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Abstract
WheelFS is a wide-area distributed storage system in-
tended to help multi-site applications share data and gain
fault tolerance. WheelFS takes the form of a distributed
file system with a familiar POSIX interface. Its design al-
lows applications to adjust the tradeoff between prompt
visibility of updates from other sites and the ability for
sites to operate independently despite failures and long
delays. WheelFS allows these adjustments via semantic
cues, which provide application control over consistency,
failure handling, and file and replica placement.
WheelFS is implemented as a user-level file system and

is deployed on PlanetLab and Emulab. Three applications
(a distributed Web cache, an email service and large file
distribution) demonstrate that WheelFS’s file system in-
terface simplifies construction of distributed applications
by allowing reuse of existing software. These applica-
tions would perform poorly with the strict semantics im-
plied by a traditional file system interface, but by pro-
viding cues to WheelFS they are able to achieve good
performance. Measurements show that applications built
on WheelFS deliver comparable performance to services
such as CoralCDN and BitTorrent that use specialized
wide-area storage systems.

1 Introduction
There is a growing set of Internet-based services that are
too big, or too important, to run at a single site. Examples
includeWeb services for e-mail, video and image hosting,
and social networking. Splitting such services over mul-
tiple sites can increase capacity, improve fault tolerance,
and reduce network delays to clients. These services often
need storage infrastructure to share data among the sites.
This paper explores the use of a new file system specif-
ically designed to be the storage infrastructure for wide-
area distributed services.
A wide-area storage system faces a tension between

sharing and site independence. The system must support
sharing, so that data stored by one site may be retrieved
by others. On the other hand, sharing can be dangerous if
it leads to the unreachability of one site causing blocking
at other sites, since a primary goal of multi-site opera-
tion is fault tolerance. The storage system’s consistency

model affects the sharing/independence tradeoff: stronger
forms of consistency usually involve servers or quorums
of servers that serialize all storage operations, whose un-
reliability may force delays at other sites [23]. The storage
system’s data and meta-data placement decisions also af-
fect site independence, since data placed at a distant site
may be slow to fetch or unavailable.
The wide-area file system introduced in this paper,

WheelFS, allows application control over the sharing/in-
dependence tradeoff, including consistency, failure han-
dling, and replica placement. Each application can choose
a tradeoff between performance and consistency, in the
style of PRACTI [8] and PADS [9], but in the context of a
file system with a POSIX interface.
Central decisions in the design of WheelFS includ-

ing defining the default behavior, choosing which behav-
iors applications can control, and finding a simple way
for applications to specify those behaviors. By default,
WheelFS provides standard file system semantics (close-
to-open consistency) and is implemented similarly to pre-
vious wide-area file systems (e.g., every file or directory
has a primary storage node). Applications can adjust the
default semantics and policies with semantic cues. The set
of cues is small (around 10) and directly addresses the
main challenges of wide-area networks (orders of magni-
tude differences in latency, lower bandwidth between sites
than within a site, and transient failures). WheelFS allows
the cues to be expressed in the pathname, avoiding any
change to the standard POSIX interface. The benefits of
WheelFS providing a file system interface are compatibil-
ity with existing software and programmer ease-of-use.
A prototype of WheelFS runs on FreeBSD, Linux, and

MacOS. The client exports a file system to local applica-
tions using FUSE [21]. WheelFS runs on PlanetLab and
an emulated wide-area Emulab network.
Several distributed applications run on WheelFS and

demonstrate its usefulness, including a distributed Web
cache and a multi-site email service. The applications use
different cues, showing that the control that cues pro-
vide is valuable. All were easy to build by reusing ex-
isting software components, with WheelFS for storage
instead of a local file system. For example, the Apache
caching web proxy can be turned into a distributed, co-
operative Web cache by modifying one pathname in a



configuration file, specifying that Apache should store
cached data in WheelFS with cues to relax consistency.
Although the other applications require more changes, the
ease of adapting Apache illustrates the value of a file sys-
tem interface; the extent to which we could reuse non-
distributed software in distributed applications came as a
surprise [38].
Measurements show that WheelFS offers more scal-

able performance on PlanetLab than an implementation of
NFSv4, and that for applications that use cues to indicate
they can tolerate relaxed consistency, WheelFS continues
to provide high performance in the face of network and
server failures. For example, by using the cues .Eventu-
alConsistency, .MaxTime, and .Hotspot, the distributed
Web cache quickly reduces the load on the origin Web
server, and the system hardly pauses serving pages when
WheelFS nodes fail; experiments on PlanetLab show that
the WheelFS-based distributed Web cache reduces origin
Web server load to zero. Further experiments on Emu-
lab show that WheelFS can offer better file downloads
times than BitTorrent [14] by using network coordinates
to download from the caches of nearby clients.
The main contributions of this paper are a new file

system that assists in the construction of wide-area dis-
tributed applications, a set of cues that allows applications
to control the file system’s consistency and availability
tradeoffs, and a demonstration that wide-area applications
can achieve good performance and failure behavior by us-
ing WheelFS.
The rest of the paper is organized as follows. Sections 2

and 3 outline the goals of WheelFS and its overall de-
sign. Section 4 describes WheelFS’s cues, and Section 5
presents WheelFS’s detailed design. Section 6 illustrates
some example applications, Section 7 describes the imple-
mentation of WheelFS, and Section 8 measures the per-
formance of WheelFS and the applications. Section 9 dis-
cusses related work, and Section 10 concludes.

2 Goals
A wide-area storage system must have a few key prop-
erties in order to be practical. It must be a useful building
block for larger applications, presenting an easy-to-use in-
terface and shouldering a large fraction of the overall stor-
age management burden. It must allow inter-site access to
data when needed, as long as the health of the wide-area
network allows. When the site storing some data is not
reachable, the storage system must indicate a failure (or
find another copy) with relatively low delay, so that a fail-
ure at one site does not prevent progress at other sites. Fi-
nally, applications may need to control the site(s) at which
data are stored in order to achieve fault-tolerance and per-
formance goals.
As an example, consider a distributedWeb cache whose

primary goal is to reduce the load on the origin servers of

popular pages. Each participating site runs a Web proxy
and a part of a distributed storage system. When a Web
proxy receives a request from a browser, it first checks
to see if the storage system has a copy of the requested
page. If it does, the proxy reads the page from the stor-
age system (perhaps from another site) and serves it to the
browser. If not, the proxy fetches the page from the origin
Web server, inserts a copy of it into the storage system (so
other proxies can find it), and sends it to the browser.
The Web cache requires some specific properties from

the distributed storage system in addition to the general
ability to store and retrieve data. A proxy must serve data
with low delay, and can consult the origin Web server if
it cannot find a cached copy; thus it is preferable for the
storage system to indicate “not found” quickly if finding
the data would take a long time (due to timeouts). The
storage need not be durable or highly fault tolerant, again
because proxies can fall back on the origin Web server.
The storage system need not be consistent in the sense of
guaranteeing to find the latest stored version of document,
since HTTP headers allow a proxy to evaluate whether a
cached copy is still valid.
Other distributed applications might need different

properties in a storage system: they might need to see the
latest copy of some data, and be willing to pay a price in
high delay, or they may want data to be stored durably,
or have specific preferences for which site stores a doc-
ument. Thus, in order to be a usable component in many
different systems, a distributed storage system needs to
expose a level of control to the surrounding application.

3 WheelFS Overview
This section gives a brief overview ofWheelFS to help the
reader follow the design proposed in subsequent sections.

3.1 System Model
WheelFS is intended to be used by distributed applica-
tions that run on a collection of sites distributed over the
wide-area Internet. All nodes in a WheelFS deployment
are either managed by a single administrative entity or
multiple cooperating administrative entities. WheelFS’s
security goals are limited to controlling the set of partici-
pating servers and imposing UNIX-like access controls on
clients; it does not guard against Byzantine failures in par-
ticipating servers [6, 26]. We expect servers to be live and
reachablemost of the time, with occasional failures. Many
existing distributed infrastructures fit these assumptions,
such as wide-area testbeds (e.g., PlanetLab and RON),
collections of data centers spread across the globe (e.g.,
Amazon’s EC2), and federated resources such as Grids.

3.2 System Overview
WheelFS provides a location-independent hierarchy of di-
rectories and files with a POSIX file system interface. At



any given time, every file or directory object has a single
“primary” WheelFS storage server that is responsible for
maintaining the latest contents of that object. WheelFS
clients, acting on behalf of applications, use the storage
servers to retrieve and store data. By default, clients con-
sult the primary whenever they modify an object or need
to find the latest version of an object. Accessing a single
file could result in communication with several servers,
since each subdirectory in the path could be served by a
different primary. WheelFS replicates an object’s data us-
ing primary/backup replication, and a backgroundmainte-
nance process running on each server ensures that data are
replicated correctly. Each update to an object increments
a version number kept in a separate meta-data structure,
co-located with the data.
When a WheelFS client needs to use an object, it must

first determine which server is currently the primary for
that object. All nodes agree on the assignment of objects
to primaries to help implement the default strong consis-
tency. Nodes learn the assignment from a configuration
service—a replicated state machine running at multiple
sites. This service maintains a table that maps each object
to one primary and zero or more backup servers.WheelFS
nodes cache a copy of this table. Section 5 presents the de-
sign of the configuration service.
A WheelFS client reads a file’s data in blocks from

the file’s primary server. The client caches the file’s data
once read, obtaining a lease on its meta-data (including
the version number) from the primary. Clients have the
option of reading from other clients’ caches, which can
be helpful for large and popular files that are rarely up-
dated. WheelFS provides close-to-open consistency by
default for files, so that if an application works correctly
on a POSIX file system, it will also work correctly on
WheelFS.

4 Semantic cues
WheelFS provides semantic cues within the standard
POSIX file system API. We believe cues would also be
useful in the context of other wide-area storage layers with
alternate designs, such as Shark [6] or a wide-area version
of BigTable [13]. This section describes how applications
specify cues and what effect they have on file system op-
erations.

4.1 Specifying cues
Applications specify cues to WheelFS in pathnames; for
example, /wfs/.Cue/data refers to /wfs/data with the cue
.Cue. The main advantage of embedding cues in path-
names is that it keeps the POSIX interface unchanged.
This choice allows developers to program using an inter-
face with which they are familiar and to reuse software
easily.
One disadvantage of cues is that they may break soft-

ware that parses pathnames and assumes that a cue is a
directory. Another is that links to pathnames that contain
cues may trigger unintuitive behavior. We have not en-
countered examples of these problems.
WheelFS clients process the cue path components lo-

cally. A pathname might contain several cues, separated
by slashes. WheelFS uses the following rules to combine
cues: (1) a cue applies to all files and directories in the
pathname appearing after the cue; and (2) cues that are
specified later in a pathname may override cues in the
same category appearing earlier.
As a preview, a distributed Web cache could be

built by running a caching Web proxy at each of a
number of sites, sharing cached pages via WheelFS.
The proxies could store pages in pathnames such as
/wfs/.MaxTime=200/url, causing open() to fail after
200 ms rather than waiting for an unreachable WheelFS
server, indicating to the proxy that it should fetch from
the original Web server. See Section 6 for a more sophis-
ticated version of this application.

4.2 Categories
Table 1 lists WheelFS’s cues and the categories into which
they are grouped. There are four categories: placement,
durability, consistency, and large reads. These categories
reflect the goals discussed in Section 2. The placement
cues allow an application to reduce latency by placing
data near where it will be needed. The durability and con-
sistency cues help applications avoid data unavailability
and timeout delays caused by transient failures. The large
read cues increase throughput when reading large and/or
popular files. Table 2 shows which POSIX file system API
calls are affected by which of these cues.
Each cue is either persistent or transient. A persistent

cue is permanently associated with the object, and may
affect all uses of the object, including references that do
not specify the cue. An application associates a persistent
cue with an object by specifying the cue when first creat-
ing the object. Persistent cues are immutable after object
creation. If an application specifies a transient cue in a file
system operation, the cue only applies to that operation.
Because these cues correspond to the challenges faced

by wide-area applications, we consider this set of cues to
be relatively complete. These cues work well for the ap-
plications we have considered.

4.3 Placement
Applications can reduce latency by storing data near the
clients who are likely to use that data. For example, a
wide-area email system may wish to store all of a user’s
message files at a site near that user.
The .Site=X cue indicates the desired site for a newly-

created file’s primary. The site name can be a simple
string, e.g. .Site=westcoast, or a domain name such as



Cue Category Cue Name Type Meaning (and Tradeoffs)
Placement .Site=X P Store files and directories on a server at the site named X.

.KeepTogether P Store all files in a directory subtree on the same set of servers.

.RepSites=NRS P Store replicas across NRS different sites.
Durability .RepLevel=NRL P Keep NRL replicas for a data object.

.SyncLevel=NSL T Wait for only NSL replicas to accept a new file or directory version, reduc-
ing both durability and delay.

Consistency .EventualConsistency T∗ Use potentially stale cached data, or data from a backup, if the primary
does not respond quickly.

.MaxTime=T T Limit any WheelFS remote communication done on behalf of a file system
operation to no more than T ms.

Large reads .WholeFile T Enable pre-fetching of an entire file upon the first read request.
.Hotspot T Fetch file data from other clients’ caches to reduce server load. Fetches

multiple blocks in parallel if used with .WholeFile.

Table 1: Semantic cues. A cue can be either Persistent or Transient (∗Section 4.5 discusses a caveat for .EventualConsistency).
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.EC X X X X X X X X X X X

.MT X X X X X X X X X X X

.WF X X

.H X

Table 2: The POSIX file system API calls affected by each cue.

.Site=rice.edu. An administrator configures the corre-
spondence between site names and servers. If the path
contains no .Site cue, WheelFS uses the local node’s site
as the file’s primary. Use of random as the site name will
spread newly created files over all sites. If the site indi-
cated by .Site is unreachable, or cannot store the file due
to storage limitations, WheelFS stores the newly created
file at another site, chosen at random. The WheelFS back-
ground maintenance process will eventually transfer the
misplaced file to the desired site.
The .KeepTogether cue indicates that an entire sub-

tree should reside on as few WheelFS nodes as possible.
Clustering a set of files can reduce the delay for operations
that access multiple files. For example, an email system
can store a user’s message files on a few nodes to reduce
the time required to list all messages.
The .RepSites=NRS cue indicates how many different

sites should have copies of the data. NRS only has an
effect when it is less than the replication level (see Sec-
tion 4.4), in which case it causes one or more sites to
store the data on more than one local server. When pos-

sible, WheelFS ensures that the primary’s site is one of
the sites chosen to have an extra copy. For example, spec-
ifying .RepSites=2with a replication level of three causes
the primary and one backup to be at one site, and another
backup to be at a different site. By using .Site and .Rep-
Sites, an application can ensure that a permanently failed
primary can be reconstructed at the desired site with only
local communication.

4.4 Durability
WheelFS allows applications to express durability
preferences with two cues: .RepLevel=NRL and
.SyncLevel=NSL.
The .RepLevel=NRL cue causes the primary to store

the object on NRL−1 backups; by default, NRL= 3. The
WheelFS prototype imposes a maximum of four replicas
(see Section 5.2 for the reason for this limit; in a future
prototype it will most likely be higher).
The .SyncLevel=NSL cue causes the primary to wait

for acknowledgments of writes from only NSL of the ob-
ject’s replicas before acknowledging the client’s request,
reducing durability but also reducing delays if some back-
ups are slow or unreachable. By default, NSL = NRL.

4.5 Consistency
The .EventualConsistency cue allows a client to use an
object despite unreachability of the object’s primary node,
and in some cases the backups as well. For reads and
pathname lookups, the cue allows a client to read from a
backup if the primary is unavailable, and from the client’s
local cache if the primary and backups are both unavail-
able. For writes and filename creation, the cue allows a
client to write to a backup if the primary is not available.
A consequence of .EventualConsistency is that clients
may not see each other’s updates if they cannot all reli-
ably contact the primary. Many applications such as Web
caches and email systems can tolerate eventual consis-



tency without significantly compromising their users’ ex-
perience, and in return can decrease delays and reduce ser-
vice unavailability when a primary or its network link are
unreliable.
The cue provides eventual consistency in the sense that,

in the absence of updates, all replicas of an object will
eventually converge to be identical. However, WheelFS
does not provide eventual consistency in the rigorous form
(e.g., [18]) used by systems like Bayou [39], where all
updates, across all objects in the system, are committed
in a total order at all replicas. In particular, updates in
WheelFS are only eventually consistent with respect to
the object they affect, and updates may potentially be lost.
For example, if an entry is deleted from a directory under
the .EventualConsistency cue, it could reappear in the
directory later.
When reading files or using directory contents with

eventual consistency, a client may have a choice between
the contents of its cache, replies from queries to one or
more backup servers, and a reply from the primary. A
client uses the data with the highest version number that
it finds within a time limit. The default time limit is one
second, but can be changed with the .MaxTime=T cue (in
units of milliseconds). If .MaxTime is used without even-
tual consistency, the WheelFS client yields an error if it
cannot contact the primary after the indicated time.
The background maintenance process periodically rec-

onciles a primary and its backups so that they eventually
contain the same data for each file and directory. The pro-
cess may need to resolve conflicting versions of objects.
For a file, the process chooses arbitrarily among the repli-
cas that have the highest version number; this may cause
writes to be lost. For an eventually-consistent directory, it
puts the union of files present in the directory’s replicas
into the reconciled version. If a single filename maps to
multiple IDs, the process chooses the one with the small-
est ID and renames the other files. Enabling directory
merging is the only sense in which the .EventualConsis-
tency cue is persistent: if specified at directory creation
time, it guides the conflict resolution process. Otherwise
its effect is specific to particular references.

4.6 Large reads
WheelFS provides two cues that enable large-file read op-
timizations: .WholeFile and .Hotspot. The .WholeFile
cue instructs WheelFS to pre-fetch the entire file into
the client cache. The .Hotspot cue instructs the WheelFS
client to read the file from other clients’ caches, consult-
ing the file’s primary for a list of clients that likely have
the data cached. If the application specifies both cues, the
client will read data in parallel from other clients’ caches.
Unlike the cues described earlier, .WholeFile and
.Hotspot are not strictly necessary: a file system could
potentially learn to adopt the right cue by observing appli-
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Figure 1: Placement and interaction of WheelFS components.

cation access patterns. We leave such adaptive behavior to
future work.

5 WheelFS Design
WheelFS requires a design flexible enough to follow the
various cues applications can supply. This section presents
that design, answering the following questions:

• How does WheelFS assign storage responsibility
for data objects among participating servers? (Sec-
tion 5.2)

• How does WheelFS ensure an application’s desired
level of durability for its data? (Section 5.3)

• How does WheelFS provide close-to-open consis-
tency in the face of concurrent file access and fail-
ures, and how does it relax consistency to improve
availability? (Section 5.4)

• How doesWheelFS permit peer-to-peer communica-
tion to take advantage of nearby cached data? (Sec-
tion 5.5)

• How does WheelFS authenticate users and perform
access control? (Section 5.6)

5.1 Components
A WheelFS deployment (see Figure 1) consists of clients
and servers; a single host often plays both roles. The
WheelFS client software uses FUSE [21] to present the
distributed file system to local applications, typically in
/wfs. All clients in a given deployment present the same
file system tree in /wfs. AWheelFS client communicates
with WheelFS servers in order to look up file names, cre-
ate files, get directory listings, and read and write files.
Each client keeps a local cache of file and directory con-
tents.
The configuration service runs independently on a

small set of wide-area nodes. Clients and servers com-
municate with the service to learn the set of servers and



which files and directories are assigned to which servers,
as explained in the next section.

5.2 Data storage assignment
WheelFS servers store file and directory objects. Each ob-
ject is internally named using a unique numeric ID. A
file object contains opaque file data and a directory object
contains a list of name-to-object-ID mappings for the di-
rectory contents. WheelFS partitions the object ID space
into 2S slices using the first S bits of the object ID.
The configuration service maintains a slice table that

lists, for each slice currently in use, a replication policy
governing the slice’s data placement, and a replica list of
servers currently responsible for storing the objects in that
slice. A replication policy for a slice indicates from which
site it must choose the slice’s primary (.Site), and from
how many distinct sites (.RepSites) it must choose how
many backups (.RepLevel). The replica list contains the
current primary for a slice, and NRL−1 backups.
Because each unique replication policy requires a

unique slice identifier, the choice of S limits the maxi-
mum allowable number of replicas in a policy. In our cur-
rent implementation S is fairly small (12 bits), and so to
conserve slice identifiers it limits the maximum number
of replicas to four.

5.2.1 Configuration service

The configuration service is a replicated state machine,
and uses Paxos [25] to elect a new master whenever its
membership changes. Only the master can update the
slice table; it forwards updates to the other members. A
WheelFS node is initially configured to know of at least
one configuration service member, and contacts it to learn
the full list of members and which is the master.
The configuration service exports a lock interface to

WheelFS servers, inspired by Chubby [11]. Through this
interface, servers can acquire, renew, and release
locks on particular slices, or fetch a copy of the cur-
rent slice table. A slice’s lock grants the exclusive right
to be a primary for that slice, and the right to specify the
slice’s backups and (for a new slice) its replication pol-
icy. A lock automatically expires after L seconds unless
renewed. The configuration service makes no decisions
about slice policy or replicas. Section 5.3 explains how
WheelFS servers use the configuration service to recover
after the failure of a slice’s primary or backups.
Clients and servers periodically fetch and cache the

slice table from the configuration service master. A client
uses the slice table to identify which servers should be
contacted for an object in a given slice. If a client encoun-
ters an object ID for which its cached slice table does not
list a corresponding slice, the client fetches a new table.
A server uses the the slice table to find other servers that
store the same slice so that it can synchronize with them.

Servers try to always have at least one slice locked,
to guarantee they appear in the table of currently locked
slices; if the maintenance process notices that the server
holds no locks, it will acquire the lock for a new slice. This
allows any connected node to determine the current mem-
bership of the system by taking the union of the replica
lists of all slices.

5.2.2 Placing a new file or directory

When a client creates a new file or directory, it uses the
placement and durability cues specified by the application
to construct an appropriate replication policy. If .KeepTo-
gether is present, it sets the primary site of the policy to
be the primary site of the object’s parent directory’s slice.
Next the client checks the slice table to see if an existing
slice matches the policy; if so, the client contacts the pri-
mary replica for that slice. If not, it forwards the request
to a random server at the site specified by the .Site cue.
When a server receives a request asking it to create a

new file or directory, it constructs a replication policy as
above, and sets its own site to be the primary site for the
policy. If it does not yet have a lock on a slice matching
the policy, it generates a new, randomly-generated slice
identifier and constructs a replica list for that slice, choos-
ing from the servers listed in the slice table. The server
then acquires a lock on this new slice from the config-
uration service, sending along the replication policy and
the replica list. Once it has a lock on an appropriate slice,
it generates an object ID for the new object, setting the
first S bits to be the slice ID and all other bits to random
values. The server returns the new ID to the client, and
the client then instructs the object’s parent directory’s pri-
mary to add a new entry for the object. Other clients that
learn about this new object ID from its entry in the par-
ent directory can use the first S bits of the ID to find the
primary for the slice and access the object.

5.2.3 Write-local policy

The default data placement policy in WheelFS is to write
locally, i.e., use a local server as the primary of a newly
created file (and thus also store one copy of the contents
locally). This policy works best if each client also runs a
WheelFS server. The policy allows writes of large non-
replicated files at the speed of the local disk, and allows
such files to be written at one site and read at another with
just one trip across the wide-area network.
Modifying an existing file is not always fast, because

the file’s primary might be far away. Applications desiring
fast writes should store output in unique new files, so that
the local server will be able to create a new object ID in
a slice for which it is the primary. Existing software often
works this way; for example, the Apache caching proxy
stores a cached Web page in a unique file named after the
page’s URL.



An ideal default placement policy would make deci-
sions based on server loads across the entire system; for
example, if the local server is nearing its storage capac-
ity but a neighbor server at the same site is underloaded,
WheelFS might prefer writing the file to the neighbor
rather than the local disk (e.g., as in Porcupine [31]). De-
veloping such a strategy is future work; for now, applica-
tions can use cues to control where data are stored.

5.3 Primary/backup replication
WheelFS uses primary/backup replication to manage
replicated objects. The slice assignment designates, for
each ID slice, a primary and a number of backup servers.
When a client needs to read or modify an object, by de-
fault it communicates with the primary. For a file, a mod-
ification is logically an entire new version of the file con-
tents; for a directory, a modification affects just one en-
try. The primary forwards each update to the backups,
after which it writes the update to its disk and waits for
the write to complete. The primary then waits for replies
from NSL−1 backups, indicating that those backups have
also written the update to their disks. Finally, the primary
replies to the client. For each object, the primary executes
operations one at a time.
After being granted the lock on a slice initially, the

WheelFS server must renew it periodically; if the lock ex-
pires, another server may acquire it to become the primary
for the slice. Since the configuration service only grants
the lock on a slice to one server at a time, WheelFS en-
sures that only one server will act as a primary for a slice
at any given time. The slice lock time L is a compromise:
short lock times lead to fast reconfiguration, while long
lock times allow servers to operate despite the temporary
unreachability of the configuration service.
In order to detect failure of a primary or backup, a

server pings all other replicas of its slices every five min-
utes. If a primary decides that one of its backups is un-
reachable, it chooses a new replica from the same site
as the old replica if possible, otherwise from a random
site. The primary will transfer the slice’s data to this new
replica (blocking new updates), and then renew its lock on
that slice along with a request to add the new replica to the
replica list in place of the old one.
If a backup decides the primary is unreachable, it will

attempt to acquire the lock on the slice from the configura-
tion service; one of the backups will get the lock once the
original primary’s lock expires. The new primary checks
with the backups to make sure that it didn’t miss any ob-
ject updates (e.g., because NSL<NRL during a recent up-
date, and thus not all backups are guaranteed to have com-
mitted that update).
A primary’s maintenance process periodically checks

that the replicas associated with each slice match the
slice’s policy; if not, it will attempt to recruit new repli-

cas at the appropriate sites. If the current primary wishes
to recruit a new primary at the slice’s correct primary site
(e.g., a server that had originally been the slice’s primary
but crashed and rejoined), it will release its lock on the
slice, and directly contact the chosen server, instructing it
to acquire the lock for the slice.

5.4 Consistency
By default, WheelFS provides close-to-open consistency:
if one application instance writes a file and waits for
close() to return, and then a second application in-
stance open()s and reads the file, the second applica-
tion will see the effects of the first application’s writes.
The reason WheelFS provides close-to-open consistency
by default is that many applications expect it.
The WheelFS client has a write-through cache for file

blocks, for positive and negative directory entries (en-
abling faster pathname lookups), and for directory and file
meta-data. A client must acquire an object lease from an
object’s primary before it uses cached meta-data. Before
the primary executes any update to an object, it must in-
validate all leases or wait for them to expire. This step
may be time-consuming if many clients hold leases on an
object.
Clients buffer file writes locally to improve perfor-

mance. When an application calls close(), the client
sends all outstanding writes to the primary, and waits
for the primary to acknowledge them before allowing
close() to return. Servers maintain a version num-
ber for each file object, which they increment after each
close() and after each change to the object’s meta-data.
When an application open()s a file and then reads it,

the WheelFS client must decide whether the cached copy
of the file (if any) is still valid. The client uses cached
file data if the object version number of the cached data
is the same as the object’s current version number. If the
client has an unexpired object lease for the object’s meta-
data, it can use its cached meta-data for the object to find
the current version number. Otherwise it must contact the
primary to ask for a new lease, and for current meta-data.
If the version number of the cached data is not current, the
client fetches new file data from the primary.
By default, WheelFS provides similar consistency for

directory operations: after the return of an application sys-
tem call that modifies a directory (links or unlinks a file
or subdirectory), applications on other clients are guaran-
teed to see the modification. WheelFS clients implement
this consistency by sending directory updates to the direc-
tory object’s primary, and by ensuring via lease or explicit
check with the primary that cached directory contents are
up to date. Cross-directory rename operations in WheelFS
are not atomic with respect to failures. If a crash occurs at
the wrong moment, the result may be a link to the moved
file in both the source and destination directories.



The downside to close-to-open consistency is that if a
primary is not reachable, all operations that consult the
primary will delay until it revives or a new primary takes
over. The .EventualConsistency cue allows WheelFS to
avoid these delays by using potentially stale data from
backups or local caches when the primary does not re-
spond, and by sending updates to backups. This can result
in inconsistent replicas, which the maintenance process
resolves in the manner described in Section 4.5, leading
eventually to identical images at all replicas. Without the
.EventualConsistency cue, a server will reject operations
on objects for which it is not the primary.
Applications can specify timeouts on a per-object ba-

sis using the .MaxTime=T cue. This adds a timeout of
T ms to every operation performed at a server. Without
.EventualConsistency, a client will return a failure to
the application if the primary does not respond within T
ms; with .EventualConsistency, clients contact backup
servers once the timeout occurs. In future work we hope to
explore how to best divide this timeout when a single file
system operation might involve contacting several servers
(e.g., a create requires talking to the parent directory’s pri-
mary and the new object’s primary, which could differ).

5.5 Large reads
If the application specifies .WholeFile when reading a
file, the client will pre-fetch the entire file into its cache.
If the application uses .WholeFilewhen reading directory
contents, WheelFS will pre-fetch the meta-data for all of
the directory’s entries, so that subsequent lookups can be
serviced from the cache.
To implement the .Hotspot cue, a file’s primary main-

tains a soft-state list of clients that have recently cached
blocks of the file, including which blocks they have
cached. A client that reads a file with .Hotspot asks the
server for entries from the list that are near the client; the
server chooses the entries using Vivaldi coordinates [15].
The client uses the list to fetch each block from a nearby
cached copy, and informs the primary of successfully
fetched blocks.
If the application reads a file with both .WholeFile and
.Hotspot, the client will issue block fetches in parallel to
multiple other clients. It pre-fetches blocks in a random
order so that clients can use each others’ caches even if
they start reading at the same time [6].

5.6 Security
WheelFS enforces three main security properties. First,
a given WheelFS deployment ensures that only autho-
rized hosts participate as servers. Second, WheelFS en-
sures that requests come only from users authorized to
use the deployment. Third, WheelFS enforces user-based
permissions on requests from clients. WheelFS assumes
that authorized servers behave correctly. A misbehaving

client can act as any user that has authenticated them-
selves to WheelFS from that client, but can only do things
for which those users have permission.
All communication takes place through authenticated

SSH channels. Each authorized server has a public/pri-
vate key pair which it uses to prove its identity. A central
administrator maintains a list of all legitimate server pub-
lic keys in a deployment, and distributes that list to ev-
ery server and client. Servers only exchange inter-server
traffic with hosts authenticated with a key on the list, and
clients only send requests to (and use responses from) au-
thentic servers.
Each authorized user has a public/private key pair;

WheelFS uses SSH’s existing key management support.
Before a user can use WheelFS on a particular client,
the user must reveal his or her private key to the client.
The list of authorized user public keys is distributed to all
servers and clients as a file in WheelFS. A server accepts
only client connections signed by an authorized user key.
A server checks that the authenticated user for a request
has appropriate permissions for the file or directory being
manipulated—each object has an associated access con-
trol list in its meta-data. A client dedicated to a particular
distributed application stores its “user” private key on its
local disk.
Clients check data received from other clients against

server-supplied SHA-256 checksums to prevent clients
from tricking each other into accepting unauthorized
modifications. A client will not supply data from its cache
to another client whose authorized user does not have read
permissions.
There are several planned improvements to this security

setup. One is an automated mechanism for propagating
changes to the set of server public keys, which currently
need to be distributed manually. Another is to allow the
use of SSH Agent forwarding to allow users to connect se-
curely without storing private keys on client hosts, which
would increase the security of highly privileged keys in
the case where a client is compromised.

6 Applications
WheelFS is designed to help the construction of wide-area
distributed applications, by shouldering a significant part
of the burden of managing fault tolerance, consistency,
and sharing of data among sites. This section evaluates
how well WheelFS fulfills that goal by describing four
applications that have been built using it.

All-Pairs-Pings. All-Pairs-Pings [37] monitors the net-
work delays among a set of hosts. Figure 2 shows a sim-
ple version of All-Pairs-Pings built from a shell script and
WheelFS, to be invoked by each host’s cron every few
minutes. The script pings the other hosts and puts the re-
sults in a file whose name contains the local host name



1 FILE=‘date +%s‘.‘hostname‘.dat
2 D=/wfs/ping
3 BIN=$D/bin/.EventualConsistency/

.MaxTime=5000/.HotSpot/.WholeFile
4 DATA=$D/.EventualConsistency/dat
5 mkdir -p $DATA/‘hostname‘
6 cd $DATA/‘hostname‘
7 xargs -n1 $BIN/ping -c 10 <

$D/nodes > /tmp/$FILE
8 cp /tmp/$FILE $FILE
9 rm /tmp/$FILE
10 if [ ‘hostname‘ = "node1" ]; then
11 mkdir -p $D/res
12 $BIN/process * > $D/res/‘date +%s‘.o
13 fi

Figure 2: A shell script implementation of All-Pairs-Pings us-
ing WheelFS.

and the current time. After each set of pings, a coordina-
tor host (“node1”) reads all the files, creates a summary
using the program process (not shown), and writes the
output to a results directory.
This example shows that WheelFS can help keep sim-

ple distributed tasks easy to write, while protecting the
tasks from failures of remote nodes. WheelFS stores each
host’s output on the host’s own WheelFS server, so that
hosts can record ping output even when the network is
broken. WheelFS automatically collects data files from
hosts that reappear after a period of separation. Finally,
WheelFS provides each host with the required binaries
and scripts and the latest host list file. Use of WheelFS in
this script eliminates much of the complexity of a previ-
ous All-Pairs-Pings program, which explicitly dealt with
moving files among nodes and coping with timeouts.

Distributed Web cache. This application consists
of hosts running Apache 2.2.4 caching proxies
(mod disk cache). The Apache configuration file
places the cache file directory on WheelFS:

/wfs/.EventualConsistency/.MaxTime=1000/
.Hotspot/cache/

When the Apache proxy can’t find a page in the cache
directory on WheelFS, it fetches the page from the ori-
gin Web server and writes a copy in the WheelFS di-
rectory, as well as serving it to the requesting browser.
Other cache nodes will then be able to read the page from
WheelFS, reducing the load on the origin Web server.
The .Hotspot cue copes with popular files, directing the
WheelFS clients to fetch from each others’ caches to in-
crease total throughput. The .EventualConsistency cue
allows clients to create and read files even if they cannot
contact the primary server. The .MaxTime cue instructs

WheelFS to return an error if it cannot find a file quickly,
causing Apache to fetch the page from the origin Web
server. If WheelFS returns an expired version of the file,
Apache will notice by checking the HTTP header in the
cache file, and it will contact the origin Web server for a
fresh copy.
Although this distributed Web cache implementation is

fully functional, it does lack features present in other sim-
ilar systems. For example, CoralCDN uses a hierarchy of
caches to avoid overloading any single tracker node when
a file is popular.

Mail service. The goal of Wheemail, our WheelFS-based
mail service, is to provide high throughput by spreading
the work overmany sites, and high availability by replicat-
ing messages on multiple sites. Wheemail provides SMTP
and IMAP service from a set of nodes at these sites. Any
node at any site can accept a message via SMTP for any
user; in most circumstances a user can fetch mail from the
IMAP server on any node.
Each node runs an unmodified sendmail process to ac-

cept incomingmail. Sendmail stores each user’s messages
in a WheelFS directory, one message per file. The sep-
arate files help avoid conflicts from concurrent message
arrivals. A user’s directory has this path:

/wfs/mail/.EventualConsistency/.Site=X/
.KeepTogether/.RepSites=2/user/Mail/

Each node runs a Dovecot IMAP server [17] to serve users
their messages. A user retrieves mail via a nearby node
using a locality-preserving DNS service [20].
The .EventualConsistency cue allows a user to read

mail via backup servers when the primary for the user’s
directory is unreachable, and allows incoming mail to be
stored even if primary and all backups are down. The
.Site=X cue indicates that a user’s messages should be
stored at site X, chosen to be close to the user’s usual lo-
cation to reduce network delays. The .KeepTogether cue
causes all of a user’s messages to be stored on a single
replica set, reducing latency for listing the user’s mes-
sages [31]. Wheemail uses the default replication level of
three but uses .RepSites=2 to keep at least one off-site
replica of each mail. To avoid unnecessary replication,
Dovecot uses .RepLevel=1 for much of its internal data.
Wheemail has goals similar to those of Porcupine [31],

namely, to provide scalable email storage and retrieval
with high availability. Unlike Porcupine, Wheemail runs
on a set of wide-area data centers. Replicating emails over
multiple sites increases the service’s availability when a
single site goes down. Porcupine consists of custom-built
storage and retrieval components. In contrast, the use of a
wide-area file system inWheemail allows it to reuse exist-
ing software like sendmail and Dovecot. Both Porcupine
and Wheemail use eventual consistency to increase avail-
ability, but Porcupine has a better reconciliation policy as



its “deletion record” prevents deleted emails from reap-
pearing.

File Distribution. A set of many WheelFS clients can co-
operate to fetch a file efficiently using the large read cues:

/wfs/.WholeFile/.Hotspot/largefile

Efficient file distribution may be particularly useful
for binaries in wide-area experiments, in the spirit of
Shark [6] and CoBlitz [29]. Like Shark, WheelFS uses co-
operative caching to reduce load on the file server. Shark
further reduces the load on the file server by using a dis-
tributed index to keep track of cached copies, whereas
WheelFS relies on the primary server to track copies.
Unlike WheelFS or Shark, CoBlitz is a CDN, so files
cannot be directly accessed through a mounted file sys-
tem. CoBlitz caches and shares data between CDN nodes
rather than between clients.

7 Implementation
The WheelFS prototype consists of 19,000 lines of C++
code, using pthreads and STL. In addition, the implemen-
tation uses a new RPC library (3,800 lines) that imple-
ments Vivaldi network coordinates [15].
The WheelFS client uses FUSE’s “low level” interface

to get access to FUSE identifiers, which it translates into
WheelFS-wide unique object IDs. The WheelFS cache
layer in the client buffers writes in memory and caches
file blocks in memory and on disk.
Permissions, access control, and secure SSH con-

nections are implemented. Distribution of public keys
through WheelFS is not yet implemented.

8 Evaluation
This section demonstrates the following points about the
performance and behavior of WheelFS:

• For some storage workloads common in distributed
applications, WheelFS offers more scalable perfor-
mance than an implementation of NFSv4.

• WheelFS achieves reasonable performance under a
range of real applications running on a large, wide-
area testbed, as well as on a controlled testbed using
an emulated network.

• WheelFS provides high performance despite net-
work and server failures for applications that indicate
via cues that they can tolerate relaxed consistency.

• WheelFS offers data placement options that allow
applications to place data near the users of that data,
without the need for special application logic.

• WheelFS offers client-to-client read options that help
counteract wide-area bandwidth constraints.

• WheelFS offers an interface on which it is quick and
easy to build real distributed applications.

8.1 Experimental setup
All scenarios useWheelFS configuredwith 64 KB blocks,
a 100 MB in-memory client LRU block cache supple-
mented by an unlimited on-disk cache, one minute object
leases, a lock time of L = 2 minutes, 12-bit slice IDs, 32-
bit object IDs, and a default replication level of three (the
responsible server plus two replicas), unless stated oth-
erwise. Communication takes place over plain TCP, not
SSH, connections. Each WheelFS node runs both a stor-
age server and a client process. The configuration service
runs on five nodes distributed across three wide-area sites.
We evaluate our WheelFS prototype on two testbeds:

PlanetLab [7] and Emulab [42]. For PlanetLab experi-
ments, we use up to 250 nodes geographically spread
across the world at more than 140 sites (we determine the
site of a node based on the domain portion of its host-
name). These nodes are shared with other researchers and
their disks, CPU, and bandwidth are often heavily loaded,
showing howWheelFS performs in the wild. These nodes
run a Linux 2.6 kernel and FUSE 2.7.3.We run the config-
uration service on a private set of nodes running at MIT,
NYU, and Stanford, to ensure that the replicated state ma-
chine can log operations to disk and respond to requests
quickly (fsync()s on PlanetLab nodes can sometimes
take tens of seconds).
For more control over the network topology and host

load, we also run experiments on the Emulab [42] testbed.
Each Emulab host runs a standard Fedora Core 6 Linux
2.6.22 kernel and FUSE version 2.6.5, and has a 3 GHz
CPU. We use a WAN topology consisting of 5 LAN clus-
ters of 3 nodes each. Each LAN cluster has 100 Mbps,
sub-millisecond links between each node. Clusters con-
nect to the wide-area network via a single bottleneck link
of 6 Mbps, with 100 ms RTTs between clusters.

8.2 Scalability
We first evaluate the scalability of WheelFS on a mi-
crobenchmark representing a workload common to dis-
tributed applications: many nodes reading data written by
other nodes in the system. For example, nodes running a
distributed Web cache over a shared storage layer would
be reading and serving pages written by other nodes.
In this microbenchmark, N clients mount a shared file
system containing N directories, either using NFSv4 or
WheelFS. Each directory contains ten 1 MB files. The
clients are PlanetLab nodes picked at random from the
set of nodes that support both mounting both FUSE and
NFS file systems. This set spans a variety of nodes dis-
tributed across the world, from nodes at well-connected
educational institutions to nodes behind limited-upload
DSL lines. Each client reads ten random files from the file
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Figure 3: The median time for a set of PlanetLab clients to read
a 1 MB file, as a function of the number of concurrently reading
nodes. Also plots the median time for a set of local processes to
read 1 MB files from the NFS server’s local disk through ext3.

system in sequence, and measures the read latency. The
clients all do this at the same time.
For WheelFS, each client also acts as a server, and is

the primary for one directory and all files within that di-
rectory. WheelFS clients do not read files for which they
are the primary, and no file is ever read twice by the same
node. The NFS server is a machine at MIT running De-
bian’s nfs-kernel-server version 1.0.10-6 using the default
configuration, with a 2.8 GHz CPU and a SCSI hard drive.
Figure 3 shows the median time to read a file as N

varies. ForWheelFS, a very small fraction of reads fail be-
cause not all pairs of PlanetLab nodes can communicate;
these reads are not included in the graph. Each point on
the graph is the median of the results of at least one hun-
dred nodes (e.g., a point showing the latency for five con-
current nodes represents the median reported by all nodes
across twenty different trials).
Though the NFS server achieves lower latencies when

there are few concurrent clients, its latency rises sharply as
the number of clients grows. This rise occurs when there
are enough clients, and thus files, that the files do not fit
in the server’s 1GB file cache. Figure 3 also shows results
for N concurrent processes on the NFS server, accessing
the ext3 file system directly, showing a similar latency
increase after 100 clients. WheelFS latencies are not af-
fected by the number of concurrent clients, sinceWheelFS
spreads files and thus the load across many servers.

8.3 Distributed Web Cache
Performance under normal conditions. These exper-
iments compare the performance of CoralCDN and the
WheelFS distributed Web cache (as described in Sec-
tion 6, except with .MaxTime=2000 to adapt to Planet-
Lab’s characteristics). The main goal of the cache is to
reduce load on target Web servers via caching, and secon-
darily to provide client browsers with reduced latency and
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etLab.

increased availability.
These experiments use forty nodes from PlanetLab

hosted at .edu domains, spread across the continental
United States. A Web server, located at NYU behind an
emulated slow link (shaped using Click [24] to be 400
Kbps and have a 100 ms delay), serves 100 unique 41KB
Web pages. Each of the 40 nodes runs a Web proxy.
For each proxy node there is another node less than 10
ms away that runs a simulated browser as a Web client.
EachWeb client requests a sequence of randomly selected
pages from the NYU Web server. This experiment, in-
spired by one in the CoralCDN paper [19], models a flash
crowd where a set of files on an under-provisioned server
become popular very quickly.
Figures 4 and 5 show the results of these experiments.

Figure 4 plots both the total rate at which the proxies send
requests to the origin server and the total rate at which
the proxies serve Web client requests (the y-axis is a log
scale). WheelFS takes about twice as much time as Coral-
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Figure 6: The WheelFS-based Web cache running on Emulab
with failures, using the .EventualConsistency cue. Gray regions
indicate the duration of a failure.

Figure 7: The WheelFS-based Web cache running on Emulab
with failures, with close-to-open consistency. Gray regions indi-
cate the duration of a failure.

CDN to reduce the origin load to zero; both reach simi-
lar sustained aggregate Web client service rates. Figure 5
plots the cumulative distribution function (CDF) of the
request latencies seen by the Web clients. WheelFS has
somewhat higher latencies than CoralCDN.
CoralCDN has higher performance because it incor-

porates many application-specific optimizations, whereas
the WheelFS-based cache is built from more general-
purpose components. For instance, a CoralCDN proxy
pre-declares its intent to download a page, preventing
other nodes from downloading the same page; Apache,
running on WheelFS, has no such mechanism, so several
nodesmay download the same page beforeApache caches
the data in WheelFS. Similar optimizations could be im-
plemented in Apache.

Performance under failures. Wide-area network prob-
lems that preventWheelFS from contacting storage nodes
should not translate into long delays; if a proxy cannot
quickly fetch a cached page from WheelFS, it should
ask the origin Web server. As discussed in Section 6, the
cues .EventualConsistency and .MaxTime=1000 yield
this behavior, causing open() to either find a copy of
the desired file or fail in one second. Apache fetches from
the origin Web server if the open() fails.
To test how failures affect WheelFS application perfor-

mance, we ran a distributed Web cache experiment on the
Emulab topology in Section 8.1, where we could control
the network’s failure behavior. At each of the five sites
there are three WheelFS Web proxies. Each site also has a
Web client, which connects to theWeb proxies at the same
site using a 10 Mbps, 20 ms link, issuing five requests at a
time. The origin Web server runs behind a 400 Kbps link,
with 150 ms RTTs to the Web proxies.
Figures 6 and 7 compare failure performance of

WheelFS with the above cues to failure performance of
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Figure 8: The aggregate client service rate and origin server
load for the WheelFS-based Web cache, running on Emulab,
without failures.

close-to-open consistency with 1-second timeouts (.Max-
Time=1000). The y-axes of these graphs are log-scale.
Each minute one wide-area link connecting an entire site
to the rest of the network fails for thirty seconds and then
revives. This failure period is not long enough to cause
servers at the failed site to lose their slice locks. Web
clients maintain connectivity to the proxies at their lo-
cal site during failures. For comparison, Figure 8 shows
WheelFS’s performance on this topology when there are
no failures.

When a Web client requests a page from a proxy, the
proxy must find two pieces of information in order to find
a copy of the page (if any) in WheelFS: the object ID to
which the page’s file name resolves, and the file content
for that object ID. The directory information and the file
content can be on different WheelFS servers. For each
kind of information, if the proxy’s WheelFS client has
cached the information and has a valid lease, the WheelFS
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Figure 9: The throughput of Wheemail compared with the static
system, on the Emulab testbed.

client need not contact a server. If the WheelFS client
doesn’t have information with a valid lease, and is us-
ing eventual consistency, it tries to fetch the information
from the primary; if that fails (after a one-second time-
out), the WheelFS client will try fetch from a backup; if
that fails, the client will use locally cached information (if
any) despite an expired lease; otherwise the open() fails
and the proxy fetches the page from the origin server. If a
WheelFS client using close-to-open consistency does not
have cached data with a valid lease, it first tries to contact
the primary; if that fails (after timeout), the proxy must
fetch the page from the origin Web server.
Figure 6 shows the performance of the WheelFS Web

cache with eventual consistency. The graph shows a pe-
riod of time after the initial cache population. The gray re-
gions indicate when a failure is present. Throughput falls
as WheelFS clients encounter timeouts to servers at the
failed site, though the service rate remains near 100 re-
quests/sec. The small load spikes at the origin server af-
ter a failure reflect requests queued up in the network by
the failed site while it is partitioned. Figure 7 shows that
with close-to-open consistency, throughput falls signifi-
cantly during failures, and hits to the origin server increase
greatly. This shows that a cooperative Web cache, which
does not require strong consistency, can use WheelFS’s
semantic cues to perform well under wide-area condi-
tions.

8.4 Mail
The Wheemail system described in Section 6 has a num-
ber of valuable properties such as the ability to serve and
accept a user’s mail from any of multiple sites. This sec-
tion explores the performance cost of those properties by
comparing to a traditional mail system that lacks those
properties.
IMAP and SMTP are stressful file system benchmarks.

For example, an IMAP server reading a Maildir-formatted
inbox and finding no new messages generates over 600
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Figure 10: The average latencies of individual SMTP requests,
for both Wheemail and the static system, on Emulab.

FUSE operations. These primarily consist of lookups on
directory and file names, but also include more than 30 di-
rectory operations (creates/links/unlinks/renames), more
than 30 small writes, and a few small reads. A single
SMTP mail delivery generates over 60 FUSE operations,
again consisting mostly of lookups.
In this experiment we use the Emulab network topol-

ogy described in Section 8.1 with 5 sites. Each site has
a 1 Mbps link to a wide-area network that connects all
the sites. Each site has three server nodes that each run a
WheelFS server, a WheelFS client, an SMTP server, and
an IMAP server. Each site also has three client nodes,
each of which runs multiple load-generation threads. A
load-generation thread produces a sequence of SMTP and
IMAP requests as fast as it can. 90% of requests are
SMTP and 10% are IMAP. User mailbox directories are
randomly and evenly distributed across sites. The load-
generation threads pick users and message sizes with
probabilities from distributions derived from SMTP and
IMAP logs of servers at NYU; there are 47699 users, and
the average message size is 6.9 KB. We measure through-
put in requests/second, with an increasing number of con-
current client threads.
When measuring WheelFS, a load-generating thread at

a given site only generates requests from users whosemail
is stored at that site (the user’s “home” site), and connects
only to IMAP and SMTP servers at the local site. Thus
an IMAP request can be handled entirely within a home
site, and does not generate any wide-area traffic (during
this experiment, each node has cached directory lookup
information for the mailboxes of all users at its site). A
load-generating thread generates mail to random users,
connecting to a SMTP server at the same site; that server
writes the messages to the user’s directory in WheelFS,
which is likely to reside at a different site. In this experi-
ment, user mailbox directories are not replicated.
We compare against a “static” mail system in which

users are partitioned over the 15 server nodes, with the
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Figure 11: CDF of client download times of a 50 MB file us-
ing BitTorrent and WheelFS with the .Hotspot and .WholeFile
cues, running on Emulab. Also shown is the time for a single
client to download 50 MB directly using ttcp.

SMTP and IMAP servers on each server node storing mail
on a local disk file system. The load-generator threads at
each site only generate IMAP requests for users at the
same site, so IMAP traffic never crosses the wide area net-
work. When sending mail, a load-generating client picks
a random recipient, looks up that user’s home server, and
makes an SMTP connection to that server, often across the
wide-area network.
Figure 9 shows the aggregate number of requests served

by the entire system per second. The static system can
sustain 112 requests per second. Each site’s 1 Mbps wide-
area link is the bottleneck: since 90% of the requests are
SMTP (message with an average size 6.85 KB), and 80%
of those go over the wide area, the system as a whole is
sending 4.3 Mbps across a total link capacity of 5 Mbps,
with the remaining wide-area bandwidth being used by
the SMTP and TCP protocols.
Wheemail achieves up to 50 requests per second, 45%

of the static system’s performance. Again the 1 Mbps
WAN links are the bottleneck: for each SMTP request,
WheelFS must send 11 wide-area RPCs to the target
user’s mailbox site, adding an overhead of about 40% to
the size of the mail message, in addition to the continuous
background traffic generated by the maintenance process,
slice lock renewal, Vivaldi coordinate measurement, and
occasional lease invalidations.
Figure 10 shows the average latencies of individual

SMTP requests for Wheemail and the static system, as the
number of clients varies. Wheemail’s latencies are higher
than those of the static system by nearly 60%, attributable
to traffic overhead generated by WheelFS.
Though the static system outperforms Wheemail for

this benchmark,Wheemail provides many desirable prop-
erties that the static system lacks. Wheemail transparently
redirects a receiver’s mail to its home site, regardless of
where the SMTP connection occurred; additional storage

Application LoC Reuses
CDN 1 Apache+mod disk cache
Mail service 4 Sendmail+Procmail+Dovecot
File distribution N/A Built-in to WheelFS
All-Pairs-Pings 13 N/A

Table 3: Number of lines of changes to adapt applications to
use WheelFS.

can be added to the system without major manual recon-
figuration; and Wheemail can be configured to offer toler-
ance to site failures, all without any special logic having
to be built into the mail system itself.

8.5 File distribution
Our file distribution experiments use a WheelFS network
consisting of 15 nodes, spread over five LAN clusters con-
nected by the emulated wide-area network described in
Section 8.1. Nodes attempt to read a 50 MB file simulta-
neously (initially located at an originating, 16th WheelFS
node that is in its own cluster) using the .Hotspot and
.WholeFile cues. For comparison, we also fetch the file
using BitTorrent [14] (the Fedora Core distribution of ver-
sion 4.4.0-5).We configuredBitTorrent to allow unlimited
uploads and to use 64 KB blocks like WheelFS (in this
test, BitTorrent performs strictly worse with its usual de-
fault of 256 KB blocks).
Figure 11 shows the CDF of the download times, under

WheelFS and BitTorrent, as well as the time for a single
direct transfer of 50MB between two wide-area nodes (73
seconds). WheelFS’s median download time is 168 sec-
onds, showing that WheelFS’s implementation of cooper-
ative reading is better than BitTorrent’s: BitTorrent clients
have a median download time of 249 seconds. The im-
provement is due toWheelFS clients fetching from nearby
nodes according to Vivaldi coordinates; BitTorrent does
not use a locality mechanism. Of course, both solutions
offer far better download times than 15 simultaneous di-
rect transfers from a single node, which in this setup has
a median download time of 892 seconds.

8.6 Implementation ease
Table 3 shows the number of new or modified lines of
code (LoC) we had to write for each application (exclud-
ing WheelFS itself). Table 3 demonstrates that developers
can benefit from a POSIX file system interface and cues
to build wide-area applications with ease.

9 Related Work
There is a humbling amount of past work on distributed
file systems, wide-area storage in general and the tradeoffs
of availability and consistency. PRACTI [8] is a recently-
proposed framework for building storage systems with ar-
bitrary consistency guarantees (as in TACT [43]). Like
PRACTI, WheelFS maintains flexibility by separating



policies from mechanisms, but it has a different goal.
While PRACTI and its recent extension PADS [9] are
designed to simplify the development of new storage or
file systems, WheelFS itself is a flexible file system de-
signed to simplify the construction of distributed appli-
cations. As a result, WheelFS’s cues are motivated by the
specific needs of applications (such as the .Site cue) while
PRACTI’s primitives aim at covering the entire spectrum
of design tradeoffs (e.g., strong consistency for operations
spanning multiple data objects, which WheelFS does not
support).
Most distributed file systems are designed to support

a workload generated by desktop users (e.g., NFS [33],
AFS [34], Farsite [2], xFS [5], Frangipani [12], Ivy [27]).
They usually provide a consistent view of data, while
sometimes allowing for disconnected operation (e.g.,
Coda [35] and BlueFS [28]). Cluster file systems such as
GFS [22] and Ceph [41] have demonstrated that a dis-
tributed file system can dramatically simplify the con-
struction of distributed applications within a large cluster
with good performance. Extending the success of clus-
ter file systems to the wide-area environment continues
to be difficult due to the tradeoffs necessary to combat
wide-area network challenges. Similarly, Sinfonia [3] of-
fers highly-scalable cluster storage for infrastructure ap-
plications, and allows some degree of inter-object con-
sistency via lightweight transactions. However, it targets
storage at the level of individual pieces of data, rather
than files and directories like WheelFS, and uses proto-
cols like two-phase commit that are costly in the wide
area. Shark [6] shares with WheelFS the goal of allowing
client-to-client data sharing, though its use of a central-
ized server limits its scalability for applications in which
nodes often operate on independent data.
Successful wide-area storage systems generally exploit

application-specific knowledge to make decisions about
tradeoffs in the wide-area environment. As a result, many
wide-area applications include their own storage lay-
ers [4, 14, 19, 31] or adapt an existing system [29, 40].
Unfortunately, most existing storage systems, even more
general ones like OceanStore/Pond [30] or S3 [1], are only
suitable for a limited range of applications and still require
a large amount of code to use. DHTs are a popular form
of general wide-area storage, but, while DHTs all offer
a similar interface, they differ widely in implementation.
For example, UsenetDHT [36] and CoralCDN [19] both
use a DHT, but their DHTs differ in many details and are
not interchangeable.
Some wide-area storage systems offer configuration

options in order to make them suitable for a larger range of
applications. Amazon’s Dynamo [16] works across multi-
ple data centers and provides developers with two knobs:
the number of replicas to read or to write, in order to con-
trol durability, availability and consistency tradeoffs. By

contrast, WheelFS’s cues are at a higher level (e.g., even-
tual consistency versus close-to-open consistency). Total
Recall [10] offers a per-object flexible storage API and
uses a primary/backup architecture like WheelFS, but as-
sumes no network partitions, focuses mostly on availabil-
ity controls, and targets a more dynamic environment.
Bayou [39] and Pangaea [32] provide eventual consis-
tency by default while the latter also allows the use of a
“red button” to wait for the acknowledgment of updates
from all replicas explicitly. Like Pangaea and Dynamo,
WheelFS provides flexible consistency tradeoffs. Addi-
tionally, WheelFS also provides controls in other cate-
gories (such as data placement, large reads) to suit the
needs of a variety of applications.

10 Conclusion
Applications that distribute data across multiple sites have
varied consistency, durability, and availability needs. A
shared storage system able to meet this diverse set of
needs would ideally provide applications a flexible and
practical interface, and handle applications’ storage needs
without sacrificing much performance when compared to
a specialized solution. This paper describes WheelFS, a
wide-area storage system with a traditional POSIX inter-
face augmented by cues that allow distributed applications
to control consistency and fault-tolerance tradeoffs.
WheelFS offers a small set of cues in four categories

(placement, durability, consistency, and large reads),
which we have found to work well for many common dis-
tributed workloads. We have used a WheelFS prototype
as a building block in a variety of distributed applications,
and evaluation results show that it meets the needs of
these applications while permitting significant code reuse
of their existing, non-distributed counterparts. We hope to
make an implementation of WheelFS available to devel-
opers in the near future.
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