receivers of its transimins, either using feedback from
the receivers or through some form of predictions. The remsearch [52] shows that
flooding protocols that rely completely on predictions attbe packets the receivers hold
perform poorly. The performance gets much worse, if theiptieshs do not account for
correlated receptions (Refer to Chapter 3.4 for details). e&Sform of feedback from re-
ceivers indicating what packets are with each of them helpandle correlated receptions.
UFlood uses a novel feedback mechanism that encodes cdynitectdentities of coded

information a node has received, as well as techniques t@ecithe feedback traffic.

UFlood’s bit-rate selection mechanism works as follows: Rladd sender may have
many neighbors, each with a different optimum bit-rate friiat sender. In choosing a
bit-rate, a sender essentially chooses the receivers thitsmission, since the receivers
with optimum rates much below the chosen rate will receivestigaorrupted frames. The
choice of bit-rate depends on whether each low-bit-rateivec depends on the sender: if
the sender is the receiver’s quickest source of data, theeesshould reduce its bit-rate. For

this reason, the core of UFlood’s bit-rate selection atyariis a decision about whether a
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sender is included in the minimum cost path from the sourtiegtoeceiver. Thus, UFlood’s
design reflects the observation that bit-rate selectionfiocaling protocol requires global
information.

UFlood’s utility heuristic strives to ensure that, amongteaet of neighbors, only the
node with the highest utility sends; this avoids interfeesmeduces the chances of needless
duplicated data, and ensures that transmissions with féenpal receivers do not steal
channel capacity from transmissions of higher value. Thaone by each node calculating
the utility of neighbors as well as its own, and only trangimgj if it has the highest local

utility.

1.3 Contributions

The key contributions of this dissertation are as follows.

e First, it describes the main underlying properties of vassl networks influencing
sender selection in a flooding protocol and the challengesmisidering these prop-

erties.

e Second, it proposes UFlood, a flooding protocol for wirelestsvorks that uses util-
ity heuristic to select sender(s) for each transmissiorodppity in order to achieve

high throughput using low airtime.

e Third, it demonstrates that detailed feedback about the elath receiver possesses

is useful even with RNC.

e Fourth, it describes a novel feedback mechanism to conypesgresent the coded

information the nodes possess and mechanisms to send &extidg when required.

¢ Finally, it proposes the first bit-rate selection algoritfonflooding in wireless net-

works.

The main result from experiments on an 802.11 test-bed tsURéod, on average,

achieves 150% higher throughput than MORE, a high-througfipading protocol, us-
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ing 65% lower airtime. UFlood uses 54% lower airtime than MR existing flooding
protocol to minimize airtime and achieves 300% higher tghgqut.

This dissertation finally proposes UCast, a system that usgsecative client flooding
to improve the delivery of multicast streams in WiFi netwarKhe flooding scheme used in
UCast is UFlood. Evaluation on a WiFi network demonstratasule of client cooperation
improves multicasting throughput by 300-600% compared t&€&st, an existing WiFi

multicasting protocol that does not use client cooperation

1.4 Organization

The remainder of this dissertation is organized as follo@isapter 2 describes the factors
to be considered in deciding the senders and their bit-fatesery transmission of UFlood
and the challenges involved in making these decisions. €hdpises these observations
to design UFlood. Chapter 5 describes the implementationFdbadl and Chapter 6 dis-
cusses its performance using real-time experiments. Ghaptescribes UCast and finally,

Chapter 8 concludes and provides some thoughts about futuke w
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Chapter 2

Sender Selection: Contributing Factors

and Challenges

Performance of a flooding protocol depends on selectingessridr each transmission op-
portunity that help to disseminate data quickly across #tevork. This chapter explains
the main factors that sender selection should account fibthrenchallenges in considering
them. The identification of these factors is one of the cbations of this dissertation. Pre-

vious flooding protocols have not considered all of the fescttiscussed in this dissertation

(refer to Chapter 3 for details).

2.1 Factor 1: Delivery probabilities

S
0.9 0.2
C D

Figure 2-1: lllustration of the importance of packet defiwprobabilities.
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In wireless networks, receptions are probabilistic, whmeobans transmission from a
sender may or may not be received by a node. This makes dabcutd the usefulness
of a sender’s transmission difficult. Sender selection shswetworks should consider the
probabilities of packet deliveries to the receivers.

Figure 2-1 shows an example in which one sender is more sfatian another due to
delivery probabilities. Nodes A and B have each receivedracpiar data packet from S.
Only one can send at a given time, because of interferencaroecsense. The numbers
in the figure indicate the link-layer broadcast packet @gliyprobabilities from A and B to
each of C and D. The flooding protocol must decide whetherbeiser for A or for B to
transmit the packet.

If A transmits, the expected number of useful reception€(ahd D) is 17. If B trans-
mits, the expected number of useful receptionss @ A transmits first, in all likelihood,
B will not have to transmit at all, but the converse is unljke be true. Thus A is the bet-
ter sender. This example illustrates why flooding protocalst pay attention to delivery

probabilities when selecting the sender.

2.2 Factor 2: Numbers of receivers

Figure 2-2: lllustration of the need to consider the numbigradential receivers.

Most often, wireless nodes are equipped with omni-direetiantenna. Therefore,
wireless receptions are broadcast, which means each &eindesmission may be received
by more than one receiver. However, some sender’s tranemsssan be heard by more

receivers than other receivers do and with different defiyeobabilities. A flooding pro-
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tocol should exploit this wireless property effectivelys@ect senders whose transmissions
are likely to reach many receivers that help spread dat&iguit the network.

Figure 2-2 shows an example of a difficult trade-off betweserder with low proba-
bilities to many nodes and a sender with fewer high-proldgbi¢ceivers. If A transmits,
the expected number of useful receptions is 0.5 (just nod# B)transmits, the expected
number is 2.0. B will likely have to repeat the transmissiofew times; C is likely to
hear one of those transmissions, in which case A will not hagend at all. Thus, B is the
better sender. This example illustrates why flooding prai®must incorporate the number

of likely receivers in its choice of sender.

2.3 Factor 3: Dynamic Sender Selection

S
A B
0.9 0.8
C D

Figure 2-3: lllustration of the best sender changing as soéecive packets.

In addition to selecting senders with good connectivitygoeivers, it is also important
to select senders whose transmissions are useful to theegexeProbabilistic receptions
in wireless networks demand dynamic sender selection las#te changing states of the
nodes in the network. This is because the usefulness of @semdnsmission varies as
the potential receivers of the transmission receive nea.dat

Figure 2-3 shows a situation in which sender selection besrfedim information about
what data each receiver has received. A and B have a partgadéet, but C and D do not.
At that point, A is the best sender. A transmits the packet,@neceives it but D does not.

Now B is the best sender: the expected number of useful recsgor A and B are now
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A(source)

Figure 2-4: Example topology to illustrate the effect ofredation in packet reception. The
numbers indicate link-level packet reception probaletiti

0.2 and 0.8, respectively. This example illustrates whyding protocols must re-evaluate
the choice of best sender as a flood progresses. Howeveyjrdgkender selection until
all the receivers send feedback, indicating what packetsvdah each of them, delays each
transmission. This decreases the overall throughput diidlbeing protocol. Designing a

feedback mechanism addressing this issue is a challenge.

2.4 Factor 4: Correlated Reception

Many existing flooding protocols [8, 19] assume that the philstic reception would
ensure a degree of randomness in what information each rod&es. However, wireless
receptions often are correlated. Figure 2-4 shows an examipére the usefulness of a
sender’s transmission depends on whether the sender lbasatfon that is distinct from
that received by neighboring potential senders. SuppasEsA andB in Figure 2-4 have
both received half of the source’s transmissions, andGhatn heaA andB perfectly but
cannot hear the source. At one extrerAeand B may have received disjoint halves, in
which case each & andB should forward all the packets they hold. At the other exgem
A andB may have received exactly the same set of packets. In thatttey have the same
underlying information to offer, even with coding, so thayoone should send. Models
to accurately predict correlation among neighbors do nisteXhus, this example shows

another reason why flooding protocols in wireless netwoH@ukl have some form of
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feedback exchange among neighboring senders. Desigradhdek mechanism for coded

packets is challenging and Chapter 4 explains this in detail.

2.5 Factor 5:; Bit-rate Selection

Throughput of a flooding protocol depends on the deliverybphalities of the sender’s
transmission to its potential receivers, which in turn depen the sender’s bit-rate. There-
fore, a flooding protocol should select a bit-rate for eaeimgmission to maximize its
throughput.

Increasing a sender’s bit-rate increases the speed of pdalkesry and at the same time
decreases the delivery probabilities to the receiverss;Téach sender-receiver link in the
network has a best bit-rate that maximizes throughput onlitiia The bit-rate selection
becomes complicated when a sender has to choose a bit-aatadakimizes throughput to
many links (i.e., to more than one receiver). Thus, the @oicdbit-rate can have a large
effect on flooding performance, given the large differenegMeen the slowest and fastest
bit-rates in, for example, 802.11b/g radios. Using lowrhies, allows transmissions to
be received by a large number of receivers, which reducesuh#er of transmissions
required to complete flooding. Alternatively, high biteat due to high error rates [44]may
cause packets to be delivered to only few receivers and #gusre more transmissions
than low bit-rates. A good bit-rate selection algorithm fiooding protocols should thus
trade off the speed of high bit-rates against the larger murabnodes likely to receive at
low bit-rates.

Figure 2-5 illustrates the effect of this trade-off. Eachtlod links is marked with the
bit-rate at which the receiver of the link receives the hggliteroughput from the sender’s
transmission. In this exampl8js the source, and sendémust choose the bit-rate for its
next transmission.

Bit-rate 54 would maximize the throughput amaxXig neighbors:C would receive at
rate 54, and andA would receive very little, but the average would be high. mhgain,
the overall goal is to minimize the time taken to completediag, which maximizes the

overall flooding throughput. One might expect a sender tasbdhe best bit-rate that
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Figure 2-5: Example topology to lllustrate bit-rate sel@ct

has good delivery probabilities to all its potential reees: That is, a sender chooses the
lowest of the best bit-rates to all its potential receivergiisure that even its most poorly
connected receiver receives its transmissionsX Sbould perhaps use a bit-rate that will
reach its slowest receiver, which is 5.5. However, nBdeas a better path froi8viay,
bottlenecked at rate 11. It is best for nodé¢o ignoreB, lettingY deliver to it, and choose
the rate that is best for the slowest neighbor whose besfmathSis via X. That neighbor

is A, andX’s best bit-rate is 11. Thus, a sender should not unnecgssadiuce its bit-
rate to reach a receiver, which has an alternative fastérfpai the source that does not
involve the sender. This example shows that global infoionas required in selecting the

best bit-rate for the senders.

In addition, suppose, in figure 2-5, nodealready has the data that nodewould
transmit. ThenX should ignoreA in choosing its bit-rate. In that cas¥;s best bit-rate
would be 54Mbps.

Thus, a sender should consider the following three factohoosing its bit-rate: (i)
the best bit-rate for each link, (ii) the best path from therse to every node, and (iii) the

coded information held by receivers that rely on sendesissmission for data.
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2.6 Chapter Summary

This chapter explained that a flooding protocol should $éfecbest sender for each trans-
mission by favoring senders (i) with high delivery probdpito receivers at the sender’s
best bit-rate, (ii) connected to large numbers of recejy@rswith information useful to
many receivers, and (iv) accounting for correlated reosgti This chapter also discussed
the challenges involved in considering each of these fact@hapter 4 illustrates how

UFlood accounts for these factors in its sender selectiazhar@sm.
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Chapter 3

Related work

Flooding in wireless mesh networks is a well-researchedt ttat has received exten-
sive attention. As mentioned in Chapter 1, the main goal ofdilog protocols is to se-
lect senders whose transmissions will spread data quicktysa the network. Traditional
flooding approaches use one of the following two mechanismsdnder selection: (i)
construction of structured topologies like routing trees(ii) use of gossiping through
probabilistic or randomized broadcast of small messages.

This chapter discusses existing flooding protocols in tworoantexts: (i) as protocols
to discover routes in ad hoc routing and (ii) as broadcasices for applications such as
multimedia and reliable multicast. This chapter also dbssrthe existing approaches for

bit-rate selection in wireless networks.

3.1 Flooding in Ad Hoc Routing

Many routing protocols for ad hoc wireless networks use fiogdo find routes or dis-
seminate routing information. For example, AODV [45] is andemand routing protocol
that uses a simple expanding search for route discoveryt.i§hahen a source node does
not have a route to a destination, it broadcasts a route segaeket. Any node that is
not the destination rebroadcasts the request packet, dlready done. The destination,
on receiving the request packet, sends a route reply paek&ttb the source node either

through a known path or using the reverse of the path througbhait received the route
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request. DSR [25] uses a flooding mechanism similar to AOD\fdate discovery, except
that it combines flooding with filtering using packet sequenambers to restrict the band-
width consumed by route discovery control packets. FLR gfdéa Label Routing) [47]
uses scoped flooding and SHORT (Self-Healing and OptimiRiogting Techniques) [18]
uses scoped flooding as a route discovery technique of lssittrdn scoped flooding, the
route discovery happens within a subset of the nodes. FongeaFLR uses a hop-limit to
restrict the number of hops traveled by the route requestgtacSuch mechanisms reduce
the broadcast traffic generated by route discovery pack®iiams et al. [56] provide a
good comparison of flooding techniques used in both statyogwad mobile ad hoc routing

protocols.

Flooding mechanisms used for ad hoc routing do not consitefrthe wireless proper-
ties discussed in Chapter 2. For example, none of them cossltkedelivery probabilities
between node-pairs in selecting the best senders for tiasioms. While there are power-
aware routing protocols such as Minimum Drain Rate [32] thatugle nodes with low
battery in selecting routes, ad hoc routing protocols famuglecreasing route discovery
latency and do not strive to minimize airtime. UFlood focusa disseminating bulk data
rather than small low-latency messages. Thus, UFlood isuitable for flooding in ad hoc

routing.

3.2 Tree-based Flooding

Tree-based flooding protocols use routing trees to prestsebnders statically for trans-
missions. This reduces redundant transmissions and he$psesthat only certain nodes
transmit. Typically, these protocols factor in packet g probabilities during topol-
ogy construction. They account for delivery probabilities augmenting theoretical re-
sults on constructing optimal sub-graphs, such as the MiminConnected Dominating
Set (MCDS) [42], which determines a minimum connected vectarer of the network,
or a Minimum Spanning Tree (MST) that maximizes networktiiifes [28], or the Largest

Expanding Sweep Search (LESS) heuristic [27] that minisegergy.
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MCDS [42], for example, tries to select the minimum numberesfders so that all the
nodes are likely to receive the flooded data from at least btteese senders. The authors
prove that MCDS is an NP-hard problem and provide simple bgcsiwith provable guar-
antees to reach approxiamate solutions. AlternativeliE8S [27], the aim is to modify
the transmission power level of the senders to adjust tresmission coverage to reduce
the number of transmissions required to complete floodigS& picks senders such that
the time between the beginning of flooding and the first notieréa(i.e., the first node runs
out of battery) is extended. Though these tree-based mistace valuable for theoretical
reasons, their practicality is limited. Most of them reguaentral coordination or make
several unrealistic assumptions about the behavior ofl@ggenetworks. For example, all
of these protocols assume link invariance and independsskep receptions. However,
these assumptions falil in reality. Srinivasan et al. [538cdsses the extent to which real-
world wireless networks violate these assumptions. UFbimes use predictions, but also

use feedback from neighbors, which helps to correct theemade in the predictions.

Wieselthier et al. [55] and Banerjee et al. [3] study severaalicast tree construction
algorithms that take transmission costs into account,eférenos et al. [29] and Banerjee
et al. [4] study power control algorithms for optimizingrisanission energy. ODMRP [12,
38] uses a mesh-based topology and forwarding groups fgresiciooding, while ST-
WIM [11] uses a cluster-based shared-tree topology to imgmulticast performance for
mobile ad hoc networks. Similarly, MCEDAR [50] is a multicastension of CEDAR [51]
routing protocol, in which, a subset of nodes that approintae minimum connected
dominating set is chosen as the core. These solutions agd baghe experimental studies
and thus do not make many unrealistic assumptions aboulessr@etworks. However,
the tree-based protocols do not use the information abeubtal number of receivers that
can hear a sender’s transmission. In fact, they only consigedominant links from a
sender, thereby missing a significant source of opportuniSimilarly, trees do not use
the full receiver state across all receivers in determiingseful sender because in tree-
based flooding, a receiver only tries to recover packets fterparent, even if it is likely
to overhear transmissions from other senders that areqparent. UFlood, on the other

hand, is a distributed scheme that picks best senders gudigi for every transmission,
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considering the underlying wireless behavior. It avoiddisttree constructions so that it
can exploit opportunistic receptions and select senderohgidering the changing states

of the neighboring nodes (both potential senders and rexs)iv

3.3 Gossip-based Flooding

Gossip-based flooding protocols use unstructured comratimic Nodes in gossip-based
flooding usually exchange small messages, which are useélectisig the senders for
transmissions. For example, flooding schemes where nodesgighboring nodes ran-
domly for data and broadcast their own data probabilididal other nodes, all fall into
this category. While gossip was originally proposed in thetert of wired networks for
database replication, recent wireless protocols for semstvorks, such as Trickle [39]
and Deluge [22] have adopted it as a mechanism for providinges such as software
updates.

Trickle [39] is an energy-efficient but high-latency prasbéor disseminating data in
sensor networks. The goal of the Trickle protocol is to pgzta and maintain code (i.e.,
software) updates across nodes in the network. Trickle agedite gossip policy to sup-
press redundant transmissions. The key idea used in TrigHkéarning what and when
to transmit using periodic transmissions of small mességlss called meta-data) from
neighbors about what version of code they possess.

The main properties of Trickle are as follows.

e Low maintenance: meta-data is sent infrequently; just ghda ensure that all the

nodes in the network possess the latest version of the code.
e Rapid propagation: data propagation happen rapidly to @lsémsor nodes

e Scalability: the protocol maintains its properties in widages of network densities

and sizes, such as from a few tens to a few hundred neighbor®gde.

Nodes in Trickle set a timer randomly to fire within each epo&very so often, a

node transmits meta-data only if it does not hear the samesrrgsion from some other
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node. This causes suppression of the same requests beismiiteéd and allows Trickle
to scale to dense wireless networks with thousands of no@esle propagation happen
continuously, not in batches as in UFlood and at any poininie t each node may have
different versions of the code. Whenever meta-data is tratesin two things happen:
some nodes learn that sender of the meta-data has a newnvefdite code and a few
others learn that the sender has a old version. This causes siothe nodes to transmit
their code. This is called an update in Trickle. Again, whemea node hears a data
transmission that is the same as its own, the node supprigssesismission. Thus there

are very few redundant updates.

Deluge [22] builds on Trickle to implement a reliable higihab)ghput protocol for soft-
ware updates in sensor networks. It is used for reprogragnsgnsor motes over the air.
In both Trickle and Deluge, when many nodes learn that a beighas a older version
of the code, one of the nodes (decided by underlying MAC majaransmits the new
code. Sender selection considers neither the deliveryabibities of the node-pairs nor
the number of receivers benefited by the transmission. @a$glie protocols that pick a
random node independent of link quality would achieve lotteoughput than UFlood.
Deluge, as in Trickle, suppresses duplicates by deferrangstissions whenever it hears
the same transmission from some other node. However, s@ngnissions may not be
heard because of loss of packets, which causes lack of sgipne thereby allowing du-
plicate transmissions to occur. UFlood selects sendemsdbas the inter-node delivery
probabilities: these transmissions are useful to manyivexse This ensures better sender

selection and fewer duplicate transmissions.

MNP [35] is a gossip-based flooding protocol for sensor nétaan which potential
receivers invite nodes with data to send, and only the nodéstine most invitations actu-
ally transmit. Figure 3-1 illustrates the working of MNP.&figure shows a set of nodes
in a typical sensor network. Suppose nddsends some data, which is received by nodes
B, C, D, E, andG. If all of them transmit next, it leads to collision and/orntention.

In addition, G is a better sender thd, if the receivers oD’s transmission already have
the data that they received frof In each epoch, MNP nodes alternate between sending

advertisements (i.e., requests to neighbors for data) emdirsg the actual data in response
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Figure 3-1: Example topology to illustrate MNP (See Figu 135]).

to the requests. First, the source, h&resends the data, which is received by noBe€,
D, E, andG. Potential senders for the next transmisstom8, C, D, E, andG send adver-
tisements, announcing that they possess the data. Eacé wdghof the nodes (i.€5, H,
andl) sends a request packet to the sender from which it firstwvedehe advertisement
packet. The potential sender with the maximum number ofestgun the epoch transmits

next. This continues until all nodes receive the data.

MNP’s sender selection reduces collisions and redundam$mnissions. It incorporates
one of the considerations used by UFlood’s sender selegtionber of receivers), but does
not consider delivery probabilities. For example, in FegGr1, if nodel receives adver-
tisement from both nodel® andE, it sends a request packet to one of them from which
| first received the advertisement. However, this does na ilalo account the delivery
probability fromD andE to nodel. In contrast, UFlood selects senders considering the

delivery probabilities, which helps to quickly completedtbng.

Wireless networks often suffer from asymmetric links; thisans a sender may not
receive the requests from the receiver to which it has highebability to deliver data.
This might make MNP select senders connected to few pooryected receivers. For
example, in Figure 3-1, suppose ndédas good connectivity to nodés H, andl, and
nodeG has poor connectivity only to nodésandH. Due to link asymmetricity, iiG
hears requests from, H, andl, andE receives request only froda, MNP will select

senderG to transmit the next packet instead of the good seiidewnhich increases the

38



=0
o

10

Figure 3-2: Example topology to illustrate the benefits of RNC.

number of transmissions required to complete flooding. O&lperforms well even in the
presence of asymmetric links because each UFlood nodertiimfeedback not only about
itself but also about its neighbors. Thus, UFlood nodesiledout their one and two-hop
neighbors through both direct and multi-hop links from othedes. This allows UFlood
to out-perform MNP that do not leverage sender selectidy. fGhapter 6 compares MNP
to UFlood.

3.4 Flooding using Network Coding

Network coding is a technique where nodes, instead of sifigplyarding the packets they
receive, mix several packets already received using agebperations and transmit. Al-
swhede et al. [1] pioneered the use of network coding in wiretivorks. Multiple pa-
pers have shown that various forms of network coding acheeyecity for wired multi-
cast [20, 23, 40].

RNC [8, 20] is a distributed method for combining data at thdewo It is well suited
to multi-hop wireless multicasting and flooding. The badiea used in RNC is that each
node in the network generates random coefficient and usas tihéinearly combine the
packets they have to form new packets. RNC helps flooding inwews: a single coded
transmission can provide different missing informatiodiéferent receivers thereby reduc-
ing the time taken to complete flooding, and allows interraedinodes to create new coded

packets, despite not having complete copies of the origiata.
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Figure 3-2 illustrates the benefits of RNC using a simple togyl SourceS has 10
packetsPy, ..., Pio to flood to 10 noded\s,...,Nig. Assume, at some point, each node is
missing a different packet. In the absence of coded trarssonis, the source has to send all
10 packets at least once to complete flooding successfullyh©other hand, if the flooding
mechanism uses RNC, no8eonstructs new coded packets, which are linear combirsation
of Py,...,Pip using randomly generated coefficients for every transwissthus, if each
nodeNy,...,Nigis missing a different coded packet, the source might fillgap in all of
them by broadcasting a single coded packet. This examplessiat use of RNC increases
drastically the usefulness of the individual transmissiand thereby reduces the number
of transmissions required to complete flooding, comparettecoded flooding schemes.
On larger networks, benefits of RNC over non-coded schememapéfied.

The most relevant protocols in the area of network coding fdobd are Rateless
Deluge [19] and MORE [8].

Rateless Deluge [19], an extension of Deluge [22], uses RN@daae the number
of transmissions required to complete flooding and scal#ertan Deluge. In addition
to the rateless coded transmissions, the strategic idehindeateless Deluge is that the
nodes exchange the count of missing packets, instead ofethef snissing packets, as
in Deluge. This reduces significantly the feedback traffitie Buthors of [19] used ex-
periments on a single-hop network to demonstrate the prdoce of Rateless Deluge.
However, Chapter 2.4 illustrates that in the presence oetaigd receptions, the number
of missing packets alone is not enough information for sglgahe best senders and use
of detailed information about what coded information aréhveach node is necessary to
improve the performance of RNC-based flooding protocols.

The current best RNC-based protocol for wireless routing amteasting is MORE [8].
Multicast MORE works as follows. The source divides the dataants to flood into
batches oK-native packets, and sends one batch at a time. Each tramgmadg the source
is a broadcast, and consists of a coded packet. The soureeateseach coded packgt

asp; = c1p1+C2p2+ ...+ Ck Px, Wherep; are theK native packets in the batch, andare

A coding scheme is rateless if limitless number of coded agespackets can be generated from, kay,
source packets, such that all of the source packets can teered from any of th& coded packets. RNC is
an example of a rateless code.
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K coefficients chosen randomly for each coded packet. Thes@mantinues broadcasting
coded packets from a batch until all nodes tell it that thay dacode the batch; then the
source moves on to the next batch. Each coded packet incthdesoefficients; with

which it was generated.

Each node stores the coded packets it receives for the tbatah. A node can decode
a batch once it has receiv&dinearly independent coded packets. Each forwarding broad
cast by non-source nodes is generated, g+ C202 + ..., whereq; are the coded packets
the node has stored. The forwarding node calculates a seteffiaients relative to the
original native packets at the source and sends them witfotharded packet; it can do

this even though it may not be able to decode the batch [8].

Nodes, including the source, need a way to decide how mangdcpdckets to send,
in order to propagate data to nodes that cannot hear theesdvrdtiple nodes receive the
transmissions of the source. Therefore, it is usually ehdog just a subset of them to
transmit coded packets. In addition, some potential sasralerbetter placed than others to
move packets quickly across the network. MORE accounts é&setleffects by computing a
credit counterTX_cr edi t , for each node. The credit counter sets the ratio betwedemc
a node receives and packets it sends. MORE calculates thié coedter of a node by
inspecting the loss rates along the best route from the edareach node. For the routes
a node is on, its credit counter is set so that it generatesgénpackets to counteract the
predicted losses along those paths.

The only feedback traffic in MORE is an indication from each [fidestination back
to the source that the destination has decoded the batchsmmdnot exchange any more
detailed feedback information. MORE is a success in the siasé attains significantly
higher throughput than previous protocols that do not usengdbut do exchange feedback
detailing which packets each node has received.

Decisions of MORE about which nodes should send and how maskefsmeach node
should send are pre-computed statically based on priorungagnts of inter-node deliv-
ery probabilities. If the predictions are not correct oragses in the links are bursty on
time scales comparable to a batch size, MORE nodes will fahweappropriate numbers

of packets. In addition, MORE, similar to Rateless Deluge [ti®Fs not account for cor-
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related receptions in itBX_credi t calculations, which affects its performance. Chapter 6
compares UFlood with MORE.

Srinivasan et al. [52] proved the existence of correlatiowireless networks by using
a new metri; x y, which denotes the correlation of reception at nadasdy for packets
from nodet. They showed that the same link paiandy can have different’s depending
on the channel, power levels, data-rate. Their main coiwrius that a no-network-coding
protocol, such as Deluge performs better than network gpoalivd opportunistic protocols
such as Rateless Deluge, if the network has correlated rensptSince UFlood nodes
exchange detailed feedback about what packets are with adatiem, sender selection
considers the states of both neighboring contending seratet the potential receivers.
This means, UFlood’s sender selection is aware of both ledect packet receptions and
link invariance.

Zhu et al. [58] described a feedback mechanism that expl@texistence of correlated
receptions in wireless networks. They show that the Conthti®acket Reception Prob-
ability, CPRP (i.e., the probability that a node receives &eraiven the condition that
its neighbor has received the same packet) of two neighBabviays high. Thus, every
node predicts whether one of its neighbors has received leepparely on overhearing
and CPRP calculation, without exchange of any feedback watheighbors. Therefore,
the nodes need only to send periodic probe packets to naiataaccurate CPRP value.
The authors claim that this reduces the feedback traffic iouhot demonstrate the traffic
overhead introduced by periodic probes for large netwo@xs.the other hand, feedback
in UFlood scales for large networks as only the neighborsi@xge their feedback infor-
mation and UFlood uses its own prediction mechanism to sgspthe feedback traffic.

Chapter 4.7.3 explains this in detalil.

3.5 Flooding using Cooperative Coding and Diversity

By using RNC, UFlood (like MORE) has a built in form of error cotien. An alterna-
tive might be to use source coding to improve flooding efficieras in MISTRAL [46].

One could also implement cooperative diversity technifoesombining errored pack-
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ets received from multiple sources, similar to those predas Jakllari et al. [24] and
MIXIT [30]. UFlood can take advantage of cooperative codamgl transmission strate-
gies to improve its performance further. All of these teciueis are complementary and

exploring these ideas is an area for future work.

3.6 Bit-rate Selection in Wireless Networks

Many wireless nodes are capable of using various bit-rategdnsmissions. The main
challenge is to determine what bit-rate to use to increassugihput. Much is known
about wireless bit-rate selection for point-to-point n6, 14, 21, 26, 37] and for WiFi
multicasting [31, 57], where all the receivers are withia thdio range of the sender.

To the best of our knowledge, there are no existing bit-ratecsion mechanisms for

flooding or multicast protocols in multi-hop mesh networks.

3.7 Chapter Summary

This chapter discussed the existing tree and gossip-basedirfty protocols used for (i)
route discovery in ad hoc routing protocols and (ii) disssating large-scale data such
as multimedia. This chapter also included a discussionefldoding protocols that use
coding techniques. Finally, this chapter contained anaqtion of the bit-rate selection
mechanisms used in wireless networks. The rest of thisrti#d®m is a discussion of how

UFlood overcomes the drawbacks of the existing floodingquals.
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Chapter 4

Design of UFlood

The central task of UFlood is to select senders in a disgbuhanner considering the
factors described in Chapter 2. The design of UFlood’s sesékerction involves three
main sub tasks: (i) utility formulation, (ii) bit-rate sekon, and (iii) feedback mechanism.
This chapter discusses the design of each of these taskegitisowith a description on
the environment in which UFlood is expected to be used. Tlagteh also describes the

limitations of UFlood.

4.1 Goals and Assumptions

The goal of UFlood is to distribute a large file from a singlerse to the rest of the nodes
in a wireless mesh network. The main performance goals gte throughput and low
airtime. Throughput is defined as the file size divided by ttalttime it takes for all the
nodes to successfully receive the entire file. This definiéissumes that all nodes need the
file and there is no advantage to some nodes getting the fibeebtife last node gets it.

Airtime is defined as the sum over all nodes of the time eacle spénds in transmit-
ting data, feedback, and acknowledgment packets. The tigfimeflects impact on other
users of a shared channel: the less time spent transmittimggdlooding, the more of the
channel is available for other users.

The design of the UFlood protocol relies on the followinguesptions. Many real-

world wireless mesh networks that use flooding have all cfehgroperties.
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A large quantity of data is to be flooded reliably.

e Each node operates at a fixed power level, on a single chamitfehn omni-directional
antenna. Thus, all the packet transmissions are broad€ast. of the nodes can
communicate directly, but UFlood must flood over multiplgpado cope with more

distant nodes.
e Nodes are stationary and are willing to forward data for eztbler.

e The network size is on the order of dozens of nodes and thexaralti-hop path

with non-zero delivery probability from the source to evetier node.

e The radios have a carrier sense mechanism that works rdagavel| to avoid col-

lisions and allow spatial re-use.

4.2 Design Overview

In outline, UFlood works as follows. Each node measures #tigaty probabilities of the
links to its one-hop neighbotsand distributes this information to rest of the nodes (refer
Chapter 5.1). All the nodes run the bit-rate selection atgoriusing the measured delivery
probabilities to calculate the best bit-rate for each no8ection 4.4 explains UFlood’s
bit-rate selection algorithm. All these are done beforedttteial flooding begins.

A UFlood transfer begins at the source node, which has thetdabe flooded. The
source node divides the data into equal-sized packetsigadiive packets, and floods one
batch ofK native packets at a time. The source begins by transmitbdga packets, each
constructed by linearly combining th€ native packets in the batch. Section 4.5 describes
how each coded packet is constructed and how many such pabkesource transmits.
All the nodes then go through the following cycle until eveyde indicates to the source
that it has receive& linearly independent coded packets, which is enough todette
entire batch. Each node calculates its own utility and thléyubf its neighbors. Nodes

with utilities higher than their neighbors transmit a busktdata packets, coded over the

L(One-hop) neighbors refer to those nodes that can comnterdaactly with each other with a delivery
probability greater than 0.1.
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packets they have received in the batch. All the transmrmssad a node are carried out
at its best bit-rate. A subset of the nodes then transmitibieek packets. The feedback
contains information required for neighbors to calculdiéties. Section 4.7 illustrates

UFlood’s feedback mechanism in detail. This process caasruntil all nodes signal the
source node that they are able to decode the batch at whielth@source proceeds to the

next batch.

4.3 Design Challenges

Design of UFlood should solve the following sub-problems.

e UFlood should select the best bit-rate for each node sudhhbaverall throughput

is maximized.

e Each UFlood node should calculate the utility of its trarssiun at its best bit-rate

and those of its one-hop neighbors.

e Each UFlood node should learn the state of its neighbors sfdte of a node repre-
sents the number of coded packets it possesses and a sunimaefficients of those
coded packets. UFlood should decide what information thghbers exchange to
learn each other’s states. It should also decide which ohthghbors’ states are
necessary to guarantee unanimous sender selection in igfgoehood. That is
the probabilities that two neighbors decide they are bothbiest senders or that no

sender decides it is the best, must be low.

e Each UFlood node should send feedback only when necessatyould cope with

delayed or dropped feedback from neighbors
e The flooding protocol should handle hidden terminals in thsvork.
e All of these must be achieved with low communication ovethea

The solutions to the above-mentioned problems dominatémittbe design of UFlood.
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4.4 Bit-rate Selection

Chapter 2.5 explained the need for bit-rate selection in ftapgrotocols and the basic
gualities that a bit-rate selection scheme should pos$éssnain goal of UFlood’s bit-rate
selection scheme is to select the best bit-rate for each swdkethat the overall flooding
throughput is maximized. The crucial idea used is as folloksch node constructs a
unicast multi-hop path from the source through which it caceive the source’s data in
least time. The node’s neighbor that is on the last hop in theast path is the best sender
for delivering the source’s data to the node. This means) sacder has a set of neighbors
for which it is responsible for delivering source’s data. eT$ender chooses the highest
bit-rate that has good delivery probability to all the ndighs for whom it is likely to be
the best sender. This mechanism helps UFlood attain a higtalbthroughput because
the sender’s bit-rate is selected, based on global infeomato minimize the time taken
to transfer the source’s data to its worst-connected neigtiiat depends on the sender for
data. In addition, this mechanism ensures that the sen@srrai unnecessarily reduce its

bit-rate to reach a neighbor which has a faster source offdataelsewhere.

Each node runs the bit-rate selection algorithm to caleula¢ best bit-rate for itself
and for every other node. The best bit-rate for a seXdercalculated as follows. First, the
sender uses a standard routing protocol to compute unimat&s from the source to each
of its neighbors that minimizes the expected transmissina (ETT) metric [14]. Since
the sender already has a copy of the data it will send, it tatlesithe paths as if it had an
infinitely fast link to the source.

The sender then determines the set of its neighbors for whishhe last hop on the
shortest ETT path. The node uses the bit-rate that will aehlee maximum throughput
on the worst of the links to those neighbors. This causesehdes to choose a rate low
enough to provide the best throughput for the worst-comtkntighbor that depends on
the sender for forwarding, but does not reduce the senddesneedlessly to help nodes

that have a faster path (not through the sender) by whichdaeyeceive.

2ETT of a link is defined as the expected amount of time it woaletto successfully transmit a packet
of fixed size on that link; the time depends on the deliverybptility of the link and the bit-rate of the
transmission.
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Finally, whenever a sender finds, based on the feedback feaghlnors, that its trans-
missions are not useful to its worst-connected neighboe-cdomputes its best bit-rate by

ignoring the worst-connected neighbor.

Chapter 5.3 explains the implementation of the bit-ratecsiele algorithm.

4.5 Coding

The source uses randomized network coding over each bat@iganake each transmis-
sion useful to multiple nodes even if they are missing ddifdrparts of the batch. Each
transmission of the source is coded over all the native gadke batch, as in MORE [8].

If the K native packets arpe;...nk andc;...ck areK randomly chosen integers, then a
k

data packet transmission jis= Zlq .nj. The arithmetic is byte-wise, so that the first byte
of pis cy times the first byte of; pluscy times the first byte offi, and so on untity, times
the first byte of,. All the arithmetic is carried out in the finite Galois fie®F (28) [8, 40].
Each coded broadcast also includes kheoefficients €; ...ck) used to construcp. A

packet coded over the native data is called a first-generpticket.

A non-source sender broadcasts packets recoded over dirshgeneration coded
packets it has received in the current batch using new rarmd@fficients. For example, if
a node possesses two first-generation coded papketsd p2, then the packet transmitted
by this node is a linear combination of these packets of tha t?i.pl -|-62.p2. Different
coefficient vectorsK randomly generated numbers)are chosen for constructing each

coded packet.

All nodes include, in each transmission, coefficients netad the original native pack-
ets (refer to Section 4.7). Once a node has recdvédearly independent packets in the
current batch, it decodes them to obtain the native packetthat point the node starts to

act as a source-like node sending first-generation paaiedsd from the native data.
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4.6 Utility

Once the source has sent a full set of coded packets for a, matdtiple other nodes will
be in a position to send further recoded packets to help dgheaflood. The decision of
a UFlood node to transmit depends on whether it thinks itsstrassion has higher utility
than those of its neighbors. The objective of the utilityt&ic is to choose the best senders

based on the considerations explained in Chapter 2.

The utility of a node is the expected rate (in Mbps) of useaibdeceptions that would
ensue if it were to transmit. Nod¢ estimates the utility of any nodé (possibly itself) as

follows:

Ux(Y) = Ry zbey) - BY) lvz (4.1)
ze
Ny is the set of neighbors of. b(Y) is the best bit-rate for nodé. R, 7 ,v) is the delivery
probability fromY to Z whenY transmits at the bit-rate(Y). Iy z is 1 if a coded packet from
Y would be linearly independent of the pack&talready has and 0 otherwisgé.computes
ly,z using the feedback it receives frovhandZ (and also interpolates, as described in
Section 4.7.3).

Figure 4-1 explains how utility works in UFlood using a simgxample. Assume for
simplicity that all the nodes transmit using a bit-rate ofddd. The number on each link
indicates its delivery probability. Sour&@wants to flood two native packettgs andn, to
the node, B,C, andD. It constructs two coded packets, indicated by red colosgtlih
the figure, using the random coefficier@s The source transmits the two coded packets,
which are then received by the nodeandB, indicated by blue colored text. Eith8rA, or
B can transmit the next packet. The utility of sougis zero since node& andB, the only
potential receivers of the transmissionsSPsc ps) = 0 andPsp ps) = 0), already have
enough coded packets to decode the native packets; trasnidromS are no longer
useful to themliga = 0 andlsg = 0). The utility of nodeAis 1 (Pacpa) =1 andiac =1)
and that of nod@® is 0.5 Bz p pg) = 0.5 andlgp = 1.0). ThusA, with the highest utility

compared to those of its neighbors (i.8.B andC), wins and sends coded packets until
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Native Packets;;m, Coefficients: ¢
Coded Packets:cl. ns+c.n,
Cq. Ny+C,.N,

¢, nton Cy. N+C,.N,
1 Nz Cy. Ny#C,.N,

Cg. N+C,.N, .
Ce. N +Ga. 9N17C10Ny
5 My 2 +

C NA4C N C11:N17Cy2Ny
7- N7 Gg-Ny

C13N1+CeaNy
C15N1+CeaN,

C,. N +Gg.N, 13Ny +CqgN,

Figure 4-1: Illustration of utility calculation in UFloodRed and blue colored texts indicate
packets that are transmitted and received, respectiveiieonode.

C receives two linearly independent coded pack@&snow the most useful node in the
network with utility 0.5, transmits next untid gets 2 linearly independent coded packets

of the batch and can decode the batch.

Why does this definition of utility improve the overall floodithroughput? The reason
is that the utility equation (Equation 4.1) captures all thasiderations for sender selec-
tion mentioned in Chapter 2. Multiplying by delivery probiityifavors nodes with good
links to receivers. Summing over neighbor nodes’ delivemybgpbilities favors senders
with many potential receivers. THez factor favors transmissions likely to be linearly
independent of data already held by receivers. Additigngll; favors senders that could
send multiple useful packets in a row without needing to ¥eaifeedback. Multiplying by

transmit bit-rate favors senders with faster links to reees.

UFlood’s utility is a locally greedy heuristic. For exampiedoes not account for the

possibility that a sender with only a few low-quality linksaght deliver packets to nodes
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that would then be able to transmit to many receivers on Qiggiity links. Nevertheless,
chapter 6 shows that this local utility heuristic leads ficcefnt flooding with high overall

throughput in the network.

4.7 Feedback

One of the main challenges in the design of UFlood is to dettiddest sender for every
transmission in a distributed manner. A unanimous decisi@aneighborhood is possible
only if every node knows the states of those nodes, whichoalés in a neighborhood use
in their utility calculation. That is, each node should knthe states of both its one and
two-hop neighbors. This is used in calculatilyg in the utility equation indicating if a
transmission by would be useful t&. A node obtains this information through feedback

packets. This section explains how UFlood nodes constnettransmit feedback packets.

4.7.1 Compact feedback representation

Coded packets do not have a simple unigue identification,@pealcket number. A straight-
forward method to summarize the coded information a noddshisl by using the coeffi-
cients that were used in the construction of the coded ps.clkedch coded packet has a
distinctive set of coefficients. The feedback that a n¥dgends can include these coef-
ficients for each packet it has received in the current baidkis information is enough
for the neighboring senders of nodeto decide whetheK would benefit from a particu-
lar coded transmission (i.e., whether a transmission wbaltinearly independent of the
packetsX already has).

Though this is a simple mechanism, full description of theke#s a node holds might
requireK coefficients for each of up ti packets; forK = 64 this is almost 4096 bytes.
Exchange of such a vast amount of information is expensiveer&fore, UFlood uses a
novel compact form of feedback to summarize the coded psitiedt by a node. UFlood
ensures that this compact feedback is less expensive thdmgecoefficients.

The underlying idea is that all transmissions ultimatety@erived from first-generation

packets ) coded by the source and that whether a transmission islaefueceiver has
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to do with whether it adds to the receiver’s total informatabout those first-generation
packets. Any non-first-generation packgj can be expressed in terms of a linear combi-
nation of first-generation packets. For example, assumenafder received a set of coded
packetsp; in the forchi.ni, wheren; are the native packets. Any packet transmitted by
the forwarder would be a linear combination of these codexkgta in the formz Cj.pi,
which can be expressed in the form of first-generation pacZe(tci.cj).ni. Since the mul-
tiplicative group in a Galois field is cyclig;.c;j is again a random number in the finite
Galois fieldGF (28).

Suppose the first-generation packets are numbereé, ..., /. Feedback of a node
consists of a count of the linearly independent packetstthatds (the “rank” of the node)
and a bitmap with one bit for eadh. The node sets bit if it has receivedr or has
received a non-first-generation packet that was recodedFové&Flood limits the source
to generating 256 distinct coded packets per batch of nptickets; this means a feedback
packet is just 33 bytes (an 8-bit rank and 256 bits).

Rank=3
Bitmap=1,2,4

Rank=2
Bitmap=1,2,4,5

Figure 4-2: lllustration of feedback in UFloo&; andS are first and non-first-generation
packets, respectively.

Figure 4-2 uses an example to illustrate UFlood’s feedbagg&hanism. Suppose node
W has received first-generation packegtdirectly from the sourcé& and received a non-
first-generation pack&; sent by nodeX, which X generated by coding packdig F, and
F4 from S. Then feedback diV will indicate a rank of two, and its bitmap will have entries
1, 2,4, and 5 set. Whereas feedback fdmwill indicate a rank of three, and a bitmap with

entries setat 1, 2, and 4.
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This feedback is sufficient to estimédtez conservatively, without needing to know the
actual coefficients as follows:
1 if Lyz > 0

lyz = _
0 otherwise

( 0 ifrank@) > K, or

by if rank(Y) > rank@) (11), or
Lyz =< by ifrank(Y) < rank@) andY has more bits (4.2)
set in its bitmap thad (12), or

\ 0 otherwise

whereLy z is the maximum number of coded packets thaan receive frony that would
be linearly independent of packefsalready hashs is rank{Y) — rank@) andb; is the
number of bits that are set in the bitmapyolbut not set in the bitmap &. This calculation
is a conservative estimate:lif, 7 is greater than zero, then a transmission fiom likely
to benefitZ, while if zero, there is still some chance that a transmrsgiould be beneficial.

Section 4.10.3 is a detailed discussion of this limitatibBlood.

As an example of condition 11, consider Figure 4-2. SuppaseW has two packets,
and its bitmap has bits set at positions 1,2, 4, and 5. A trassom from nodeX with
a rank three is likely useful a¥. The only way this could fail to be true is through an

unlucky choice byV of its recoding coefficients.

As an example of 12, consider Figure 4-2. Suppose nddeas three packets, but
none is coded ovdfs. Then a transmission froW, which has only two packets will be
linearly independent of the packetsalready has since it is coded ovey. This is the
reason why sending the rank of nodes alone as feedback isoaglke information to know
whether a sender’s transmission is useful to its receivae @ the main contributions of
this dissertation is to illustrate the need for detailedifisek even in the presence of coded

transmissions.

Once a node receivés§ linearly independent coded packets, the receivers ofatsstr

missions will end up setting many bits in its feedback bitmapich will make 12 rarely

54



true. For example, suppose noddas received;...F¢. X then transmits twiceY receives
only its first packet an@ receives only its second packet. NdfandZ have the same
rank (one) and the same set of bits set in their feedback p#rfia2,...,K), so neither
condition 11 nor 12 is true. However, they could benefit froactlk other’'s transmissions,
because they each have at least one linearly independéwgtgacthe other. To address
this situation, UFlood nodes that have received enoughgiaté decode the whole batch,
begin to transmit first-generation packets, coded from thig&ve data. Such nodes are
called “source-like” nodes. Each feedback packet contat@bits for each source-like
node from which the feedback sender has received packetsditonl2 applies to the
entire set of bits.

UFlood strives to select best sender(s) in every neighlmath® unanimous sender
selection in a neighborhood is possible only if nodes havacanrate state information of
not just its one-hop neighbors, but also its two-hop neigbldose states also contribute
to the utility of the neighbors. However, including the cdetp states of two-hop neigh-
borhood is inefficient since it drastically increases thevoek traffic. Achieving this is a
challenge and the current feedback implementation of UFincdludes only the ranks of a
node’s two-hop neighbors and not the summary of the codekepmacThis still improves
the agreement among neighbors in sender selection andawajpkhidden-terminals. Sec-

tion 4.9 explains this in detail.

To summarize, a feedback packet from nddeontains (see Chapter 5.7 for details):

1. The rank ofy.

2. A bitmap identifying each distinct first-generation peicthat contributed (via cod-
ing) to any of the packets held b

3. The rank of each of the neighborsYaf

A typical packet with the above contents has approximatélypyes of payload, far

less than would be required for a full set of coefficients.
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4.7.2 Feedback Timing

There is a tension between feedback timeliness and overt@adhe one hand, it is im-
portant for senders to have up-to-date knowledge of whatdpackets receivers have, to
suppress senders whose transmissions would not be linedegendent at many receivers
and to avoid disagreement over who has the highest utilitychvmay cause idle-time in
the network. Idle-time refers to the state of the network nghe node in a neighborhood
transmits because no node in the neighborhood thinks itedsighest utility in the neigh-
borhood. On the other hand, frequent feedback is necessanjidulate utility accurately
after every new transmission. However, in a network witheshezof nodes, each node send-
ing a feedback packet after every data transmission is dggansuming and increases the
airtime. In addition, an increase in the number of feedbatkpts also contributes to the
network traffic apart from its size due to packet collisions atransmissions. Thus, it is
important to space the feedback packet appropriately aretiace the size to reduce both

traffic and idle-time.

At any point in time, there are two kinds of nodes in the nekwéirst, there are nodes
that do not have enough information to decode the batch. fae&dpackets from such
nodes help neighboring senders transmit the missing irdbom. Second, there are nodes
that have already decoded the batch, and which must havademwledgment packets to
inform the source of this. All the neighbors that heard thesekets update the state of the
nodes sending the acknowledgments. Since these state$ deamge until the end of the

current batch, further feedback packets from such nodesrarecessary.

Therefore, in order to reduce idle-time and at the same tirm@tain consistent state
information across neighbors, a node sends feedback otfig fiollowing two conditions

are satisfied.

e Condition 1: The node does not have all the packets of the batch.

e Condition 2: The node senses the channel idle for the duration of thregpdakets,

which is enough duration to detect an idle-time.
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4.7.3 Feedback Interpolation

UFlood nodes send feedback infrequently and feedback fsaniey be lost, which means
nodes must operate with stale feedback. This may causebweggyto fail to agree which

is the best sender. For example, in Equation 4.1, if nédsan hear nod& and all of

Y’s neighbors, then it is easy to see that the equation céyreatculatesY’s utility at

X. If feedback from some neighbors ¥f cannot be heard or is delayed, th¥nwill
underestimat®’s utility and may send data even thoughs actually the better sender. It

is far worse ifX were to over-estimaté’s utility and not send data as a result because that

would introduce idle-time and slow down flooding.

UFlood nodes attempt to correct stale feedback by intetipglaFor every data trans-
mission thatX knows of sinceY’s last feedbackX predicts the effect of that transmission
onY'’s feedback using the probability equal to the delivery jiaibty between the packet’s
sender andf. If X predicts thalY received the packet and decides that the packet would
have been linearly independent of the pack€ssfeedback indicates it already has|n-
crements rank() and sets the bits i’s feedback bitmap corresponding to the source’s

packets that contributed to the data transmission.

Each node does this interpolation whenever it sends orvesaidata packet and over-
writes its interpolated feedback for a neighbor whenevedlback arrives from that neigh-
bor. Any nodeX may not know about all the potential senders from which aivec¥ can

get its packets, so this interpolation is approximate.

4.8 Mechanisms to efficiently reduce Idle-time

In spite of UFlood’s effort to reduce idle-time through féadk interpolation, it is not
completely eliminated because of inaccuracies in the potation, and spacing of feed-
back packets to minimize airtime. Reducing idle-time withsending more feedback is
challenging. UFlood has the following mechanisms that iielpoid idle-time from occur-

ring.
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4.8.1 Bursty packet transmission

To reduce idle-time, nodes that calculate that their iggiare higher than their neighbors’
transmit a burst of packets. Sender selection occurs ontijeaend of each, reducing
opportunities for disagreement in the neighborhood andltieg idle-time. When a node

X decides it has the highest utility, it sends a burst of

inL 4.3
ch'er AC (4.3)

packets. This, calculated using Equation 4.2, is the mastgia thatX can send with-

out causing any neighbor to have higher utility thé&n

The overall burst sequence is as follows. The current sesetats a burst of packets.
Other nodes calculate the sender’s burst length (or obgenvine sender’s packet headers)
and wait long enough for the burst to have ended. Then all tidles recalculate utilities
and the best node sends a new burst. This process can proceedlfile without feedback
packets with all nodes using interpolation instead. At spaiat, interpolation will predict
that all nodes have enough packets to decode the whole batetoanode will send. Nodes
that have not in fact received enough packets will obsenidlarchannel. Therefore, they
will send feedback, which will cause one of its neighbors@¢odme a sender. If all nodes
can decode the batch, they will send acknowledgments tatires, which will start a new
batch.

The source also transmits a burst of packets at the begihithg batch equal to

Lsp/Psp,b(s) (4.4)

packets, where S is the source node and D is the neighbor at §dk the best delivery

probability from the source node.
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4.8.2 Next-best node

Idle-time may occur despite the above mechanism. UFlood<wejth this by having any
node that thinks it has the second-highest utility begindmaitting if it hears no packet
from the best node for a duration of three packets. The nodtbeghe third-highest utility
begin transmitting if they hear no packet from both the firt aecond best nodes for four-
packet duration and so on. In addition, the current highgt/unode is never reconsidered
as the best node by its neighbors, until the neighbors rederther feedback that changes

the states of the nodes.

4.8.3 Parent-child entity

A final idle-time situation can occur when most nodes are &bldecode a batch, but
those nodes’ interpolation mechanism has caused them &3 gueorrectly that all other
nodes also have enough packets to decode the batch, anddtdamusending feedback
do not trigger feedback from the few nodes that do not haveigingpackets. UFlood
handles this by giving each node a parent node (determinétehynicast route back to the
source), and having the parent reset its interpolated fetiaéay child that does not send an
acknowledgment to the source soon after it has decoded thkewhatch. This causes the
parent to become a sender, and thus drive the child towarglesion.

Whenever a parent node interpolates the reception of thpdaket of the batch for any
of its child node, it sets a timer for the duration of threekesds. If the parent node does
not receive the unicast acknowledgment from that child rindkis duration, it resets the
timer and sets the number of packets the child receivéd-tal. Thus each parent keeps

sending until its children acknowledge the batch.

4.9 Hidden Terminals

Two nodes that cannot hear each other might both decide tmmsenders and collide at
common receivers. UFlood reduces the chance of this in fl@viog way. As described

in the previous discussion, feedback packets contain tiiesmaf two-hop neighbors. Thus,
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feedback from common receivers will cause two-hop neighlamd potential hidden ter-
minals to be aware of each other. When a node decides if it ledsighest utility, it com-

pares not just against neighbors but also against two-highiners with which it shares
receivers that could benefit from both senders. In many cdsesuppresses potential

hidden terminals.

4.10 Limitations of UFlood

This section is a discussion of some of the limitations ofddil.

4.10.1 Spatial Reuse

A good flooding protocol should maximize spatial reuse bgvathg nodes to send concur-
rently when their transmissions do not interfere. In UFlodidtant nodes will likely not
hear each other’s feedback, and thus not consider eachastipetential best senders. As a
result, distant nodes that consider themselves to be lesaBenders will send concurrently
allowing spatial reuse of wireless channel. However, aaligeotocol would choose the
set of senders with the highest total amount of useful rémepiover the whole network,

accounting for interference. Therefore, UFlood deals wjthtial reuse weakly.

4.10.2 Delivery Probabilities

Selecting the best sender requires knowledge of the dglmababilities between every
node-pair in the network, which is represented®y 1,v) at all possible bit-rates(Y) in

the utility equation. Each node periodically measures apald this information to the
rest of the nodes. Both the probing and distribution are doad@w rate, so the delivery
probability matrices are usually out of date. However, Weaoes not rely only on the
delivery probabilities alone for its operation. Feedbaekph in fixing the mistakes that

occur because of out-of-date values.
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4.10.3 Conservative Estimate oLy 7

Section 4.7.1 mentioned that Equation 4.2 is a conservesitimate oty z. Thatis, ifLy 7

is greater than zero, then a transmission fons likely to benefitZ, while if zero, there
is still some chance that a transmission would be benefi€iat.example, in Figure 4-2,
since nodes andW together received four of the source’s first-generatiorkgts; they
both can exchange packets to ensure that they receive faarly independent packets
each. Thus two transmissions fraxnshould be useful tdV. However, as soon as node
W receives another coded packet from noedeboth X andW will have a rank of three
and all the bits set ilV will also be set in that oK, thusLw x = 0 even though one more
transmission fromW will still be useful to X. This is an example where Equation 4.2
incorrectly estimates a transmission from a node to be sseldowever, this happens only
when both the sender and the receiver have the same rankearet#iver has all those bits
set that are set in the sender’s bitmap. In addition, UFlamtes transmit a burst of packets
and do not calculate the utility for each transmission, Wwhieduces the opportunity for

miscalculating the utility of the senders.

4.10.4 Reliability

UFlood attempts to ensure that every node eventually res@xough coded packets to de-
code the current batch. Any node that does not receive [satel-coded packets will even-
tually be handled by the parent-child entity explained ictte® 4.8.3. However, UFlood
faces a tension between achieving high throughput for thjentyaof nodes and delivering
entire file to nodes with very unreliable links. UFlood séces the latter in some cases: in
particular, if a node’s feedback packets go unheard for &raugh, its neighbors will stop

trying to retransmit data to it.

4.10.5 Look-ahead

Utility is a locally greedy heuristic: it does not account tbe possibility that a sender
with only a few low-quality links might deliver packets to aes that would then be able

to transmit to many receivers on high-quality links. In atthwrds, one of the limitations
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Figure 4-3: lllustration of the importance of look-ahead.

of the utility equation is that it has no look-ahead. Supposential sender§; and S
in Figure 4-3 each have one node that can hear tHenadRy). All else being equal,
Equation 4.1 will compute the same utility of 0.2 for the tvemders. However, it could be
the case thaR; is the only path to a large number of other nodes wRias not. In that
case S should send first to start data flowing to those other nodédscinin this example,
R> has a better path frolR; and should receive packets from it and not fr&n which
also is not considered by the utility equation. A betteritytflunction should include look

ahead.

4.10.6 Pipelining of batches

A UFlood source floods one batch at a time. In a large mesh mketwith hundreds to
thousands of wireless nodes (as in many sensor applicatiasist is UFlood is not the
best flooding scheme. This is because a large part of the refalose to the source) that
received all the packets of the current batch remains idlst miothe time waiting for the
flooding to complete in the rest of the network. Pipeliningchbas would enable several
batches to coexist. Pipelining in UFlood should face séwdrallenges. For example,
UFlood’s utility calculation should account for the codgisce of packets from different

batches. The current implementation of UFlood does notidepipelining of batches.
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4.11 Chapter Summary

The design of UFlood made two major contributions. Firstlascribed the notion of
utility as a local heuristic for selecting the best senderadhieve high throughput using
low airtime. Second, the design demonstrated how to redeegbfick overhead with a
compact representation and mechanisms to send feedbaokloeh required. This chapter

also describes the limitations of UFlood, which are averiaefiture work.
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Chapter 5

Implementation

The UFlood implementation uses the Click [43] software rotdelkit running as a user-
space daemon on Linux. The daemon sends and receives ramd&ithames from the
wireless device using a libpcap-like interface. This ckapixplains various components

used in the implementation.

5.1 Data Structures

All the nodes maintain the following information.

Packet table

Each node stores the coded packets it has received in thenturatch along with the
coefficients used in the construction of each of those padkea table. It discards any

newly arrived packet that is not linearly independent ofgghekets it already holds.

Node table

Each node maintains a node table that holds the list of nad#seinetwork. This list is

distributed by the source to rest of the nodes using a lirtke giatocol.
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Bitmap table

Each node maintains a bitmap that contains 256 bits for theee@nd and for each source-
like node whose first-generation packets have contribudeahyy coded packet it holds.
It also maintains a recent copy of the bitmap for each of iighi®rs derived from the
feedback packet it received from them. This informationgsdito calculatés ¢ in Equa-

tion 4.1.

Rank table

Every node stores its rank and the rank of its one and two-teghbor nodes. It also
maintains an indicator bit for each of its neighbors; thadget if the status information it

has about the neighbor is predicted (interpolated) ratieer true.

Delivery probability matrix

Each node maintains a matriR]y x, for every bit-rateb(X) containing an estimate of
the link-layer delivery probability measured at bit-r&eX) for every node-pair. Delivery
probabilities are measured offline using the traditionabprg method: each node sends
back-to-back probe packets with 1024-bytes of random dat@® seconds while other
nodes record what fraction of probes they receive. Thistibagrovides the delivery
probability between the corresponding node pairs, whithes flooded using a link state

protocol, as in MORE [8] to the rest of the nodes.

5.2 Packet Formats

The nodes transmit three types of packets (data, feedbadkaeknowledgment). The

remainder of the discussion udé€s= 64.

Data Packet

A data packet from nod¥ has the following contents:

e Alink layer broadcast header that includes X’'s address.
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e Atype field indicating a data packet.

e Current batch number.

e Rank ofX.

e Bitmap of X.

e The 64 K) coding coefficients for this packet, relative to the orginative data.

e 1024 bytes of coded data, constructed by a linear combmafiall the data packets
held byX.

e The total number of packe¥ will send in the current burst.
e The number of remaining packets in the current burst.

e The ranks oK’s neighbors, their ID$, and a bit for each neighbor indicating whether

the neighbor’s rank is interpolated.

Feedback Packet

A feedback packet from nod€ contains:

e Alink layer broadcast header that includ€s address.

A type field indicating a feedback packet.

Current batch number.

Rank ofX.

Bitmap of X.

The ranks oiX’s neighbors, their IDs, and a bit for each neighbor inditatvhether

the neighbor’s rank is interpolated.

1A 1-byte node ID refers to the position of the node in the nadbéet
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A feedback packet’s length is dominated by the bitmaps, acckases by 32 bytes for
each source-like node that has been generating first-gerepackets during the current
batch. In the test-bed considered in this dissertatiorh) eaded packet is constructed using

the native packets of three source-like nodes at most.

Acknowledgment packet

A nodeX sends an acknowledgment packet via unicast routing to tvesevhen it is able

to decode a batch, containing:
e X’s address.
e Address of X’s parent in the unicast path to the source.
e Atype field indicating an acknowledgment packet.
e Current batch number.

e Cumulative acknowledgment: a bitmap with one bit for eachendtle bit corre-
sponding to a node’s position in the node table is set if thdenwas decoded the

current batch.

e The ranks oiX’s neighbors, their IDs, and a bit for each neighbor indicgtivhether

the neighbor’s rank is interpolated.

5.3 Bit-rate Selection

The delivery probabilities are used to select the bestdtés: Each node uses its best bit-
rate to transmit all its data and feedback packets. Bit-recton for a sendeX involves

three main steps, as described below:

1. Choose best bit-rate for individual links
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The expected transmission time (ETT) to send a packet ¥amits neighborY is

given by,

1

ETTx vbx) = Py oo *B(X) (5.1)

whereb(X) is the bit-rate of node&X andPy v yx) is the delivery probability of the
link from X to'Y, whenX transmits at bit-rate(X).

The cost metric of the link between nodésandY is given by

XY b(xfﬂln 54( X.Y,b(X)) (5.2)

=4,...

The minimum bit-rate that gives the lowest ETT correspoondsi¢ best bit-rate for

the link fromX toY. UFlood calculates this best bit-rate for all possible $ink

2. Construct ETT-path from source to every neighbor node of the seder

Dijkstra’s algorithm [14] is used to construct minimum c@siths from source to
every neighbor oK using the cost metrick;) as link weights and assuming the cost

to transmit packets from source Xoas zero.

3. Select the best bit-rate forX

Each path from the source node that passes through sEndses an outgoing link
from X to one of its neighbors. These nodes rely>oior receiving source’s data.
The best bit-rate for send&ris the minimum of bit-rates fronX to all its neighbors

that rely onX for forwarding.

WheneverX finds that its transmissions are linearly dependent to tlokgia of its
worst-connected neighbor that relies on it for source’adate-selects the best bit-rate by

ignoring the worst-connected neighbor.
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5.4 Coding and Decoding

UFlood’s implementation of coding and decoding are simitaMORE [8]. The native

packetan to nk are linearly combined using random coefficieqigo form coded packets
K

pi. For example, the first coded packat= Z C1j.nj. The arithmetic is byte-wise, so that
=1

]

the first byte ofp; is 11 times the first byte oh; plusci2 times the first byte oh, and so

on until cik times first byte ohg. All the arithmetic is carried out in the finite Galois field
GF(28) [8]. When a node receives linearly independent coded packets, it decodes the

native packets by using matrix inversion as follows:

nq Ci1 ... Ck P1
=|: Co X | (5.3)
Nk Ck1 --- Ckk Pk
5.5 Main Loop

Figure 5-1 and 5-2 summarizes the set of actions executed avpacket is transmitted and
received, respectively. The following discussion expamisarious aspects.

The sequence of steps that occurs during the execution aiddk$ as follows.

e At the beginning of each batch, the source prepares the .batahsource starts by
sending a burst of coded transmissions; burst size caézufedm Equation 4.4. The
rest of the nodes are silent during the source’s initial $etamsmissions (or until
they estimate the source must have finished based on elapsgdAfter that point,
the source acts much like any other node, only sending ifgttha highest utility.

The source’s packets are received by some of its neighbors.

¢ All nodes calculate their utilities and the utilities of thedes around them roughly
once per burst. If a node is sending, the sequence is thamdisse burst of data
packet, allows time for any feedback, then re-calculatégyutand perhaps sends

again. If a node receives a data packet and the data packeatesl end of burst,
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coded packets using
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Transmit all the return

coded packets

Calculate my Utility and
those of my nearby node

Construct a burst of packets
using equation 4.3, recoding
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No

New
batch?
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Figure 5-1: Flowchart of UFlood’s main loop for packet tramssion.
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Figure 5-2: Flowchart of UFlood’s main loop for packet reteip.

it also pauses fal;eeghack, re-calculates utilities, and perhaps sends. If a node does
not hear a packet, it waits a duration approximating the tieeessary to send three
data packetstd{ya), perhaps sends a feedback, and re-calculates utilitibs i3 a

necessary but not sufficient condition for feedback trassion (refer to Section 5.7).

72



The pause timé& eednack IS the duration of a feedback packet transmission. For exam-
ple, for 1 Mbit/s 802.11b, a 1024-byte data packet lasts@fprately 8 milliseconds
(tgata), and usually in UFlood, a feedback packet lasts less thannaillisecond.

A node uses the lowest bit-rate among all its neighbors toutatletyz;a. On the
other handtfeegback Of @ Node is calculated using the lowest bit-rate among all th
neighbors that have not decoded the current batch. Theywdmputation uses the

feedback interpolation described in Chapter 4.7.3.

¢ If the node has the highest utility among its neighbors at plwént, it transmits a

burst of packets; the burst size is calculated using Equti8.

e When a node receives a coded data packet, the node integpthatetates of its
neighbors as explained in Chapter 4.7.3. If a node receivesgénpackets that
it can decode the batch, it sends an acknowledgment to threesas explained in

Section 5.6.

e When a nod& receives a feedback packet from natjét updates information about

nodeY and the ranks of’s neighbors as explained in Section 5.7

o If the packet is an acknowledgment packet, n¥derwards the packet to its parent

node, only ifX is on the unicast path froivi to the source node.
e When the source receives acknowledgments from all noddayis & new batch.

e This process continues until the source successfully flaidse batches.

5.6 Batch Termination

Each node constructs a minimum cost unicast path back totireesnode using the cost
metricC j (derived from ETT) as the link weights. A node, when requit@transmit an

acknowledgment, uses the bit-rate that provides minimurh #®Tits parent in the unicast
path to the source. When a node accumulates a batch-sizecgnaftimearly independent

coded packets, it decodes the batch. It then sends a mességpdrent and persists until
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its parent node acknowledges or until the node sees theddtarhew batch. To reduce
the acknowledgment traffic in the network, nodes send cuimaalacknowledgments when

they hear completion messages from more than one child.

5.7 Feedback Interpolation

Rank of A Bit is set, if rank(B) is
A interpolated ’Rank of B
Bitmap of A ‘A -
| rescers Jo[{{f{{iddo -~ [P@[1[e [pe)e]e]- |
(a)

Bitmap(A): 1,2,3,4,5,6,7,8
Rank(A): 8

Bitmap(B): 1,3,4,5,6 Bitmap(C): 1,2,3,4,5,6,7,8
Rank(B): 5 Rank(C): 8

B accepts A’s prediction aboutince Pc A > P 5
C rejects A's prediction about 8nce Pg c> Ps,a

(b)

Figure 5-3: (a) A typical feedback packet in UFlood and (ljdlration of feedback inter-
polation in UFlood.

Figure 5-3 shows a typical feedback packet and how feedldekpiolation is imple-
mented in UFlood. The number on each link indicates its tvagy-delivery probabilities.
For simplicity, assum& = 8 and node#\, B, andC are part of a big network. At some
point in time, nod&A has all the 8 packets of the batch.

SupposeA transmits packets in burst, some of which are received bgsBdndC.
The receivers oA ’s transmission interpolate the states of their neighbsmmantioned in

Chapter 4.7.3. For example, in Figure 5-3(b), when rBdeceives one of thA’s packets,

74



it learns thatA transmits 8 packets in the burst. For eachAsftransmissionB assumes
C received the packet with a probability 1. ThBsnterpolateC’s state (i.e., rank and
bitmap) at the end of A's burst of transmission.

SupposeA sends a feedback packet. Figure 5-3(a) shows the feedbek&tp node
A. When nodeB receives this packet, it accepts the rank informafigorovides about its

neighbors (i,e.C) only if either of the following conditions hold.

1. If both A and B have the uninterpolated (or true) rank @fand A’s feedback has
higher rank foiC than whatB holds in its rank table.

2. If C has higher delivery probability ta thanB.

In the exampleB accepts rank information supplied Byabout nodeC because of
condition 2 B¢ apc) = Pegpic))- On the other hand, node on receivingA's feedback,
rejects the information abo&tbecause both the conditions fail. This is because a feedback
transmission from nodB is more probable to be heard BythanA. Therefore, Nodé&\

might have interpolateB’s state information based on stale feedback information.

5.8 Chapter Summary

This chapter discussed the implementation of UFlood padtdtillustrated how UFlood
handles transmissions, receptions, bit-rate selectiwhfeedback transmission and inter-

polation. The next chapter evaluates the performance abadF|
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Chapter 6

Results and Discussion

This chapter evaluates the performance of UFlood using ifhgodxperiments on a 25-
node wireless testbed, comparing it with MORE and MNP. Thenmasult is that UFlood
achieves 150% higher throughput than MORE using 65% lowéimer UFlood also
uses 54% lower airtime than MNP, an existing flooding protécaeninimize airtime and

achieves 300% higher throughput.

6.1 Experimental Setup

All the experiments, unless otherwise specified, run on adfe testbed deployed across
3 floors of an office building. Figure 6-1 shows the layout o testbed. Each node
has a 500 MHz AMD Geode LX800 CPU and a radio based on the Atl&d2 chip-
set that operates in monitor mode. The nodes use a transwérpevel of 12 mW. The
testbed is large enough that many nodes cannot communicattdwith each other at
this transmission power level. The transmissions areadhout at the 802.11b/g physical
layer bit-rates ranging between 1 and 54Mbps. Some nods ipdinis test-bed are about
4-hops away even at a bit-rate of 1Mbps. Since sender smbectiUFlood relies only on
two-hop information, the UFlood results on this test-bed ®@ale well for larger networks.
Figure 6-2 shows the distribution of inter-node deliverglgabilities at 5.5Mbps. These
probabilities were measured as described in Chapter 5.1. clihee has one point per

directed pair of nodes indicating the fraction of 1024-dyteadcast packets delivered from
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Figure 6-1: Physical layout of the 25-node testbed.
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Figure 6-2: CDF of pair-wise 1024-byte packet delivery piuliges at 5.5 Mbps for the
testbed showing a wide range of link qualities.

one node to the other. The graph shows that even at a lowtbibfd.5Mbps, the testbed

has a wide range of link qualities including many links widra probability.

6.1.1 Evaluation Metrics

The two performance metrics throughput and airtime are caetpas follows.

Throughput(packets per second)ﬁ (6.1)
e s

N
Airtime(seconds)= ZTi (6.2)
i=

HereF is the size (in bytes) of the file that the source flodelss the number of bytes
of data in the data packet (refer Chapter 52is the time (in seconds) at which the source
starts transmitting its first packet of the first batghs the time (in seconds) at which the
source receives the last acknowledgment of the last bitehthe total number of nodes in

the network, andj is the total time (in seconds) nodspends in transmitting packets (i.e.,
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data, feedback, and acknowledgment). Both the metricsdedioe overhead of UFlood’s

feedback packets. Increase in the feedback traffic redbomsghput and increases airtime.

6.1.2 Protocols used for comparison

The experiments compare UFlood with two existing floodingtpecols: MORE [8] and
MNP [35]. Chapter 3 explained the design of these protocotketail. MORE is used for
comparison with UFlood because MORE is a well-known higledighput protocol. MNP
is used for comparison because its objective is to minimiizeree by operating cautiously
to reduce bandwidth consumption. This chapter will show thialood achieves higher
throughput than MORE and lower airtime than MNP.

We tested MORE and MNP using the same experimental setup a®tlFfhe MORE
software is the multicast implementation used in the MOREepé®]. We used the same
code used by the authors of MORE. MNP is implemented as destif35], except that
the nodes in MNP transmit coded packets as in UFlood. Thysshelcompare the sender
selection of MNP and UFlood in a similar setting. This is reed because it would be un-
fair to compare UFlood with non-RNC version of MNP, if most lbétbenefits that UFlood
sees is due to use of RNC and not due to its sender selectioadivdek mechanisms.

MORE and MNP are designed to use a fixed bit-rate for all theimdmissions. Thus,
they are also compared with a version of UFlood called UFRaithat operates at fixed
bit-rate. All the transmissions of MORE, MNP, and UFlood-R earried out at 5.5Mbps,
which provides maximum flooding throughput on the testbeatsimtered in this disserta-
tion. The implementations of all the flooding protocols dssed in this chapter use the

Click software router toolkit [43] running as a user-spaaecpss on Linux.

6.1.3 Method

The flooding experiment involves the source distributing/d4ile to the rest of the nodes.
The default batch sizeK() is 64 packets and 32 such batches are flooded. A data packet
contains 1024 bytes of coded data plus protocol overhegd ¢@ding coefficients). Most

of the results in this chapter report distributions of resoler all choices of source node
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Figure 6-3: CDF over choices of source of the total througlaghieved while flooding a
2MB file. On average, UFlood's throughput is 63% higher thaat of UFlood-R, 150%
higher than MORE’s and 300% higher than MNP’s.

to emulate the effect that different topologies might halzach point in each distribution

represents the average of seven runs with a given source.

6.2 Main Results

This section presents measurements comparing the thratghg airtime of UFlood with
those of UFlood-R, MORE, and MNP.

6.2.1 Throughput

Figure 6-3 shows the CDF of the total throughput achievedentidoding a 2MB file,
comparing UFlood with UFlood-R, MORE and MNP over all possggarces. On average,
UFlood’s throughput is 150% higher than that of MORE and 300&hér than that of
MNP.

The graph also shows that UFlood’s average throughput is i6ig¥er than UFlood-

R’s, which demonstrates the effectiveness of UFlood’s dti¢-iselection algorithm. The
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Figure 6-4: CDF over choices of source of the total airtimeduseflooding a 2MB file.
On average, UFlood uses 30% lower airtime than UFlood-R, G&éd than MORE and
54% lower than MNP.

graph shows that UFlood-R’s average throughput is 57% an&o1iigher than that of
MORE and MNP, which demonstrates that UFlood’s higher thhpug is due to sender

selection as well as bit-rate selection.

6.2.2 Airtime

Figure 6-4 shows the airtime used by UFlood, UFlood-R, MORE BWNP protocols
during the flood. UFlood uses 54% lower airtime than MNP, abithower than MORE.
Low airtime helps UFlood achieve high throughput, and atstuce its impact on other
network users. However, a low airtime alone is not enougtittorahigh throughput. For
example, Figure 6-4 shows that MNP uses lower airtime tharRE®ut achieves far less
throughput than MORE because MNP’s feedback mechanismduntes high idle-time
(refer to Chapter 3.3). UFlood achieves higher throughpdtlawer airtime than MORE

and MNP because it simultaneously reduces both airtimediedime.
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6.3 Why Does UFlood Win?

One of the main reasons behind UFlood’s good performantgesender selection. UFlood
aims to select good senders by considering the factors am&ttiin Chapter 2. UFlood’s
performance improvement over UFlood-R in terms of bothughput and airtime already
illustrated the power of UFlood senders to choose goodabést This section explores

how well UFlood exploits the factors mentioned in Chapter 2.

6.3.1 Number of receivers

UFlood aims to select senders with many likely receiversgufé 6-5 shows the CDF
of the number of nodes that receive each data packet trasismiduring the flood of a
single batch. On average, UFlood-R transmissions reach &3@0% more receivers
than MORE and MNP transmissions, respectively.

MNP’s transmissions reach fewer receivers than UFlood-8&sbse MNP does not ac-
count directly for sender-to-receiver delivery probalas. It is true that MNP dynamically
chooses senders that hear requests from many receivec$, mbkes its transmissions use-
ful to many more receivers than MORE’s. However, in MNP, ligdymmetry, collisions
of the requests, and accidents of delivery easily can causesgnders to receive more re-
guests than good senders. UFlood-R, in contrast, uses reddsmvard link probabilities
from sender to receivers in calculating utility, which al® UFlood-R’s transmissions to
reach many receivers.

The difference between MORE and UFlood is not very huge bedsi@®RE considers
the delivery probabilities of the node pairs in calculatithg TX credi ts of the nodes,

which decides the sender for each transmission.

6.3.2 Number of useful receptions

In addition to choosing senders connected to many receivesalso to important to ensure
that the transmissions of such senders benefit many reseivéFlood aims to choose
senders whose transmissions will convey new informatidhéamost receivers. Figure 6-

6 shows the CDF of the number of nodes that benefit from eachpdateet transmission
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during the flood of a single batch. The average UFlood-R tmésson is useful to twice
as many receivers as the average MORE transmission and to 20@ueteivers than the
average MNP transmission. That is, UFlood-R transmissaasnore likely to be linearly
independent of data that receivers already hold, and asertiare likely to be useful in
decoding the batch. This helps UFlood-R use fewer trangsomssand complete flooding

more quickly than MORE and MNP.

UFlood’s dynamic choice of senders is superior to MORE'siGtBX_cr edi t -based
sender selection because UFlood chooses the best senéacfotransmission exploiting
both delivery probabilities and feedback from the neigbboChapter 2.3 explained the
need to reconsider the choice of senders as receivers alaterdata. MORE'IX credi t
calculations do not take in to account the current stateefdiceiver. That is, the proba-
bility of each MORE node transmitting is fixed during a tramst¢he TX_credi t values
do not adapt to the actual pattern of receptions as a batgrgs®es. This causes prob-
lems toward the end of each batch, when a few nodes will likelynissing packets, but
which nodes they are is hard to predict statistically; tthesliest sender to satisfy those
nodes often is not the one with the highd@¥tcredit. Another reason why the fixed
TX_credit may perform poorly is that reception probabilities may admms a transfer
progresses. In contrast, UFlood-R uses feedback to atfusihoice of sender as a batch
progresses, reflecting actual receptions. It establishestp among senders, rather than
using per-sender rates as in MORE. In some cases, one sestigrtlg more useful than
another sender is (can be heard by a superset of receivdtg)odIR’s utility mechanism
will cause the former sender to take priority over the lattenile MORE’s TX cr edi t
may cause either of them to send, which is left to the undegldSMA MAC protocol to

decide.

Finally, UFlood-R has an edge over MNP because MNP effdgthveses sender choice
on coarse information: whether or not senders and recdmaanssingle query and response

packets.
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Figure 6-7: Use of low-probability links improves throughpy 88% for the median case.

6.3.3 Use of low probability links

One reason why UFlood’s sender selection is good is becaaseounts for low proba-
bility links. To evaluate this, UFlood-R is compared agamslightly modified version of
UFlood-R, labeled UFlood-R(High Prob), which only includess$ with delivery proba-
bility greater than 50% in all utility calculations. 20 oftl25 nodes in the test-bed are used
to create a sparse network with many low-probability linkBis is because, in a dense net-
work, the real benefits provided by the use of low-probapbiiitks is usually low. Hence,
the flooding experiments are carried out only on the choserodes.

Many wireless protocols attempt to avoid low quality linken contrast, UFlood-R,
like opportunistic unicast routing (e.g., EXOR [6]) coresisl even the weakest links of the
network to exploit the potentially high aggregate deliverpbability of large numbers
of weak links. Figure 6-7 shows that such use of low probgblinks provides a 88%
higher throughput over UFlood-R(High Prob). Removing all $ub-50% links reduces
the opportunity for senders to consider many potentialivecge

UFlood-R(High Prob) chooses the best senders to satisfytbaiywell-connected re-
ceivers. Although this approach marginally increasesutinput for some well-connected

nodes because the best sender choice is favorable for thdegrades the throughput of
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Figure 6-8: Packet receptions are highly correlated in estbed. The-axis showss(r)
for every link with non-zero delivery in the network. For &éastich point, there are multiple
points on they-axis, one for every other link from If all links were independent (frors),
we would expect the points in this scatter-plot to all lierjdhe 45-degreg = x line.

the rest of the nodes in the network that have lower quahislto many of their neighbors.

The conclusion is that when marginal links are availablepd0&R uses them profitably.

6.4 Feedback

UFlood’s feedback is another important reason that helpshieve good performance.
Apart from aiding dynamic sender selection based on thesnustate of the receivers,
feedback from receivers makes senders aware of correlategtion. That is when mul-
tiple potential senders have received a similar set of gackeedback helps them realize
that it not be worthwhile for all of them to forward coded patkderived from that set. The
value of a given node transmitting depends on the degree ihvitis previous receptions
overlap receptions of the neighboring senders. MORE effelgtassumes that receptions
will be independent, whereas UFlood-R’s feedback allows perform well even in the
face of correlated reception.

Chapter 3.4 discussed several research findings thatdtadtthe existence of correla-
tion in wireless networks and its effect on the performarfegiceless flooding. To explore

the degree of correlation in the testbed, packet recepatmale gathered in the following
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way. For each link (directed pair of nodds)r), the long-term packet delivery probability,
Ps(r) are measured. For every other lifgr’) from the same sendd®;(r|r’) is measured.
If packet receptions are independent, then this quantiylshbe equal tés(r); the larger
the difference, the greater the correlation.

Figure 6-8 shows the results as a scatter-plot. #a&is showsPs(r) for every link
with non-zero delivery in the network. For each such pohré are multiple points on the
y-axis, one for every other link frora If all links were independent (frorg), we would
expect the points in this scatter-plot to all lie along thed&greey = x line. A large number
of these points are above the 45-degree line, and in soms,¢hsanajority of the points
are well above it, suggesting that very few receptions isétases are independent. There
are almost no points below the 45-degree line; this makesedsgrause there is no physical
reason to expect receptions to be anti-correlated (we hatvievestigated whether the one
anomaly has any significance). The conclusion is that thiedjpadependence assumption
does not hold well in the testbed.

This dissertation does not demonstrate how much UFloodsdaimmaking its nodes

aware of correlated receptions over flooding protocolsaeatime independent receptions.

6.4.1 Analysis of Feedback Overhead

This section discusses how much traffic UFlood’s detailedibeck packets introduce in
the network and how good its compact feedback is.

Figure 6-9 shows the overhead imposed by feedback, congptotal bytes of data
packets alone with total bytes of both data and feedbackgiadkansmitted by all the
nodes. The experimental finding is that the feedback ovdrtseanly 3%. This is mainly
because UFlood-R sends compact feedback only when neelieth, neduces both the size
and frequency of feedback packets.

Compact feedback representation helps to suppress feettb#fickin UFlood. How-
ever, as mentioned in Chapter 4.10.3, a compact feedbackdnauoeiver helps potential
senders to only conservatively estimate whether the ssntd@nsmission would be useful

to the receiver. Thus, it is important to evaluate how muehdbnciseness of UFlood’s
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Figure 6-9: CDF over different choices of source of the totdéb of data packets trans-
mitted, compared to total bytes of both data and feedbackesic The totals include all
headers up to and including the 802.11 header. On an avelegieedback overhead is
3%.

feedback compromises its performance in comparison toaleetfeedback mechanism
(DETAILED), where a node’s feedback includes coefficiergediin the construction of
each of its coded packets. As mentioned in Section 4.7, stiebdiback packet might be
huge and often require multiple transmissions. Thus, thigement transmits the feed-
back for both UFlood and DETAILED schemes using etherneetach the overhead due

to multiple transmissions for a fair comparison.

In DETAILED feedback, each node broadcasts the coefficiefiadl of its coded pack-
ets after each data transmission in the network. Nodeslagdcutility for every transmis-
sion based on the up-to-date feedback from all of the nod#ésimetwork, which means
there is no need for either bursty transmission or feedb@ekpolation. Figure 6-10 shows
that the combination of techniques (i.e., compact feedbamlesentation, feedback timing,
feedback interpolation, and bursty transmissions) use&dHigod to reduce feedback traffic
leads to an 11% reduction in throughput compared to DETAILEDnsidering the practi-
cal difficulties in using frequent large amounts of feedbicWireless networks, this loss

is acceptable.
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Figure 6-10: Detailed Vs. UFlood’s compact feedback regamestion. Compact feedback
looses only 11% throughput due to conciseness.

A further reduction in UFlood’s feedback traffic is possilflaodes include only their
ranks in the feedback packets as in Rateless Deluge. Theggudrgaliscussion will show
that such a reduction has adverse effects on the perfornadrec8ooding protocol. Fig-
ure 6-11 compares UFlood with a scheme similar to UFloodggixthat the feedback
includes only the rank of the nodes. This scheme is namedddFiank. In such a scheme,
Igc (in Equation 4.1) is 1 if, and only if, ranBj > rank(C), so that the utility calcula-
tion will assume thaB benefitsC only in cases wher8 has more packets thah This
simplification eliminates most of the complexity and commeation overhead of the feed-
back scheme, but at the same time compromises on accuraaydeeit always assumes
Igc to be 0 when ranig) < rank(C), while it is not always the case. Figure 6-11 shows
that UFlood-R’s feedback, in spite of increasing feedbaaKitr, results in significantly
lower airtime of 23% than the simpler rank-only scheme,ifyisig UFlood-R’s compact

feedback representation.

6.5 Factors Influencing the Performance of UFlood

This section discusses the factors influencing the perfocmaf a flooding protocol.
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with a simpler version that includes only rank in feedbackkess.

6.5.1 Network density

The density of nodes per radio range affects the performahadlooding protocol, even
if the number of nodes in the network remains the same. Thisosestudies the effect of
density on the performance of UFlood-R using two five-nodevaeks: a dense network
where all nodes can communicate directly with each otheaaspirse network where each
node has a link to at most two other nodes. Figures 6-12 argighdw the performance of
UFlood-R and MORE in the two networks. The throughput adwgetz UFlood-R more
than doubles in the sparse network compared to the densenkefiihis is because low de-
livery probabilities in the sparse network cause differedes to receive different packets,
which increases the importance of sender selection. Irtiaddin sparse networks, only
a few nodes possess packets useful for others, and MORE®S statler selection does a
good job. Whereas, in dense networks, there are many pdtseatiders for every trans-
mission with hard-to-predict states of neighbors thatltésam probabilistic reception, and
choosing the best sender in such scenarios is challengifigod-R’s feedback-based dy-
namic sender selection does better than MORE's static smidor the reasons mentioned

in Section 6.3.
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Figure 6-12: Mean throughput improvement on a 5-node deeiseonk is 16%
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6.5.2 Batch size

Another factor that affects the performance of UFlood-Rhis batch size, the number of
native packets used in the construction of a coded packefurés 6-14 and 6-15 show
the performance of UFlood-R, MORE, and MNP on the 25-node ¢estis the batch size
increases. Each bar represents the performance averagedlbthe sources. A larger
batch size means the source should wait longer for each tmatcmplete since every node
in the network should receive a large number of coded patieftse decoding each batch.
In a large network, this is disadvantageous because nosgscially those closer to the
source, remain idle most of the time waiting for the rest efriiodes to receive the packets

of the current batch.

On the other hand, smaller batch size increases the numbatdbfes, which means the
per-batch overhead increases during a period toward thefdahd batch when progress is
slow while satisfying the last few nodes. Thus, the nodeg wdonger time between
completion of each batch. Figure 6-14 shows that througpateases with decrease in
batch size. This effect is more prominent in sparse netweits poor links, where each

batch takes more time to complete than a dense network.
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6.5.3 Asymmetric Links

Wireless networks often suffer from asymmetric links. A addmight be able to hear all
the transmissions of nodé perfectly, whileY might not hear any oK’s transmissions.
This is an example of a node-pair with fully asymmetric links real wireless networks,
however, most of the node pairs often suffer from partiahasetricity. Asymmetricity

between a node paXY is defined as follows.

Asymmetricity=1— %, if Brx > Pxy (6.3)

HerePx y denotes the delivery probability of the transmissions frosdeX to Y. As
Px v reaches? x, % reaches one and the links betweé€andY becomes more symmet-

ric.

Figure 6-16 plots the CDF of asymmetricity values betweereralrs in the 25-node
network. The figure clearly indicates that 25% of the nodesphave asymmetricity of
more than 0.5. Why this matters is because it leads to indoseswler selection caused

by loss of feedback on highly asymmetric links. UFlood copék asymmetry by includ-
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Figure 6-16: CDF of asymmetricity of the links in the testbed.

ing two-hop information in the feedback packets. In additia node in UFlood-R knows
about a neighbor not only through the direct feedback it véam it but also through

the feedback from its other neighbors, which reduces the dbgeedback due to asym-
metricity. This dissertation notes that increase in asytroigy has adverse affects on the
performance of UFlood but does not evaluate it, since itfficdit to create test-beds with

desired level of asymmetricities.

6.5.4 Hidden Terminals

This section evaluates how UFlood performs in the preseht¢edden terminals in the
network. A few of the nodes in the test-bed were carefullg@thto create hidden-terminals
in the network. The flooding experiment is conducted comsidezach node as the source
node. In many situations, MORE stops working because of gierdicollisions caused by
hidden terminals, whereas UFlood and MNP works to compiefitis is because UFlood
reduces the effect of hidden terminals by including the hep-neighbors’ rank in feedback
packets.

In MNP, the receivers of the hidden nodes send a requestrteshraent) only to one of

the senders. Since, the two hidden senders more often eadiffierent number of requests
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only the sender with highest number of requests sends atrapy Thus, MNP also runs

to completion in the presence of hidden terminals.

6.6 Summary of Findings

A brief summary of the experimental findings from this setci®as follows:

e UFlood, on average, achieves 150% higher throughput thaREIGsing 65% lower
airtime. UFlood also uses 54% lower airtime than MNP, antexg$looding protocol

to minimize airtime and achieves 300% higher throughput.

e UFlood achieves 63% higher throughput with 30% lower aietithan UFlood-R,

which demonstrates the power of UFlood’s bit-rate selectio

e The main factors that contribute to the high performance Blodd are its sender

selection and feedback mechanisms.

e Maximizing number of receivers that benefit from each trassion, opportunistic
use of low-probability links, and dynamic sender selectomvital in improving the

performance of UFlood.
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Chapter 7

Application: WiFi Multicasting using

Client Cooperation

Traditionally, flooding in wireless mesh networks has beeamnhy used for disseminating
route updates in routing protocols. The real potential oddlag has remained largely
unexplored due to the limited use of mesh networks. Recemd¢rendicate an enormous
growth in wireless mesh network deployments and a need fod dlmoding protocols
for new applications on mesh networks, such as real-timeovitoadcasting and disaster
management (refer to Chapter 8.2). UFlood can be of use to gbtinese applications that
require both high throughput and low airtime. This disdetaproposes one such potential
application of UFlood in WiFi multicasting.

This chapter describes the design of UCast, a WiFi multicggtrotocol that uses mesh
flooding to improve its performance. Multicast is a methodligiribute live streams such
as seminars and lectures inside campuses and companiels.thé/itapid rise in WiFi-
connected clients, the delivery of such multicast streawes mfrastructure 802.11 net-
works is becoming important. Unfortunately, multicast osech networks often is ineffi-
cient, suffering from low throughput and significantly rethg the capacity available for
other traffic. Section 7.1 discusses the reason behindnéidiency.

UCast is a system that uses cooperative client flooding toduepthe delivery of WiFi
multicast streams. UCast clients subscribed to a given casltigroup along with the WiFi

access points (APs) form a cooperative mesh network overshwthe multicast data is dis-
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tributed from APs to the clients. The key to making this idealkns to use an efficient and
robust flooding of data over the cooperative mesh. The mairoathis chapter is to show
how much client cooperation using flooding can help UCast. gdréormance of UCast
is analyzed using different flooding schemes for underhahent cooperation. The rest
of the text represents these variations in the form U&asthereX is the corresponding
flooding protocol used in UCast.

Experiments on an indoor WiFi test-bed show that UCast/UFD@an achieve 300-
600% improvement in throughput compared to a scheme thiatissto it except that only
APs send data. UCast/UFLOOD also improves throughput caedpgarDirCast+, an exist-
ing WiFi multicast protocol. For both throughput and airive find that UCast/UFLOOD

is superior to all others.

7.1 Related Work

Over the past few years, two big trends in networking havenlibe rise of video, par-
ticularly live streaming content [9, 13], and the growth e thnumber of WiFi (802.11)
devices and networks. For example, the citywide network iagkh, Minnesota has pro-
vided WLAN coverage in a 15 square miles area since Octobet. 208imilar network is
operational in Taipei consisting of 2300 APs and providiogerage to 50% of the city’s
population, and is planned to be extended to provide coeei@§0% of the city’s popula-
tion in the near future [10]. A study by Cisco [13] projectstthaobile video will generate
66% of all mobile traffic by 2015.

One might expect WiFi, which is broadcast at the physicatiag be a natural fit for
multicast traffic. Yet WiFi multicast performs poorly [2, 5]. First, in many networks,
multicast runs at a low rate such as 6 Mbps or 11 Mbps in ordee teeard even by poorly
connected clients. This makes multicast slow and slows dmtiver traffic by occupying
an inordinate amount of airtime. Second, multicast framesiat use 802.11 link-layer
ACKs and retransmission because the standard strategy Weaddto the ACK implo-
sion/collision problem. That is reliable multicast regqsireach client to send acknowledg-

ment packets back to its AP, which is difficult to scale to géanumber of clients. Hence,
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the application-visible loss rate for multicast can be mbaher than for unicast. The
problem is so severe that one currently popular commergpiatcach converts multicast
data to unicast before transmission over the air [33]. Thblpms with infrastructure
WiFi multicast have been documented well (e.qg., [49]), d&droblem has received some

attention recently, but no previous scheme exploits chentarding.

DirCast [9] decreases the airtime and increases the réfjabfl WiFi multicast using
two techniques: (i) each AP sends packets as unicast to tret-aannected client, which
sends acknowledgments, while other nodes receive in pcomiss mode and gain reliabil-
ity with Forward Error Correction (FEC) and (ii) the clientssasiate with APs in a way
that maximizes the bit-rates at which APs can send multicastes. The main advantage
UCast has over DirCast is that UCast uses client forwardingdioae airtime and increase

throughput. Section 7.5 compares the performance of UCastivCast.

Sen et al. [49] show that even modest levels of multicasfi¢reén result in very poor
performance. Their previous work [48] suggests use of sbheatn-forming antennas to
improve performance of WiFi multicasting. This idea regsispecial hardware not avail-
able in most APs today. At the physical layer, SMACK [16] awtitle ACK implosion
problem by encodingN ACKs from different nodes otN OFDM sub-carriers; this idea

requires changes to the physical layer.

Chen et al. [10] show that optimizing various objectives (mige the load of APs,
balance the load of APs, maximize the number of users) is &B-and propose approx-
imation algorithms to make multicast more efficient, givisigwulation results. Another
idea [15, 36] is leader election among receivers to sendléiper ACKs. These ideas are

all complementary to UCast.

For unicast, SoftRepeater [2] addresses the WiFi rate-alyopnablem, in which a
few slow clients cause APs to provide poor throughput to weilinected clients. High-
rate SoftRepeater clients opportunistically transfornmibelves into repeaters for low rate
clients. UCast exploits such client participation, but tbleesne is tailored to multicast and

includes many new techniques to choose the forwarders.
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7.2 Goals and Assumptions

The goal of UCast is to distribute data from a server, conoteeveral APs over ethernet,
to all clients subscribed to a multicast group. UCast entbéents to forward data when
that helps to improve the performance. The main performgoeds are throughput and
airtime, as defined in Equation 6.1 and 6.2, except that tdesion the mesh refer to APs
and clients. The source in UCast is the set of APs. The desitiregirotocol relies on the

following assumptions.

e A large quantity of data, typically real-time video, is toinelticast reliably.

e WiFi clients connect to one of the APs: in the experimentgllamentation, clients
pick the AP from which the packet delivery rate is highest.&tMbps. The clients

send and receive unicast traffic using the AP they are asedaaath.

e UCast makes opportunistic use of all multicast transmisseach client overhears,
including transmissions from all APs, not just the clie®B. To use UCast, a client
ideally should be able to associate with an AP while also camoating in monitor
mode with other clients; this capability is available on jmaommodity cards and

drivers.

e The APs and clients are equipped with a omni-directionatrama and can transmit

packets at adaptive bit-rates.

e It is assumed that clients are willing to cooperate becaosedduction in airtime
helps all traffic. This seems reasonable in single-entgpretworks where power is
not limited. In Section 7.5.3, the conditions under whichnéy be profitable to have

clients not subscribed to a group participate in the floodihgackets is explored.

7.3 Key Ideas of UCast

UCast uses two main ideas: (i) clients cooperatively forwdath for each other, and (ii)

clients of one AP may forward data to the clients of anothey pd?haps reducing the
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number of packets the other AP needs to send. To illustrageyé7-1 shows a network
with two APsA andE. The other nodes are clients, all of which subscribe to thiicast

group; B, D, andC associate withA, andF associates witle. Each number indicates
the delivery probability of the corresponding link. Sinbe delivery probability between
A andD is 20%, multicasting a packet directly frofto all its clients would require an
expected five link-level broadcast transmission® i C forwards, only an expected two
transmissions will be required. Roughly speaking, the benefithis technique depend on

how wide a spread of link qualities an AP’s clients have.

A(AP) E(AP)

Figure 7-1: lllustration of the benefits of clients forwardidata and overhearing packets
from multiple APs.

Figure 7-1 also illustrates the benefit of opportunisticalverhearing transmissions.
ClientC can hear packets from both APs, and is in a good position el to clients of
both APs D andF). In this situation, AFE need not send all (or perhaps any) of the data;
instead, it is sufficient fo€ to receive all data from\. The result is a & reduction in the

airtime.

7.4 Design and Implementation

In UCast, source nodes are the APs and they obtain the dataffimolded over the wired
network from a remote server. A subset of the clients of eaéhhat are interested in the
multicast data joins the multicast group through subsiomptClients identify the multicast

group using the destination address in the 802.11 linkrlagader. The clients along with
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the sources form a mesh network. UCast uses a mesh floodingedbeflood the data
from the sources to all the clients in the mesh network. Tl®reore than one source
flooding the same file. Each source considers one batdh wéditive packets at a time.
They createK coded packets from the current batch’s native packets and iae batch
at a time. The clients, on receiving enough linearly depehdeded packets to decode a
batch, send unicast acknowledgments back to the AP withhwthigy are associated. Since
the wired background connects all the APs, they exchangadkmeowledgments with one
another using the wired network. Once all the APs receivkd@gledgments from all the
clients in the network, either through the clients or thioother APs, they simultaneously

start flooding the next batch.

7.5 Evaluation

This section presents measured throughput and airtime ostU@Experiments are con-
ducted on the same experimental test-bed described in Cltagdtee UCast measurements
designate some of the nodes of the test-bed as “APs,” antsahéclients”. Depending on
the experiment, between 3 and 5 of the nodes are designatdtsag&ach client associates

with the AP from which it has the highest packet deliveryoati 5.5Mbps.

7.5.1 Comparative Protocols

UCast is compared with two schemes: a Strawman protocol thes dot use client for-
warding, and DirCast+, a variant of DirCast.

Strawman is UCast minus client forwarding (or the mesh flop@mong the clients).
Strawman is not the same as any existing WiFi multicastingogol but shares the general
approach of APs communicating directly to the clients. EABhbroadcasts new coded
packets for a batch until all of its clients indicate they aloée to decode the batch. Clients
opportunistically listen for packets from any AP. When ardiean decode a batch, it sends
an acknowledgment by unicast multi-hop routing to its APikimto UCast. When all
clients of the multicast group have decoded the batch, treméve on to the next batch.

All the Strawman APs use the same fixed bit-rate of 5.5Mbpse Main point of the
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Figure 7-2: Throughput achieved as a function of the mininallowed delivery probabil-
ity on client/AP links.

Strawman protocol is to be similar to UCast/UFLOOD exceptfmnt forwarding. It also
is loosely inspired by DirCast, though it lacks DirCast’s rapgimized association.
DirCast+ is similar to DirCast [9], as described in Section, 2icept that it uses a
coding scheme and end-of-batch acknowledgments fromtslterAPs, similar to UCast.
UCast is compared against DirCast+, rather than against Qit€ablow that it is not just

UCast's use of coding that gives it higher throughput andhaért

7.5.2 Throughput and Airtime

The reason one might expect UCast to increase performanicatig/pically some clients
have significantly worse AP links than others, and clientsiwad AP links may well have
good links to other clients. This is likely to vary from one ABtwork and thus we look at
the performance of UCast as a function of how bad the worstteA links are.

Figures 7-2 and 7-3 show the results of a set of experimenthich the minimum al-
lowable delivery probability for a client to associate wath AP is varied. As the minimum
is decreased, fewer APs are required. Nevertheless, thariixed population of X clients

and Y APs; some of the APs are not used when the minimum is |bw.net effect is that
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client forwarding is likely to be more useful in the left-tthpart of each graph. Each data
point represents the average of five runs with different@ibf APs. The graph x-axes
only go up to 0.6 because it would take a relatively large nemadd APs to ensure every

client had 0.7 or higher delivery probability.

Figure 7-2 shows that UCast/UFLOOD achieves 100-200% higimeughput than
UCast/UFLOOD-R, which demonstrates the power of UFlood'srdii¢ selection algo-
rithm. UCast/UFLOOD can select bit-rates to deliver dataefasn better-than-average
links, and with high delivery probability on bad links.

Figure 7-2 also shows that UCast/UFLOOD-R achieves2h#gher throughput than
Strawman and DirCast+. The main reason is that UCast/UFLOGDeRVarding through
clients often can deliver data in two transmissions thaav@&tman and DirCast+ must re-
transmit many times. Even when the worst client/AP conoeadtas a delivery probabil-
ity of 0.6, UCast/UFLOOD-R still delivers datax2faster than Strawman and DirCast+.
One reason is that there is often a client that is better teiluthan some of the APs.
UCast/UFLOOD-R will arrange for that client to forward, andllwot send anything

from ill-suited APs; Strawman and DirCast+, on the other hamd forced to send from
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such APs. Another reason is that, even in situations whesetdbrwarding is not useful,
UCast/UFLOOD-R APs coordinate so that the most useful APss&red, which may result

in other APs not needing to send as much or at all.

Figure 7-2 shows similar performance differences for Dit€and Strawman over
UCast/UFLOOD-R, but for different reasons. DirCast+ gaingnfriés rate-aware asso-
ciation scheme while Strawman gains due to the feedback tharclients. However,
UCast/UFLOOD-R beats both the protocols due to client ccdmer. Moreover, in the
test-bed, DirCast+ selects either 5.5 or 11Mbits/s at leasbhe of the APs limiting the

gain achieved using DirCast+’s association algorithm.

Figure 7-3 supports the claim that UCast/UFLOOD-R deriveghtoughput advan-
tage largely by consuming low airtime: its careful choicesehder and their bit-rates
makes each UCast/UFLOOD-R transmission more useful thaesmwnding Strawman

and DirCast+ transmissions.

7.5.3 Client Cooperation

The hypothesis is that UCast derives gains from two factaist; the cooperative forward-

ing done by APs and clients, and second, the use of feedbatketken in the absence of
any client forwarding, could enable some APs to avoid fodivag as much data. Never-
theless, in some situations, only a subset of multicastsildess may be willing to forward

cooperatively. Figure 7-4 shows the effect of varying tlaefion of cooperating subscribers
in a configuration with 20 clients and 4 APs. The cooperatirents are chosen randomly.
Throughput increases quickly with the cooperation levelegen small amounts of coop-

eration help significantly.

Another noteworthy conclusion from Figure 7-4 relates whknefits of feedback even
when there is no cooperation (the throughput whenxthegis is 0). UCast/UFLOOD-R
is 25% faster than Strawman in this case; this gain is epttred result of some APs not
sending all the packets, benefiting instead from other Allso@portunistic receptions of

coded data.
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ing.

UCast/UFLOOD’s client cooperation is powerful because gsuslFlood for mesh
flooding. Figure 7-5 and 7-6 shows the total throughput artdreg for multicasting a 2MB
file on the test-bed, comparing UCast/UFLOOD and UCast/UFL&RODith DirCast+,
UCast/MORE, and UCast/MNP for 5 configurations with differehbice of APs. All
the variations of UCast win over DirCast+, which demonstratespower of client co-
operation. UCast/UFLOOD-R wins over UCast/MORE and UCast/MNE @ higher
throughput using lower airtime that UFlood provides to UGasnpared to MORE and
MNP flooding protocols.
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Figure 7-5: Throughput of UCast/UFLOOD-R is 400%, 50%, an@%8higher than
DirCast, UCast/MORE and UCast/MNP, respectively.
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Chapter 8

Conclusion

This chapter summarizes the contributions made in thisdaison and directions for fu-

ture work.

8.1 Summary

A protocol that floods data efficiently to all nodes in a wissdenesh network is useful
for applications such as software updates. An ideal floognoagocol should transmit each
packet the smallest total number of times at efficient igsdo achieve highest through-
put using lowest airtime. With probabilistic delivery, appunistic receptions, and spatial
diversity offered by broadcast transmissions in wirelessvorks, the problem becomes
much more difficult to implement.

This dissertation makes the following significant conttibas. First, it proposes UFlood,
a flooding protocol for wireless mesh networks. UFlood isfitst protocol to combine the
opportunistic receptions of gossip protocols with a preecilculation of transmission util-
ities using delivery probabilities and knowledge of whatkets neighboring nodes have,
to decide which nodes should transmit at any given time arat Wit-rates to use. UFlood
also takes advantage of broadcast transmissions to reldeiceimber of redundant trans-
missions without pre-computing a transmission topologgasredule. It uses RNC to in-
crease the usefulness of transmissions, and knowledgeatfoetled information receivers

already hold to help it choose the sender that ensures highghput and low airtime. In
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particular, UFlood chooses senders whose transmissiensast likely to be linearly in-
dependent of the packets that receivers already hold. Adesyin UFlood is that because
the best sender changes with each reception, the utilitplzdion tracks these changes to

select best senders dynamically.

Second, the dissertation describes a novel compact feledimzhanism in which nodes
exchange infrequent feedback packets describing the goftechation it has received and
interpolate the status of their neighbors when required.lobF sacrifices some of the
potential reduction in feedback traffic that coding in pijahe could provide, but uses the
feedback judiciously to pick which nodes should suppresis transmissions. Experiments

on a test-bed show that this sacrifice is worthwhile.

The third contribution of this dissertation is a novel lte selection algorithm to cal-
culate the best bit-rate for each UFlood transmission. bdFbit-rate selection trades
off the speed of high bit-rates against the larger numberodes likely to receive at low

bit-rates.

The fourth contribution of this dissertation is an evaloatwhich shows that UFlood
achieves 150% higher throughput than MORE using 65% low&mearconsumption in
transmitting the packets. UFlood also achieves 300% hitflveughput using 54% lower
airtime than MNP. UFlood’s bit-rate selection provides &GBprovement in throughput

over a version of UFlood without bit-rate selection.

Final contribution of this dissertation is to present UCastew system that uses coop-
erative client flooding to improve the delivery of multicasteams. In UCast, clients con-
nect as usual to the best AP, but in addition all clients sullssd to a given group form a
cooperative mesh along with APs over which they forward ivastt packets for each other.
The key to making UCast work is UFlood, which is used for effitigooding of data over
the cooperative mesh. Experimental results over an indagdticast test-bed show that
UCast improves throughput by 300-600% over both strawmamtagol similar to UCast

except that only APs send, and DirCast+, which also does matlient cooperation.
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8.2 Future Work

Chapter 4.10 discusses few limitations of UFlood that needetaddressed. Apart from
this, the dissertation leaves several interesting dwastfor future work.

Many applications require flooding for mobile mesh netwaush as distributed mo-
bile sensing systems for traffic mitigation, mobile sensetworks for intruder detection,
and mobile flooding in battlefield and disaster relief sitag. In its current form, UFlood
may not work well in such situations because the utility equmarelies on the delivery
probabilities of the links between the node pairs, whicmgjes often in a mobile environ-
ment.

There are also flooding applications that aim to optimizericebdther than throughput
and airtime as defined in this dissertation. For exampldjagimns like disaster manage-
ment require the source’s data to be delivered quickly to asynmodes as possible rather
than to all the nodes in the network. That is, it aims to mazernndividual throughput
of the nodes rather than the overall throughput of the nétwRReal-time video streaming
applications, on the other hand, require only a subset cfdliece’s data to be flooded as
quickly as possible. UFlood, in its current form, may not karell for all these applica-
tions. The sender and bit-rate selections in UFlood may twalve altered to optimize these
other metrics and is left to future study.

In summary, this dissertation presented UFlood, a new pobfor efficiently flooding
data over wireless networks. UFlood achieves high througépd low airtime by carefully
choosing which nodes send exploiting knowledge of deliygppabilities, bit-rates and of
opportunistic receptions. Looking ahead, this dissematian be extended to flood a large

guantity of data in mobile multi-hop networks.
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