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Abstract

TCP's ability to share a bottleneck fairly and
efficiently decreases as the number of competing flows
increases. This effect starts to appear when there are
more flows than packets in the delay-bandwidth product.
In the limit of large numbers of flows, TCP forces a packet
loss rate approaching 50%, causing delays that users are
likely to notice. TCP’s minimum congestion window of
one packet is the source of these problems: it causes a few
flows to send too fast while the rest wait in re-
transmission time-out. The particular packet loss rate is a
function of TCP’s abrupt transition from exponential
backoff to sending with a window of one or more packets,
and of the high rate at which TCP increases small
congestion windows.

Analysis of packet traces suggests that these aspects
of TCP's algorithms contribute substantially to the total
loss rate observed on the Internet. One way to work
around the problem is to make sure routers have not just
one round-trip time of buffering, but buffering
proportional to the total number of active flows. A more
fundamental cure might make TCP less aggressive and
more adaptive when its congestion window is small.

1. Introduction

The main goals of any congestion control algorithm
are to maintain high utilization of the bottleneck link, to
avoid overloading the bottleneck and thus avoid high
queueing delay and packet loss, and to divide bandwidth
fairly among competing flows. Congestion control on the
Internet is provided by end-to-end mechanisms in TCP [9,
19] in cooperation with queueing strategies in routers [7].
Improvements prompted by a long history of investigation
[14, 9, 22, 18, 20] have led to a continuous expansion of
the operating conditions under which TCP works well.
Most of these investigations consider at most a few dozen
competing flows. Some work [6,9,20] has hinted at limits
to TCP's ability to handle large numbers of flows, and the
idea that window flow control in general has scaling limits
is well known [1]. Whether such limits have any practical
relevance to the Internet is not well known.

These limits do have a substantial and adverse impact

on the Internet, as this paper will argue. The limits start
appear when the number of active flows exceeds t
network’s delay-bandwidth product as measured
packets. An “active” flow has data to send, and
typically waiting for an acknowledgment or a
retransmission time-out. The symptoms are hig
utilization coupled with high packet loss and hig
variation in the delay seen by users. High utilization
only good when the packet loss rate due to que
overflow is low. Each lost packet consumes netwo
resources before it is dropped, contributing to lowere
efficiency in other parts of the network. Sufficiently high
packet loss rates also cause long and unpredictable de
in time-out-based protocols such as TCP.

The main contribution of this work is a simulation
study of TCP's behavior when many active flows compe
for bandwidth over the same link. The simulations predi
unacceptably frequent packet loss and high variation
bandwidth. The second contribution of this work i
evidence that such conditions exist on the Internet: so
points in the network regularly experience hundreds
thousands of active flows. Finally, analysis of the caus
of these problems suggests two solutions less costly th
increasing network bandwidth. As a short-term solutio
routers could be provisioned with buffer spac
proportional to the maximum number of active flows
simulations suggest ten times as many buffers as flow
This solution would have to be coupled with per-flow
limits on buffer use. We also speculate that when TCP
congestion window is small it should use rate control an
a less aggressive window increase policy. These chan
would reduce TCP’s dependence on exponent
retransmission time-out backoff, which we argue makes
poor congestion control mechanism.

2. TCP Algorithms

TCP's algorithms [19] and the behavior they produc
are too involved to describe fully here. The following is
summary of the points most relevant to this work.

A TCP sender avoids overloading the network b
sending new data only after getting an acknowledgme
from the receiver indicating receipt of previous data. Th
network's available bandwidth governs the rate at whi
1 of 7
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data arrives at the receiver, and thus the rate at which the
receiver sends acknowledgments, and thus the rate at
which the sender transmits. Waiting for an
acknowledgment after sending each packet would leave
the network idle much of the time if the network's
available bandwidth were high enough that the sender
could transmit a packet in substantially less than the round
trip propagation delay. For this reason TCP senders do not
wait for acknowledgments until they have sent a window
of packets.

The amount of bandwidth a TCP flow uses is roughly
equal to the window size divided by the round-trip
propagation delay. TCP should use a window size that
makes this product equal to its fair share of the network
bandwidth. Since TCP does not know its fair share or the
propagation delay, it uses an adaptive algorithm to pick a
good window size. After every second window of data it
sends, TCP increases its window size by one packet. It
decreases the window size by 50% each time it detects
that the network has dropped a packet; TCP assumes that
packet loss is caused by router queue overflow. In
favorable circumstances, particularly when its window is
larger than 4 packets, TCP can recover from the loss of a
packet in one round trip time (RTT). This is called fast
retransmit. In general, however, TCP pauses for at least
one second before it concludes that a packet was lost and
resumes sending. The intended result is that TCP’s
window size oscillate around a value that gives it a fair
share of the network bandwidth.

TCP alone cannot ensure that it competes fairly with
other flows: routers must cooperate by dropping packets
fairly and thus causing TCP flows to reduce their window
sizes. A router with a single FIFO queue that drops
packets only when the queue is full turns out to be unfair.
The state of the art in fair dropping for FIFO queues is a
router packet dropping policy called Random Early
Detection (RED) [7]. RED drops each incoming packet
with a probability governed by the router's recent average
queue length. This ensures that each flow sees the same
packet loss rate.

3. Simulation Parameters

Most of the results in this paper are derived from
simulations using NS 1.2a2 [11]. In each simulation,N
TCP senders transmit through a shared bottleneck to an
equal number of receivers, as shown in Figure 1.
Congestion will occur in router A at the input to link L.
Each sender starts at a randomly chosen time in the first
5% of the simulation time. Each sender has an unlimited
amount of data to send.

The TCP version involved is Tahoe [19]. Receivers
acknowledge every other packet. The routers use RED
and a FIFO queue. The routers have buffering equal to the

average end-to-end delay-bandwidth product,
recommended by [20]. Five low-bandwidth telnet sessio
compete with the main flows to help avoid determinist
behavior. Other simulation parameters are summarized
Figure 2.

The intent is that the bottleneck represent a custom
access link or a heavily loaded backbone link. The send
links Li have capacity proportional to each sender’s fa
share of the bottleneck on the theory that users a
unlikely to pay for much more access capacity than th
will be able to use. This means that the ratio of inp
capacity to output capacity in router A is fixed at 10 to
regardless ofN, so any effects caused by varyingN are
due only to the number of flows. The packet size an
propagation delay are chosen to approximate those typ
on the Internet.

The numbers in Figure 2 imply that the averag
connection’s one-way propagation time is 0.05 seconds

Packet size 576 bytes

Maximum window 64 kilobytes

TCP time-out granularity 0.5 seconds

Propagation delay of L 25 ms

Bandwidth of L 10 megabits/second

Propagation delay of Li random, 0 to 50 ms

Bandwidth of Li 10*(10/N) mbits/second

Router buffers 217 packets

RED min_thresh 217/4 = 54 packets

RED max_thresh 217/2 = 108 packets

RED max drop rate 0.2%

Simulation length 200 seconds

Figure 2:  Simulation Parameters
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Figure 1: Simulation topology
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10 megabit link can forward 2170 576-byte packets per
second, so a sender on an otherwise idle network can
transmit 108.5 packets before the receiver sees the first
packet. It takes another 0.05 seconds (or 108.5 packet
times) for the sender to get the receiver’s first ACK. A
sender must keep a window of 217 packets in flight if it
wishes to keep the network busy; if there are multiple
senders, their windows must total at least 217. The
network links effectively store these 217 packets.

4. Behavior with Few Flows

As a baseline for comparison with larger numbers of
flows, we describe simulation results for just 30
competing TCPs. The bottleneck link efficiency, or
goodput, is 97%; that is, the bottleneck link spends 97%
of its time sending useful data and 3% of its time either
idle or sending copies of packets already in some
receiver’s possession. Router A drops 0.7% of all packets.

This low loss rate is good. That it is also
approximately correct is easy to prove; the key to the

analysis is the frequency at which the TCPs’ window
oscillate. RED ensures that Router A’s queue leng
averages somewhere between the two RED thresholds
roughly (108+54)/2 = 81 packets. The network also stor
217 packets in flight on the links, for a total of 298
packets. Each TCP’s congestion window averages o
30th of 298, or about 10 packets, by oscillating between
and 13 packets. It takes TCP 12 round trip times to gro
its window from 7 to 13 packets, after which (on averag
the router will drop one of its packets. A round trip time i
the propagation delay of 0.1 seconds plus a queuing de
averaging about 81 packet times, or 0.037 seconds. T
each TCP can expect a drop every 12*0.137 or 1
seconds, and the total drop rate will be 30 packets per
seconds. The link capacity is 2170 packets per second
0.8% of all packets should be dropped. This is close to t
simulation results.

TCP is also fair in this configuration. Figure 3 show
the bandwidth of one of the flows averaged over on
second intervals. The horizontal line is one flow’s fa
share. Except during start-up, the flow never sustains
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Figure 3: Bandwidth of One of the 30 Flows
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Figure 4: Fairness Histogram for 30 Flows

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 50 100 150 200

B
an

dw
id

th
 (

B
its

/S
ec

on
d)

Time (Seconds)

Actual
Fair Share

Figure 5: Bandwidth of One of the 1500 Flows
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Figure 6: Fairness Histogram for 1500 Flows
3 of 7



s.
IP
2],
s

10
’s
ct
e

13
in
to

4]
t
om
to
y be

s.
in

ls
e
ny
ts
y,
ms
x,
and
ll
ols
r

ed

se
he
at

ses
rate much higher or lower than its fair share, and never
has to time out. The former means that TCP chooses
reasonable window sizes; the latter indicates that TCP’s
fast retransmit mechanism is working well.

The bandwidth distribution shown in Figure 4
demonstrates that the 30 TCPs get fair shares even over
relatively short periods. The x-axis units are fair shares of
the link; an x value of 1 represents one 30th of 10
megabits/second. The y-axis is the probability of a flow in
the simulation seeing a particular bandwidth for one
second. Ideally all the flows would see exactly their fair
share in every one-second interval, and Figure 4 would
have a sharp peak at an x value of 1. One second is a
guess at the smallest interval over which users might
notice degraded performance. The actual simulation
results in Figure 4, though not ideal, are good: a user
would only encounter a whole second of zero bandwidth
and high delay about 5% of the time.

5. Behavior with Many Flows

A simulation with 1500 flows also gets a total
goodput of over 97%. In this case, however, the packet
loss rate is 17%, high enough to cause TCP retransmission
time-outs and wasted bandwidth along the paths to the
bottleneck. The configuration also exhibits high variation
in the bandwidth achieved by each flow, causing it to be
unfair over intervals many seconds long. Figure 5 shows
the bandwidth of one of the 1500 flows, averaged over
one second intervals. Comparison with Figure 3 reveals
much larger variation around the fair share: the flow often
sends much too fast, and is often idle due to time-outs.
Note that the y axes of these two graphs have the same
scale relative to the fair share.

The bandwidth distribution in Figure 6 quantifies this
high variation. Compared with Figure 4, Figure 6 shows
that users will encounter substantially more intervals in
which they get substantially more or less than their fair
share. Figure 6 also predicts that users will encounter
delays of one second or more with a probability of just
over 30%.

The proximate causes of this variation are the high
packet loss rate and consequent retransmission time-outs.
Figure 7 shows the relationship between number of flows
and packet loss rate for the simulated topology considered
in this paper. These loss rates are enough to cause high
time-out delays, and the steady upward trend is not a
desirable feature of a congestion control system. Any
evidence that real networks operate in this range would be
a strong argument for understanding and fixing whatever
causes this behavior.

6. Internet Flow Counts

Analysis of three Internet packet traces suggests that

some Internet links support large numbers of active flow
Each distinct combination of source and destination
addresses and ports counts as a flow. The first trace [1
made available by Digital Equipment Corporation, wa
collected at 14:00 PST on a day in March 1995 on a
megabit Ethernet in Palo Alto that carried most of DEC
traffic to the Internet. Packets from 200 to 300 distin
TCP flows are visible in this trace in each second. Th
second trace [13] was collected at 14:40 EST on March
1997 on a 10 megabit Ethernet connecting Harvard’s ma
campus to the Internet. This trace has packets from 300
400 distinct TCP flows in each second. The third trace [
was collected on an FDDI ring at the FIX-Wes
interchange point in September 1996. It has packets fr
over 2000 distinct TCP flows in each second. Pointers
these traces and the software used to analyze them ma
found at http://www.eecs.harvard.edu/~rtm/traces.html.

A count of distinct flows in each second
approximates the number of simultaneous active flow
Counts covering less than one second would miss TCPs
retransmission time-out. Counts over longer interva
would tend to treat short flows that do not overlap in tim
as simultaneous, though this effect will be present for a
interval longer than a few round trip times. These coun
treat the two directions of a bidirectional flow separatel
and do not ignore acknowledgment packets. This see
appropriate since all the media involved were half-duple
and since acknowledgments consume packet buffers
bandwidth. It might not be correct when considering fu
duplex transmission systems with separate buffer po
for each direction of each router port. The flow counts fo
the two Ethernets are comparable to other publish
numbers [5].

Assuming the traced networks are bottlenecks, the
counts and Figure 7 predict that the router feeding t
DEC network imposes a 6% packet loss rate and th
feeding the Harvard network 8%. These are just the los
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Figure 7: Number of Flows vs. Loss Rate
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attributable to the interaction of TCP with router queuing
policies; the simulations include no misbehaving or non-
flow-controlled senders. These predicted loss figures are
similar to those from empirical Internet studies [3, 8, 16,
21]. The FIX-West data could not be interpreted due to a
lack of information about the FIX-West exchange
topology.

Since there is evidence that Figure 7 is relevant, it is
worth pursuing an explanation and a more general
formulation of the problem.

7. Discussion

The general shapes of Figures 5 and 6 are an
inevitable side-effect of window flow control with limited
buffer space [1]. The storage in the simulated network
totals 434 packets: 217 on the links and 217 in router A’s
buffers. Even if all flows used the minimum possible
window size of one packet, only 434 of them could
coexist. Another way to see this is that a window of one
packet means that TCP must send a packet every round
trip time. A round trip time is 0.2 seconds in this
simulation when the maximum queuing time is included,
so a TCP must send at least a packet of 576 bytes every
0.2 seconds, or 23,040 bits per second. This is one 434th
of the bottleneck capacity. These considerations require
that TCPs alternate between sending at more than their
fair share and timing out. TCP has no mechanism that
allows it to send slower than a few packets per round trip
time, but faster than one packet per time-out. The result is
the behavior in Figure 5.

Figure 7, however, is not inevitable. Sufficiently
conservative algorithms might allow the loss rate to be
constant as the load increases. TCP uses time-outs of at
least one second with exponential backoff on repeated
loss. TCP causes a high loss rate despite aggressive
backoff because it jumps too abruptly from sending one
packet per time-out to sending one or more packets per
round trip time.

7.1. Proof of High Loss with LargeN
We can gain some insight into the impact of TCP’s

time-out algorithms on packet loss by proving that the loss
rate will approach 50% with sufficiently many flows. The
proof depends only on the structure of TCP’s backoff
mechanism.

Let p be the steady-state loss rate withN flows. Let

the statesi be the set of TCPs in a 2i second time-out, and
ni be the size ofsi. Note that a TCP moves between states
in only two ways. A TCP in statesi re-transmits a packet

2i seconds after enteringsi. If the receiver acknowledges
the packet, the TCP leavessi and resumes sending with a
window. Otherwise the TCP moves to statesi+1.

Lemma 1: n0 is bounded by some constan
independent ofN. Each of then0 TCPs will retransmit a
packet every second. For sufficiently large values ofn0,
each retransmission must cause a loss, since the netw
has fixed capacity of less thann0 packets per second. Fo
any p < 1, there is some value ofn0 which will cause a
loss rate ofp. If n0 grows with N, p must eventually
exceed 0.5, in which case the theorem to be proved is t

Lemma 2:ni = 2pni-1. Each TCP insi-1 retransmits

after 2i-1 seconds.pni-1 of these TCPs will suffer another
drop and move tosi. Thus TCPs move intosi at a rate of

pni-1/2
i-1 per second. Each will stay insi 2i seconds. By

Little’s Theorem and the assumption that the system is
steady state, there must be 2pni-1 TCPs insi.

Lemma 3: ni = (2p)in0 by recursive expansion of
Lemma 2.

Lemma 4: The total number of TCPs in time-out is

The maximum number of TCPs actively transmittin
is a constant independent ofN, as described in Section 7
Thus the number of TCPs in time-out must grow withN.
The sum in Lemma 4 converges to a constant independ
of N if p < 0.5. Thus the loss ratep must approach or
exceed 50% asN grows large.

This proof lends credibility to Figure 7. It also
suggests that TCP’s behavior with large numbers of flow
depends largely on its backoff algorithm. The high los
rate could be addressed in at least three ways. The bac
constants could be increased, thus decreasing the valu
p needed to make the sum in Lemma 4 diverge. Th
doesn’t seem wise: a few losses could drive a TCP in
long backoff. We speculate that the backoff algorith
could use a linear decrease in inter-packet time afte
success, rather than jumping directly from a rate of o

packet per 2i seconds to one packet per round trip tim
Best would be to avoid reliance on retransmit time-out f
congestion control. This could be done by making TCP
congestion window work well for rates less than on
packet per round trip time.

7.2. N2 Loss and Window Policy
Figure 8 is a detail from Figure 7. With fewer than 6

flows the loss rate seems to increase more than linea
with N. This is no illusion, as can be shown with a
argument adapted from [9]. For values ofN much less
than the total buffering divided by four, fast retransm
allows N TCPs to share the bottleneck without time-out
Each TCP increases its window by half a packet ea
round trip time, so the sum of the windows increases

ni
i

∑ n0 2p( )i

i
∑=
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N/2 each RTT. Since the number of router buffers is fixed,
the frequency of loss episodes is proportional toN. Each
loss episode involves the loss of one packet from each
flow. Thus for modest numbers of flows the loss rate is

proportional toN2.
TCP’s window increase policy is linear in the sense

that it increases the congestion window by a fixed amount
per round trip time. However, with very small windows
the increase as a fraction of window size is large. In order
to keep losses low, TCP should increase its window no
more than linearly in the amount of data sent. For
instance, when the window is small, TCP could increase
the window at a rate that will double it every 100 packets.

The regrettable features of Figure 7, high loss rate

with large N and loss proportional toN2 with small N,
arise from the interaction of limited network buffering
with specific TCP mechanisms: window-based congestion
control, exponential backoff, and the window increase
policy.

8. Provisioning Buffer Space

The most obvious way to support large numbers of
users is to provide more storage in the network with
higher bandwidth or more buffering. For our purposes
they are equivalent; we consider increasing buffering here
because it is more practical.

Even with small numbers of flows, bottleneck routers
should have at least one delay-bandwidth product of
buffering [20]. In this case, the TCPs sharing the
bottleneck will have windows summing to two delay-
bandwidth products just before each congestion episode.
After the TCPs cut their windows in half, they will sum to
one delay-bandwidth product, just enough to allow full
utilization of the bottleneck link. This is clear from Figure
9, which shows the average bottleneck utilization as a
function of the amount of buffer space. This graph was

derived from simulations of 30 TCPs in the configuratio
described in Section 3. Recall that the delay-bandwid
product is 217 packets.

With large numbers of users, total goodput is goo
even with small numbers of buffers: there are alwa
more than enough TCPs sending packets. The buf
space does affect the drop rate and the fairness. Figure

shows the results of simulations with 500 TCPs an
varying amounts of router buffer space. The line mark
Drop Rate is the percent of packets dropped by t
bottleneck router. The line marked Seconds Under 5
Share indicates the percentage of seconds over all
TCPs in which a TCP experienced less than 5% of its fa
share. This amounts to the probability of a TCP being in
time-out. Both measures improve significantly wit
increased buffer space until there are about 10 buffers
TCP. The decrease in drop rate with increase
sustainable window size is well known [9]. That fairnes
should improve as drop rate decreases seems natu
since drops can cause time-outs. The most curious fea
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Figure 8: Detail of Flows vs. Loss Rate
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of the fairness graph is the irregularity between 1500 and
2000 packets. At this point TCP’s fast retransmit
mechanism allows most of the flows to recover from
losses without time-outs; fast retransmit requires a
window of at least four packets.

A drawback of building routers with very large
buffers is that excessive queues may build up even with
few flows. Solutions to this problem are known [15, 2,
10]; one approach is for routers to impose a higher loss
rate on flows with many packets queued than on those
with few queued.

9. Conclusion and Future Work

Some of the known theoretical limits of window flow
control and of TCP’s algorithms may be actual problems
on the Internet, as demonstrated by observation of Internet
traffic and simulation. Predicted loss rates and unfairness
suggest that these limits may cause a substantial loss in
Internet performance. The easiest solution to these
problems may be radically increased router buffer space
coupled with limits on per-flow queue length.

More analysis of Internet traffic is needed to count
simultaneous flows and confirm their relationship to loss
rate.

There is room for more work on flow control
mechanisms that maintain a low loss rate regardless of
load. TCP would adapt better to large numbers of flows if
it used rate control when the window size is small [6]. Its
window increase algorithm could be modified to maintain
a low loss rate at small window sizes. Finally, TCP could
use the same exponential/linear approach for retransmit
backoff as for window size, or it could merge the two
mechanisms.
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