
Vivaldi: A Decentralized Network Coordinate System

Frank Dabek, Russ Cox, Frans Kaashoek, Robert Morris
MIT CSAIL

Cambridge, MA

fdabek,rsc,kaashoek,rtm@mit.edu

ABSTRACT
Large-scale Internet applications can benefit from an ability to pre-
dict round-trip times to other hosts without having to contact them
first. Explicit measurements are often unattractive because the cost
of measurement can outweigh the benefits of exploiting proximity
information. Vivaldi is a simple, light-weight algorithm that as-
signs synthetic coordinates to hosts such that the distance between
the coordinates of two hosts accurately predicts the communication
latency between the hosts.

Vivaldi is fully distributed, requiring no fixed network infrastruc-
ture and no distinguished hosts. It is also efficient: a new host can
compute good coordinates for itself after collecting latency infor-
mation from only a few other hosts. Because it requires little com-
munication, Vivaldi can piggy-back on the communication patterns
of the application using it and scale to a large number of hosts.

An evaluation of Vivaldi using a simulated network whose laten-
cies are based on measurements among 1740 Internet hosts shows
that a 2-dimensional Euclidean model with height vectors embeds
these hosts with low error (the median relative error in round-trip
time prediction is 11 percent).

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]: Network Archi-
tecture and Design—Network topology; C.2.5 [Computer Com-
munication Networks]: Local and Wide-Area Networks—Inter-
net

General Terms
Algorithms, Measurement, Performance, Design, Experimentation

Keywords
Vivaldi, network coordinates, Internet topology

1. INTRODUCTION
Synthetic coordinate systems [3,17,19,26] allow an Internet host

to predict the round-trip latencies to other hosts. Hosts compute

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’04, Aug. 30–Sept. 3, 2004, Portland, Oregon, USA.
Copyright 2004 ACM 1-58113-862-8/04/0008 ...$5.00.

synthetic coordinates in some coordinate space such that distance
between two hosts’ synthetic coordinates predicts the RTT between
them in the Internet. Thus, if a host x learns the coordinates of a
host y, x doesn’t have to perform an explicit measurement to de-
termine the RTT to y; instead, the distance between x and y in the
coordinate space is an accurate predictor of the RTT.

The Internet’s properties determine whether synthetic coordi-
nates are likely to work well. For example, if Internet latency is
dominated by speed-of-light delay over links, and the Internet is
well-enough connected that there is a roughly direct physical path
between every pair of hosts, and the Internet routing system finds
these direct paths, then synthetic coordinates that mimic latitude
and longitude are likely to predict latency well.

Unfortunately, these properties are only approximate. Packets
often deviate from great-circle routes because few site pairs are di-
rectly connected, because different ISPs peer at a limited number of
locations, and because transmission time and router electronics de-
lay packets. The resulting distorted latencies make it impossible to
choose two-dimensional host coordinates that predict latency per-
fectly, so a synthetic coordinate system must have a strategy for
choosing coordinates that minimize prediction errors. In addition,
coordinates need not be limited to two dimensions; Vivaldi is able
to eliminate certain errors by augmenting coordinates with a height.

The ability to predict RTT without prior communication allows
systems to use proximity information for better performance with
less measurement overhead than probing. A coordinate system can
be used to select which of a number of replicated servers to fetch a
data item from; coordinates are particularly helpful when the num-
ber of potential servers is large or the amount of data is small. In ei-
ther case it would not be practical to first probe all the servers to find
the closest, since the cost of the probes would outweigh the benefit
of an intelligent choice. Content distribution and file-sharing sys-
tems such as KaZaA [12], BitTorrent [1], and CoDeeN [31] are
examples of systems that offer a large number of replica servers.
CFS [6] and DNS [13] are examples of systems that offer modest
numbers of replicas, but each piece of data is small. All of these
applications could benefit from network coordinates.

Designing a synthetic coordinate system for use in large-scale
distributed Internet applications involves the following challenges:

• Finding a metric space that embeds the Internet with little
error. A suitable space must cope with the difficulties intro-
duced by Internet routing, transmission time, and queuing.

• Scaling to a large number of hosts. Synthetic coordinate sys-
tems are of most value in large-scale applications; if only few
hosts are involved, direct measurement of RTT is practical.

• Decentralizing the implementation. Many emerging applica-
tions, such as peer-to-peer applications, are distributed and

symmetric in nature and do not inherently have special, reli-
able hosts that are candidates for landmarks.

• Minimizing probe traffic. An ideal synthetic coordinate sys-
tem would not introduce any additional network traffic, but
would be able to gather whatever information it needed from
the application’s existing communication.

• Adapting to changing network conditions. The relative loca-
tion of a host in a network may change due to congestion or
even reconfiguration of the network. The system should be
able to adjust the coordinates of hosts periodically to respond
to these changes.

A number of existing synthetic coordinate systems address some
of these challenges, but none addresses them all, as Section 6 dis-
cusses.

The primary contribution of this paper is a decentralized, low-
overhead, adaptive synthetic coordinate system, Vivaldi, that com-
putes coordinates which predict Internet latencies with low error.
Vivaldi was developed for and is used by the Chord peer-to-peer
lookup system which uses coordinates to avoid contacting distant
hosts when performing a lookup [7].

This paper extends earlier descriptions of Vivaldi [4, 5] and con-
siders new variations, particularly a coordinate space that includes
the notion of a directionless height that improves the prediction ac-
curacy of the system on data sets derived from measurements of
the Internet. Height is included to capture transmission delays on
the access links of single-homed hosts. A detailed evaluation using
a simulator driven with actual Internet latencies between 1740 In-
ternet hosts shows that Vivaldi achieves errors as low as GNP [17],
a landmark-based coordinate system, even though Vivaldi has no
notion of landmarks.

A further contribution of this paper is that coordinates drawn
from a two-dimensional Euclidean model with a height can accu-
rately predict latency between the 1740 Internet hosts. Simulations
show that this model is better than 2- or 3-dimensional Euclidean
models or a spherical model. These findings suggest that the fol-
lowing properties hold in the data set: inter-host RTT is dominated
by geographic distance, the Internet core does not “wrap around”
the Earth to any significant extent, and the time required to traverse
an access-link is often a significant fraction of total RTT.

The rest of this paper is organized as follows. Section 2 presents
the Vivaldi algorithm. Section 3 describes the methodology for
evaluating Vivaldi. Section 4 presents the results from evaluating
Vivaldi. Section 5 investigates different models to embed the In-
ternet. Section 6 discusses the related work that led us to Vivaldi.
Finally, section 7 summarizes our conclusions.

2. ALGORITHM
Vivaldi assigns each host synthetic coordinates in a coordinate

space, attempting to assign coordinates such that the distance in the
coordinate space between two hosts accurately predicts the packet
transmission RTT between the hosts. No low-dimensional coordi-
nate space would allow Vivaldi to predict RTTs between Internet
hosts exactly, because, for example, Internet latencies violate the
triangle inequality. The algorithm instead attempts to find coordi-
nates that minimize the error of predictions.

We first describe this prediction error in more detail and briefly
discuss possible coordinate systems. Then, we show a simple cen-
tralized algorithm that finds coordinates that minimize a squared
error function given complete knowledge of RTTs in the network.
Then we present a simple distributed algorithm that computes co-
ordinates based on measurements from each node to a few other

nodes. Finally, we refine this distributed algorithm to converge
quickly to accurate coordinates.

2.1 Prediction error
Let Li j be the actual RTT between nodes i and j, and xi be the

coordinates assigned to node i. We can characterize the errors in
the coordinates using a squared-error function:

E =
∑

i

∑
j

(
Li j −

∥∥∥xi − xj

∥∥∥)2 (1)

where
∥∥∥xi − xj

∥∥∥ is the distance between the coordinates of nodes i
and j in the chosen coordinate space. Other systems choose to min-
imize a different quantity; PIC [3], for instance, minimizes squared
relative error. We chose the squared error function because it has
an analogue to the displacement in a physical mass-spring system:
minimizing the energy in a spring network is equivalent to mini-
mizing the squared-error function.

2.2 Synthetic coordinate structure
Algorithms can choose the structure of coordinates and the dis-

tance function that determines the predicted latency given two co-
ordinates. Coordinates should be compact and it should be easy to
compute an RTT prediction given two coordinates. The simplest
choice is to use n-dimensional coordinates with the standard Eu-
clidean distance function. Spherical, toroidal, hyperbolic and other
coordinate structures have also been proposed (e.g., [27]). These
coordinate systems use alternative distance functions in the hope
that they predict latency better. Section 5 will present the height-
vector coordinates that we propose. In the remainder of this section,
however, we will present algorithms that work with any coordinate
system that supports the magnitude, addition, and subtraction oper-
ations.

2.3 Centralized algorithm
We first describe a simple, centralized algorithm than can mini-

mize Equation 1. Vivaldi is a distributed version of this algorithm.
Given our choice of E, simulating of a network of physical springs
produces coordinates that minimize E.

Conceptually, this minimization places a spring between each
pair of nodes (i, j) with a rest length set to the known RTT (Li j).
The current length of the spring is considered to be the distance
between the nodes in the coordinate space. The potential energy of
such a spring is proportional to the square of the displacement from
its rest length: the sum of these energies over all springs is exactly
the error function we want to minimize.

Since the squared-error function is equivalent to spring energy,
we can minimize it by simulating the movements of nodes under
the spring forces. While the minimum energy configuration of the
spring system corresponds to the minimum error coordinate assign-
ment, it is not guaranteed that the simulation will find this global
minimum: the system may come to rest in a local minimum.

This approach to minimization mirrors work on model recon-
struction [11] and a similar recent coordinate approach using force
fields [26].

We will now describe the centralized algorithm more precisely.
Define Fi j to be the force vector that the spring between nodes i
and j exerts on node i. From Hooke’s law we can show that F is:

Fi j =
(
Li j −

∥∥∥xi − xj

∥∥∥) × u(xi − xj).

The scalar quantity
(
Li j −

∥∥∥xi − xj

∥∥∥) is the displacement of the
spring from rest. This quantity gives the magnitude of the force ex-

// Input: latency matrix and initial coordinates
// Output: more accurate coordinates in x
compute coordinates(L, x)

while (error (L, x) > tolerance)
foreach i

F = 0
foreach j
// Compute error/force of this spring. (1)
e = Li j − ‖xi − xj‖
// Add the force vector of this spring to the total force. (2)
F = F + e × u(xi − xj)

// Move a small step in the direction of the force. (3)
xi = xi + t × F

Figure 1: The centralized algorithm.

erted by the spring on i and j (we will ignore the spring constant).
The unit vector u(xi − xj) gives the direction of the force on i. Scal-
ing this vector by the force magnitude calculated above gives the
force vector that the spring exerts on node i.

The net force on i (Fi) is the sum of the forces from other nodes:

Fi =
∑
j�i

Fi j.

To simulate the spring network’s evolution the algorithm consid-
ers small intervals of time. At each interval, the algorithm moves
each node (xi) a small distance in the coordinate space in the direc-
tion of Fi and then recomputes all the forces. The coordinates at
the end of a time interval are:

xi = xi + Fi × t,

where t is the length of the time interval. The size of t determines
how far a node moves at each time interval. Finding an appropriate
t is important in the design of Vivaldi.

Figure 1 presents the pseudocode for the centralized algorithm.
For each node i in the system, compute coordinates computes the
force on each spring connected to i (line 1) and adds that force
to the total force on i (line 2). After all of the forces have been
added together, i moves a small distance in the direction of the
force (line 3). This process is repeated until the system converges
to coordinates that predict error well.

This centralized algorithm (and the algorithms that will build on
it) finds coordinates that minimize squared error because the force
function we chose (Hooke’s law) defines a force that is proportional
to displacement. If we chose a different force function, a different
error function would be minimized. For instance, if spring force
were a constant regardless of displacement, this algorithm would
minimize the sum of (unsquared) errors.

2.4 The simple Vivaldi algorithm
The centralized algorithm described in Section 2.3 computes co-

ordinates for all nodes given all RTTs. Here we extend the algo-
rithm so that each node computes and continuously adjusts its co-
ordinates based only on measured RTTs from the node to a handful
of other nodes and the current coordinates of those nodes.

Each node participating in Vivaldi simulates its own movement
in the spring system. Each node maintains its own current coor-
dinates, starting with coordinates at the origin. Whenever a node
communicates with another node, it measures the RTT to that node
and also learns that node’s current coordinates.

The input to the distributed Vivaldi algorithm is a sequence of

// Node i has measured node j to be rtt ms away,
// and node j says it has coordinates xj.
simple vivaldi(rtt, xj)
// Compute error of this sample. (1)
e = rtt − ‖xi − xj‖
// Find the direction of the force the error is causing. (2)
dir = u(xi − xj)
// The force vector is proportional to the error (3)
f = dir × e
// Move a a small step in the direction of the force. (4)
xi = xi + δ × dir

Figure 2: The simple Vivaldi algorithm, with a constant times-
tamp δ.

such samples. In response to a sample, a node allows itself to be
pushed for a short time step by the corresponding spring; each of
these movements reduce the node’s error with respect to one other
node in the system. As nodes continually communicate with other
nodes, they converge to coordinates that predict RTT well.

When node i with coordinates xi learns about node j with coor-
dinates xj and measured RTT rtt, it updates its coordinates using
the update rule:

xi = xi + δ ×
(
rtt − ‖xi − xj‖

)
× u(xi − xj).

This rule is identical to the individual forces calculated in the
inner loop of the centralized algorithm.

Because all nodes start at the same location, Vivaldi must sep-
arate them somehow. Vivaldi does this by defining u(0) to be a
unit-length vector in a randomly chosen direction. Two nodes oc-
cupying the same location will have a spring pushing them away
from each other in some arbitrary direction.

Figure 2 shows the pseudocode for this distributed algorithm.
The simple vivaldi procedure is called whenever a new RTT mea-
surement is available. simple vivaldi is passed an RTT measure-
ment to the remote node and the remote node’s coordinates. The
procedure first calculates the error in its current prediction to the
target node (line 1). The node will move towards or away from the
target node based on the magnitude of this error; lines 2 and 3 find
the direction (the force vector created by the algorithm’s imagined
spring) the node should move. Finally, the node moves a fraction of
the distance to the target node in line 4, using a constant timestamp
(δ).

This algorithm effectively implements a weighted moving aver-
age that is biased toward more recent samples. To avoid this bias,
each node could maintain a list of every sample it has ever received,
but since all nodes in the system are constantly updating their co-
ordinates, old samples eventually become outdated. Further, main-
taining such a list would not scale to systems with large numbers
of nodes.

2.5 An adaptive timestep
The main difficulty in implementing Vivaldi is ensuring that it

converges to coordinates that predict RTT well. The rate of conver-
gence is governed by the δ timestep: large δ values cause Vivaldi to
adjust coordinates in large steps. However, if all Vivaldi nodes use
large δ values, the result is typically oscillation and failure to con-
verge to useful coordinates. Intuitively, a large δ causes nodes to
jump back and forth across low energy valleys that a smaller delta
would explore.

An additional challenge is handling nodes that have a high error

in their coordinates. If a node n communicates with some node
that has coordinates that predict RTTs badly, any update that n
makes based on those coordinates is likely to increase prediction
error rather than decrease it.

We would like to obtain both fast convergence and avoidance of
oscillation. Vivaldi does this by varying δ depending on how certain
the node is about its coordinates (we will discuss how a node main-
tains an estimate of the accuracy of its coordinates in Section 2.6).
When a node is still learning its rough place in the network (as hap-
pens, for example, when the node first joins), larger values of δ will
help it move quickly to an approximately correct position. Once
there, smaller values of δ will help it refine its position.

A simple adaptive δ might use a constant fraction (cc < 1) of the
node’s estimated error:

δ = cc × local error

δ can be viewed as the fraction of the way the node is allowed to
move toward the perfect position for the current sample. If a node
predicts its error to be within ±5%, then it won’t move more than
5% toward a corrected position. On the other hand, if its error is
large (say, ±100%), then it will eagerly move all the way to the
corrected position.

A problem with setting δ to the prediction error is that it doesn’t
take into account the accuracy of the remote node’s coordinates. If
the remote node has an accuracy of ±50%, then it should be given
less credence than a remote node with an accuracy of ±5%. Vivaldi
implements this timestep:

δ = cc × local error
local error + remote error

(2)

Using this δ, an accurate node sampling an inaccurate node will
not move much, an inaccurate node sampling an accurate node will
move a lot, and two nodes of similar accuracy will split the differ-
ence.

Computing the timestep in this way provides the properties we
desire: quick convergence, low oscillation, and resilience against
high-error nodes.

2.6 Estimating accuracy
The adaptive timestep described above requires that nodes have a

running estimate of how accurate their coordinates are. Each node
compares each new measured RTT sample with the predicted RTT,
and maintains a moving average of recent relative errors (absolute
error divided by actual latency). As in the computation of δ, the
weight of each sample is determined by the ratio between the pre-
dicted relative error of the local node and of the node being sam-
pled. In our experiments, the estimate is always within a small
constant factor of the actual error. Finding more accurate and more
elegant error predictors is future work, but this rough prediction
has been sufficient to support the parts of the algorithm (such as the
timestep) that depend on it.

2.7 The Vivaldi algorithm
Figure 3 shows pseudocode for Vivaldi. The vivaldi procedure

computes the weight of a sample based on local and remote error
(line 1). The algorithm must also track the local relative error. It
does this using a weighted moving average (lines 2 and 3). The re-
mainder of the Vivaldi algorithm is identical to the simple version.

Vivaldi is fully distributed: an identical vivaldi procedure runs
on every node. It is also efficient: each sample provides informa-
tion that allows a node to update its coordinates. Because Vivaldi
is constantly updating coordinates, it is reactive; if the underlying

// Incorporate new information: node j has been
// measured to be rtt ms away, has coordinates xj,
// and an error estimate of ej.
//

// Our own coordinates and error estimate are xi and ei.
//

// The constants ce and cc are tuning parameters.
vivaldi(rtt, xj, e j)
// Sample weight balances local and remote error. (1)
w = ei/(ei + ej)

// Compute relative error of this sample. (2)
es =
∣∣∣‖xi − xj‖ − rtt

∣∣∣/rtt

// Update weighted moving average of local error. (3)
ei = es × ce × w + ei × (1 − ce × w)

// Update local coordinates. (4)
δ = cc × w
xi = xi + δ ×

(
rtt − ‖xi − xj‖

)
× u(xi − xj)

Figure 3: The Vivaldi algorithm, with an adaptive timestamp.

topology changes, nodes naturally update their coordinates accord-
ingly. Finally, it handles high-error nodes. The next sections evalu-
ate how well Vivaldi achieves these properties experimentally and
investigate what coordinate space best fits the Internet.

3. EVALUATION METHODOLOGY
The experiments are conducted using a packet-level network sim-

ulator running with RTT data collected from the Internet. This sec-
tion presents the details of the framework used for the experiments.

3.1 Latency data
The Vivaldi simulations are driven by a matrix of inter-host In-

ternet RTTs; Vivaldi computes coordinates using a subset of the
RTTs, and the full matrix is needed to evaluate the quality of pre-
dictions made by those coordinates.

We use two different data sets derived from measurements of a
real network. The first and smaller data set involves 192 hosts on
the PlanetLab network test bed [20]. These measurements were
taken from a public PlanetLab all-pairs-pings trace [28].

The second data set involves 1740 Internet DNS servers. We
built a tool based on the King method [10] to collect the full matrix
of RTTs. To determine the distance between DNS server A and
server B, we first measure the round trip time to server A and then
ask server A to recursively resolve a domain served by B. The dif-
ference in times between the two operations yields an estimate of
the round trip time between A and B (see Figure 4). Each query
involves a unique target name to suppress DNS caching.

We harvested the addresses of recursive DNS servers by ex-
tracting the NS records for IP addresses of hosts participating in
a Gnutella network. If a domain is served by multiple, geograph-
ically diverse name servers, queries targeted at domain D (and in-
tended for name server B) could be forwarded to a different name
server, C, which also serves D. To avoid this error, we filtered the
list of target domains and name servers to include only those do-
mains where all authoritative name servers are on the same subnet
(i.e. the IP addresses of the name servers are identical except for
the low octet). We also verified that the target nameservers were re-
sponsible for the associated names by performing a non-recursive

Figure 4: It is possible to measure the distance between two name-
servers by timing two DNS queries. The first query (1) is for a name in
the domain of nameserver A. This returns the latency to the first name-
server. The second query is for a name in the domain nameserver B
(2) but is sent initially to the recursive nameserver A. The difference
between the latency of (1) and (2) is the latency between nameserver A
and B.

query for that name and checking for the “aa” bit in the response
header, which indicates an authoritative answer.

We measured pairwise RTTs continuously, at random intervals,
over the course of a week. Around 100 million measurements were
made in total. We compute the final RTT for a given pair as the
median of all trials. Using the median RTT filters out the effects
of transient congestion and packet loss. Other measurement stud-
ies [17] have used the minimum measured RTT to eliminate con-
gestion effects; this approach is not appropriate for the King tech-
nique since congestion can cause measured RTT to be higher or
lower than the true value. King can report a RTT lower than the
true value if there is congestion on the path to the first nameserver.

Some nameservers were obvious outliers in the data set: the la-
tency to these servers was equal and small from all hosts. This in-
accuracy could be the result of high load on the nameservers them-
selves or heavy queuing near the servers. If load or queuing at name
server A adds a delay that is significantly larger than the network
latency, the initial query (to A) and recursive query (via A to B) will
require roughly the same amount of time and the estimated latency
between that server and any other server will be near zero.

We identified these servers by the disproportionate number of
triangle inequality violations they participated in. These servers
were removed from the data set. About 10 percent of the original
nodes were removed in this way.

The PlanetLab nodes span the globe, but most are located at
North American universities with fast Internet2 connections. The
King nodes are all name servers, and thus still likely to be well
connected to the Internet, but the servers are more geographically
diverse than the PlanetLab nodes. The median RTT of the Planet-
Lab data set is 76ms and of the King data set is 159ms.

We also used two synthetic data sets. The grid data set is con-
structed to provide a perfect two-dimensional fit; this data set is
created by assigning two-dimensional coordinates to each node and
using the Euclidean distances between nodes to generate the ma-
trix. When fitting this data set, Vivaldi recovers the coordinates up
to rotation and translation.

We also use the ITM topology generation tool [2] to generate
topologies. The latency between two nodes in this data set is found
by finding the shortest path through the weighted graph that ITM
generates. This data set allows us to explore how topology changes
affect Vivaldi.

0 20 40 60

time (s)

0

50

100

er
ro

r
(m

s) 0.001
0.01
0.1
1.0

(a)

10 20 30 40 50 60

time (s)

0

50

100

er
ro

r
(m

s) c = 1.0
c = 0.05
c = 0.25
c = 0.01

(b)

Figure 5: The effect of δ on rate of convergence. In (a), δ is set
to one of a range of constants. In (b), δ is calculated with Equa-
tion 2, with cc values ranging from 0.01 to 1.0. The adaptive δ
causes errors to decrease faster.

3.2 Using the data
We used the RTT matrices as inputs to a packet-level network

simulator [9]. The simulator delays each packet transmission by
half the time specified in the RTT matrix. Each node runs an in-
stance of Vivaldi which sends RPCs to other nodes, measures the
RTTs, and uses those RTTs to run the decentralized Vivaldi algo-
rithm.

We define the error of a link as the absolute difference between
the predicted RTT for the link (using the coordinates for the two
nodes at the ends of the link) and the actual RTT. We define the
error of a node as the median of the link errors for links involving
that node. We define the error of the system as the median of the
node errors for all nodes in the system.

The main limitation of the simulator is that the RTTs do not vary
over time: the simulator does not model queuing delay or changes
in routing. Doing this typically requires modeling the underlying
structure of the network. Since this research involves evaluating
models for the structure of the network, it seems safest to stick to
real, if unchanging, data rather than model a model.

In all of the experiments using the simulator, each node measures
a RTT to some other node once each second.

4. EVALUATION
This section examines (1) the effectiveness of the adaptive time-

step δ; (2) how well Vivaldi handles high-error nodes; (3) Vivaldi’s
sensitivity to communication patterns, in order to characterize the
types of network applications that can use Vivaldi without addi-
tional probe traffic; (4) Vivaldi’s responsiveness to network changes;
and (5) Vivaldi’s accuracy compared to that of GNP. Unless noted,
the experiments use three dimensional coordinates; Section 5 in-
vestigates other coordinate systems.

4.1 Time-Step choice
Section 2.5 claimed that too large a time-step could result in os-

cillating coordinates with poor ability to predict latency, and that
small time-steps would result in slow convergence time. To evalu-
ate this intuition we simulated Vivaldi on the King data set.

Figure 5(a) plots the progress of Vivaldi on the King data set
using various constant values of δ. The plot shows the median pre-
diction error as a function of time. Small values of δ, such as 0.001,
cause slow convergence; increasing δ to 0.01 causes faster conver-
gence; but increasing δ again to 1.0 prevents Vivaldi from finding
low-error coordinates. The reason for the high average error is that

δ = 0.05

δ = 0.25 × local error/(local error + remote error)

t = 1 t = 10 t = 50 t = 100 t = 200 t = 300
50 100 150 200 250 300

time since join of second set

0

10

20

30

m
ed

ia
n

lin
k

er
ro

r
(m

s)

adaptive
constant

Figure 6: The evolution of a stable 200-node network after 200 new nodes join. When using a constant δ, the new nodes confuse
the old nodes, which scatter until the system as a whole has re-converged. In contrast, the adaptive δ (Equation 2) allows new nodes
to find their places quickly without disturbing the established order. The graph plots link errors for constant (dotted) and adaptive
(solid) δ. At t = 1, the lower line in each pair is the median error among the initial nodes. The higher line in each pair is the median
error among all pairs. The constant δ system converges more slowly than the adaptive system, disrupting the old nodes significantly
in the process.

the high δ causes the coordinates to oscillate in large steps around
the best values.

In Figure 5(b) we repeat the experiment using δ as computed in
Equation 2. The data show the effectiveness of using a large δwhen
a node’s error is high (to converge quickly) and a small δ when a
node’s error is low (to minimize the node’s oscillation around good
coordinates). Empirically, a cc value of 0.25 yields both quick error
reduction and low oscillation.

4.2 Robustness against high-error nodes
Ideally, Vivaldi would cope well with large numbers of newly-

joined nodes with inconsistent coordinates. Vivaldi’s adaptive δ
should address this problem: when a node joins, it knows its rel-
ative error is quite large, and so when it communicates with other
nodes, those other nodes will approach it with appropriate skepti-
cism.

Figure 6 shows the results of a simulation to test this hypothe-
sis. The simulation uses the two-dimensional grid data set to make
it easy to visualize the evolution of the system. The simulation
started with 200 nodes that already knew coordinates that predicted
latency well. Then we added 200 new nodes to the system and let
the system evolve, using δ = 0.05 in one case and Equation 2 with
cc = 0.25 in the other. Figure 6 shows the evolution of the two
systems as well as the error over time. After a few iterations us-
ing the constant δ metric, the initial structure of the system has
been destroyed, a result of wise old nodes placing too much faith in
young high-error nodes. Because the initial structure is destroyed,
existing nodes can no longer use the current coordinates of other
existing nodes to predict latency until the system re-converges.

In contrast, the adaptive δ preserves the established order, help-
ing the new nodes find their places faster. Also, because the struc-
ture of the original nodes is preserved while new nodes join, those
nodes can continue to use current coordinates to make accurate pre-
dictions to other original nodes. Finally, the convergence time of
the new nodes is significantly faster; they converge at t = 60 using
the relative time-step versus t ≈ 250 using the constant δ.

4.3 Communication patterns
As presented, Vivaldi relies on samples obtained in the course

of traffic generated by the application using it. To understand the
range of systems in which this approach is appropriate, we must
characterize the sampling necessary for accurate computation of
coordinates.

Figure 7: A pathological case showing the possible effect of
communication patterns on the chosen coordinates. In the first
case, nodes only contact their four nearest neighbors, allowing
the resulting coordinates to twist over long distances. In the
second case, nodes contact distant nodes as well, improving the
accuracy of the coordinates at the larger scale.

Some kinds of sampling work badly. For example, Priyantha
et al. [21] show that sampling only nearby (low-latency) nodes can
lead to coordinates that preserve local relationships but are far from
correct at a global scale. Figure 7 shows the coordinates chosen for
nodes laid out in a grid when each node communicates only with
its four neighbors. This case is clearly a pathological one, but we
would like to characterize the boundary between normal behavior
and pathology.

The pathological case can be fixed by adding long-distance com-
munications, giving the nodes a more global sense of their place in
the network. But how much long-distance communication is nec-
essary in order to keep the coordinates from distorting? To answer
this question, we ran an experiment with a grid of 400 nodes. Each
node was assigned eight neighbors: the four immediately adjacent
to it and four chosen at random (on average, the random neighbors
will be far away). At each step, each node decides to communicate
either with an adjacent neighbor or a faraway neighbor. Specifi-
cally, each node chooses the faraway neighbor set with probability
p. Then a specific node to sample is chosen from the set at random.

Figure 8 shows the effect of p on the final accuracy of the coor-
dinates. When half of the communication is to distant nodes, co-
ordinates converge quickly. Convergence slows as the proportion
of distant nodes increases, but similarly accurate coordinates are

0 1000 2000 3000

samples

0

20

40

60

m
ed

ia
n

er
ro

r
(m

s)

p = 0.50
p = 0.20
p = 0.10
p = 0.05
p = 0.02

Figure 8: The effect of long-distance communication on the accuracy
of the coordinates. Each line in the graph plots prediction error over
time for an experiment in which nodes contact distant nodes (as op-
posed to nearby nodes) with probability p at each time step.

eventually chosen for small proportions of distant nodes, suggest-
ing that even when only 5% of the samples involve distant nodes,
skewed coordinate placements like in Figure 7 will be avoided.

4.4 Adapting to network changes
Because Vivaldi constantly recomputes coordinates, it naturally

adapts to changes in the network. To test how well Vivaldi responds
to changes we created a synthetic “Transit-Stub” topology of 100
hosts using the ITM tool [2]. We used Vivaldi to find coordinates
for the 100 hosts; Vivaldi found a 6-dimensional fit using 32 ran-
domly chosen neighbors. We then changed the network topology
by increasing the length of one of the stub’s connection to the core
by a factor of 10. Figure 9 shows the median of the absolute error
predictions made by each node over time. Prior to time 100 seconds
the nodes have stabilized and the median prediction error is around
15ms. At time 100 the topology is changed to include the much
longer transit-stub link. Shortly after the change the median error
rises to 25ms the network quickly re-converges (by time 120ms)
to a new stable configuration. The error is higher during this time
period than at 99ms because the new configuration is more difficult
to model. To show this, we restore the original configuration at
time 300s. The nodes quickly reconverge to positions which give a
median error of again, around 15ms.

Vivaldi also scales to large networks. The algorithm uses a con-
stant amount of storage on each node, and as shown in the previous
section can use measurements of traffic that would have been sent
anyway. The algorithm has no requirements that scale even loga-
rithmically in the number of nodes, much less linearly.

The one exception is startup cost for an initial network. A net-
work of millions of nodes cannot coordinate itself from scratch in a
constant amount of time. However, networks of millions of nodes
tend not to spring up all at once. They start as smaller networks and
grow incrementally. Once there is a critical mass of well-placed
nodes in a Vivaldi network, a new node joining the system needs
to make few measurements in order to find a good place for itself.
That is, once there are enough nodes in the system, the joining cost
for a new node is only a small constant number of network samples,
regardless of the size of the network.

To demonstrate this claim, we initialized a 1,000-node network
using the King data set. Once that network had converged on accu-
rate coordinates, we added 1,000 new nodes, one at a time, measur-
ing the actual (not estimated) prediction error of each newly placed
node as a function of the number of samples obtained. Each new
node’s prediction error is as low as it will ever be after about 20
samples. New nodes are able to converge quickly because they be-
gin with a large initial time-step (the error of a newly joined node
is set to 1.0).

100 200 300

time (sec)

0

10

20

30

M
ed

ia
n

E
rr

or
 (

m
s)

Figure 9: Vivaldi is able to adapt to changes in the network. In this
experiment, we constructed a 100 node GTITM topology and allowed
Vivaldi to determine coordinates for the nodes. The median error is
plotted above against time. At time 100 one of the transit stub links
is made 10 time larger; after around 20 seconds the system has recon-
verged to new coordinates. The error of the new system is larger in the
original configuration. At time 300 the link goes back to its normal size
and the system quickly reconverges to the original error.

0 1 2 3

Relative Error

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 P
ai

rs

Vivaldi
GNP best

0 1 2 3

Relative Error

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 P
ai

rs

Vivaldi
GNP best

Figure 10: The cumulative distribution of prediction error for 2-
dimensional Euclidean coordinates chosen by Vivaldi and GNP on the
PlanetLab data set (top) and the King data set (bottom).

4.5 Accuracy
To evaluate Vivaldi’s accuracy, we compared it against GNP [15],

a centralized algorithm, on the PlanetLab and King data sets. Fig-
ure 10 compares the cumulative distribution of prediction error for
the 2-dimensional Euclidean coordinates chosen by Vivaldi and
GNP for both the PlanetLab and King data sets, using using 32
neighbors (Vivaldi) or landmarks (GNP). Vivaldi’s error is compet-
itive with that of GNP.

In Section 4.3 we discussed how Vivaldi can avoid “folding”
the coordinate space by communicating with some distant nodes.
We also find that neighbor selection affects accuracy in another
way: collecting RTT samples from some nodes that are nearby in
the network improves prediction accuracy. This was first demon-
strated by PIC [3]. In these experiments each Vivaldi node took
measurements from 16 nearby neighbors (found using the simula-
tor’s global knowledge of the network) and 16 random neighbors.
Because GNP’s performance depends on the choice of landmarks
in the network, we performed 64 GNP experiments with random

0.0 0.5 1.0 1.5 2.0

Relative Error

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 N
od

e
P

ai
rs

4
8
16
32
64
128

Figure 11: The cumulative distribution of prediction error for 2-d
height vector coordinates chose by Vivaldi using different numbers of
neighbors.

landmark sets and chose the set that gave the lowest median error.
The number of neighbors affects the accuracy of Vivaldi. Fig-

ure 11 shows the distribution of RTT prediction errors for varying
numbers of neighbors using height-vector coordinates. The neigh-
bors were chosen using half nearby neighbors as described above.
Vivaldi’s performance increases rapidly until about 32 neighbors,
after which time it does not improve much. GNP requires fewer
neighbors than Vivaldi (it works well with around 16), but Vivaldi
is less sensitive to neighbor placement and can use any node in the
system as a neighbor.

5. MODEL SELECTION
Vivaldi was inspired by analogy to a real-world (and thus three-

dimensional Euclidean) mass-spring system. As discussed in Sec-
tion 2, the algorithm can use other coordinate spaces by redefining
the coordinate subtraction, vector norm, and scalar multiplication
operations. In this section, we consider a few possible coordinate
spaces that might better capture the Internet’s underlying structure
for the King and PlanetLab data sets.

5.1 Triangle inequalities
Before considering any specific coordinate spaces, let us first

consider how well we can expect to do. Almost any coordinate
space we might consider satisfies the triangle inequality, which
states that the distance directly between two nodes A and C should
should be less than or equal to the distance along a path detouring
from A to B and then to C. One should only expect to be able to
find a coordinate space consistent with a set of inter-node latencies
if the latencies themselves satisfy the triangle inequality.

Figure 12 presents an evaluation of the extent of such violations.
For each pair of nodes, we found the lowest-RTT path through any
intermediate node and calculated the ratio of the RTTs of the indi-
rect and direct paths. Figure 12 plots the cumulative distribution of
these ratios for the PlanetLab and King data sets. The vast majority
of node pairs in the King data set are part of a triangle violation:
these small violations are due mainly to measurement inaccuracy.
A smaller number of severe violations are present in both datasets,
as well as in the analysis of Tang and Crovella [29]. Because only
around five percent of node pairs have a significantly shorter two-
hop path, we expect that both data sets will be “embeddable” in a
Euclidean space.

We also count the number of triples (i, j, k) that violate the con-
straint

∣∣∣xi − xj

∣∣∣ + ∣∣∣xk − xj

∣∣∣ > ∣∣∣xi − xj

∣∣∣ + ε. We include the constant
term ε to avoid counting marginal violations (the error in measur-

0.0 0.5 1.0 1.5 2.0

Best Indirect RTT / Direct RTT

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 P
ai

rs

King
PlanetLab

Figure 12: The cumulative distribution of the ratios of the RTTs of
the best two-hop path to the direct path between each pair of King and
PlanetLab nodes. The best indirect path usually has lower RTT than
the direct path.

ing these links is likely on the order of several milliseconds). For
ε = 5ms, we find that 4.5% of the triples in the King data set violate
the triangle inequality.

Of course, while a data set with many triangle inequalities will
do poorly in most coordinate spaces we’d consider, a data set with
few triangle inequalities still might not fit well into arbitrary coor-
dinate spaces. The small number of triangle inequalities in the data
only suggests that we are not doomed from the start.

5.2 Euclidean spaces
First, we explore the use of Euclidean coordinate spaces. These

have the familiar equations:

[x1, · · · , xn] − [y1, · · · , yn
]
=
[
x1 − y1, · · · , xn − yn

]

‖[x1, · · · , xn]‖ =
√

x2
1 + · · · + x2

n

α × [x1, · · · , xn] = [αx1, · · · , αxn]

If we choose to use a Euclidean coordinate space, the first ques-
tion is how many dimensions to use. We use a principal com-
ponents analysis as in Cox and Dabek [4] and Tang and Crov-
ella [29], to characterize the dimensionality of Internet coordinates.
The analysis suggests that the coordinates primarily use two to
three dimensions, with little variation in the others. That is, in-
sofar as the data is Euclidean, it is only two- or three-dimensional.
This finding is a somewhat surprising result given the complexity
of the Internet.

Examining the data reveals that the latencies in the data are dom-
inated by geographic distance. If geographic distance were the only
factor in latency, a 2-dimensional model would be sufficient. How-
ever, the fit is not perfect, probably due to aspects of the network
like access-link delays and the fact that nodes often take inefficient
routes as they move from one backbone to another (as happens, for
example, in hot-potato routing). As we add more dimensions, the
accuracy of the fit improves slightly, probably because the extra di-
mensions allow Vivaldi more “wiggle room” for placing hard-to-fit
points.

Figure 13 plots the CDF of relative errors for 2-, 3-, and 5-
dimensional Euclidean coordinates, for both the PlanetLab and King
data sets. Adding extra dimensions past three does not make a sig-
nificant improvement in the fit.

5.3 Spherical coordinates
Because we know that the distances we are attempting to model

are drawn from paths along the surface of a sphere (namely the

0.0 0.5 1.0 1.5 2.0

Relative Error

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
F

ra
ct

io
n

of
 P

ai
rs

2D
3D
5D

0.0 0.5 1.0 1.5 2.0

Relative Error

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 P
ai

rs

2D
3D
5D

Figure 13: The cumulative distribution of Vivaldi’s prediction error
for various numbers of Euclidean dimensions for the PlanetLab (top)
and King (bottom) data sets.

Earth), we might expect that a spherical distance function would
provide a more accurate model.

We adapted Vivaldi to use spherical coordinates; instead of ex-
pressing a force vector in Euclidean space, a node moves some
fraction of the angular distance towards or away from another node.

Figure 14 plots the CDF of relative errors for Vivaldi’s choice 2-
dimensional Euclidean coordinates as well as spherical coordinates
with varying radii, for the PlanetLab and King data sets and a syn-
thetic data set generated from a spherical model. In (a) and (b), the
error is large until about 80 ms; before this, the sphere’s surface is
likely too small for the nodes to spread out.

The spherical model’s error is similar to the Euclidean model’s
error and does not degrade as the radius is increased. This find-
ing suggests that all points cluster on one side of the sphere as the
sphere provides approximately 2πr2 of surface area, approximating
a Euclidean plane in which to work. To test this hypothesis we tried
Vivaldi on a synthetic network of nodes chosen to fit a sphere of ra-
dius 80 ms. The error for the spherical fit is zero when the radius
of the modeled sphere is 80ms. It degrades as the radius increases
beyond its optimal value. A fit to a 2-dimensional Euclidean space
produced a larger error than the (near-perfect) spherical model on
this data set.

We suspect that the underlying reason that spherical coordinates
do not model the Internet well is that the paths through the Internet
do not “wrap around” the Earth appreciably. Inspection of Internet
paths originating in east Asia suggests that few links connect Asia
and Europe directly. For instance, packets sent from Korea to Israel
travel east across two oceans rather than west across land. Some
paths do connect Asia and Europe directly, of course, but they are
not prevalent in the data. A spherical model assumes that such links
would always be used when they make the path shorter. Since this
case is not the usual one, the fact that the spherical model correctly
predicts the few paths across Asia is negated by the fact that it in-
correctly predicts the many paths that go the long way, avoiding
Asia. Anecdotal evidence gathered with traceroute on PlanetLab
nodes supports this observation.

5.4 Height vectors
A height vector consists of a Euclidean coordinate augmented

with a height. The Euclidean portion models a high-speed Internet
core with latencies proportional to geographic distance, while the
height models the time it takes packets to travel the access link

0.0 0.5 1.0 1.5 2.0

Relative Error

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 P
ai

rs

2D
3D
2D + height

0.0 0.5 1.0 1.5 2.0

Relative Error

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 P
ai

rs

2D
3D
2D + height

Figure 15: The cumulative distribution of prediction error for 2- and
3-dimensional Euclidean coordinates and height vectors chosen by Vi-
valdi for the PlanetLab (top) and King (bottom) data sets.

from the node to the core. The cause of the access link latency may
be queuing delay (as in the case of an oversubscribed cable line),
low bandwidth (as in the case of DSL, cable modems, or telephone
modems), or even the sheer length of the link (as in the case of
long-distance fiber-optic cables).

A packet sent from one node to another must travel the source
node’s height, then travel in the Euclidean space, then travel the
destination node’s height. Even if the two nodes have the same
height, the distance between them is their Euclidean distance plus
the two heights. This is the fundamental difference between height
vectors and adding a dimension to the Euclidean space. Intuitively,
packet transmission can only be done in the core, not above it.

The height vector model is implemented by redefining the usual
vector operations (note the + on the right hand side of the subtrac-
tion equation):

[x, xh] − [y, yh
]
=
[
(x − y), xh + yh

]
∥∥∥[x, xh]

∥∥∥ = ∥∥∥x∥∥∥ + xh

α × [x, xh] = [αx, αxh]

Each node has a positive height element in its coordinates, so that
its height can always be scaled up or down.

The effect of these equations is the following. In a normal Eu-
clidean space, a node that finds itself too close to another node will
move away from the other node. A node that finds itself too close
to nodes on all sides has nowhere to go: the spring forces cancel out
and it remains where it is. In the height vector system, the forces
cancel out in the Euclidean plane, but the height forces reinforce
each other, pushing the node up away from the Euclidean plane.
Similarly, a node that finds itself too far away from other nodes on
all sides will move down closer to the plane.

Figure 15 shows that height vectors perform better than both 2D
and 3D Euclidean coordinates.

Examination of the coordinates that the height vector model as-
signs to hosts in the PlanetLab data set shows that the model cap-
tures the effect we hoped. Well-connected nodes, such as the ones
at New York University, are assigned the minimum height. Two
Brazilian nodes are assigned coordinates at approximately 95 ms
above the United States. Using traceroute on these nodes we see
that 95 ms is approximately the distance to the nodes’ connection
to the backbone of the Internet2 network inside the United States.
Because the Brazilian nodes send their traffic via the United States

0 1 2 3

Relative Error

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 N
od

e
P

ai
rs

sphere r=40ms
sphere r=60ms
sphere r=80ms
sphere r=100ms
sphere r=120ms
2D

(a)

0 1 2 3

Relative Error

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 N
od

e
P

ai
rs

sphere r=40ms
sphere r=60ms
sphere r=80ms
sphere r=100ms
sphere r=120ms
2D

(b)

Figure 14: The cumulative distribution of prediction error for spherical coordinates of various radii chosen by Vivaldi for the (a)
PlanetLab and (b) King data sets.

(a) (b)

(c) (d)

Figure 16: The node placement chosen by Vivaldi for the King
data set (a) in two dimensions, (b) in three dimensions, (c) with
height vectors projected onto the xy plane, and (d) with height
vectors rotated to show the heights. The “fringe nodes” in (a)
and (b) are not as prevalent in (c).

to other nodes in this small data set they are best represented as 95
ms “above” the continental U.S. If there were a larger variety of
Brazilian nodes and links in the data set, the nodes would be given
their own region of the Euclidean plane.

5.5 Graphical comparison
The plots in Figure 16 show the final placement of nodes in two

and three dimensional Euclidean space and with height vectors.
The Euclidean plots have a cloud of nodes that are far away from
everyone and don’t seem to know where to go. These nodes are
also the bulk of the ones with large errors. The height plots have
a place for these nodes: high above the rest of the network. This
results in a smaller maximum node error for the height plots, as
well as a smaller median error. The smaller errors suggest that the
height vectors are a more accurate reflection of the structure of the
Internet for the nodes in the data sets.

6. RELATED WORK
A number of systems have been proposed for computing syn-

thetic coordinates. In addition, the mass-spring minimization used
by Vivaldi has also been used previously. Unlike any one of the
related systems, Vivaldi is fully decentralized, targets the Internet,
and adapts well to changes in the network. Vivaldi uses height
vectors to improve its latency predictions, while previous systems
mostly use Euclidean coordinates.

6.1 Centralized coordinate systems
Many existing synthetic coordinate systems involve a central-

ized component (such as a set of landmark nodes) or require global
knowledge of node measurements. Vivaldi’s main contribution rel-
ative to these systems is that it is decentralized and does not require
a fixed infrastructure.

Vivaldi was inspired by GNP [17], which demonstrated the pos-
sibility of calculating synthetic coordinates to predict Internet la-
tencies. GNP relies on a small number (5-20) of “landmark” nodes;
other nodes choose coordinates based on RTT measurements to the
landmarks. The choice of landmarks significantly affects the accu-
racy of GNP’s RTT predictions. Requiring that certain nodes be
designated as landmarks may be a burden on symmetric systems
(such as peer-to-peer systems). In addition, landmark systems, un-
like Vivaldi, do not take advantage of all communication between
nodes: only measurements to landmarks are helpful in updating
coordinates.

NPS [16] is a version of GNP which addresses system-level is-
sues involved in deploying a coordinate system. NPS includes a
hierarchical system for reducing load on the landmark nodes, a
strategy for mitigating the effects of malicious nodes, a conges-
tion control mechanism , and a work-around for NATs. NPS also
demonstrates how a landmark-based coordinate system can adapt to
changing network conditions by periodically communicating with
the landmark nodes and recomputing coordinates.

Lighthouse [19] is an extension of GNP that is intended to be
more scalable. Lighthouse, like GNP, has a special set of landmark
nodes. A node that joins Lighthouse does not have to query those
global landmarks. Instead, the new node can query any existing
set of nodes to find its coordinates relative to that set, and then
transform those coordinates into coordinates relative to the global
landmarks.

Tang and Crovella propose a coordinate system based on “vir-
tual” landmarks [29]; this scheme is more computationally efficient

than GNP and is not as dependent on the positions of the land-
marks. The authors also present an analysis of the dimensionality
of their measured latencies which suggests that low-dimensional
coordinates can effectively model Internet latencies. This result
agrees with the results presented in Section 5

6.2 Decentralized Internet coordinate systems
PIC [3], like Vivaldi, can use any node that knows its coordi-

nates as a landmark for future nodes: PIC does not require explic-
itly designated landmarks. A PIC node either knows or doesn’t
know its coordinates. Vivaldi incorporates a continuous measure
of how certain a node is about its coordinates; this approach helps
adapt to changing network conditions or network partitions. PIC
does not seem to be suited to very dynamic conditions: it runs the
Simplex minimization procedure completely after a node measures
the latencies to the landmarks. This makes PIC react very quickly
to new measurements. In building Vivaldi we found that reacting
too quickly to measurements (using a large time-step) caused the
coordinates to oscillate.

PIC defends the security of its coordinate system against ma-
licious participants using a test based on the triangle inequality.
Vivaldi defends against high-error nodes, but not malicious nodes.
PIC uses an active node discovery protocol to find a set of nearby
nodes to use in computing coordinates. In contrast, Vivaldi piggy-
backs on application-level traffic, assuming that applications that
care about coordinate accuracy to nearby nodes will contact them
anyway.

NPS [16] uses a decentralized algorithm. Instead of sending
measurements to a central node that runs the Simplex algorithm
to determine landmark coordinates (as GNP does), each NPS land-
mark re-runs the minimization itself each time it measures the la-
tency to a new node. Vivaldi operates in much the same manner,
but uses a mass-spring system instead of the Simplex algorithm to
perform the minimization.

6.3 Coordinate systems for wireless nets
The distributed systems described in this section target wireless

networks where network connectivity reflects geographic proxim-
ity fairly closely. Vivaldi is intended for use in the Internet, where
the topology of the network is much less obvious a priori.

AFL [21], a distributed node localization system for Cricket [22]
sensors, uses spring relaxation. The Cricket sensors use ultrasound
propagation times to measure inter-sensor distances and cooperate
to derive coordinates consistent with those distances. Most of the
complexity of AFL is dedicated to solving a problem that doesn’t
affect Vivaldi: preventing the coordinate system from “folding”
over itself. Unlike the sensors used in the Cricket project, we as-
sume that Vivaldi hosts can measure the latency to distant nodes;
this eliminates the folding problem.

Other systems (such as ABC [25]) operate by propagating known
coordinates from a fixed set of anchor nodes in the core and solving
for locations using techniques like triangulation.

Rao et. al. [23] describe an algorithm for computing virtual coor-
dinates to enable geographic forwarding in a wireless ad-hoc net-
work. Their algorithm does not attempt to predict latencies; in-
stead, the purpose is to make sure that directional routing works.

6.4 Spring relaxation
Several systems use spring relaxation to find minimal energy

configurations. Vivaldi’s use of spring relaxation was inspired by
an algorithm to recover a three dimensional model of a surface
from a set of unorganized points described by Hugues Hoppe [11].
Hoppe introduces spring forces to guide the optimization of a re-

constructed surface.
Mogul describes a spring relaxation algorithm to aid in the vi-

sualization of traffic patterns on local area networks [14]. Spring
relaxation is used to produce a 2-dimensional representation of the
graph of traffic patterns; the results of the relaxation are not used to
predict latencies or traffic patterns.

The Mithos [24, 30] overlay network uses a spring relaxation
technique to assign location-aware IDs to nodes.

Shavitt and Tankel’s Big Bang system [26] simulates a poten-
tial field similar to Vivaldi’s mass-spring system. Their simulation
models each particle’s momentum explicitly and then introduces
friction in order to cause the simulation to converge to a stable state.
Vivaldi accomplishes the same effect by ignoring the kinetic energy
of the springs. The Big Bang system is more complicated than Vi-
valdi and seems to require global knowledge of the system; it is not
clear to us how to decentralize it.

6.5 Internet models
Vivaldi improves its latency predictions with a new coordinate

space that places nodes some distance “above” a Euclidean space.
Previous synthetic coordinate systems have concentrated on pure
Euclidean spaces or other simple geometric spaces like the surfaces
of spheres and tori.

Shavitt and Tankel [27] recently proposed using a hyperbolic
coordinate space to model the Internet. Conceptually the height
vectors can be thought of as a rough approximation of hyperbolic
spaces. The hyperbolic model may address a shortcoming of the
height model; the height model implicitly assumes that each node
is behind its own access link. If two nodes are behind the same
high-latency access link, the height model will incorrectly predict
a large latency between the two nodes: the distance down to the
plane and back up. Comparing the height vectors and hyperbolic
model directly to determine which is a better model for the Internet
is future work.

6.6 Other location techniques
IDMaps [8] is an infrastructure to help hosts predict Internet RTT

to other hosts. The infrastructure consists of a few hundred or thou-
sand tracer nodes. Every tracer measures the Internet RTT to every
other tracer. The tracers also measure the RTT to every CIDR ad-
dress prefix, and jointly determine which tracer is closest to each
prefix. Then the RTT between host h1 and host h2 can be estimated
as the RTT from the prefix of h1 to that prefix’s tracer, plus the
RTT from the prefix of h2 to that prefix’s tracer, plus the RTT be-
tween the two tracers. An advantage of IDMaps over Vivaldi is that
IDMaps reasons about IP address prefixes, so it can make predic-
tions about hosts that are not aware of the IDMaps system.

The IP2Geo system [18] estimates the physical location of a re-
mote server using information from the content of DNS names,
whois queries, pings from fixed locations, and BGP information.
IP2Geo differs from Vivaldi mainly in that it attempts to predict
physical location rather than network latency.

7. CONCLUSIONS AND FUTURE WORK
Vivaldi is a simple, adaptive, decentralized algorithm for com-

puting synthetic coordinates for Internet hosts. Vivaldi requires no
fixed infrastructure, supports a wide range of communication pat-
terns, and is able to piggy-back network sampling on application
traffic. Vivaldi includes refinements that adaptively tune its time
step parameter to cause the system to converge to accurate solu-
tions quickly and to maintain accuracy even as large numbers of
new hosts join the network.

By evaluating the performance of Vivaldi on a large data set gen-
erated from measurements of Internet hosts, we have investigated
the extent to which the Internet can be represented in simple ge-
ometric spaces. We propose a new model, height vectors, which
should be of use to all coordinate algorithms. Attempting to un-
derstand characteristics of the Internet by studying the way it is
modeled by various geometric spaces is a promising line of future
research.

Because Vivaldi requires no infrastructure and is simple to im-
plement, it is easy to deploy in existing applications. We modified
DHash, a distributed hash table, to take advantage of Vivaldi and
reduced time required to fetch a block in DHash by 40% on a global
test-bed [7]. We hope that Vivaldi’s simplicity will allow other dis-
tributed systems to adopt it.

Acknowledgments
This research was conducted as part of the IRIS project
(http://project-iris.net/), supported by the National Sci-
ence Foundation under Cooperative Agreement No. ANI-0225660.
Russ Cox is supported by a fellowship from the Fannie and John
Hertz Foundation.

REFERENCES
[1] BitTorrent. http://bitconjurer.org/BitTorrent/protocol.html.
[2] K. L. Calvert, M. B. Doar, and E. W. Zegura. Modeling

Internet topology. IEEE Communications, 35(6):160–163,
June 1997.

[3] M. Costa, M. Castro, A. Rowstron, and P. Key. PIC: Practical
Internet coordinates for distance estimation. In International
Conference on Distributed Systems, Tokyo, Japan, March
2004.

[4] R. Cox and F. Dabek. Learning Euclidean coordinates for
Internet hosts. http://pdos.lcs.mit.edu/˜rsc/6867.pdf,
December 2002.

[5] R. Cox, F. Dabek, F. Kaashoek, J. Li, and R. Morris.
Practical, distributed network coordinates. In Proceedings of
the Second Workshop on Hot Topics in Networks
(HotNets-II), Cambridge, Massachusetts, November 2003.

[6] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS. In Proc.
18th ACM Symposium on Operating Systems Principles
(SOSP ’01), pages 202–205, Oct. 2001.

[7] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and
R. Morris. Designing a DHT for low latency and high
throughput. In Proceedings of the 1st USENIX Symposium
on Networked Systems Design and Implementation (NSDI
’04), San Francisco, California, March 2004.

[8] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and
L. Zhang. IDMaps: A global Internet host distance
estimation service. IEEE/ACM Transactions on Networking,
Oct. 2001.

[9] T. Gil, J. Li, F. Kaashoek, and R. Morris. Peer-to-peer
simulator, 2003. http://pdos.lcs.mit.edu/p2psim.

[10] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King:
Estimating latency between arbitrary Internet end hosts. In
Proc. of SIGCOMM IMW 2002, pages 5–18, November
2002.

[11] H. Hoppe. Surface reconstruction from unorganized points.
PhD thesis, Department of Computer Science and
Engineering, University of Washington, 1994.

[12] KaZaA media dekstop. http://www.kazaa.com/.

[13] P. Mockapetris and K. J. Dunlap. Development of the
Domain Name System. In Proc. ACM SIGCOMM, pages
123–133, Stanford, CA, 1988.

[14] J. C. Mogul. Efficient use of workstations for passive
monitoring of local area networks. Research Report 90/5,
Digital Western Research Laboratory, July 1990.

[15] E. Ng. GNP software, 2003. http://www-2.cs.cmu.edu/
˜eugeneng/research/gnp/software.html.

[16] T. E. Ng and H. Zhang. A network positioning system for the
Internet. In Proc. USENIX Conference, June 2004.

[17] T. S. E. Ng and H. Zhang. Predicting Internet network
distance with coordinates-based approaches. In Proceedings
of IEEE Infocom, pages 170–179, 2002.

[18] V. Padmanabhan and L. Subramanian. An investigation of
geographic mapping techniques for Internet hosts. In Proc.
ACM SIGCOMM, pages 173–185, San Diego, Aug. 2001.

[19] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti.
Lighthouses for scalable distributed location. In IPTPS,
2003.

[20] Planetlab. www.planet-lab.org.
[21] N. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller.

Anchor-free distributed localization in sensor networks.
Technical Report TR-892, MIT LCS, Apr. 2003.

[22] N. Priyantha, A. Chakraborty, and H. Balakrishnan. The
Cricket Location-Support System. In Proc. 6th ACM
MOBICOM Conf., Boston, MA, Aug. 2000.

[23] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and
I. Stoica. Geographic routing without location information.
In ACM MobiCom Conference, pages 96 – 108, Sept. 2003.

[24] R. Rinaldi and M. Waldvogel. Routing and data location in
overlay peer-to-peer networks. Research Report RZ–3433,
IBM, July 2002.

[25] C. Savarese, J. M. Rabaey, and J. Beutel. Locationing in
distributed ad-hoc wireless sensor networks. In ICASSP,
pages 2037–2040, May 2001.

[26] Y. Shavitt and T. Tankel. Big-bang simulation for embedding
network distances in Euclidean space. In Proc. of IEEE
Infocom, April 2003.

[27] Y. Shavitt and T. Tankel. On the curvature of the Internet and
its usage for overlay construction and distance estimation. In
Proc. of IEEE Infocom, April 2004.

[28] J. Stribling. All-pairs-ping trace of PlanetLab, 2004.
http://pdos.lcs.mit.edu/ strib/.

[29] L. Tang and M. Crovella. Virtual landmarks for the Internet.
In Internet Measurement Conference, pages 143 – 152,
Miami Beach, FL, October 2003.

[30] M. Waldvogel and R. Rinaldi. Efficient topology-aware
overlay network. In Hotnets-I, 2002.

[31] L. Wang, V. Pai, and L. Peterson. The Effectiveness of
Request Redirecion on CDN Robustness. In Proceedings of
the Fifth Symposium on Operating Systems Design and
Implementation, Boston, MA USA, December 2002.

