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ABSTRACT

Hardware security modules (HSMs) are powerful tools in building secure computer sys-
tems, allowing developers to factor out security-critical code to separate devices. Because
HSMs usually work with sensitive data, it is crucial that we are able to verify that they are
secure. Many HSMs today also include true random number generators (TRNGs) as part
of their architecture to seed cryptographic functions for generating keys, creating nonces,
padding, and more. This thesis presents a definition of Information-Preserving Refinement
with Randomness (IPRR) that captures the idea that a HSM with a TRNG is correct and is
secure from timing side channel attacks. We additionally construct a strategy to prove IPRR,
and develop Karatroc, a tool for verifying that a HSM satisfies IPRR. Through the creation
and evaluation of Karatroc, we demonstrate the ability to verify HSMs with TRNGs with-
out incurring significant added cost in performance and proof length as compared to existing
proof methods.
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Chapter 1

Introduction

1.1 Motivation

When building secure computer systems, a useful method is to factor out key security-

critical functionality onto hardware security modules (HSMs). These HSMs are separate

devices with special purpose software and hardware that perform high security tasks such as

storing keys, signing certificates, and encrypting data. For instance, Google’s Meet devices

contain HSMs that manage firmware rollback and protect user keys [1], and Apple stores

users’ iCloud keys on HSMs in its data centers [2]. Because these devices often contain

sensitive information, it is crucial that they remain secure even if the host computer they

are connected to is compromised.

Ensuring that a HSM is correct, secure, and free of timing side channel vulnerabilities is

difficult, but a promising approach is through formal verification. With formal verification,

we can prove that a HSM satisfies a given specification and that it leaks no additional infor-

mation. Prior work has formalized this into a definition called the Information-Preserving

Refinement (IPR) and developed the Knox framework [3] to verify that a HSM satisfies IPR.

Even so, current tools are limited in the types of HSMs that they can verify, and they cannot

support HSMs that use true random number generators (TRNGs).
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However, many real world HSMs use TRNGs for a variety of security applications and

cryptographic protocols such as key generation, initialization vectors, and secure communi-

cation [4]. Many popular TRNGs on the market today have built-in TRNGs, such as the

Thales Luna Network HSM [5] and the Yubico YubiHSM [6]. Because of the prevalence of

TRNGs in HSMs, it is crucial that we are able to verify security for these HSMs.

Acknowledging these factors, this thesis presents a definition of Information-Preserving

Refinement with Randomness (IPRR) that captures the idea that a HSM is correct and

secure from timing side channel attacks. We furthermore develop a framework, Karatroc,

for verifying that a HSM satisfies IPRR.

More specifically, IPRR defines a relationship between the specification and the imple-

mentation. The specification is a description of the operations that the HSM should perform,

written in a high-level programming language. For instance, the specification of a password-

hasher HSM is shown in Figure 1.1, containing a config function to set up the secret key

with a new random value by sampling random bits through the get_rand_bit() function.

It also contains a hash function that computes the hash of the password concatenated with

the secret.

var secret = 0
var SECRET_LENGTH = 160

def config ():
secret = 0
for i in range(SECRET_LENGTH):

secret = (secret << 1) + get_rand_bit ()

def hash(password):
return sha256(password || secret)

Figure 1.1: The specification of the password-hashing HSM.

The implementation of the HSM refers to the physical circuit, which gets random values

through a physical TRNG.

If the implementation and specification satisfy IPRR, then it ensures two key aspects.
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Firstly, the implementation outputs correct values through a defined sequence of steps. This

also accounts for random values, so for instance the password-hasher implementation would

need to sample random values from the TRNG in order to correctly reflect the secret

variable. Secondly, IPRR asserts that the implementation cannot leak any information

beyond what is revealed by the specification. The specification for the password-hasher has

no way of recovering the secret after it is set. Therefore, the implementation has no way of

leaking the secret either, in both its outputs and its timing behavior. This means that IPRR

would not only rule out circuits that output the secret during execution, but also circuits

that take a longer or shorter time to execute depending on the value of the secret, preventing

the adversary from learning any additional information.

To formalize the definition of IPRR, we use a real/ideal world model, where the real

world is based on the implementation and the ideal world is based on the specification and

is correct and secure by construction. IPRR asserts that for all values that the random

numbers can take, the real and ideal worlds are indistinguishable to the host computer.

1.2 Threat Model

This thesis focuses on powerful adversaries capable of remotely compromising a host machine

and gaining access to the wire-level interface of the HSM, allowing them to observe signals on

output wires and write to input wires. These adversaries can exploit digital-level timing side

channels. For example, if a circuit takes a different number of cycles to compute an operation

depending on a stored secret, the adversary can observe this behavior and potentially deduce

the value of the secret.

However, we do not consider adversaries that can access arbitrary side channels such as

temperature, power, and electromagnetic radiation, as we are primarily concerned with the

scenario where the attacker is remote. Furthermore, the attacker cannot observe the internal

behavior of the HSM, and therefore cannot see wire-level behavior between the HSM and
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the TRNG.

1.3 Goals and Challenges

The security goal of Karatroc is to ensure that a HSM that uses a TRNG correctly implements

its specification and leaks no additional information. We formalize this idea with a defini-

tion called Information-Preserving Refinement with Randomness (IPRR). Subsequently, we

develop a tool to verify that a HSM with a TRNG satisfies IPRR.

We aim for our definition and implementation to support realistic TRNGs, similar to

those currently in use. We want to ensure that our model of the TRNG accurately reflects

the interfaces and the operation of real TRNGs; one, for usability of our tool in the real

world, and two, so that we can make sure the adversary cannot attack the HSM by using

properties of the TRNG that were not captured in the model.

A key challenge of this thesis is to represent randomness in a way that allows us to capture

correctness and security of a HSM. Randomness is traditionally modeled through nondeter-

minism, where one state can transition to multiple states. This is usually sufficient to prove

correctness in settings where randomness in the specification means the variable in the im-

plementation can take any value, by ensuring that every end state satisfies the specification.

However, in our setting, simply using nondeterminism is not enough: we need a way to make

sure that the randomness used in the implementation reflects the randomness used in the

specification, and that no information is leaked through randomness. For instance, consider

the password-hasher example. The secret is specified to be random, but it is not enough

to simply accept implementations that generate any value as the secret. Doing so could lead

to the acceptance of insecure schemes, such as one that always outputs 0 as the secret. As

another example, consider a HSM that implements a function to output a new random word

on every invocation. We do not want to accept implementations where the outputted word

depends on secret state in the HSM, or implementations that reuse the same random word
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every time. Therefore, we need to make sure that the implementation and the specification

use randomness in the same way: if we specify that a variable is random, then that variable

must correspond to some values sampled from the TRNG. As a consequence, we also need

our model to reflect equivalence in randomness between the specification and implementa-

tion. Randomness from the specification’s get_rand_bit function should be represented as

equivalent to the implementation’s new TRNG output, but different from all other sources.

1.4 Thesis Contributions

This thesis makes the following contributions:

1. The definition of Information-Preserving Refinement with Randomness (IPRR), which

captures the idea that a HSM that uses a TRNG correctly implements its specification

and leaks no additional information.

2. A proof strategy to verify that a given HSM satisfies IPRR.

3. Karatroc, a tool that allows developers to verify that their HSMs are secure using the

aforementioned proof strategy.

4. Verified examples of HSMs using Karatroc. This includes a toy example of a random

byte generator and a more complex example of a password hashing HSM that uses

a TRNG. We then use these HSMs to evaluate Karatroc on proof complexity and

performance.

The source code for Karatroc is available at https://github.com/katherinezhao02/karatroc,

and the verified examples are available at https://github.com/katherinezhao02/karatroc-hsm.
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1.5 Thesis Outline

The rest of this thesis is structured according to the following outline. Section 2 provides

background information on HSMs and TRNGs. Chapter 3 introduces the definition of IPRR,

Chapter 4 describes the strategy for proving IPRR, and Chapter 5 describes the implemen-

tation of Karatroc. Chapter 6 presents two case studies for verifying HSMs using Karatroc,

and Chapter 7 evaluates Karatroc using metrics obtained from the two case studies. Chapter

8 discusses the rationale behind, implications, and limitations of some design decisions made

in IPRR and Karatroc. Chapter 9 presents areas for future work, as well as preliminary

progress made for verifying security under a different TRNG model. Finally, Chapter 10

details related works, and Chapter 11 concludes the paper.
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Chapter 2

Background

2.1 Hardware Security Modules

A hardware security module (HSM) is a physical device that is specialized for security-critical

operations. HSMs allow developers to factor out sensitive functions, such as key generation

and authentication, to a machine separate from the main codebase. This allows for stronger

confidence in its security properties, as it is much simpler to reason about a smaller system,

and there are a lot fewer factors that can interfere with its operation.

Some existing examples of HSMs include the Yubico YubiHSM [6] and the Thales Luna

Network HSM [5]. These HSMs are both able to perform several cryptographic algorithms

such as key generation, encryption, and authentication. Both also include built-in TRNGs

that are used to seed functions. Furthermore, major software companies use HSMs to protect

sensitive data. For instance, Google Meet hardware devices come with HSMs that manage

firmware rollback and protect user keys [1], and Apple iCloud uses HSMs in its datacenters

to store user information [2].

Although HSMs can provide strong security guarantees, they are still susceptible to bugs

and side channel attacks. Especially considering the fact that HSMs usually work with

security-critical data, it is important that we are able to verify that HSMs are secure.
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2.2 True Random Number Generators

A true random number generator (TRNG) is a device that generates random numbers based

on a physical process that produces entropy. These sources include radioactive decay, Brow-

nian motion, multi-phase oscillators, flash memory cells, and others [7], [8].

Figure 2.1: The TectroLabs MicroRNG [9]

TRNGs come in a variety of forms and interfaces, but in this thesis we are primarily

concerned with those can interact directly with a circuit. Commercial TRNGs of such kind

provide two main types of interfaces. The first type is one that outputs random bits at

a fixed rate that is often synchronized with a clock, such as the TRNG-P200 [8] and the

RPG100 [10]. Figure 2.2 shows the Verilog module interface of a simplified version of these

TRNGs.

module trng (
input clk ,
input enable ,
output trng_bit);

Figure 2.2: A simplified Verilog module interface of a TRNG that outputs random bits at a
fixed rate. Every cycle of clk, if enable is true, the TRNG outputs a new random bit to
trng_bit. Output is undefined when enable is false.

The other type is one that outputs a longer random word, but having some delay before
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the random word is ready, such as the TectroLabs MicroRNG [9], which uses the UART

protocol, and the neoTRNG [11], which has a flag that goes high when the random word is

ready. An example Verilog interface for this type of TRNG is displayed in Figure 2.3.

module trng (
input clk ,
input reset ,
input enable ,
output data ,
output valid);

Figure 2.3: A Verilog module interface of a TRNG that outputs a random word after some
delay, modeled after the neoTRNG [11]. When a random word is ready and enable is true,
the valid wire will go high and the user can sample the random bit from the data output.
Output is undefined when enable is false.

In this thesis, we will mainly focus on the first TRNG interface, but we will discuss more

about how to perform verification with TRNGs of the other interface in the Chapter 9.
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Chapter 3

Information-Preserving Refinement with

Randomness (IPRR)

In this chapter we provide the definition of Information-Preserving Refinement with Ran-

domness (IPRR). IPRR relates a HSM implementation with a specification that describes

the functions that the HSM should perform. For instance, the specification for the password-

hasher is shown in Figure 1.1, detailing its two operations. An example architectural model

of an implementation for the password-hasher is shown in shown in Figure 3.1, consisting of

C code that is run on a CPU.

IPRR asserts that the implementation correctly implements the functional specification

and that it leaks no additional information beyond the specification.

We start by defining the TRNG model, as well as the specification and implementation

structure, before then providing the definition of IPRR.

3.1 TRNG Model

We model the physical TRNG based on real world TRNGs that output random bits syn-

chronized with the clock, such as the TRNG-P200 [8] and the RPG100 [10].

To represent to nondeterministic behavior of the TRNG, we model the TRNG as being
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Figure 3.1: An example architecture model of a HSM implementation. This HSM uses the
UART protocol to communicate with the host through the tx, rx, rts, and cts wires. It
stores software written in C in ROM and uses ferroelectric RAM (FRAM) for persistent
storage. It also contains a TRNG IO module to interact with the TRNG.

parameterized by an internal state of an infinite stream of bits that represents all future

outputs of the TRNG. This representation simplifies the behavior of the TRNG in terms of

concrete bits that we can then easily reason with and also allows us to define what it means

for two TRNGs be equivalent. For a single stream of bits, the behavior of the TRNG is

deterministic, but randomness is captured by allowing all choices of bit streams.

The interface of the TRNG consists of two wires: the output trng_bit, which outputs

the next random bit, and the input trng_next, which requests a new trng_bit at the next

cycle when set to 1. The trng_next wire is similar to the enable wire from Figure 2.2, but

with some notable differences, discussed in Section 8.1. As in the real world examples, our

TRNG model is able to output a new random bit every cycle if it is requested.

The description of the TRNG model is displayed in Figure 3.2.
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module trng (
input trng_next ,
output trng_bit);

trng_bit = trng_next ? Stream.next() : trng_bit
end module

Figure 3.2: The description of the TRNG model, which outputs a new random bit from the
stream when trng_next is high.

3.2 Implementation

The implementation in IPRR reflects the real world circuit that we want to verify security

for, with an example architectural diagram shown in Figure 3.1. Its interface consists of input

and output wires that the host can interact with, along with the wires that it uses to interact

with the TRNG. As an example, the interface of a password-hashing HSM is displayed in

Figure 3.3. The password-hasher is designed to be used with the UART protocol to send

and receive bits with the host machine through the rx, cts, tx, and rts. To sample random

bits from the TRNG, it uses the trng_next and trng_bit wires.

module pwhash (
input clk ,
input resetn ,
input rx,
input cts ,
output tx,
output rts.
input trng_bit ,
output trng_next);

Figure 3.3: The interface of the physical implementation for the password-hashing HSM.

3.3 Specification

The functional specification describes the behavior of the functions provided by the HSMs.

These specifications can be written in a high-level programming language, making them
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easier to reason about than the circuit implementation.

The specification can represent random values by using the get_rand_bit() function,

as shown in the password-hasher’s specification in Figure 1.1. Internally, the specification’s

state contains an infinite stream of bits, like the TRNG state in the real world, and the

get_rand_bit() function reads the next bit from the stream. We will refer to the specifica-

tion’s infinite stream of bits as the specification’s TRNG.

In addition to the functional specification, the specification in IPRR also includes the

driver. The driver is an object that describes how the host would invoke each spec-level

operation by interacting with the HSM over its wire-level interface. For instance, for the

hash(password) function, the driver code would involve setting the rx wire to the bits of

password one by one and sending them over to the HSM, waiting for the circuit to run,

and then reading the bits of the output from the tx wire. One point to note is that the

driver cannot view or modify the values of the trng_bit or trng_next wires, as these wires

communicate with the TRNG rather than the host.

3.4 IPRR Definition

Using the previously mentioned components, we are able to construct a definition for IPRR,

which is a zero-knowledge style definition that captures the idea that a HSM with a TRNG

correctly implements its specification and leaks no additional information. At a high level,

IPRR says that the real world, based on the HSM implementation, and ideal world, based

on the specification and secure by construction, are indistinguishable given the same TRNG

stream. The definition is depicted in Figure 3.4.

The real world in IPRR reflects how the HSM interacts with the host and the TRNG

in reality. The host can interact with the HSM by either sending arbitrary wire-level I/O

through the physical interface or by sending spec-level operations through the functional

interface. The wire-level I/O can directly interact with the HSM, but the spec-level opera-
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Figure 3.4: Information-Preserving Refinement with Randomness (IPRR), which asserts that
the real and ideal worlds are indistinguishable given access to randomness.

tions must first be read by a driver and translated to wire-level operations. To interact with

the TRNG, the implementation can query the TRNG through the trng_next wire and get

random bits through the trng_bit wire.

The ideal world is based on the specification and is correct and secure by construction.

Like in the real world, the host can interact with the ideal world through the functional

and physical interfaces. However, in the ideal world, the host can directly interact with the

specification through the functional interface, but wire-level I/O must first be translated to

spec-level operations. This is done through the emulator which mimics wire-level behavior

given only query access to the spec. Unlike the driver, the emulator is not part of the

specification and instead is a proof artifact. The existence of any emulator such that the

real and ideal worlds are indistinguishable implies IPRR.

More specifically, the emulator has five main operations, detailed in Figure 3.5. The first

three are exposed to the host and corresponds the wire-level interactions of setting an input,

getting an output, and running for one cycle. The others are for initializing emulator state
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and shutting down the emulator, cleaning up any unresolved operations before switching

back to functional view. One point to note is that the emulator does not have direct access

to the specification’s simulated TRNG and must query the specification through the API if it

needs the values. This ensures that random state that is part of a secret does not get leaked.

However, the emulator does have access to a discard function, which when called, discards

the next bit in the specification’s TRNG stream (security is maintained here because the

function returns nothing so the emulator does not learn anything). This function is necessary

in order to maintain TRNG stream equivalence between the real and ideal worlds. We will

discuss the use case of discard further in Sections 4.4 and 6.1.4.

var emulator_state
# the format and typing of emulator state is specified by the

developer

def with_input(i) # sets the input for the cycle , where the input is
formatted in terms of the input wires to the implementation

def get_output () # gets the values of the output wires

def step() # simulates running the circuit for one cycle

def init() # initializes emulator state

def shutdown () # run when the circuit is reset , usually calls discard
here

Figure 3.5: The functions that the emulator implements.

In IPRR, the host can switch between the functional and physical views at any time.

Switching from functional to physical models situations where the host gets compromised,

so rather than sending inputs based on the specification it can start to send arbitrary I/O

values to the HSM in an attempt to get it to leak information. On the other hand, switching

from physical to functional models recovery of the host machine. When switching from

physical to functional, the driver is reinitialized, and when switching from functional to

physical, the emulator is reinitialized. This ensures that our emulator cannot "remember"
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state outside the specification and is thus secure.

With these factors in mind, we can give our precise definition of IPRR. IPRR states that

there exists an emulator such that for all TRNG streams where the real and ideal worlds are

initialized with the same TRNG stream, the real and ideal worlds are indistinguishable to

the host.

For instance, in the functional view of the password-hasher, the host sends spec-level

commands such as config and hash. In the ideal world, this would interact directly with the

specification, but in the real world, we use a driver to translate these commands into inputs

for the implementation. IPRR states that the output from each of these spec-level operations

is the same for both the real and ideal worlds, capturing the idea that the implementation

correctly follows the specification.

In the physical view, the host can modify the signals of rx, cts, etc, and read the signals

of tx and rts. This can be done directly in the real world, but in the ideal world we need to

translate these signals into spec-level queries through the emulator. Because the specification

has no way of recovering the secret after it is set, the emulator also has no way of recovering

the secret. Therefore, an implementation that satisfies IPRR has no way of leaking the

secret, both directly through its outputs or indirectly through timing, or else its behavior

would differ from the emulator.

It is important to note the order of quantifiers in IPRR: if we were to say "for all TRNG

streams where the real and ideal worlds are initialized with the same TRNG stream, there

exists an emulator such that the real and ideal worlds are indistinguishable to the host", then

IPRR would not capture security. Under this definition, implementations that leak a secret

that depends on randomness could pass because the emulator can depend on the TRNG

stream. For instance, the emulator in the password-hasher would know the secret because

the secret is simply composed of bits from the TRNG, and insecure implementations that

leak the secret would still be considered "secure".
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Chapter 4

Proving IPRR

This section describes the strategy we use to prove that a HSM satisfies IPRR. Given a

circuit description of a HSM and the specification, we start by modeling the circuit, the

specification, and the TRNG as state machines. We then connect the circuit and specification

using a refinement relation, which enables the verification of functional equivalence and

physical equivalence (the idea that the functional view and the physical view, respectively,

are indistinguishable to the host). Together, functional and physical equivalence imply IPRR.

4.1 Modeling State

We model circuit state as the values of all the internal registers and wires. To move between

states, we use a step function that describes how the circuit changes after executing for one

cycle, which we obtain through parsing the implementation code. The circuit’s TRNG state,

as described in the previous chapter, is represented as a stream of bits.

Specification state is modeled as a combination of the state supplied by the developer

(for instance the variable secret in the password hasher in Figure 1.1) which we refer to as

the oracle state, the TRNG state, and the emulator state. The oracle and emulator state are

supplied by the developer, but the TRNG state is represented the same way as the circuit’s

TRNG state: as a stream of bits.
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4.2 Refinement Relation

To prove the properties of physical and functional equivalence, we use the concept of a

refinement relation, denoted by R, to establish the connection between the state of the

implementation and the state of the specification. We require that this relation holds in

between spec-level operations: before or after querying the spec or when switching between

the physical and functional views, but the relation is not required to hold at arbitrary steps

within an operation. The relation is a proof artifact supplied by the developer and imposes

constraints that allow us to reason between the real and ideal worlds. For instance, in the

password-hasher, the refinement relation allows us to identify which locations in memory

hold the secret. For example, by having R in the form spec.secret = impl.fram[1...5],

we specify that after calling config, the secret is saved in locations 1 through 5 (the logic is

more complex in the actual password-hasher but the core idea still holds). Then, when the

implementation returns the values of locations 1 through 5, we are able to verify that these

values correspond to the specification’s secret.

4.3 Functional Equivalence

Functional equivalence asserts that the behavior at the specification level can be derived from

the circuit’s wire-level interface by following the specified I/O protocol of the driver, given the

same initial TRNG state; in other words, the circuit correctly implements the specification

and outputs the same values when the circuit’s TRNG stream and the spec’s TRNG stream

output the same bits. More formally, functional equivalence states that for all circuit and

specification states related by R and for all bit streams t such that the circuit’s TRNG and

the spec’s TRNG both have state t, after invoking an operation on the specification and the

same driver function on the circuit, the output is the same and the final circuit/spec states

continue to be related by R. Furthermore, the final TRNG states of the circuit’s TRNG and
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the spec’s TRNG are the same (we have queried the same number of bits in both streams).

We illustrate functional equivalence in Figure 4.1.

Figure 4.1: Functional equivalence for IPRR, which states that for all implementation states
c1 and spec states f1 that are related by R, for all spec-level operations op, and for all TRNG
streams t1 such that both the implementation’s TRNG and the spec’s TRNG have initial
state t1: (a) the spec-level output v matches the driver output (b) the final states c2 and f2
are related by R (c) the final state of the circuit’s TRNG t2 matches the final state of the
spec’s TRNG

4.4 Physical Equivalence

Physical equivalence states that the circuit’s wire-level behavior can be matched by running

an emulator, which reflects the idea that the circuit is secure and leaks no information beyond

the specification. The emulator is an artifact supplied by the developer that translates wire-

level I/O into queries to the specification. We define physical equivalence as follows: starting

from circuit/spec states related by R and any bit stream t such that the circuit’s TRNG

and the spec’s TRNG both have state t, any wire-level behavior exhibited by the circuit is

matched by the emulator, which makes queries to the specification as it runs. Furthermore,

the final specification state is related by R to the final circuit state (after the circuit is reset
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and the emulator shuts down), and the final TRNG states of the circuit’s TRNG and the

spec’s TRNG match. We illustrate physical equivalence in Figure 4.2.

Figure 4.2: Physical equivalence for IPRR, which states that for all spec states f1 and
implementation states c1 that are related by R, for all bit streams t1 such that both the
implementation’s TRNG and the spec’s TRNG have initial state t1, and for all wire-level
inputs i1, ..., in: (a) the circuit outputs o1, ..., on match the emulator outputs (b) the final
states f3 and c3 (f2 after shutdown and c2 after a reset respectively) are related by R (c)
the final state of the circuit’s TRNG t3 matches the final state of the spec’s TRNG after
emulator shutdown

The transition from c2 to c3 and f2 to f3 models switching from physical view to functional

view. This transition can be performed at any cycle during execution in the physical view.

In the real world, the circuit is reset, while in the ideal world, the emulator runs its shutdown

operation. The circuit’s TRNG stays the same before and after the transition, as the circuit

cannot query the TRNG when it is being reset. However, the emulator’s shutdown operation

is able to make changes to the TRNG; for example with the discard function that allows it

to discard a bit from the specification’s TRNG.

A use case for the shutdown function is with implementations that query the TRNG

multiple times for a single operation (or that query the TRNG once but must perform other

operations as well); then if the circuit is reset before all the queries are performed, the

circuit’s TRNG is left in an intermediate state. For the specification’s TRNG to reflect

this, we use can use the shutdown and discard operations to bring the spec’s TRNG to an
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equivalent state.

4.5 Analysis

Together, functional equivalence and physical equivalence, along with an initialization prop-

erty that simply says that the initial circuit/specification states satisfy R, imply IPRR.

We can understand why this is the case using induction. In IPRR, we assert that the real

and ideal worlds are indistinguishable for any stream of operations. We can break down this

stream of operations into smaller segments by the type of view: physical or functional, and

further break down execution in functional view into executions of individual operations. For

each segment, we want to show that real/ideal world indistinguishably holds, but for most

implementations this is not possible without further assumptions, thereby giving us the need

for the refinement relation. We further need to assume that the TRNG state is equivalent

at the start of the operation to relate the randomness in the real and ideal worlds.

This leads us to the following inductive hypothesis: if we have functional and physical

equivalence along with the initialization property, then for all streams of operations, re-

al/ideal world indistinguishably holds for all operations in the stream, and R and TRNG

state equivalence hold at the end of the stream. We can prove the hypothesis through

standard induction with the following two properties.

• The base case is true: R holds by the initialization property, and the TRNG state is

initialized to be the same for both worlds by our model definition.

• The induction step holds: Assuming that at the end of the last segment of operations,

R and TRNG state equivalence holds, then for all subsequent segments of operations,

real/ideal world indistinguishability is maintained. Furthermore R holds and TRNG

states are equivalent at the end of execution. This is captured by functional and

physical equivalence.
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Chapter 5

Karatroc

This chapter describes how we implement the aforementioned proof technique through our

tool, Karatroc. We developed Karatroc as an extension to the Knox framework [3], using the

Rosette library [12] for the programming language Racket. Karatroc is programmed such

that it preserves functionality for HSMs without randomness; users can specify which mode

they want using the random flag in the specification. Karatroc adds about 274 lines of code

to the base Knox framework.

Karatroc proves IPRR using symbolic execution by representing circuit, specification,

and TRNG state in terms of symbolic variables, then making solver-aided queries through

the Rosette library to verify our desired properties.

5.1 TRNG State Representation

In our theoretical model, we view TRNG state as a stream of bits. To implement this idea in

Karatroc, we represent TRNG state instead as a list of symbolic booleans in order to support

solver-aided verification queries on these values. Since there are no additional assertions or

assumptions on the terms in the TRNG state, the symbolics could take any combination of

values, representing all possible outputs from the TRNG.

The length of the list is a constant inputted by the developer through the flag max-trng-bits,
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representing the maximum number of random bits that a given operation can take. If an

operation takes at most n random bits, then a finite list of > n bits is functionally equivalent

to an infinite stream of bits. Although there can still be an infinite amount of operations,

because we break down the proof of IPRR into proofs of physical and functional equivalence,

we are able to analyze operations one at a time, making it so that our finite list representation

is sufficient in most cases.

However, limiting the length of the list to a constant does exclude us from verifying HSMs

that use an unbounded number of random bits. Even so, many of these HSMs still can be

verified by pivoting to a different interface, which we describe in Chapter 8. Furthermore,

this representation greatly simplifies the implementation logic, and our framework contains

proper error handling for cases where the developer attempts to use more than the specified

number of random bits.

5.1.1 TRNG Update Logic

To implement the execution logic of the TRNG in the real world, we modify the Knox’s

circuit step function, which models running the circuit for one cycle. When step is called,

in addition to updating the circuit state as usual, we check the trng_next wire and update

the TRNG state using the following function in Figure 5.1.

update_trng(trng_next , trng_state) -> trng_bit:
if trng_next:

trng_state = trng_state [1:]
return trng_state [0]

Figure 5.1: The step function, which describes how the TRNG state and outputs change at
every cycle.

In the ideal world, the developer defines how queries to the specification’s TRNG state

are handled. Each operation in the specification has access to the TRNG state and can make

modifications to it. In Karatroc, the developer must directly implement TRNG state reads

and updates; for instance, in order to read a random bit like in the get_rand_bit() function
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in Figure 1.1, the developer must read the first item from the TRNG state list, then discard

that item from the list. Since the specification is trusted, we expect the developer to correctly

implement TRNG state reads and updates, but we will discuss further improvements to the

framework in Section 9.2.

5.1.2 Proving Functional Equivalence

To prove functional equivalence, we initialize a new circuit state and specification state such

that the refinement relationship R holds. We also initialize a new TRNG state, and a copy

is given to both the circuit and the specification. We then run both the circuit (following

the instructions supplied by the driver) and the specification, and use Rosette’s solver-aided

queries to verify that the output is the same, R still holds, and the final TRNG states of

both the circuit and the specification are the same.

5.1.3 Emulator Implementation

In IPRR, in addition to having access to spec-level operations, the emulator also has access

the a discard function that allows it to discard bits from the specification’s TRNG state.

We implement this through Knox’s leak functionality. Knox allows developers to specify

when it is okay for the implementation to leak non-sensitive information by creating a leak

function in the specification. The leak function can be invoked by the emulator, but unlike

other specification functions, it does not need to be verified through functional equivalence

as it is expected that a well behaved host would not execute this function.

We are able to implement the discard function through the leak framework by modeling

discard as a leak that returns nothing but modifies the specification’s TRNG state.
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5.1.4 Proving Physical Equivalence

Similar to functional equivalence, we start by initializing a new circuit state and specification

state such that the refinement relationship R holds and give both the same initial TRNG

state. We also initialize an emulator, supplied by the developer.

To verify physical equivalence, we adapt Knox’s technique of guided symbolic model

checking [3], which is a method that involves exploring every possible state starting from

the initial state. At every step of the exploration, we check that the outputs of the circuit

and emulator match. Furthermore, we check that the R holds and the circuit’s and spec’s

TRNG states are equivalent after resetting the circuit and running the emulator’s shutdown

operation.

To prevent exploration from continuing infinitely, Knox introduces the concept of sub-

sumption. Intuitively, if a given symbolic state A with predicate pA is subsumed by another

symbolic state B with predicate pB, then that means that the set of all possible concrete

values that A under pA can evaluate to is a subset of all possible concrete values that B

under pB can evaluate to. Knox provides an efficient algorithm for subsumption checking, so

therefore, when we reach a state that we have already covered in our exploration, we check

that it is subsumed by a previous state and finish that branch of exploration. Because we

already check that the circuit’s and spec’s TRNG states are equivalent after reset on every

step, there is no need for additional checks in relation to TRNG state on subsumption.

5.1.5 Hints

Karatroc additionally supports Knox’s hints, which allow for human guidance in proofs. All

hints are untrusted and are verified by the framework before application. Karatroc provides

all of Knox’s primitive hints, such as CONCRETIZE to replace a symbolic variable with a

concrete one, REPLACE to rewrite and simplify a symbolic, and OVERAPPROXIMATE to replace

a term with a fresh symbolic. In addition, Karatroc provides a REPLACE-TRNG hint as a
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specialized version of REPLACE for easy simplification of the TRNG state.
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Chapter 6

Case Studies

In this chapter we present two HSMs with TRNGs verified with Karatroc to illustrate the

proof process, demonstrate the key techniques used, and analyze where in the proof the

TRNG can add complexity.

The first case study is toy example of a random byte generator that takes eight random

bits and concatenates them into a random byte. In this case study, we present a detailed

breakdown of the components of the proof.

The second is a password-hasher HSM; this is a HSM that has been verified using the

original Knox framework that we have modified to query random bits instead of requiring

the host to supply a secret. The password-hasher is more complex and runs on a PicoRV32

RISC-V CPU, and verification of this HSM demonstrates the applicability of Karatroc to

more complex hardware and procedures.

Code for both HSMs and their proofs are available at https://github.com/katherinezhao02/

karatroc-hsm.
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6.1 Random Byte Generator

6.1.1 Functional Specification

The specification of the random byte generator holds no state and consists of only a single

operation, get-random-byte which returns a random byte. We depict a Python style version

of the specification in Figure 6.1 for readability, and the real specification, written in Racket,

is included in Appendix A. In Karatroc, the discard function that the emulator uses to

discard bits from the TRNG is also contained within the specification file.

var TRNG

def get -random -byte():
ret = 0
for i in range (8):

ret += TRNG[i] << (7-i)
TRNG = TRNG [8:]
return ret

def discard(n):
TRNG = TRNG[n:]

Figure 6.1: The specification of the random byte generator, which takes eight random bits
and makes a random byte

6.1.2 Implementation Details and Driver

The implementation of this HSM consists of a single Verilog module. The interface consists

of the inputs reset, en, and req to reset the circuit, enable execution, and request a new ran-

dom byte, and the outputs random_word that contains the random byte and output_valid

that goes high when the random byte is available. The code for the implementation is

included in Appendix B.

The driver is also relatively simple, consisting of setting en and req to be true, running

the circuit for eight cycles, getting the output, and then running for one additional cycle to
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reset the circuit.

(define (tick-n n)
(if (zero? n)

(void)
(begin

(tick)
(tick-n (sub1 n)))))

(define (get-random-byte)
(out* 'en #t 'req #t)
(hint concretize-trng)
(tick-n 8)
(let ([r (output-random_word (in))])

(tick)
r)

)

Figure 6.2: The driver of the random byte generator. tick-n is a helper function that runs
the circuit for n cycles. get-random-byte contains the driver code. On the first line we set
the inputs en and req to be true. We then invoke a hint, described in Section 6.1.3, and run
the circuit for 8 cycles to sample 8 bits. Finally, we run for one additional cycle to reset the
circuit and return the output, which we get by invoking the (output-random_word (in))
function.

6.1.3 Proof process: Functional Equivalence

The proof process for functional correctness is relatively straightforward. The only significant

proof component relating to the TRNG is the concretize-trng hint which replaces the

trng_next output and all related variables with concrete values. This is necessary to make

sure that the TRNG state has a concrete length, otherwise it would be represented as a

union of two or more lists (for instance, if the want_next register was a symbolic, then

the TRNG state would be in the form Union(want_next → List(t2, t3, ...), !want_next →

List(t1, t2, t3...))). The union structure is difficult for the framework to reason with and can

cause it to produce assertions that lead future queries to fail.
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6.1.4 Proof process: Writing an Emulator

The emulator for the random byte generator is depicted in Figure 6.3. It has state consisting

of the field circuit, a copy of the circuit that holds dummy data, and the field num-trng,

representing the number of TRNG bits to discard on shutdown. Reading and writing to the

emulator simply involves reading and writing to the circuit copy. The step function involves

some more logic. Since the emulator cannot directly access the TRNG, it must query the

specification. Thus, we design the emulator such that when valid is high (indicating the

circuit is about to return a random byte), it queries the specification to obtain the random

byte and replaces the output. Additionally, the step function detects instances when the

circuit is about to query the TRNG and increments num-trng accordingly. This ensures that

if the circuit restarts before all eight bits are sampled, the emulator can still synchronize the

TRNG state by calling discard(num-trng) on shutdown. If the circuit successfully samples

all eight bits and returns the random byte, num-trng is reset to zero.

6.1.5 Proof process: Physical Equivalence

When proving physical equivalence, we encounter the necessity for more guidance in our

proofs. One reason is due to the fact that there are more opportunities for the TRNG state

to become a union when working with arbitrary wire-level I/O. For instance, at every cycle,

the TRNG state depends on en, so we must do casework to concretize its value. This was

not required in functional equivalence because the driver specified that en is high for the

whole operation, but in physical equivalence the input could take any value.

Another area of additional complexity arises from the representation of symbolic vari-

ables and how subsumption operates in relation to them. When random bits are concate-

nated, the framework creates a long symbolic expression in a form such as (concat (ite

trng-bit$80f.. (bv #b1 1) (bv #b0 1)) (concat (ite trng-bit$f7f.. (bv #b1 1)

(bv #b0 1)) ...), and making subsumption checks with these expressions is expensive.
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(struct state (num-trng circuit))

(define (init)
(set! (state 0 (circuit-new))))

(define (with-input i)
(set! (state (state-num-trng (get)) (circuit-with-input

(state-circuit (get)) i))))

(define (get-output)
(circuit-get-output (state-circuit (get))))

(define (step)
(let ([c (circuit-step (state-circuit (get)))]

[t (state-num-trng (get))])
(if (and

(equal? (get-field c 'valid) (bv 1 1))
(get-field c 'en)
)

(set! (state (- t 8) (update-field c 'cur_word
(spec:get-random))))

(set! (state t c))))

(let ([c (state-circuit (get))]
[t (state-num-trng (get))])

(if (and
(equal? (get-field c 'want_next) (bv 1 1))
(get-field c 'en))

(set! (state (+ t 1) c))
(void)))

)

(define (shutdown)
(spec:discard (state-num-trng (get)))

Figure 6.3: The emulator of the random byte generator. The init function initializes the
emulator as a copy of the circuit with all registers zeroed out and num-trng, the number
of TRNG bits to discard on shutdown, as 0. The with-input and get-output functions
simply read and write to the circuit copy. The step function updates the circuit copy with
the random byte from the specification when needed and updates num-trng as well. Finally,
shutdown discards the corresponding number of TRNG bits from the spec TRNG state on
circuit restart.

Combined with the fact that we must perform many instances of casework and each case

creates a new branch that we need to subsume, this causes the proof of physical equivalence
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to run for over a minute, even though the circuit itself is simple. We are able to reduce

the runtime by replacing the long symbolic expressions with fresh symbolics, but this adds

additional complexity to the proof.

6.2 Password-Hasher

The second HSM that we verify is a password-hasher HSM, which is a HSM that is used

to compute peppered password hashes. A peppered hash is similar to a salted hash, but

instead of having a different salt for every password and storing the salt along the hash, the

pepper is kept secret on the HSM. This HSM is adapted from a similar password-hashing

HSM that does not use a TRNG, which was verified with Knox. We change the HSM such

that instead of requiring the host to supply a random secret, we are able to generate the

secret internally in the HSM.

6.2.1 Functional Specification

The specification is displayed in Figure 6.4, which is an equivalent version of the specification

shown in Figure 1.1 but adapted to the new framework and TRNG state representation. Like

with the random byte generator, the specification in Figure 6.4 is a Python style adaptation

for readability, and Karatroc’s specification is provided in Appendix C.

Compared to the original password-hasher, we change the config function to sample

random bits from the TRNG instead of requiring the host to input a secret. The specification

for the original password-hasher is displayed in Figure 6.5 to serve as a comparison.

6.2.2 Implementation Details and Driver

The implementation of the password-hasher consists of C code with a PicoRV32 CPU. The

wire-level interface is presented in Figure 3.3. To enable interaction between the PicoRV32

and the TRNG, we create a MMIO module that translates reads to the x40007000 address to
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var secret = 0
var TRNG
var SECRET_LENGTH = 160

def config ():
secret = TRNG [0: SECRET_LENGTH]
TRNG = TRNG[SECRET_LENGTH :]

def hash(password):
return sha256(password || secret)

def discard(n):
TRNG = TRNG[n:]

Figure 6.4: The specification of the password-hashing HSM.

var secret = 0
var SECRET_LENGTH = 160

def config(new_secret):
secret = new_secret

def hash(password):
return sha256(password || secret)

Figure 6.5: The specification of the original password-hashing HSM that requires the host
to input the secret.

a query of eight bits to the TRNG. Then, the C code for the config function simply involves

reading from address x40007000 20 times (since our secret has length 160), as presented in

Appendix D.

The driver involves minimal changes compared to the original driver code for the password-

hasher without randomness, the only main difference being that there is no need for the host

to send the secret to the HSM, since it can now generate a random secret by itself.

6.2.3 Proof Process

The proof for functional correctness also involves minimal modifications, with the only main

change being the addition of the concretize-trng which functions the same way as in the
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random byte generator. Same could be said for the emulator, where the only main additions

are the shutdown function that calls discard the appropriate number of times, and an

additional emulator state to store how many TRNG bits should be discarded.

The proof for physical equivalence involves more data processing, for similar reasons as

the random byte generator. Because concatenated TRNG bits create long symbolic expres-

sions, the final subsumption checks are very expensive, even more so here since the secret

involves 160 random bits, and cause the subsumption check to time out. To resolve this, we

must replace the long symbolic representation of the secret with fresh symbolics using the

REMEMBER, REPLACE, and CLEAR hints.

Other than these hints however, the proof for physical equivalence actually involves less

complexity in relation to the TRNG than that of the toy random byte generator HSM.

The reason for this is mainly due to the fact that after the host sends the initial bits, the

execution of the circuit in relation to the TRNG is deterministic. The circuit will always

query the TRNG 20 times in batches of 8, while in the random byte generator HSM, the host

has an ability to interrupt the TRNG queries at any time by turning off the en wire. The

deterministic nature of the execution in the password-hasher prevents the TRNG state from

becoming a union data structure that our framework has difficulty processing and eliminates

the need to branch every cycle.
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Chapter 7

Evaluation

We evaluate Karatroc with the following questions:

• Can IPRR and Karatroc be used to verify HSMs with TRNGs? How practical is using

Karatroc to verify HSMs?

• What is the performance of Karatroc? How long does it take for machines to execute

and verify our proofs in Karatroc?

• How long are the proofs written with Karatroc?

• How does performance and proof length scale with the size of the implementation and

the amount of random bits used?

In this chapter, we start by answering the second and third questions through metrics

from the password-hasher. We measure performance by timing how long it takes for our

machine to run the physical and functional equivalence proofs, and we analyze proof length

by looking at the ratio between the lines of code it takes for the implementation and the

lines of code it takes for the proof. To serve as a comparison, we also include metrics for the

password-hasher without a TRNG that was verified with Knox. Through our comparison,

we are able observe if proofs with Karatroc are significantly more expensive than proofs with

existing methods.
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Then, we present an overarching analysis of all four questions in Section 7.3. We detail

our overall conclusion of the performance and proof complexity of Karatroc as well as the

main bottlenecks. We also analyze how runtime and proof complexity scale. Finally, we

evaluate how practical and applicable Karatroc is to verifying HSMs with TRNGs.

7.1 Proof Length Metrics

We compare the size of the implementation and proof for the password-hasher with ran-

domness to that of the original password-hasher. The results are displayed in Table 7.1.

We break down the implementation into the hardware components (such as the PicoRV32

description) and the software components (the C code), and the proof into R, functional

equivalence, physical equivalence, and the emulator.

HSM HW SW Total Impl

PWHash w/ TRNG 3115 244 3359
PWHash w/o TRNG 3020 240 3260

HSM R Func eq Phys eq Emulator Total Proof Proof : Impl

PWHash w/ TRNG 110 143 385 77 715 0.213
PWHash w/o TRNG 106 142 369 72 689 0.211

Table 7.1: Lines of code for the implementation and proofs of HSMs, as well as a lines of
proof to lines of implementation ratio. Implementation code is broken down into hardware
and software components. Proof code is broken down into R, functional equivalence, physical
equivalence, and emulator.

We observe that there is not much increase in proof size, with only a 1% difference in the

proof to implementation ratio between the two HSMs. Indeed, R, functional equivalence,

and the emulator only increase in size for a maximum of 5 lines each. The proof for physical

equivalence increases by 16 lines to support symbolic variable simplification, but this is

insignificant to the overall size of the proof. Therefore, we can conclude that verifying HSMs

with TRNGs using Karatroc does not necessarily impose a significant additional burden on

the developer than verifying one without a TRNG using previously existing tools.
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7.2 Performance Metrics

To analyze the performance of the password-hasher with randomness, we compare the run-

times of the functional equivalence and physical equivalence proofs to those of the password-

hasher without randomness. Results are shown in Table 7.2.

HSM Func Eq Phys Eq Total Time

PWHash w/ TRNG 41min 10min 51min
PWHash w/o TRNG 61min 4min 65min

Table 7.2: Runtime for the proofs of each HSM in minutes, evaluated on a 2022-era AMD
Ryzen 9 5900HX.

The password-hasher with the TRNG actually outperforms the password-hasher without

a TRNG in functional equivalence by a significant amount, taking only 41 minutes to run

as opposed to 61 minutes. The main reason for the decrease in runtime is the change in the

interface for the config function; in the original password-hasher, the host needs to send

the secret to the HSM using the UART protocol, and verifying this portion of the execution

is expensive. This is because UART is an asynchronous protocol, and the host is allowed to

wait an arbitrary number of cycles before sending and receiving bytes to the HSM. Therefore,

when we symbolically execute this protocol, we must branch for every possible state of the

circuit that could exist while the host waits. This turns out to be very expensive, especially

since we must send bytes 20 times to make up the 160 bit secret. In contrast, because the

password-hasher with the TRNG can generate the secret internally rather than needing the

host to supply it, we are able to simplify the proof.

Verifying physical equivalence is more expensive with the TRNG. One reason for the

increase in cost is the fact that we need to check TRNG equivalence at every step, and since

physical equivalence runs the circuit for thousands of steps, this causes a noticeable increase

in runtime. A second reason is that the TRNG bits cause some values to turn into long

symbolic expressions, slowing down execution.
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Even so, the overall runtime for the password-hasher with the TRNG is lower than the

one without, allowing us to conclude that the time cost in verifying HSMs with TRNGs

using Karatroc is not necessarily higher than that in verifying a HSM without a TRNG.

7.3 Overall evaluation

Through the verification of the HSM, we are able to analyze performance and complexity of

proofs written with Karatroc and answer our original evaluation questions.

On practicality, performance, and proof length, we see that proofs written in Karatroc

are not significantly more complex or runtime expensive than proofs in the baseline Knox

framework. This shows that we are able to verify HSMs with TRNGs without incurring

substantially more cost than what we would spend verifying HSMs without TRNGs. In fact,

adding a TRNG may simplify some HSMs and cause proofs to be easier by enabling the

design of verifiable HSMs that can directly sample random bits from a TRNG instead of

requiring additional communication from the host.

We are also able to analyze the proofs of the two HSMs and identify the main sources of

complexity associated with the TRNG. These sources include:

• The need for casework when faced with nondeterministic queries to the TRNG to

prevent the TRNG state from turning into a union data structure.

• Expensive subsumption checks when the TRNG bit representation causes some values

to turn into long symbolics.

• The additional check to make sure that TRNG states for the circuit and specification

are the same after circuit reset and emulator shutdown. We must perform this check

at every step in the physical equivalence proof.

When it comes to scalability, the actual impact on runtime and proof complexity depends

largely on how the implementation utilizes the random bits and how hints in proofs are
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used to simplify symbolic variable representations. However, we do observe that even when

we sample 160 random bits with the password-hasher, the proof complexity and runtime

remain generally unchanged compared to the proof of the password-hasher without a TRNG,

suggesting that the impact of the TRNG on the proof does not tend to scale in a signficant

way.

Finally, on ability to verify HSMs with TRNGs, we demonstrate that Karatroc is able

to verify small HSMs with TRNGs. Although many existing HSMs on the market are much

more complex and serve more than just one function (for instance, the Thales Luna Net-

work HSM [5] is able to encrypt data, store keys, perform signatures, and more), Karatroc’s

password-hasher contains implementation features found in real-world HSM hardware and

software: for example, the microprocessor, I/O peripheral, persistent memory, and cryptog-

raphy.
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Chapter 8

Discussion

This chapter discusses some design decisions made in IPRR and Karatroc, and their impli-

cations and limitations.

8.1 TRNG Model

We model the TRNG in Karatroc after real world TRNGs that output one bit every cycle.

One notable difference between our model and real-world instances is the trng_next wire,

which is similar to the enable wire in existing TRNGs but with an important difference.

The output is undefined when enable is false, but the circuit holds on to the last output

when trng_next is false. Our representation allows us to simplify the behavior of TRNGs for

easier reasoning, and while real-world TRNGs may behave differently, it is straightforward

to adapt a TRNG interface with enable to our model. We can do this by setting enable

to be true, then adding a simple intermediate circuit (such as a D Flip Flop) that stores the

random bit until the HSM requests it.

Another interesting point to note is that including the trng_next input makes verifying

the HSM more feasible. If we abstracted away the wire so that the TRNG model simply

outputted one bit every cycle, the TRNG state would have be the length of the whole

execution, which would be difficult to represent for operations that could take an unbounded
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number of cycles. Furthermore, the specification would need to know exactly which cycle

that the HSM uses the random bits so that it can describe its change in state or output in

terms of those bits. We believe that this places too much burden on the developer, especially

with complex implementations that involve a CPU or operations where the host can wait

for an unspecified number of cycles through the yield function.

8.2 TRNG State Representation

To implement the TRNG in Karatroc, we modeled the stream of random bits as a finite length

list of symbolic bits. We made this decision to simplify our implementation logic. However,

this representation excludes us from verifying HSMs that use an unbounded number of

random bits per operation, notably those that use rejection sampling and read random bits

until it gets a value that fits its requirements.

Even so, we can still verify these HSMs through Karatroc using an alternate structuring

of the specification. The specification could expose a "retry" output, where the HSM would

output "retry" after it samples a certain number of random bits without getting its desired

value and prompt the user to run the operation again. For this reason, we believe that our

representation of TRNG state is reasonable.

8.3 TRNG Interface Selection

In Section 2.2, we introduced the two main interfaces of existing TRNGs. For our definition

of IPRR, we modeled our TRNG after the interface in which the TRNG outputs a bit every

cycle. This interface’s predictable behavior allows us to create a concise and intuitive security

definition as well as a proof technique that, as analyzed in the evaluation section, poses no

significant additional cost to the developer. However, this interface may not be suitable for

every HSM. For instance, if a HSM needs to create a random string that has a long length,

it must concatenate many TRNG bits, as performed in the password-hasher example. The
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HSM would need to wait for the TRNG to generate bits one by one, which may not be

suitable for HSMs where performance is important. Furthermore, the concatenation process

can lead to long symbolics that depend on each TRNG bit, increasing proof complexity.

In contrast, the second TRNG interface, where a longer random word is outputted after

some delay, may be a better fit for some HSMs. With this interface, we can directly sample

longer random words rather than needing to wait and concatenate them bit by bit. In our

Future Work section, we propose a new IPRR definition for this interface (Valid/Ready

IPRR).
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Chapter 9

Future Work

9.1 Valid/Ready IPRR

Future work includes presenting a definition that captures correctness and security for HSMs

that use the valid/ready style interface of TRNGs. In this section we propose a definition

for Valid/Ready IPRR (V-IPRR), as well as show preliminary work in developing a proof

strategy for V-IPRR and implementing a tool to prove that a HSM satisfies V-IPRR. The

main challenge with working with this model of TRNG is that the TRNG can leak informa-

tion through its timing behavior, and therefore in our definition we capture the idea that no

secret information is exposed to the TRNG.

9.1.1 Valid/Ready IPRR Definition

TRNG Model

We model the physical TRNG based on real world TRNGs that output random words after

some delay, such as the neoTRNG [11], the microRNG [9], and the second interface of the

RPG100 [10].

Our TRNG model uses a standard valid/ready interface, where the random byte is trans-

ferred from the TRNG to the HSM when both the HSM says "ready" and the TRNG says
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"valid". The interface of the TRNG consists of three wires: the input trng_req for the HSM

to indicate that it is ready to receive the random word, the output trng_valid that goes

high when the TRNG has a valid random word, and the output trng_word that contains

the actual random word.

It is reasonable to assume that the TRNG’s random words are independent of all other

variables, so we represent the internal state of the TRNG model as a stream of words. In

contrast, the delay that the TRNG takes before outputting the next word may be dependent

on other factors. For instance, in the RPG100 [10], the TRNG internally stores up to 32

random words. This means that if the HSM requests many random words in succession and

uses up the stored random words, the delay may be longer than if we have not requested any

random words in a while. Therefore, to model the delays, we represent it as being generated

by an uninterpreted function that takes as input the past history of requests.

More specifically, the TRNG update logic follows the code outlined in Figure 9.1.

history = []
stream = new Stream ()
delay = randInt ()
delay_gen = new UninterpretedFunction ()
cycle_count = 0

update_trng(trng_req) -> (trng_valid , trng_word):
valid = False
word = 0
if delay == 0:

valid = True
if trng_req:

history.append(cycle_count)
word = stream.next()
delay = delay_gen(history)

else:
delay -= 1

cycle_count += 1
return valid , word

Figure 9.1: The update logic of the valid/ready TRNG model.
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Implementation

The HSM implementation follows the structure in the original IPRR, but now with the

trng_req, trng_valid, and trng_word wires to communicate with the TRNG.

Specification and Timing Simulator

The TRNG state for the ideal world matches that of the real world, namely history, stream,

delay, delay_gen, and cycle_count. However, the specification only has access to the

stream, since the timing behaviors of the circuit and TRNG are implementation specific

details. To interact with the other TRNG state variables, we introduce a new object, the

timing simulator. The timing simulator is an object that has access to the history, delay,

delay_gen, and cycle_count states and its own internal state. It exposes only one op-

eration, simulate, that is automatically called after every spec-level operation. Like the

emulator, the timing simulator is a proof artifact supplied by the developer.

However, this alone is not enough for the timing simulator to feasibly simulate the timings

of each operation. Drivers may include the yield function, which represents the host waiting

for arbitrary number of cycles. Without knowing how long the host waits, the ideal world

cannot simulate the timings of the real world. Therefore, in addition to the previous states,

the timing simulator also has access to the yield timings of the host in the form of a stream,

where the ith request to the stream outputs the amount of time the host waits in the ith

yield call.

Emulator

In addition to having access to the discard function, the emulator also has access to a

get_timing function, which returns the history, delay, delay_gen, and cycle_count

states. Security is still maintained because these states are only modified by the timing

simulator, which knows nothing except for the number of operations invoked and the yield

timings of the host. We assume that the yield timings of the host do not reveal any
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information, which we believe is reasonable since we assume that hosts are well-behaved

under the functional interface. The number of operations invoked is also leaked, but we

believe that this is acceptable for most HSMs, and we will discuss this more in Section

9.1.4. Therefore, the emulator can learn no additional information, except for the number

of previous operations, from the exposed states, keeping the ideal world secure.

Definition

With these components, we can present our definition of Valid/Ready IPRR, which cap-

tures the idea that the HSM correctly implements the specification and leaks no additional

information beyond the number of previous operations invoked. Valid/Ready IPRR follows

the same real/ideal world structure as the original IPRR and contains the same functional

and physical views. Similarly, we can also switch between views; switching from functional

to physical reinitiates the emulator and the timing simulator, and switching from physical

to functional reinitiates the driver and the timing simulator. Furthermore, switching from

physical to functional resets the history and delay states of both the TRNG state in the

real and ideal worlds to an empty list and a new random integer, as we can assume that

when the circuit gets reset the TRNG does as well.

Then, Valid/Ready IPRR states that there exists an emulator and a timing simulator,

such that for all TRNG states where the real and ideal worlds are initialized to the same

TRNG state, and for all yield timings, the real and ideal worlds are indistinguishable to the

host, as depicted in Figure 9.2.

9.1.2 Proof Strategy

The proof strategy for V-IPRR follows the same general structure as the original IPRR, but

we make changes to functional and physical equivalence to account for the nondeterministic

delay before a TRNG word is outputted. We also split functional equivalence into two

components: functional output equivalence, which mirrors the original functional equivalence
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Figure 9.2: Valid/Ready Information-Preserving Refinement with Randomness (V-IPRR),
which asserts that the real and ideal worlds are indistinguishable given access to randomness
in a setting where the TRNG has a valid/ready interface.

in IPRR, and functional timing equivalence, which ensures that spec-level operations in the

real world are able to be correctly simulated by the timing simulator.

V-IPRR Functional Timing Equivalence

Functional timing equivalence states that for all circuit states c1, c2 and specification states

f1, f2 such that R(c1, f1) and R(c2, f2) holds, for all TRNG states t such that c1, c2, f1, f2

all have TRNG state t, and for all yield timings streams y, after invoking any spec-level

operations op1 on c1 and op2 on c2 such that the ith yield of each operation waits for time

matching the ith output of y, the final TRNG states of c1 and c2 are the same. This ensures

that the interaction between the implementation and the TRNG does not depend on any

secret state, therefore no information is leaked to the TRNG and thus the timing simulator

can simulate the behavior. Functional timing equivalence is depicted in Figure 9.3.
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Figure 9.3: Functional timing equivalence for V-IPRR, which states that for all implemen-
tation states c1, c2 and spec states f1, f2 where R(c1, f1) and R(c2, f2) hold, for all spec-level
operations op1, op2, for all yield timing streams y, and for all TRNG streams t1 such that
both the implementations and specifications have initial TRNG state t1: the final state of
the TRNG t2 matches for both implementations.

V-IPRR Functional Output Equivalence

Functional output equivalence states that for all circuit and specification states related by R,

for all TRNG states t such that the circuit’s TRNG and the spec’s TRNG both have state t,

and for all yield timings stream y, after invoking an operation on the specification and the

same driver function on the circuit, the output is the same and the final circuit/spec states

continue to be related by R. Furthermore, the final TRNG states of the circuit’s TRNG and

the spec’s TRNG are the same. Functional output equivalence is depicted in Figure 9.4.
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Figure 9.4: Functional output equivalence for V-IPRR, which states that for all implemen-
tation states c1 and spec states f1 that are related by R, for all spec-level operations op, all
yield timings y, and all TRNG streams t1 such that both the implementation’s TRNG and
the spec’s TRNG have initial state t1: (a) the spec-level output v matches the driver output
(b) the final states c2 and f2 are related by R (c) the final state of the TRNG t2 matches
the final state of the TRNG

V-IPRR Physical Equivalence

Physical equivalence for V-IPRR states that starting from circuit/spec states related by R

and any TRNG state t such that the circuit’s TRNG and the spec’s TRNG both have state

t, any wire-level behavior exhibited by the circuit is matched by the emulator, which makes

queries to the specification as it runs. Furthermore, the final specification state is related

by R to the final circuit state (after the circuit is reset and the emulator shuts down) and

the final TRNG stream and cycle_count states match. Note that we do not require all

components of the final TRNG states to match. This is because after the circuit is reset we

also assume that the TRNG history and delays are reset as well. Physical equivalence for

V-IPRR is depicted in Figure 9.5.
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Figure 9.5: Physical equivalence for V-IPRR, which states that for all spec states f1 and
implementation states c1 that are related by R, for all bit streams t1 such that both the
implementation’s TRNG and the spec’s TRNG have initial state t1, and for all wire-level
inputs i1, ..., in: (a) the circuit outputs o1, ..., on match the emulator outputs (b) the final
states f3 and c3 (f2 after shutdown and c2 after a reset respectively) are related by R (c) the
final state of the circuit’s TRNG t4 and the final state of the spec’s TRNG t5 have the same
stream and cycle_count states

9.1.3 Preliminary Work on Implementation

One major difference between V-IPRR and IPRR is that in V-IPRR, there is a nondeter-

ministic delay before the next TRNG word is ready, while in IPRR the random bit is always

outputted in the next cycle. For functional output and timing equivalence, we must make

sure that the property holds for every possible delay. We have implemented this portion of

the proof in order to test its functionality and performance.

We implement the nondeterministic delay in a similar way that Knox handles the yield

call, by finding a fixed point [3]. A fixed point is defined as a set of symbolic terms such

that the set is closed under the step function, and represents all possible circuit states after

waiting for any number of cycles. We introduce the wait-trng hint, which, when called,

creates a fixed point by setting the delay state to 1 at the start of every cycle and iteratively

stepping the circuit, stopping when the next circuit state is already covered by a previous

one. This models running the HSM for an arbitrary number of cycles while the TRNG is
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not ready yet. When the fixed point is completed, we branch on every element in the fixed

point and set delay to 0.

We also conduct preliminary tests on the wait-trng to analyze its performance. Since

wait-trng creates branches every time we query for a new random word, this could lead to

an exponential number of branches if we create two or more branches in every fixed point.

However, through testing on the password-hasher HSM, we discover that with the proper

use of hints, the wait-trng usually just creates a fixed point of size 1, since the circuit

blocks and maintains the same state while it waits for the TRNG to respond. Therefore, we

can conclude that for many implementations, resolving the nondeterminism of delay timings

does not incur a significant cost on the proof. More analysis needs to be done on other

components of the implementation, however.

9.1.4 Preliminary Evaluation

Although more work needs to be done on the proof strategy and the implementation, and

likely changes will be made, we can conduct some preliminary analysis on the V-IPRR

definition, assumptions we have made, and feasibility of development.

V-IPRR and IPRR provide different security guarantees, as V-IPRR allows leakage of

the number of previous operations performed. For many HSMs, this leakage is acceptable;

for instance in the password-hasher we care about maintaining security of the secret but not

how many calls were made to the HSM. A natural question that follows is how we can modify

V-IPRR to prevent leakage of the number of previous operations. This would likely involve

changing the TRNG model or making additional assumptions, as under the current model

a TRNG that has been queried has different state than the initial TRNG, and therefore all

subsequent queries to the TRNG will leak information about previous operations.

A key assumption we make for V-IPRR is that all history is remembered by the TRNG.

The rationale behind this assumption is to capture all possible internal behaviors of a TRNG.

For instance, a TRNG that can store n random words would be able to "remember" the n
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past queries (for example if we wait for a long time then perform n + 1 queries in rapid

succession, we will get n fast responses and 1 slow response). However, the assumption may

be too strict, as it would be reasonable to think that after a certain amount of time, the

TRNG forgets past state. Our model currently has no way of representing forgetting history.

Another point of evaluation is on the feasibility of developing HSMs that satisfy V-IPRR.

The HSMs would need to ensure that TRNG query timings, as well as overall runtime of each

operation, is the same for all operations, so that no information is leaked to the TRNG. This

may be difficult to do for HSMs that use CPUs. Furthermore, maintaining the property may

decrease performance. For instance, the password-hasher would need to sample the TRNG

in the hash function, even though there is no need for additional randomness.

9.2 Improvements to Karatroc

An area for future work is in improving the practicality of use and performance of Karatroc.

One component in Karatroc proofs that leads to additional proof complexity and greater

runtime is the need to branch many times to prevent the TRNG state from becoming a union

data structure. This is because the current framework has trouble processing unions. When

the representation becomes too complex and it is not immediately clear when something can

go wrong, the framework will often emit assertions to be checked later (such as making sure

we do not go out of bounds on a list), and many components of the base Knox framework do

not support unions. However, if we could give Karatroc the ability to automatically simplify

TRNG state when it becomes a union or to add logic for unions in currently unsupported

areas, this could remove the need to create a lot of branches in the proof in many instances.

Another area for improvement in Karatroc is greater abstraction of the specification.

The developer is currently required to manually specify how the TRNG state changes, and

it would simplify the workflow if Karatroc provided abstractions such as a get_rand_bit

function that automatically returns the next random bit and modifies the TRNG state.
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Furthermore, the discard function must currently be contained within the specification

file, but since every emulator should have access to discard, it would make more sense to

incorporate it into the framework instead.
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Chapter 10

Related Works

10.1 Information-Preserving Refinement

Our definition of IPRR extends the idea of Information-Preserving Refinement (IPR) [3].

IPR is a zero-knowledge style definition that captures the notion that an implementation

correctly implements its specification and leaks no additional information. IPR asserts the

indistinguishability of two worlds: a real world that is based on the HSM implementation,

and an ideal world that is based on the specification and secure by construction.

10.2 Knox

Knox [3] is a framework that uses symbolic execution to verify that a HSM satisfies IPR.

Knox does not support nondeterministic specifications, and thus cannot verify HSMs that

use TRNGs. Karatroc extends Knox, enabling the verification of HSMs that use randomness.

Key features that Karatroc provide include the representation of the TRNG model, addi-

tional verification checks for TRNG state when proving functional and physical equivalence,

and new functions such as shutdown and discard.
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10.3 Verification of Security with Randomness

This section describes previously used techniques to verify security in the context where

nondeterminism and randomness is present.

10.3.1 Stepwise Refinement

Stepwise refinement is a method that involves starting from an abstract program and refining

it step by step towards a concrete program. Prior work in preserving security in stepwise

refinement has coined the idea of a “refinement paradox”, which is the notion that a nonde-

terministic secure program can be refined into a deterministic but insecure program, due to

the fact that many security properties are not preserved under refinement. For instance, a

program that allows nondeterminism in a variable v could be refined by a program that sets

v to be equal to a secret value. This problem is very similar to issues we considered when

developing the TRNG model in Karatroc, where we needed to design our model such that

such insecure deterministic programs are excluded in the definition of IPRR.

To handle the refinement paradox, previous works have developed a framework where

secrecy is preserved under refinement [13] and created an operational model that alters

refinement for sequential programs such that ignorance of secret variables is maintained [14].

10.3.2 Restricting Nondeterminism

Another way to handle nondeterminism when verifying security is to restrict the nondeter-

minism allowed in specifications. For instance, in verifying seL4, to prevent nondeterminism

from revealing secrets, Klein et al. [15] remove user-visible nondeterminism by replacing

nondeterministic operations in the specification with placeholders derived from determinis-

tic implementations. Constanzo et al. [16] use a similar strategy, disallowing specifications

from exhibiting visible nondeterminism. However, this is not a valid strategy in the setting

of IPRR, as we want to permit and verify nondeterministic specifications.
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10.3.3 Factoring Out Nondeterminism

The work of Ileri et al. [17] describes modeling randomness in a similar setting. The paper

presents DiskSec, an approach for verifying confidentiality for file systems, which requires

that the adversary cannot observe differences correlated with confidential data. Because

many specifications of file systems can be nondeterministic, DiskSec also faces the challenge of

verifying security without leaking information through nondeterminism (for instance through

nondeterministic ordering of files). DiskSec handles this by factoring out an oracle that

supplies all nondeterminism. Then, DiskSec requires that the required equivalence holds for

all choices of the oracle. DiskSec’s approach regarding randomness is similar to our strategy,

by factoring out nondeterminism and proving that our security and correctness properties

hold for all values of the random variables.

Ironclad [18] is another system that provides verified security by factoring out random-

ness. Ironclad provides access to secure randomness via a Trusted Platform Module (TPM),

and applications that correctly use randomness from the TPM can be verified as secure. The

TPM has many similarities to Karatroc’s TRNG, both being trusted modules that provide

access to a stream of secure random numbers.

10.3.4 Probabilistic and Statistical Verification

Other works related to verifying programs with randomness include the work of Susag et

al. [19] which proves probabilistic properties of a program. They do this by introducing

a class of probabilistic symbolic variables and computing symbolic branch probabilities.

In addition, the work of Eldib et al. [20] uses statistical analysis to verify the security of

masking countermeasures against power analysis based side channel attacks. In their paper,

they introduce the concept of perfect masking, which is the idea that intermediate results are

statistically independent of the sensitive data. Although these papers take approaches that

are rather different from that of Karatroc, since we does not currently support probabilistic
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specifications nor statistical analysis of distributions, they could be interesting directions to

investigate as future work.
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Chapter 11

Conclusion

This thesis presents IPRR, a zero-knowledge style definition that captures the idea that

a HSM that uses a TRNG correctly implements its specification and leaks no additional

information. This thesis also develops a proof strategy for verifying that a HSM satisfies

IPRR, and Karatroc, a tool that implements the proof strategy. Through evaluation of

Karatroc on sample HSMs, we are able to conclude that proofs written with Karatroc perform

similarly to and have similar complexity as those written with existing verification tools.

We furthermore present a definition of V-IPRR, which adapts IPRR to TRNGs with a

valid/ready interface, and nondeterministic and history dependent delays.
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Appendix A

Random Byte Generator Specification

#lang knox/spec

#:init s0

#: symbolic-constructor new-symbolic-state

#: methods

(get-random)

#:leak discard

#: random #t

#: max-trng-bits 10

(provide discard)

;; stateless

(define (new-symbolic-state)

(void))

(define s0 (void))
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(define (make-word t n)

(if (equal? n 1)

(bool- >bitvector (car t) 1)

(concat (bool- >bitvector (car t) 1) (make-word (cdr t) (- n

1)))))

(define (update-trng t n)

(if (equal? n 0)

t

(update-trng (cdr t) (- n 1))))

(define (( get-random) s)

(define t (rstate-trng s))

(result (make-word t 8) (rstate (rstate-spec s) (update-trng t

8))))

(define (( discard n) s)

(define t (rstate-trng s))

(result #f (rstate (rstate-spec s) (update-trng t n))))
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Appendix B

Random Byte Generator

Implementation Code

module rng#(

parameter WIDTH = 8

)(

input clk ,

input reset ,

input en,

input trng_bit ,

output trng_next ,

input req ,

output [WIDTH -1:0] random_word ,

output output_valid ,

);

reg [WIDTH -1:0] cur_word;
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reg [5:0] cur_bit_ind;

reg valid;

reg want_next;

reg reset_ind;

always @(posedge clk) begin

if (reset) begin

cur_word <= 0;

cur_bit_ind <= 0;

valid <= 0;

want_next <= 0;

reset_ind <= 0;

end

else if (en) begin

if (cur_bit_ind <= WIDTH -1) begin

cur_word <= (cur_word <<1) + trng_bit;

cur_bit_ind <= cur_bit_ind + 1;

end

if (reset_ind) begin

cur_bit_ind <= 0;

valid <= 0;

want_next <= 0;

cur_word <= 0;

reset_ind <= 0;

end else if (req && cur_bit_ind >= WIDTH -1) begin

valid <= 1;

reset_ind <= 1;

want_next <= 1;

end else if (cur_bit_ind >= WIDTH -1) begin

valid <= 0;
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want_next <= 0;

end else begin

want_next <= 1;

valid <= 0;

end

end

end

assign trng_next = en ? want_next:0;

assign output_valid = en ? valid:0;

assign random_word = en ? (valid ? cur_word:0) : 0;

endmodule
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Appendix C

Password-Hasher Specification

#lang knox/spec

#:init s0

#: symbolic-constructor new-symbolic-state

#: methods

(set-secret)

(get-hash [msg (bitvector MESSAGE-SIZE)])

#:leak discard

#: random #t

#: max-trng-bits 161

(require rosutil

(only-in "spec-sha256.rkt" sha256))

(provide

SECRET-SIZE

SECRET-SIZE-BYTES

MESSAGE-SIZE
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MESSAGE-SIZE-BYTES

new-symbolic-state

set-secret

get-hash

s0

discard)

(define SECRET-SIZE-BYTES 20)

(define SECRET-SIZE (* 8 SECRET-SIZE-BYTES))

(define MESSAGE-SIZE-BYTES 32)

(define MESSAGE-SIZE (* 8 MESSAGE-SIZE-BYTES))

(define (new-symbolic-state)

(fresh-symbolic 'secret (bitvector SECRET-SIZE)))

(define (make-word t n)

(if (equal? n 1)

(bool- >bitvector (car t) 1)

(concat (bool- >bitvector (car t) 1) (make-word (cdr t) (- n

1)))))

(define (update-trng t n)

(if (equal? n 0)

t

(update-trng (cdr t) (- n 1))))

(define (( set-secret) s)

(define t (rstate-trng s))

(define secr (make-word t SECRET-SIZE))
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(define new-t (update-trng t SECRET-SIZE))

(result #t (rstate secr new-t)))

(define (( get-hash msg) s)

(define secr (rstate-spec s))

(result (sha256 (concat secr msg)) s))

(define (( discard n) s)

(define t (rstate-trng s))

(result #f (rstate (rstate-spec s) (update-trng t n))))

(define s0 (bv 0 SECRET-SIZE))
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Appendix D

Password-Hasher C Code

#include "drivers.h"

#include <stdbool.h>

#define BAUD_RATE 6

#define SECRET_SIZE 20

#define MESSAGE_SIZE 32

struct state {

uint32_t active;

uint8_t secret0[SECRET_SIZE ];

uint8_t secret1[SECRET_SIZE ];

} *state = (struct state *) FRAM_BASE;

#define CMD_SET_SECRET (0x01)

#define CMD_GET_HASH (0x02)

void do_set_secret ();

void do_get_hash ();

void main() {

uart_init(UART1 , BAUD_RATE);
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uint8_t cmd = uart_read(UART1);

switch (cmd) {

case CMD_SET_SECRET:

do_set_secret ();

break;

case CMD_GET_HASH:

do_get_hash ();

break;

default:

break;

}

poweroff (); // done , don’t interact with world any more until next

reset

}

void memcpy(uint8_t *dest , const uint8_t *src , size_t sz) {

for (int i = 0; i < sz; i++) {

dest[i] = src[i];

}

}

// written this way , it turns into branch -free code (= constant time)

uint8_t *get_active () {

uint8_t *base = state ->secret0;

uint32_t zlt = 0 < state ->active;

zlt = zlt * SECRET_SIZE;

base = base + zlt;

return base;

}

// written this way , it turns into branch -free code (= constant time)

uint8_t *get_inactive () {

uint8_t *base = state ->secret0;
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uint32_t zlt = 0 < state ->active;

zlt = 1 - zlt;

zlt = zlt * SECRET_SIZE;

base = base + zlt;

return base;

}

void do_set_secret () {

uint8_t secret[SECRET_SIZE ];

for (int i=0; i<SECRET_SIZE; i++) {

secret[i]= trng_read ();

}

// write into inactive region , then make active

uint8_t *dest = get_inactive ();

memcpy(dest , secret , SECRET_SIZE);

state ->active = !state ->active;

uart_write(UART1 , 0x01);

}

uint8_t digest[SHA256_DIGEST_SIZE ];

void do_get_hash () {

uint8_t buf[SECRET_SIZE + MESSAGE_SIZE ];

for (int i = 0; i < MESSAGE_SIZE; i++) {

buf[SECRET_SIZE + i] = uart_read(UART1);

}

uint8_t *secret = get_active ();

memcpy(buf , secret , SECRET_SIZE);

sha256_digest(SHA256 , buf , SECRET_SIZE + MESSAGE_SIZE , digest);

for (int i = 0; i < sizeof(digest); i++) {

uart_write(UART1 , digest[i]);

}

}
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