
Dos and Don’ts of Client Authentication on the Web

Kevin Fu, Emil Sit, Kendra Smith, Nick Feamster�
fubob, sit, kendras, feamster � @mit.edu

MIT Laboratory for Computer Science
http://cookies.lcs.mit.edu/

Abstract

Client authentication has been a continuous source of
problems on the Web. Although many well-studied tech-
niques exist for authentication, Web sites continue to use
extremely weak authentication schemes, especially in
non-enterprise environments such as store fronts. These
weaknesses often result from careless use of authentica-
tors within Web cookies. Of the twenty-seven sites we
investigated, we weakened the client authentication on
two systems, gained unauthorized access on eight, and
extracted the secret key used to mint authenticators from
one.

We provide a description of the limitations, require-
ments, and security models specific to Web client authen-
tication. This includes the introduction of the interrog-
ative adversary, a surprisingly powerful adversary that
can adaptively query a Web site.

We propose a set of hints for designing a secure client
authentication scheme. Using these hints, we present the
design and analysis of a simple authentication scheme
secure against forgeries by the interrogative adversary.
In conjunction with SSL, our scheme is secure against
forgeries by the active adversary.

1 Introduction

Client authentication is a common requirement for
modern Web sites as more and more personalized and
access-controlled services move online. Unfortunately,
many sites use authentication schemes that are extremely
weak and vulnerable to attack. These problems are most
often due to careless use of authenticators stored on the
client. We observed this in an informal survey of authen-
tication mechanisms used by various popular Web sites.

MIT Technical Report 818. This research was supported by a USENIX
scholars fellowship. A shorter version of this document was originally
published in the Proceedings of the 10th USENIX Security Sympo-
sium, Washington, D.C., August, 2001.

Of the twenty-seven sites we investigated, we weakened
the client authentication of two systems, gained unautho-
rized access on eight, and extracted the secret key used
to mint authenticators from one.

This is perhaps surprising given the existing client
authentication mechanisms within HTTP [16] and
SSL/TLS [11], two well-studied mechanisms for provid-
ing authentication secure against a range of adversaries.
However, there are many reasons that these mechanisms
are not suitable for use on the Web at large. Lack of
a central infrastructure such as a public-key infrastruc-
ture or a uniform Kerberos [40] contributes to the pro-
liferation of weak schemes. We also found that many
Web sites would design their own authentication mecha-
nism to provide a better user experience. Unfortunately,
designers and implementers often do not have a back-
ground in security and, as a result, do not have a good
understanding of the tools at their disposal. Because of
this lack of control over user interfaces and unavailability
of a client authentication infrastructure, Web sites con-
tinue to reinvent weak home-brew client authentication
schemes.

Our goal is to provide designers and implementers
with a clear framework within which to think about and
build secure Web client authentication systems. A key
contribution of this paper is to realize that the Web is par-
ticularly vulnerable to adaptive chosen message attacks.
We call an adversary capable of performing these attacks
an interrogative adversary. It turns out that for most sys-
tems, every user is potentially an interrogative adversary.
Despite having no special access to the network (in com-
parison to the eavesdropping and active adversary), an in-
terrogative adversary is able to significantly compromise
systems by adaptively querying a Web server. We believe
that, at a minimum, Web client authentication systems
should defend against this adversary. However, with this
minimum security, sites may continue to be vulnerable to
attacks such as eavesdropping, server impersonation, and
stream tampering. Currently, the best defense against
such attacks is to use SSL with some form of client au-
thentication; see Rescorla [36] for more information on

1

the security and proper uses of SSL.

In Section 2, we describe the limitations, require-
ments, and security models to consider in designing Web
client authentication. Using these descriptions, we cod-
ify the principles underlying the strengths and weak-
nesses of existing systems as a set of hints in Section 3.
As an example, we design a simple and flexible authenti-
cation scheme in Section 4. We implemented this scheme
and analyzed its security and performance; we present
these findings in Sections 5 and 6. Section 7 compares
the work in this paper to prior and related work. We con-
clude with a summary of our results in Section 8. The
appendix describes several existing client authentications
schemes in detail.

2 Security models and definitions

Clients want to ensure that only authorized people can
access and modify personal information that they share
with Web sites. Similarly, Web sites want to ensure that
only authorized users have access to the services and
content it provides. Client authentication addresses the
needs of both parties.

Client authentication involves proving the identity of
a client (or user) to a server on the Web. We will use
the term “authentication” to refer to this problem. Server
authentication, the task of authenticating the server to the
client, is also important but is not the focus this paper.

In this section, we present an overview of the security
models and definitions relevant in client authentication.
We begin by describing the practical limitations of a Web
authentication system. This is followed by a discussion
of common requirements. We then characterize types of
breaks and adversaries.

2.1 Practical limitations

Web authentication is primarily a practical problem of
deployability, user acceptability, and performance.

Deployability

Web authentication protocols differ from traditional
authentication protocols in part because of the limited in-
terface offered by the Web. The goal is to develop an au-
thentication system by using the protocols and technolo-
gies commonly available in today’s Web browsers and
servers. Authentication schemes for the Internet at large
cannot rely on technology not widely deployed. For ex-
ample, Internet kiosks today do not have smart card read-
ers. Similarly, home consumers currently have little in-
centive to purchase smart card readers or other hardware
token systems.

The client generally speaks to the server using the Hy-
pertext Transfer Protocol (HTTP [14]). This may be spo-
ken over any transport mechanism but is typically either
TCP or SSL. Since HTTP is a stateless, sessionless pro-
tocol, the client must provide an authentication token or
authenticator with each request.

Computation allows the browser to transform inputs
before sending them to the server. This computation may
be in a strictly defined manner, such as in HTTP Digest
authentication [16] and SSL, or it may be much more
flexible. Flexible computation is available via Javascript,
Java, Tcl, ActiveX, Flash, and Shockwave. Depending
on the application, these technologies could perhaps as-
sist in the authentication process. However, most of these
technologies have high startup overhead and mediocre
performance. As a result, users may choose to disable
these technologies. Also, these extensions may not be
available on all operating systems and architectures. Any
standard authentication scheme should be as portable and
lightweight as possible, and therefore require few or no
browser extensions. Thus for today’s use, any authenti-
cation scheme should avoid using client computation for
deployability reasons. If absolutely necessary, Javascript
and Java are commonly supported.

Client state allows the client’s browser to store and
reuse authenticators. However, storage space may be
very limited. In the most limited case, the browser
can only store passwords associated with realms (as in
HTTP Basic authentication [16]). A more flexible form
of storage which is commonly available in browsers is
the cookie [24, 31]. Cookies allow a server store a value
on a client. In subsequent HTTP requests, the client
automatically includes the cookie value. A number of
attributes can control how long cookies are kept and to
which servers they are sent. In particular, the server may
request that the client discard the cookie immediately
or keep it until a specified time. The server may also
request that the client only return the cookie to certain
hosts, domains, ports, URLs, or only over secure trans-
ports. Cookies are the most widely deployed mechanism
for maintaining client state.

User acceptability

Web sites must also consider user acceptability. Be-
cause sites want to attract many users, the client authenti-
cation must be as non-confrontational as possible. Users
will be discouraged by schemes requiring work such as
installing a plug-in or clicking away dialog boxes.

Performance

Stronger security protocols generally cost more in per-
formance. Service providers naturally want to respond

2

to as many requests as possible. Cryptographic solutions
will usually degrade server performance. Authentication
should not needlessly consume valuable server resources
such as memory and clock cycles. With current technol-
ogy, SSL becomes unattractive because of the computa-
tional cost of its initial handshaking.

2.2 Server security requirements

The goals of a server’s authentication system depend
on the strength and granularity of authentication desired.
Granularity refers to the fact that some servers identify
individual users throughout a session, while others iden-
tify users only during the first request. A fine-grained
system is useful if specific authorization or accountabil-
ity of a user is required. A coarse-grained system may
be preferred in situations where partial user anonymity is
desired.

A simple example of a coarse-grained service is a sub-
scription service [41]. Subscription services merely wish
to verify that a user has paid for the service before al-
lowing access to read-only content. During the initial
request, a user could authenticate with a username and
password. Unless the service allows customization, sub-
sequent requests need only verify that a user has been
authenticated without knowing the user’s actual identity.
A trusted third party could handle the initial authentica-
tion of a user. Some specific examples of sites that only
require this level of authentication are newspapers (e.g.,
WSJ.com), online libraries (e.g., acm.org), and adult
entertainment (e.g., playboy.com).

However, most sites customize the data sent back to
users. This naturally requires a fine-grained system.
Each user must be identified specifically to use their pref-
erences. Examples of this include sites that allow users
to customize look-and-feel (e.g., slashdot.org),
sites that filter information on behalf of the user (e.g.,
infobeat.com), or sites which provide online identi-
ties (e.g., hotmail.com).

2.3 Confidentiality and privacy

Confidentiality is not strictly related to authentication
but it is worth mentioning as well, since it can be pro-
vided by cryptography and since it is often confused
with authentication. A system that provides confidential-
ity protects traffic from disclosure by anyone except the
sender and recipient. In contrast, a system that provides
authentication ensures that the person sending or receiv-
ing the data is indeed who they claim to be. This may be
confusing because SSL, the only widely deployed mech-
anism for providing confidentiality of HTTP transac-
tions, provides options for both authentication and con-
fidentiality. The distinction between confidentiality and

authentication is further blurred by the practice of current
browsers of displaying a single padlock whose meaning
is ambiguous.

Typically, servers choose to provide confidentiality
for only certain special data by using SSL. For exam-
ple, financial data require confidentiality. Sites that deal
with such information, online brokerages, may be auc-
tion sites (e.g., ebay.com), banks and other financial
service providers (e.g., etrade.com), or online mer-
chants (e.g., FatBrain.com).

Another issue commonly associated with authentica-
tion is user privacy. Privacy refers to protecting the data
available on the server from access by unauthorized par-
ties. While often the information provided by the server
is not itself secret, one does not usually want unknown
parties discovering their personal interests. For exam-
ple, a user may sign up to see discount airfares to San
Francisco or select stocks in a portfolio for updated stock
quotes. While the fact that US Airways is offering a low
fare or that Cisco stock has shed four points is not in any
way secret, it may be telling to find out if a particular user
is interested in that information. Therefore servers often
need to provide ways to keep personalized data private.
Privacy can be achieved by using secure authentication
and providing confidentiality.

2.4 Breaks

An adversary’s goal is to break an authentication
scheme faster than by brute force. Here we use terminol-
ogy loosely borrowed from cryptography to characterize
the kinds of breaks an adversary can achieve [18, 30].

In an existential forgery, the adversary can forge an
authenticator for at least one user. However, the adver-
sary cannot choose the user. This may be most interest-
ing in the case where authenticators protect access to a
subscription service. While an existential forgery would
not give an adversary access to a chosen user’s account,
it would allow the adversary to access content without
paying for it. This is the least harmful kind of forgery.

In a selective forgery, the adversary can forge an au-
thenticator for a particular user. This adversary can ac-
cess any chosen user’s personalized content, be it Web
e-mail or bank statements.

Note that a forgery implies the construction of a new
authenticator, not one previously seen. In a traditional
replay attack, the adversary is merely reusing a captured
authenticator.

Finally, a total break results in recovery of the secret
key used to mint authenticators. This is the most serious

3

break in that it allows the adversary to construct valid
authenticators at any time for all users.

2.5 Adversaries

We consider three kinds of adversaries that attack Web
authentication protocols: the interrogative adversary,
the eavesdropping adversary, and the active adversary.
Each successive adversary possesses all the abilities of
the weaker adversaries. Note that our definitions differ
somewhat from tradition. Our adversaries gather infor-
mation and apply this information to achieve a break.
The adversaries differ from each other only in their in-
formation gathering ability.

Interrogative adversary

The interrogative adversary can make a reasonable
number of queries of a Web server. It can adaptively
choose its next query based on the answer to a previ-
ous query. We named this the interrogative adversary
because the adversary makes many queries, but lacks the
ability to sniff the network.

The ability to make queries is surprisingly power-
ful. The adversary can pass attempted forgeries to the
server’s verification routine. By creating new accounts
on a server, the adversary can obtain the authenticator
for many different usernames. This is possible on any
server that allows account creation without some form of
out-of-band authentication (e.g., credit cards) to throttle
requests. In this paper we assume no such throttle exists.

The interrogative adversary can also use information
publicly available on the server. A server may publish
the usernames of valid account holders, perhaps in a pub-
lic discussion forum. An adversary attacking this server
might find this list useful.

In more theoretical terms, the interrogative adversary
may treat the server as an oracle. An interrogative adver-
sary can carry out an adaptive chosen message attack by
repeatedly asking for the server to mint or verify authen-
ticators [18].

Eavesdropping adversary

The eavesdropping adversary can see all traffic be-
tween users and the server, but cannot modify any pack-
ets flowing across the network. That is, the adversary can
sniff the network and replay authenticators. This adver-
sary also has all the abilities of the interrogative adver-
sary.

An eavesdropping adversary can apply its sniffed in-
formation to attempt a break. Computer systems research
would consider this an active attack; we do not. This
style of definition is more common in the theory com-
munity where attacks consist of an information gathering
process, a challenge, another optional information gath-
ering process, and then an attempted break [3].

Active adversary

The active adversary can in addition see and modify
all traffic between the user and the server. This adversary
can mount man-in-the-middle attacks. In the real world,
this situation might arise if the adversary controls a proxy
service between the user and server.

3 Hints for Web client authentication

We present several hints for designing, implementing,
and selecting a scheme for client authentication on the
Web. Some of these hints come from our experiences in
breaking authentication schemes in use on commercial
Web sites. Others come from general knowledge or secu-
rity discussion forums [45]. Following these hints is nei-
ther necessary nor sufficient for security. However, they
would have prevented us from breaking the authentica-
tion schemes on several Web sites mentioned in this sec-
tion. Most of these sites have subsequently repaired the
problems we identified. These incidents help to demon-
strate the usefulness of these hints. The details of our
analysis are documented in the appendix.

Although we give advice on how to perform client
authentication on the Web, we certainly do not advo-
cate having everyone design their own security systems.
Rather, we hope that these hints will assist researchers
and developers of Web client authentication and dis-
suade persons unfamiliar with security from implement-
ing home-brew solutions.

The hints fall into three categories. Section 3.1 dis-
cusses the appropriate use of cryptography. Section 3.2
explains why passwords must be protected. Section 3.3
offers suggestions on how to protect authenticators.

3.1 Use cryptography appropriately

Use of cryptography is critical to providing authenti-
cation. Without the use of cryptography, it is not pos-
sible to protect a system from the weakest of adver-
saries. However, designing cryptographic systems is a
difficult and subtle task. We offer some hints to help
guide the prospective designer in using the cryptographic
tools available.

4

Use the appropriate amount of security

An important general design hint is to Keep It Sim-
ple, Stupid [26]. The more complex the scheme, the
harder it is to develop compelling arguments that it is se-
cure. If you are designing or selecting a system, choose
one that provides the right amount of security for your
needs. For example, an online newspaper cares about re-
ceiving compensation for content. An online brokerage
cares about confidentiality, integrity, and authentication
of information. These security needs are very different
and can be satisfied by different systems. There are usu-
ally tradeoffs between the user interface, usability, and
performance. Choosing an overly complex or featureful
system will make management more difficult; this can
easily result in security breaches.

Do not be inventive

It is a general rule in cryptography that secure systems
should be designed by people with experience. Time has
repeatedly shown that systems designed or implemented
by amateurs are weak and easily broken. Thus, while we
encourage research in developing authentication systems
for the Web, it is very risky to design your own authen-
tication system. This is closely related to our next hint.
If you do choose to implement your own scheme, you
should make your protocol publicly available for review.

Do not rely on the secrecy of a protocol

A security system should not rely on the secrecy of
its protocol. A protocol whose security relies on ob-
scurity is vulnerable to an exposure of the protocol. If
there are any flaws, such an exposure may reveal them.
For example, a secret system can be probed by an in-
terrogative adversary to determine its behavior to valid
and invalid inputs. This technique allowed us to re-
verse engineer the WSJ.com client authentication pro-
tocol. By creating several valid accounts and compar-
ing the authenticators returned by the system, we were
able to determine that the authenticator was the output
of crypt (salt, username

�
secret string) where

�
de-

notes concatenation. Once we understood the format of
the authenticator, we were able to quickly recover the se-
cret string, “March20”, by mounting an adaptive chosen
message attack. The program, included in the appendix,
runs in ��������� queries rather than the intended ���	��
 . As-
suming each query takes 1 second, this program finishes
in 17 minutes instead of the intended �������� years. This
information constitutes a total break, allowing us to mint
valid authenticators for all users.

On the other hand, Open Market published their de-
sign and implementation [28].

Instead of relying on the secrecy of the scheme, rely on
the secrecy of a well-selected set of keys. Ensure that the
protocol is public so that it can be reviewed for flaws and
improved. This will lead to a more secure system than
a private protocol which appears undefeatable but may
in practice be fairly easy to break. If you are hesitant
to reveal the details of an authentication scheme, then
you likely fear that it is vulnerable to an attack by an
interrogative adversary.

Understand the properties of cryptographic tools

When designing an authentication scheme, crypto-
graphic tools are critical. These include hash func-
tions such as SHA-1 [15], authentication codes like
HMAC [23], and higher-level protocols like SSL [11].
The properties each tool must be understood.

For example, SSL alone does not provide user au-
thentication. Although SSL can authenticate users with
X.509 client certificates, commercial Web sites rarely
use this feature because of PKI deployment problems.
Instead, SSL is used to provide confidentiality of authen-
tication tokens and data. However, confidentiality does
not ensure authentication.

Misunderstanding the properties of SSL made
FatBrain.com vulnerable to selective forgeries by an
interrogative adversary. In an earlier scheme, their au-
thenticator consisted of a username and a session identi-
fier based on a global sequence number. Since this num-
ber was global, an interrogative adversary could guess
the session identifier for a chosen victim and make an
SSL request with this session identifier. Here, the use of
SSL did not make the system secure.

A more detailed example comes from a misuse of
a hash function. One commonly (and often incor-
rectly) used input-truncating hash function is the Unix
crypt() function. It takes a string input and a two-
character salt to create a thirteen-character hash [30]; it
is believed to be almost as strong as the underlying cryp-
tographic cipher, DES [43]. However, crypt() only
considers the first eight characters of its string input. This
truncation property must be taken into account when us-
ing it as a hash.

The original WSJ.com authentication system failed to
do so, which made our break possible. Since the input
to crypt() was the username concatenated with the
server secret, the truncation property of crypt()meant
that the secret would not be hashed if the username was
at least eight characters long. This means authenticators
for long usernames can be easily created, merely with

5

knowledge of the username. Additionally, the algorithm
will produce an identical authenticator for all usernames
that match in the first eight characters. This can be seen
in Figure 1.

It is likely that WSJ.com expected this construction
to act like a secure message authentication code (MAC).
A message authentication code is a one-way function of
both its input and a secret key that can be used to verify
the integrity of the data [42]. The output of the function
is deterministic and relatively short (usually sixteen to
twenty bytes). This means that it can be recalculated to
verify that the data has not been tampered with.

However, the WSJ.com authenticator was just a de-
terministic value which could always be computed from
the first eight characters of the username and a fixed
secret. While HTTP Basic authentication [16] (which
uses no cryptography at all) is secure against an exis-
tential forgery of an interrogative adversary, the original
WSJ.com scheme fell to a total break by the interroga-
tive adversary.

Thus, when possible you should use a secure message
authentication code. Certain cryptographic constructions
have subtle weaknesses [30], so you should take great
care in choosing which algorithm to employ. We rec-
ommend the use of HMAC-SHA1 [23]. This algorithm
prevents many attacks known to defeat simple construc-
tions. However, as we will see in Section 6, use of secure
message authentication code is more expensive than an
input-truncating hash such as crypt().

Do not compose security schemes

It is difficult to determine the effects of composing
two different security systems. Breaking one may al-
low an adversary to break the other. Worse, simply
composing the schemes may have adverse cryptographic
side effects, even if the schemes are secure in isolation.
Menezes et al explain in remark 10.40 how using a sin-
gle key pair for multiple purposes can compromise secu-
rity [30]. The use of a single key for authentication and
confidentiality leads to compromise of both if that key is
stolen. On the other hand, if separate keys are used, a
break of the authentication will not affect the confiden-
tiality of past messages and vice versa.

FatBrain.com had two separate user authentica-
tion systems. To purchase a book, a user entered a user-
name and password at the time of purchase. Future pur-
chases required reauthentication. The account manage-
ment Web pages had a separate security scheme which
was stateful. After the user entered a username and

password, FatBrain established a session identifier in the
URL path. In this way, users could navigate to other parts
of the account management system without having to te-
diously re-enter the password. Unfortunately, the secu-
rity hole discussed in Section 3.3 allowed an adversary to
gain access to the account management system for an ar-
bitrary user by guessing a valid session identifier. The ac-
count management system includes an option to change
a user’s registered email address. By changing the email
address of a victim’s account and then selecting “mail me
my password,” an adversary could break into to the book
purchasing part of the system, despite the fact that it was
secure in isolation.

3.2 Protect passwords

Passwords are the primary means of authenticating
users on the Web today. It is important that any Web
site guard the passwords of its users carefully. This is
especially important since users, when faced with many
Web sites requiring passwords, tend to reuse passwords
across sites.

Limit exposure of passwords

Compromise of a password completely compromises
a user. A site should never reveal a password to a
user. For instance, ihateshopping.net included
the user’s password as a hidden form variable. A valid
user should already know the password; sending it un-
necessarily over the network gives the eavesdropping ad-
versary more opportunity to sniff the password. Fur-
thermore, sites should use the “password” field type in
HTML forms. This hides the password as it is typed
in and prevents an adversary from peeking over a user’s
shoulder to copy the password.

Even for non-secure Web sites, users should have the
option to authenticate over SSL. That is, users should not
type passwords over HTTP. Passwords sent over HTTP
are visible to eavesdropping adversaries sniffing the net-
work and active adversaries impersonating servers. Be-
cause users often have the same password on multiple
servers, a stolen password can be extremely damaging.
To protect against such attacks, a server could require
users to conduct the login over an SSL connection to
provide confidentiality for the password exchange; upon
successful completion of the login exchange, the server
can then set a cookie with an unforgeable authenticator
for use over HTTP. The authenticator can be designed to
limit the spread of damage, whereas passwords can not.

Prohibit guessable passwords

Many Web sites advise users to choose memorable
passwords such as birthdays, names of friends or fam-
ily, or social security numbers. This is extremely poor

6

username crypt() output authentication cookie
bitdiddle MaRdw2J1h6Lfc bitdiddleMaRdw2J1h6Lfc
bitdiddler MaRdw2J1h6Lfc bitdiddlerMaRdw2J1h6Lfc

Figure 1: Comparison of crypt() and WSJ.com authentication cookies. The last field represents the username
prepended to the output of the crypt() function. The input to the crypt() function is the username prepended to
the string “March20”.

advice, as such passwords are easily guessed by an at-
tacker who knows the user. Even without bad advice,
passwords are fairly guessable [32]. Thus, servers ought
to prohibit users from using any password found in a dic-
tionary; such passwords are vulnerable to dictionary at-
tacks. Servers can reduce the effectiveness of on-line dic-
tionary attacks by restricting the number of failed login
attempts or requiring a short time delay between login
attempts.

Unfortunately, implementing this requirement will
make a Web site less appealing to use since it makes
passwords harder to remember.

Reauthenticate before changing passwords

In security-sensitive operations such as password
changing, a server should require a user to reauthenti-
cate. Otherwise, it may be possible for an adversary
to replay an authentication token and force a password
change, without actual knowledge of the current pass-
word.

3.3 Handle authenticators carefully

Authenticators are the workhorse of any authentica-
tion scheme. These are the tokens presented by the client
to gain access to the system. As discussed above, authen-
ticators protect passwords by being a short-term secret;
the authenticator can be changed at any time whereas
passwords are much less convenient to change.

Make authenticators unforgeable

Many sites have authenticators that are eas-
ily predictable. For instance, we noticed that
highschoolalumni.com uses ID numbers and
email addresses inside cookies to authenticate users.
An interrogative adversary can find this information
in the publicly available alumni database and mint an
authenticator for an any user.

Authenticators often contain keys that function as ses-
sion identifiers. These identifiers should be crypto-
graphically random; statistical randomness is not suf-
ficient. The Allaire Cold Fusion Web server issues

CFTOKEN session identifiers which come from a lin-
ear congruential number generator [2]. As described
above, FatBrain.com used essentially a global se-
quence number. While these numbers may be appropri-
ate for tracking users, it is possible for an adversary to
deduce the next output, and hence the next valid session
identifier. This may allow the adversary access the infor-
mation of another user.

Authenticators may also contain other information that
the system will accept to be true. Thus, they must also
be protected from tampering. This is done by use of a
message authentication code (MAC). Because message
authentication codes require a secret key, only an entity
with knowledge of the key can recreate a valid code. This
makes the codes unforgeable since no adversary should
possess the secret key. Use only strong cryptographic
hash functions. Do not use CRC codes or other non-
cryptographic hashes, as such functions are often trivial
to break.

Relatedly, when combining multiple pieces of data
to input into a message authentication code, be sure to
unambiguously separate the components. Otherwise, a
cryptographic splicing attack may defeat the message au-
thentication code. Since most inputs are text, this can be
done using some character that is known not to appear
in the input fragments. If components are not clearly
separated, multiple inputs can lead to the same out-
puts. For example, “usernameaccess” could come from
“username” followed by “access” or “user” followed by
“nameaccess”; better to write “username&access” to en-
sure that the interpretation is unambiguous. Of course,
care must be taken to prevent the username from con-
taining an ampersand!

Protect authenticators that must be secret

Some systems believe that they are secure against
eavesdropping adversaries because they send their au-
thenticators over SSL. However, a secure transport is
ineffective if the authenticators leak through plaintext
channels. We describe two ways that authenticators are
sent over SSL and mistakes which can lead to the authen-
ticator leaking into plaintext.

7

One method is to set the authenticator as a cookie.
When doing so, it is usually appropriate to set the Se-
cure flag on cookies sent over SSL. When set to true,
this flag instructs a Web browser to send the cookie over
SSL only. A number of SSL Web sites neglect to set
this flag. This simple error can completely nullify the
benefits of SSL. For instance, customers of SprintPCS
can view their account information and make equipment
purchases online. To authenticate, a user enters a phone
number and password over SSL. SprintPCS then sets a
cookie which acts as an authenticator. Anyone with the
cookie can log in as that user. The protocol so far is rea-
sonably secure. However, because SprintPCS does not
set the Secure flag on their authentication cookie, the
authenticator travels in plaintext over HTTP whenever
a user visits the main SprintPCS Web page. We believe
that SprintPCS intended to protect against eavesdropping
adversaries. Nevertheless, an eavesdropping adversary
can access a victim’s account with a replay because the
cookie authenticator leaks over HTTP.

A second method of setting an authenticator is to in-
clude it as part of the URL. Though the HTTP 1.1 spec-
ification [14] recommends against this, it easy to do and
sites still use this. The problem with this method is that
it too can leak authenticators through plaintext channels.
If a user follows a link from one page to another, the
Web browser usually sends the Referer [sic] header. This
field includes the URL of the page from which the cur-
rent request originated. As described in Section 14.36
of the HTTP specification, the Referer field is normally
used to allow a server to trace back-links for logging,
caching, or maintenance purposes. However, if the URL
of the linking page includes the authenticator, the server
will receive a copy of the authenticator in the HTTP
header. Section 15.1.3 of the specification recommends
that clients should not include a Referer header in a non-
secure HTTP request if the referring page was transferred
with a secure protocol for exactly this reason. However,
this is not a requirement; browsers such as Netscape and
Lynx send the Referer header without any warning.

This can be exploited via a cross-site scripting at-
tack [9]. An adversary can cause a user to execute ar-
bitrary code and offer the user a link from a secure URL
including the authenticator (that appears legitimate) to a
link of the adversary’s choosing. If the user selects the
link, the Referer field in the request may include the au-
thenticator, making it available to an eavesdropping ad-
versary. Worse, the link could point to the adversary’s
machine. Then no eavesdropping is necessary to cap-
ture the authenticator. If the attacker is clever and uses
an SSL server to host the attack, most browsers will not
indicate that anything untoward is happening since they

only warn users about transitions from SSL to non-SSL
links.

Therefore, be careful when setting authenticators in
cookies and follow the recommendation of the HTTP 1.1
specification by not using authenticators in URLs.

Avoid using persistent cookies

A persistent cookie is written to a file on the user’s
system; an ephemeral or temporary cookie is only stored
in the browser’s memory and disappears when the user
exits the browser. An error in the way the browser or
user handles the cookie file may make it accessible over
the Internet, exposing the user’s cookies to anyone who
knows where to look. For instance, certain queries to
search engines can produce many cookie files acciden-
tally placed on the Web. This is documented in the ap-
pendix. If a persistent cookie in a leaked file contains an
authenticator, an adversary can simply copy the cookie
and break into the user’s account. In addition, if the user
accesses the account from a public system (say at a li-
brary or Internet café) and receives a persistent authenti-
cation cookie on that system, any subsequent user of that
system can access the account. For these reasons, per-
sistent cookies should not be considered private. Do not
store authenticators in persistent cookies.

Limit the lifetime of authenticators

A good design must also gracefully handle the com-
promise of tokens which are designed to be secret. To
limit the amount of damage a leaked authenticator can
cause, limit its lifetime.

For authenticators that are stored in user cookies, do
not rely on the cookie expiration field for secure expira-
tion. Since the client is responsible for enforcing that ex-
piration, a malicious client can set the lifetime arbitrarily.
Netscape users can manually extend these expirations by
simply editing a text file. We were able to indefinitely
extend the lifetime of our WSJ.com cookie authentica-
tor even though WSJ.com set the cookie to expire in
11 hours. This was not extremely alarming, but if an
adversary stole a cookie (as described in Section 3.3),
there would be no way to revoke the adversary’s access.
The problem was compounded because the cookie au-
thenticator remained the same even if a user’s password
changed. This prevented the WSJ.com site from easily
revoking access to a compromised account.

To prevent unauthorized cookie lifetime extensions,
include a cryptographically unalterable timestamp in the

8

value of the cookie, or store the expiration time in a user-
inaccessible place on the server. Securely binding expi-
rations to authenticators limits the damage caused by a
stolen authenticator.

Note that an authenticator that is stored in a cookie
can be replayed, regardless of its expiration time, if it is
leaked. By definition, unless the client uses computation,
it can only send unmodified cookies back to the server.
If replay prevention is desired, the authenticator must be
kept confidential and changed after each use. In that case,
it might be necessary to record recently received authen-
ticators and verify that newly received authenticators are
not replays.

Bind authenticators to addresses

It can also be useful to tie authenticators to specific
network addresses. This helps protect against replay at-
tacks by making it more difficult for the adversary to suc-
cessfully reuse the authenticator. In addition to acquiring
the authenticator, the adversary must appear to originate
from the same network address for which the authentica-
tor was minted. However, this may prematurely invali-
date authenticators issued to mobile DHCP users.

4 Design

In this section we present a scheme for performing
client authentication. This design is intended to be an ex-
ample of a simple system that follows the hints provided
in Section 3. We do not claim that the scheme is novel,
but we do claim that the concepts and design process are
not extensively discussed in literature. We present a brief
security analysis of the schemes in Section 5.

Our scheme provides a personalizable authenticator
which allows the server to statelessly verify the authen-
ticity of the request and its contents. The server can ex-
plicitly control the valid lifetime of the authenticator as
well. The authenticator can include all the information
needed to service a request, or can be used as a key to
refer to session information stored on the server.

The overall operation of this scheme is shown in Fig-
ure 2. We assume that the user has an existing account
on the server which is accessed via a username and pass-
word. At the start of each session, the server receives the
username and password, verifies them, and sets an au-
thentication cookie on the user’s machine. Since cook-
ies are widely supported, this makes the system portable.
Subsequent requests to the server include this cookie and
allow the server to authenticate the request. The design

of each cookie ensures that a valid cookie can only be
created by the server; therefore anyone possessing a valid
cookie is authorized to access the requested content on
the server.

Our scheme is designed to be secure against an in-
terrogative adversary, as we believe that most of the
schemes we evaluated were designed with this type of
adversary in mind. However, because SSL with server
authentication provides confidentiality and integrity, lay-
ering our design on top of SSL can provide an authenti-
cation system secure against an active adversary.

4.1 Cookie Recipe

The recipe for our cookie follows easily from the hints
presented in Section 3. We create an unforgeable authen-
ticator that includes an explicit expiration time. We use
HTTP state (i.e. cookies) to store this authenticator with
the client. The value of this cookie is shown here:

exp=
�
&data= � &digest=MAC � (exp=

�
&data= �)

The expiration time is denoted
�

and is expressed as sec-
onds past 1970 GMT. The data string � is an optional
parameter denoting arbitrary data that the server wishes
to associate with the client. Finally, the cookie includes
a MAC for the cleartext expiration and data.

Our cookie requires the use of a non-malleable MAC;
that is, one where it is intractable to generate a valid ci-
phertext from a plaintext message related to a plaintext
message with a known ciphertext [12, 23]. That is, no
adversary can generate a valid ciphertext without both
the server’s secret key and the plaintext, no matter how
many samples of valid plaintext/ciphertext pairs the ad-
versary has. Examples of keyed, non-malleable MACs
are HMAC-MD5 and HMAC-SHA1 [23].

4.2 Discussion

Selecting an expiration time
�

is a trade-off between
limiting the damage that can be done with a leaked au-
thenticator and requiring the user to reauthenticate. Ya-
hoo!, for example, allows users to specify what expira-
tion interval they prefer for authenticators that control
access to sensitive data [46]. This allows the user to con-
trol the trade-off. On the other hand, for insensitive data,
it makes sense for the server to make the choice. For ex-
ample, a newspaper might want cookies to be valid for
only a day, whereas a magazine might allow sessions to
be valid for a month (as if the user were buying a single
issue).

9

Checks that user
has valid account

Creates authentication
token

Stores authentication token
as cookie

Bob
Fu

Authentication token

Username, password

Verifies authentication
token

Content request, authentication token

Content

Bob
Fu?

Subsequent requests:

Login procedure:User Server

Figure 2: One-exchange authentication system.

The value � may be any information specific to the
user that the server wishes to access without maintaining
server state. This may be anything from a session identi-
fier to a username. Beware that this data is not encrypted
so sensitive information should not be stored here; if sen-
sitive data is needed, we recommend that a cryptograph-
ically random session identifier be used. This will pre-
vent information leaks from compromising a user’s pri-
vacy. On the other hand, if sensitive user information is
required to handle only a small percentage of the content
requests, the authenticator can contain the information
needed to service the majority of requests. This way the
server can avoid doing a possibly expensive look-up with
every request.

A server may also choose to leave � empty (and re-
moving the data parameter from the cookie). This
might be useful in the case where authentication must
expire, but all users are essentially the same. A plausible
example of this might be a pay-per use service, such as a
newspaper.

4.3 Authentication and revocation

To authenticate a user, the server retrieves the cookie
and extracts the expiration. If the cookie has not expired,
the server recalculates the MAC in the digest parame-
ter of the cookie. Since the server is the only entity who
knows the key

�
, the properties of the MAC function im-

ply that a valid cookie was generated by the server. So
long as the server only generates cookies for authenti-
cated users, any client with a valid cookie is a valid user.

This scheme does not provide a mechanism for se-
cure revocation; that is, ending the user’s session before
the expiration time is up. The easiest option is for the
server can instruct the client to discard the authentication
cookie. This will usually be adequate for most applica-
tions. However, a client who has saved the value of the

cookie can continue to reuse that value so long as the
explicit expiration time has not yet passed.

In most cases, a short session can make revocation un-
necessary: the user can access the server until the session
expires, at which time the server can refuse to issue a
new authenticator. Servers that require secure revocation
should keep track of the session status on the server (e.g.,
using a random session key or our personalized scheme
with a server database). This session can then be explic-
itly revoked on the server, without trusting the client.

The scheme does allow simultaneous revocation of all
authenticators, which can be accomplished by rotating
the server key. This will cause all outstanding cookies to
fail to verify. Thus, all users will have to log in again.
This might be useful for finding unused accounts.

4.4 Design alternatives

One interesting point of our scheme is that we have
included the expiration time

�
in the cookie value itself.

This is the only way for a server to have access to the
expiration date without maintaining state. Explicit in-
clusion of the expiration date in a non-malleable cookie
provides fixed-length sessions without having to trust the
client to expire the cookie. It would also have been pos-
sible to merely use a session identifier but that would
always require server state and might lead to mistakes
where expiration was left in the hands of the client.

Many schemes do involve setting a random session
identifier for each user. This session identifier is used
to access the user’s session information, which is stored
in a database on the server. While such a scheme al-
lows for a client to make customizations (i.e. it is func-
tionally equivalent to the scheme we have presented), it
is potentially subject to guessing attacks on the session

10

identifier space. If an adversary can successfully guess a
session identifier, the system is broken (see Section 3.3).
Our scheme provides a means for authenticating clients
that is resistant to guessing attacks on session identifiers.
Furthermore, our scheme provides the option of authen-
ticating clients with

���
��� server state, rather than

����� � ,
where

�
is the number of clients.

Our system can also make it easier to deploy multi-
server systems. Using session identifiers requires either
synchronized, duplicated data between servers or a single
server to coordinate requests, which becomes a potential
bottleneck. Our scheme allows any server to authenti-
cate any user with a minimum of information, none of
which must be dynamically shared between servers. In
addition, the authentication always completes in constant
time, rather than in time which increases with the number
of users.

5 Security analysis

In this section we present an informal analysis of the
security properties of our design. For the purpose of dis-
cussion, we will refer to the cookie’s two halves: the
plaintext and the verifier. The plaintext is the expiration
concatenated with the user string, and the verifier is the
HMAC of the plaintext.

We will discuss the security of the scheme once the
authenticator (i.e. cookie) is received by the user from the
server. We will not discuss mechanisms for completing
the initial login.

5.1 Forging authenticators

An adversary does not need to log in if it can create a
valid authenticator offline. Often an adversary can cre-
ate a plausible plaintext string; therefore the security of
the authenticator rests on the fact that the verifier cannot
be calculated by an adversary without the key. Since we
have selected our MAC to be non-malleable, an adver-
sary can not forge a new authenticator.

An attacker may also attempt to extend the capabil-
ities associated with the authenticator. This might in-
clude changing the expiration date or some aspect of
the data string which would allow unauthorized access
to the server. For instance, if the data string includes
a username, and the adversary can alter the username,
this might allow access another user’s account. It is easy
enough for the adversary to change the plaintext of the
authenticator in the desired manner. However, as we
have seen, because HMAC is non-malleable, it is in-
tractable for the adversary to generate a valid ciphertext

for an altered plaintext string. Therefore the adversary
cannot bring about any change in an authenticator that
will be accepted by the server.

5.2 Authenticator hijacking

An interrogative adversary cannot see any messages
that pass between the user and the server. Therefore, it
cannot hijack another user’s authenticator. However, an
eavesdropper can see the authenticator as it passes be-
tween the user and the server. Such an adversary can
easily perform a replay attack. Therefore the system is
vulnerable to hijacking by such an adversary. However,
the replay attack lasts only as long as the authenticator
is valid; that is, between the time the adversary “sniffs”
the authenticator and the expiration time. The adversary
does not have the ability to create or modify a valid au-
thenticator. Therefore this is an attack of limited useful-
ness. The lifetime of the authenticator determines how
vulnerable the system is; systems which employ a shorter
authenticator lifetime will have to reauthenticate more
often, but will have tighter bounds on the damage that a
successful eavesdropping adversary can accomplish. In
addition, the system can protect against an eavesdrop-
ping adversary by using SSL to provide confidentiality
for the authenticator.

5.3 Other attacks

We mention briefly some attacks on our schemes
which do not deal with the authenticator directly. The
best known attack against the scheme in Section 4 is a
brute force key search.

A server compromise breaks the system: if the adver-
sary obtains the key to the MAC, it can generate valid
authenticators for all users. Random keys and key ro-
tation help to prevent the adversary from mounting brute
force key attacks (see Lenstra [27] for suggestions on key
size).

In addition, key rotation helps protect against volume
attacks, whereby an adversary may be able to obtain the
key to the hash function because the adversary has ob-
tained a great quantity of data encrypted using it. We
note that HMAC-MD5 and HMAC-SHA1 are not be-
lieved to be vulnerable to this type of analysis [23]. How-
ever, we believe that it is prudent to include key rotation
since it does not decrease the security of the scheme, it
protects against server compromise, and it has minimal
cost to the server.

In addition, the adversary can obtain unauthorized ac-
cess by guessing the user’s password; see Section 3.2 for
some guidelines for preventing this.

11

Our scheme in itself only provides user authentication.
For protection against server impersonation or for data
integrity, we recommend SSL.

6 Implementation and performance

The client authentication scheme described in Sec-
tion 4 was implemented in Perl 5.6 using the LWP, HTTP,
CGI, FCGI, and Digest modules. We tested the imple-
mentation on two dual Pentium III 733 MHz machines
each with 256 MB of RAM running the Linux 2.2.18-
smp kernel and Apache 1.3.17 with mod fastcgi 2.2.10.
Everything ran on a local disk. A dedicated Gigabit link
with a 20 � s round-trip time connected the machines.

6.1 Microbenchmark performance

We ran ��� ��� � trials of crypt() and HMAC-SHA1.
The input to crypt() was an 8-byte input and a 2-
byte salt. The input to HMAC-SHA1 was a 27-byte in-
put and a 20-byte key. crypt() finished on average
in 8.08 � sec with 99% of the trials completing in under
10 � sec. HMAC-SHA1 took on average 41.4 � sec with
99% of the trials completing in under 47 � sec. We at-
tribute the variances to context switching.

6.2 End-to-end performance

To measure the end-to-end performance of cookie-
based logins, we repeatedly retrieved 400 bytes of data
from a Web server that authenticated our client. Both the
client and the cookie authentication scheme were imple-
mented in Perl, and the server ran the cookie authentica-
tion script with FastCGI. Our end-to-end test consisted of
the client presenting a cookie authenticator (as described
in Section 4) to the server, which verifies the authentica-
tor by performing HMAC-SHA1 on the expiration date
presented by the client. In order to provide a baseline for
comparison, we also measured the average performance
of plain HTTP, HTTP with Basic Authentication [16],
and an always-authenticated FastCGI script for the same
page.

For each scheme, we made 5,000 successive requests,
with valid authentication information (when needed).
Figure 3 presents the average time from the request being
sent in our HTTP client until a response was received.

99% of the HTTP trials without authentication were
faster than 5.9 ms. Similarly, 99% of HTTP Basic au-
thentication trials were faster than 6.3 ms. 99% of the
plain FastCGI trials were faster than 7.7 ms, and 99% of

0

5

10

15

20

av
er

ag
e

la
te

nc
y

(m
s/

re
qu

es
t)

HTTP (no authentication)
HTTP + Basic Auth
FastCGI (no authentication)
FastCGI + HMAC-SHA1 cookie

5.8 6.2
7.2

8.4

Figure 3: End-to-end performance of average service la-
tency per request. We measure HTTP and FastCGI with-
out authentication to obtain a baseline for comparison.
Basic Auth is the cleartext password authentication in
HTTP [16].

the FastCGI trials with our HMAC-SHA1 scheme took
less than 8.8 ms. Figure 3 shows that the cost of HTTP
Basic authentication is 0.4 ms per request while the cost
of our HMAC-SHA1 scheme is 1.2 ms. We suspect that
non-cryptographic factors such as string parsing and file
I/O cause the disparity between the microbenchmarks
and the end-to-end measurements.

Note that SSL is an order of magnitude slower than
the HMAC-SHA1 cookie scheme. A single new SSL
connection takes 90 ms [17] on a reasonable machine.
SSL client authentication, even with session resumption,
cannot run faster than the HMAC-SHA1 cookie scheme
because SSL authenticates the entire HTTP stream. Our
scheme runs HMAC-SHA1 on fewer than 30 bytes of
data per request (a timestamp, personalization data, and
a key).

7 Related work

There is an extensive body of work related to authen-
tication in general and Web authentication in particular.
We highlight a few relevant examples. For other studies
of design principles, see Abadi [1] or Lampson [26].

7.1 General authentication protocols

In the past ten years, several new authentication
protocols have been developed, including AuthA [4],
EKE [5], provably secure password authenticated key
exchange [7], and the Secure Remote Password proto-
col [44]. Furthermore, groups are simplifying and stan-

12

dardizing password authentication protocols [21]. How-
ever, these protocols are not well-suited for the Web be-
cause they are designed for session initialization of long-
running connections, as opposed to the many short-lived
connections made by Web browsers. Long-running con-
nections can easily afford a protocol involving the ex-
change of multiple messages, whereas short-lived ones
cannot absorb the overhead of several extra round-trips
per connection. Additionally, these protocols often re-
quire significant computation, making them undesirable
for loaded Web servers.

One-time passwords can prevent replay attacks. Lam-
port’s user password authentication scheme defends
against an adversary who can eavesdrop on the network
and obtain a copies of server state (i.e. the hashed pass-
word file) [25]. This scheme is based on a one-way func-
tion. Haller later implemented the S/Key one-time pass-
word system [19, 20] using techniques from Lamport.
De Waleffe and Quisquater extended Lamport’s scheme
with zero-knowledge techniques to provide more gen-
eral access control mechanisms [10]. With their one-
exchange protocol, a user can authenticate and prove
possession of a ticket. This scheme is not appropriate
for our model of Web client authentication because it re-
quires the client to perform computation such as modular
exponentiation.

Kerberos uses tickets to authenticate users to ser-
vices [22, 33, 40]. The Kerberos ticket is encrypted with
a key known only to the service and the Kerberos in-
frastructure itself. A temporary session key is protected
by encryption. The ticket approach differs greatly from
schemes such as ours because tickets are message pre-
serving, meaning that an adversary who compromises a
service key can recover the session key. If an adversary
compromises the key in our scheme, it can mint and ver-
ify tokens, but it cannot recover the contents that were
originally authenticated. Authentication and encryption
should be separated, but Kerberos does both in one step.

The Amoeba distributed operating system crypto-
graphically authenticated capabilities (or rights) given to
a user [42]. One of the proposed schemes authenticated
capabilities by XORing them with a secret server key and
hashing the result. Client authentication on the Web falls
into the same design space. A Web server wishes to send
a user a signed capability.

7.2 Web-specific authentication protocols

The HTTP specifications provide two mechanisms for
authentication: Basic authentication and Digest authen-
tication [16]. Basic authentication requires the client to

send a username and password in the clear as part of
the HTTP request. This pair is typically resent preemp-
tively in all HTTP requests for content in subdirectories
of the original request. Basic authentication is vulnera-
ble to an eavesdropping adversary. It also does not pro-
vide guaranteed expiration (or logout), and repeatedly
exposes a user’s long-term authenticator. Digest authen-
tication, a newer form of HTTP authentication, is based
on the same concept but does not transmit cleartext pass-
words. In Digest authentication, the client sends a cryp-
tographic hash (usually MD5) of the username, pass-
word, a server-provided nonce, the HTTP method, and
the URL. The security of this protocol is extensively dis-
cussed in RFC 2617 [16]. Digest authentication enjoys
very little client support, even though it is supported by
the popular Apache Web server.

The main risk of these schemes is that a successful
attack reveals the user’s password, thus giving the adver-
sary unlimited access. Further, breaks are facilitated by
the existence of freely available tools capable of sniffing
for authentication exchanges [39].

The Secure Sockets Layer (SSL) protocol is a stronger
authentication system provides confidentiality, integrity,
and optionally authentication at the transport level. It
is standardized as the Transport Layer Security proto-
col [11]. HTTP runs on top of SSL, which provides
all the cryptographic strength. Integration at the server
allows the server to retrieve the authentication parame-
ters negotiated by SSL. SSL achieves authentication via
public-key cryptography in X.509 certificates [8] and re-
quires a public-key infrastructure (PKI). This require-
ment is the main difficulty in using SSL for authentica-
tion — currently there is no global PKI, nor is there likely
to be one anytime soon. Several major certificate author-
ities exist (e.g., Verisign), but the space is fractured and
disjoint. To some degree, users avoid client certificates
because certificates are practically incomprehensible to
non-technical users. Other arguments suggest that the
merits of PKI as the answer to many network security
problems have been somewhat exaggerated [13]. Client
support for SSL is non-standard and thus can have inter-
operability problems (e.g., Microsoft Internet Explorer
and Netscape Navigator client certificates do not inter-
operate), and performance concerns. SSL decreases Web
server performance and often provides more functional-
ity than most applications need. In an effort to avoid
using SSL, Bergadano, Crispo, and Eccettuato use Java
applets to secure HTTP transactions [6].

Park and Sandu identify security problems of regular
cookies, network threats, end-system threats, and cookie
harvesting threats [34]. Samar describes a cookie-based
distributed architecture for single-signon [37].

13

7.3 Schemes in the field

Many ad hoc schemes are used today to perform
Web authentication without making use of either SSL or
any of the HTTP authentication mechanisms. Instead,
schemes often use HTTP state management to store au-
thenticators with the client. This helps sites provide au-
thentication for Web applications while preserving ease-
of-use and performance. While many of these schemes
are well-designed and do indeed provide appropriately
strong authentication for the environment in which they
are deployed, just as many schemes have fatal flaws.

Shibboleth, a project of Internet2, is investigating ar-
chitectures, frameworks, and technologies to support
cross-realm authentication and authorization for access
to Web pages [38]. The group completed a survey of
client authentication on the Web at several universities,
most of which use a combination of Kerberos, client cer-
tificates, HTTP authentication, and cookies. However,
they have not yet presented a complete design.

Open Market has patented a scheme that creates a
folded cryptographic hash of a server secret, a session
identifier, and other parameters [28]. Yahoo has a cookie
authentication scheme that computes MD5 of a server
secret, user identifier, timestamp, and other parame-
ters [46]. The ArsDigita Community System (ACS) has
a SHA1-based cookie authentication scheme [29]. All
these schemes are likely to be secure against interroga-
tive adversaries, but all appear vulnerable to eavesdrop-
pers.

Microsoft Passport offers a managed cookie authen-
tication scheme [35]. Microsoft mints a cookie authen-
ticator after a user logs in. Vendors participating in the
passport service can verify the authenticator to determine
authenticity and authorization. The details of the authen-
tication scheme have not been published, but the white
paper indicates that Microsoft shares a unique symmet-
ric key with each vendor. These keys can both mint and
verify authenticators.

8 Conclusion

To provide designers and implementers with a clear
framework, we have given a description of the limita-
tions, requirements, and security models specific to Web
client authentication. We presented a set of hints on how
to design a secure client authentication scheme, based on
experience gained from our informal survey of commer-
cial schemes. The survey showed that many sites are not
secure against the interrogative adversary. We proposed

an authentication scheme secure against the interrogative
adversary.

Web sites have such a large range of requirements
that no one authentication scheme can meet them all.
Currently SSL remains too costly and client authentica-
tion infrastructures remain hardly deployed. This par-
tially explains why so many home-brew schemes exist.
The Web community ought to recommend a secure stan-
dard or secure practices if there is any hope to eliminate
the proliferation of insecure home-brew authentication
schemes. We hope that this paper will help schemes in
resisting common attacks.

For more information and our source code, see
the appendix or visit our Web site at http://
cookies.lcs.mit.edu/.

9 Acknowledgments

We thank David Andersen, Ian Anderson, Jeffrey W.
Baker, Richard Barbalace, Andrew M. Boardman, Benjie
Chen, David Dittrich, Paul Hill, Frans Kaashoek, David
Mazières, Robert T. Morris, Steve Morris, Joon Park,
Matt Power, Ron Rivest, Jerry Saltzer, Richard Smith,
Win Treese, the anonymous reviewers, and the members
of the PDOS group at MIT. We also thank the compa-
nies who talked with us about the security of their Web
sites: FatBrain.com, WSJ.com, and yahoo.com.
The students of the MIT Applied Security Reading
Group (http://pdos.lcs.mit.edu/asrg/) de-
serve credit for the genesis of this project. Finally,
we thank Duncan Hines for manufacturing the materials
necessary to sustain our efforts.

References

[1] Martín Abadi and Roger Needham. Prudent engineering
practice for cryptographic protocols. Technical Report
125, DEC Systems Research Center, June 1994.

[2] Allaire Corporation. Personal Communication, January
2001.

[3] Mihir Bellare, Anand Desai, David Pointcheval, and
Phillip Rogaway. Relations among notions of security for
public-key encryption schemes. In Hugo Krawczyk, ed-
itor, Proceedings of Advances in Cryptology—CRYPTO
98, volume 1462 of Lecture Notes in Computer Science,
pages 26–45, Santa Barbara, CA, 1998. Springer-Verlag.

[4] Mihir Bellare and Phillip Rogaway. The AuthA
protocol for password-based authenticated key ex-
change. Technical report, IEEE P1363, March
2000. http://grouper.ieee.org/groups/
1363/StudyGroup/Passwd.html#autha.

14

[5] Steven M. Bellovin and Michael Merritt. Encrypted key
exchange: Password-based protocols secure against dic-
tionary attacks. In Proceedings of the 1992 IEEE Sym-
posium on Security and Privacy, pages 72–84, Oakland,
CA, May 1992.

[6] F. Bergadano, B. Crispo, and M. Eccettuato. Secure
WWW transactions using standard HTTP and Java ap-
plets. In Proceedings of the 3rd USENIX Workshop
on Electronic Commerce, pages 109–119, Boston, MA,
September 1998.

[7] Victor Boyko, Philip MacKenzie, and Sarvar Patel. Prov-
ably secure password authenticated key exchange using
Diffie-Hellman. In B. Preneel, editor, Proceedings of Ad-
vances in Cryptology—EUROCRYPT 2000, volume 1807
of Lecture Notes in Computer Science, Bruges, Belgium,
May 2000. Springer-Verlag.

[8] CCITT. Recommendation X.509: The directory authen-
tication framework, 1998.

[9] CERT. Malicious HTML tags embedded in
client Web requests. CA-2000-02, February
2000. http://www.cert.org/advisories/
CA-2000-02.html.

[10] Dominique de Waleffe and Jean-Jaques Quisquater. Bet-
ter login protocols for computer networks. In B. Preneel,
R. Govaerts, and J. Vandewalle, editors, Proceedings of
Computer Security and Industrial Cryptography, volume
741 of Lecture Notes in Computer Science, pages 50–70.
Springer-Verlag, 1993.

[11] Tim Dierks and Christopher Allen. The TLS protocol ver-
sion 1.0. RFC 2246, Network Working Group, January
1999.

[12] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-
malleable cryptography. In Proceedings of the

���
rd ACM

Symposium on Theory of Computing, pages 542–552,
New Orleans, LA, 1991.

[13] Carl Ellison and Bruce Schneier. Ten risks of PKI: What
you’re not being told about public key infrastructure.
Computer Security Journal, 16(1):1–7, 2000.

[14] Roy Fielding, James Gettys, Jeffrey Mogul, Henrik
Frystyk, Larry Masinter, Paul Leach, and Tim Berners-
Lee. Hypertext Transfer Protocol — HTTP/1.1. RFC
2616, Network Working Group, June 1999.

[15] FIPS 180-1. Secure Hash Standard. U.S. Department of
Commerce/N.I.S.T., National Technical Information Ser-
vice, Springfield, VA, April 1995.

[16] John Franks, Phillip Hallam-Baker, Jeffrey Hostetler,
Scott Lawrence, Paul Leach, Ari Luotonen, and Lawrence
Stewart. HTTP authentication: Basic and digest access
authentication. RFC 2617, Network Working Group, June
1999.

[17] Kevin Fu, M. Frans Kaashoek, and David Mazières. Fast
and secure distributed read-only file system. In Proceed-
ings of the 4th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 2000), pages 181–
196, San Diego, CA, October 2000.

[18] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest.
A digital signature scheme secure against adaptive
chosen-message attacks. SIAM Journal of Computing,
17(2):281–308, April 1988.

[19] Neil Haller. The S/KEY one-time password system. In
Proceedings of the ISOC Symposium on Network and Dis-
tributed System Security, pages 151–157, San Diego, CA,
February 1994.

[20] Neil Haller. The S/KEY one-time password system. RFC
1760, Network Working Group, February 1995.

[21] IEEE P1363a: Standard specifications for public key
cryptography: Additional techniques. http://
www.manta.ieee.org/groups/1363/P1363a.

[22] John T. Kohl. The use of encryption in Kerberos for net-
work authentication. In G. Brassard, editor, Proceed-
ings of Advances in Cryptology—CRYPTO 89, volume
435 of Lecture Notes in Computer Science, pages 35–43.
Springer-Verlag, 1990.

[23] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC:
Keyed-hashing for message authentication. RFC 2104,
Network Working Group, February 1997.

[24] David Kristol and Lou Montulli. HTTP State Manage-
ment Mechanism. RFC 2965, Network Working Group,
October 2000.

[25] Leslie Lamport. Password authentication with inse-
cure communication. Communications of the ACM,
24(11):770–771, November 1981.

[26] Butler Lampson. Hints for computer system design. In
Proceedings of the 9th ACM Symposium on Operating
Systems Principles, pages 33–48, Bretton Woods, NH,
1983.

[27] Arjen Lenstra and Eric Verheul. Selecting cryptographic
key sizes. http://www.cryptosavvy.com/
cryptosizes.pdf, November 1999.

[28] Thomas Levergood, Lawrence Stewart, Stephen Morris,
Andrew Payne, and Winfield Treese. Internet server
access control and monitoring systems. U.S. patent
#5,708,780, Open Market, January 1998.

[29] Richard Li and Archit Shah. ArsDigita Commu-
nity System (ACS) security design. http:/
/developer.arsdigita.com/doc/
security-design.html.

[30] Alfred J. Menezes, Paul C. Van Oorschot, and Scott A.
Vanstone. Handbook of applied cryptography. The CRC
Press series on discrete mathematics and its applications.
CRC Press, 1997.

[31] Keith Moore and Ned Freed. Use of HTTP State Man-
agement. RFC 2964, Network Working Group, October
2000.

[32] Robert Morris and Ken Thompson. Password security: A
case history. Communications of the ACM, 22(11):584–
597, November 1979.

15

[33] B. Clifford Neuman and Theodore Ts’o. Kerberos: An
authentication service for computer networks. IEEE
Communications Magazine, 32(9):33–38, September
1994.

[34] Joon S. Park and Ravi Sandhu. Secure cookies on the
Web. IEEE Internet Computing, 4(4):36–44, July/August
2000.

[35] Microsoft passport. http://www.passport.com/.

[36] Eric Rescorla. SSL and TLS: Designing and Building Se-
cure Systems. Addison-Wesley, 2000.

[37] Vipin Samar. Single sign-on using cookies for Web ap-
plications. In Proceedings of the 8th IEEE Workshop on
Enabling Technologies: Infrastructure for Collaborative
Enterprises, pages 158–163, Palo Alto, CA, 1999.

[38] The Shibboleth Project. http://
middleware.internet2.edu/shibboleth/.

[39] Dug Song. dsniff. http://www.monkey.org/
˜dugsong/dsniff/.

[40] Jennifer Steiner, Clifford Neuman, and Jeffrey Schiller.
Kerberos: An authentication service for open network
systems. In Proceedings of the Winter 1988 USENIX,
pages 191–202, Dallas, TX, February 1988.

[41] Paul Syverson, Stuart Stubblebine, and David Gold-
schlag. Unlinkable serial transactions. In R. Hirschfeld,
editor, Proceedings of Financial Cryptography, volume
1318 of Lecture Notes in Computer Science, Anguilla,
BWI, 1997. Springer-Verlag.

[42] Andrew Tanenbaum, Sape Mullender, and Robbert van
Renesse. Using sparse capabilities in a distributed sys-
tem. In Proceedings of the 6th International Conference
on Distributed Computing, pages 558–563, Cambridge,
MA, 1986.

[43] David Wagner and Ian Goldberg. Proofs of secu-
rity for the Unix password hashing algorithm. In
T. Okamoto, editor, Proceedings of Advances in
Cryptology—ASIACRYPT 2000, volume 1976 of Lecture
Notes in Computer Science, Kyoto, Japan, December
2000. Springer-Verlag.

[44] Thomas Wu. The secure remote password protocol. In
Proceedings of the 1998 Internet Society Network and
Distributed System Security Symposium, pages 97–111,
San Diego, CA, March 1998.

[45] Web and mobile code security. http:/
/www.securityfocus.com/forums/
www-mobile-code/.

[46] Yahoo, Inc. Personal Communication, November 2000.

A Search engine queries

Cookie files are occasionally published on the Internet
and are indexed by some search engines. Variants of
these queries have at times worked on Google.com,
Yahoo.com, NorthernLight.com, and
AltaVista.com.

After we reported these queries, Google immedi-
ately removed all files called “cookies.txt” or
“COOKIES.TXT” from their indexing and later their
cache. This removes the indexing for most cookie
files. Some cookie files still exist under non-standard file
names, apparently because of corrupted text files (e.g.,
resumes that include a person’s cookie file at the end).
The other search engines gave no definitive responses.
For historical purposes, here are the queries that used to
produce many cookie files.

� avenuea.com FALSE FALSE

� CERT7.DB

� text:CERT7.DB

The idea of the search queries is to locate cookie files
based on information inside the cookie. For instance,
avenuea.com is found in most cookie files because
of online advertising and user tracking. CERT7.DB of-
ten appears near files called cookies.txt. Censoring
cookies.txt will not prevent someone from search-
ing for CERT7.DB then indirectly finding a cookie file.

B ichat Rooms v3.0

ichat Rooms v3.0 (www.ichat.com) is a Web-
based commercial chat server system. A user logs in
with a username/password and receives a cookie, which
is composed of the username and password XORed with
a universal constant value. Subsequent requests are au-
thenticated with this cookie.

This system is vulnerable to an attack by an eaves-
dropping adversary. The adversary can replay the cookie
since it never expires. Knowledge of the constant string
(easily obtained by an interrogative adversary) allows an
adversary to reconstruct the user’s password as well. Fig-
ure 4 contains a sufficient number of sample cookies to
recover the constant key.

We did not analyze newer versions of ichat Rooms.
We only know that the current scheme is different.

16

username fubob
password aaaaaaaa

cookie ichat cookie=0F160A0E1656233E21254D080B0B0D0058080B5359
username fubbb (note the 1 letter change)
password aaaaaaaa

cookie ichat cookie=0F160A031656233E21254D080B0B0D0058080B5359

Figure 4: Sample ichat authenticators.

C New England Bride (nebride.com)

nebride.com is the Web site for the New Eng-
land Bride magazine. A user logs in with a user-
name/password and receives an ID cookie, which is sim-
ply a username. This cookie authenticates subsequent
requests.

An interrogative adversary can achieve a selective
forgery by guessing the username of an existing account
on the server and use this for full access to the account.
Furthermore, since the password is displayed in plain-
text on the server’s information page, the adversary can
retrieve the victim’s password, possibly compromising
accounts of the same user on other systems.

We notified New England bride, but we are not sure if
they understand the problem.

D Fatbrain.com

A user logs in with their email address and password,
then receives a URL-based authenticator from the server.
The URL-based authenticator is generated from a global,
monotonically increasing sequence number. The URL-
based authenticator is used to authenticate the remainder
of the user’s session.

This attack can proceed more quickly if the victim
has logged in recently, or the time at which the user last
logged in can be estimated. In that case, an adversary can
begin searching backwards in the sequence space for the
proper authenticator. Using this authenticator, an adver-
sary can change the victim’s email address, receive email
informing them of the victim’s password, and thereby
gain full control — including purchasing ability — over
the victim’s account.

The Fatbrain.com pages use an easily predictable
sequence number as an authenticator. This permits an
interrogative adversary to guess the authentication token.

The engineers at Fatbrain responded swiftly by chang-
ing the sequence number to a random number. This de-
feats the attack described above.

E ihateshopping.net

A user logs in with a username/password and receives
an ephemeral ID cookie, which is simply a serially-
assigned integer unique to the user. This cookie is used
to authenticate the user’s requests for the remainder of
that session. An interrogative can access arbitrary ac-
counts because of the densely-populated namespace of
ID cookies.

The ihateshopping.net pages provide a simple
numeric authenticator, the namespace of which can be
trivially stepped through to reveal the account details of
all accounts on the system. The adversary would not re-
quire their own account or any other sort of prior access.

We notified the site and received a quick response. We
do not know how the current authentication scheme dif-
fers because the Web site appears to no longer exist.

F SprintPCS.com

A user logs in with their phone number and ac-
count password (PIN), then receives a cookie from the
server which appears to be some form of the standard
Unix crypt() function applied to the submitted data.
The cookie provides administrative access to one’s ac-
count, and this and subsequent account-related transac-
tions are protected with SSL. The cookie’s “SSL Only”
flag, however, is not set, and the cookie domain is
sprintpcs.com.

An eavesdropping adversary can obtain a user’s au-
thentication cookie if the user logs in to the secure sec-
tion of sprintpcs.com and later revisits a non-SSL
section of the site. Since the cookie is used for au-
thentication only within SSL-protected sections of the
sprintpcs.com site, setting the “SSL Only” flag
would provide increased protection for the authenticator.

While SprintPCS appears to spend many CPU cycles
on SSL, the SSL is of little benefit since the secret leaks
in plaintext.

We notified SprintPCS through their Web interface.

17

username fubob
cookie ID=fubob

Figure 5: Sample nebride.com authenticator

https://fatbrain.com/...?t=0&p1=fubob@mit.edu&p2=540555758

Figure 6: Sample Fatbrain.com authenticator

G Snowball.com Web sites

A user registers with a username/password and re-
ceives an authentication cookie. The site uses this
cookie to authenticate the user for future logins.
The same scheme is used on chickclick.com,
highschoolalumni.com, and ign.com.

Simply by changing the username and user ID (UID)
in the Beacon cookie to the that of the victim, an ad-
versary can login as the victim. First, an adversary
logs in to obtain a legitimate username/UID pair in-
cluded in the Beacon cookie. Given such a cookie,
the adversary changes the username and UID to that of
the victim. Username and UID information are read-
ily available from the Web site itself. In the case
of highschoolalumni.com, knowing a user’s high
school enables an adversary to discover the username and
UID of a user.

This is an example of a non-cryptographic authentica-
tion scheme. We suppose that the site wanted to reduce
database lookups for each request.

We notified snowball.com and eventually received
a response. We have not inspected the site recently.

H WSJ.com

The fastlogin cookie is an authenticator issued to a
user after typing in a username/password on WSJ.com.
The algorithm was determined to be:

fastlogin =
username + crypt (username + rotating server secret)

where + denotes concatenation without delimiters.

This scheme is weaker than schemes such as HTTP
authentication which send cleartext passwords over the
network. An interrogative adversary who discovers the
algorithm can forge a cookie authenticator for any user.
This results in a total break.

Discussion

The vulnerability on the WSJ.com site gives an ad-
versary access to any user’s subscription and personal in-
formation. In addition, an adversary can purchase items
at the WSJ and affiliated sites (such as archived articles)
under any user’s credit card. Furthermore, an adversary
can view optional information set by the user. For in-
stance, many users keep a list of their stock portfolio on
the WSJ.com site.

An adversary needs only one piece of information to
gain access: the username of the victim. In this docu-
ment we explain nine security holes on WSJ.com.

1. With knowledge of a username, an adversary can
log in as that user.

The WSJ.com site requires a paid account to read
articles, purchase archived articles, etc. A user can
log into a personalized WSJ.com site if the user’s
Web browser has a valid “fastlogin” cookie. Be-
cause of several mistakes in the use of cryptogra-
phy, we were able to write a program that, given a
username, creates a working fastlogin cookie. This
program is attached at the bottom of this document.

Figure 1 shows an example of a fastlogin cookie.

The last field represents the username, bitdiddle,
prepended to the output of the Unix crypt() func-
tion. The input to the crypt() function is the user-
name prepended to the string “March20”.

Likely WSJ.com expected the fastlogin cookie to
act like a one-way hash or something that de-
pends on secret information. However, the fastlogin
cookie is a deterministic value which can always be
computed from just the first 8 characters of the user-
name.

2. If an adversary is not aware of vulnerability # 1, the
adversary can still access most accounts.

Before discovering vulnerability #1, we considered
a less serious attack that allowed access to most

18

RM%5FON=Y&CN1=X&R115=Y

Figure 7: In the SprintPCS.com cookie, X and Y represent 13-charactercrypt()-like outputs. R115 is a function
of the user’s password. CN1 is likely a function of the user’s phone number.

Beacon=hsareg.uid.username.hsa0.976659917

Figure 8: A sample Snowball.com cookie

domain Javascript? Path SSL? Expiration Variable
name

Value

.wsj.com FALSE /cgi FALSE 941452067 fastlogin bitdiddleMaRdw2J1h6Lfc

Figure 9: A sample cookie authenticator from WSJ.com.

WSJ.com accounts. Any curious person with two
accounts having similar usernames could notice this
vulnerability. However, vulnerability #1 contains
all of the implications of vulnerability #2 and more.

The crypt() function only pays attention to the first
8 characters of its input. The implication is that for
all usernames that match in the first eight characters,
the fastlogin cookie is the same. Everything after
the 8th character of a username is ignored.

This attack works against all accounts that have 8
to 14 character usernames. Only users with 5, 6,
or 7 character usernames are safe from this simple
attack. However, all users are still susceptible to
vulnerability #1.

In other words, if a victim has the username “bitdid-
dle”, then an adversary can register for another ac-
count with the victim’s username as the prefix (e.g.,
“bitdiddler”). This results in the same crypt() out-
put:

username Crypt() Output Fastlogin Cookie
bitdiddle MaRdw2J1h6Lfc bitdiddleMaRdw2J1h6Lfc
bitdiddler MaRdw2J1h6Lfc bitdiddlerMaRdw2J1h6Lfc

If an adversary wishes to take control of the account
of another user, the adversary must only know the
login name of the victim. The adversary then cre-
ates a new user on WSJ.com such that the new
username starts with the victim’s username (e.g.,
“bitdiddler”). The adversary edits the cookie to re-
move the “r” in “bitdiddler”. Next, the adversary
starts a Web browser (e.g., Netscape) and goes to
www.wsj.com. The site allows the adversary to
log in as the victim. Now the adversary has ac-
cess to the victim’s credit card and can view per-
sonal information such as home phone numbers and
addresses. In addition, the adversary can change

the victim’s password, although this is not neces-
sary. The only condition is that the victim’s user-
name must be at least 8 characters for the incorrect
use of crypt() to appear. Again, this vulnerability is
eclipsed by vulnerability #1 mentioned earlier.

The implication scenarios are the same as vulnera-
bility #1.

3. The salt is constant.

WSJ.com uses the same salt, “Ma”, for every user.
The salt is supposed to help randomize the output of
crypt(). When WSJ.com issues fastlogin cookies,
it ought to set a random 2-character salt rather than
simply “Ma” for every user.

Because the fastlogin cookie does not take pass-
words into account, this does not appear to further
weaken the scheme. But if WSJ.com were to hash
passwords, the constant salt would make dictionary
attacks easier to mount against stolen cookies.

4. The secret padding is partially revealed by the salt.

The salt is not intended to be a private value; it is
by definition a public value that is sent along with
the ciphertext. Using the same value for a secret
string (the padding) and a public string (the salt) is
dangerous, because it inherently compromises the
secret string. The salt “Ma” consists of the first two
characters of the secret padding string “March20”
which is used to create fastlogin cookies.

The implication is that the salt partially gives away
the secret used to create fastlogin cookies.

We later discovered that the secret string was in-
tended to be a rotating key. However, the rotation
was not implemented. The rollout day, “March20”,
remained the secret key until recently.

19

5. Lack of secret information and ignored input

The authentication scheme relies on the secrecy of
a 7-character string stored on the WSJ.com Web
server. We were able to extract this 7-character
string.

We first ran offline a brute force guessing program
to determine 3 of the seven characters. This took
about an hour on ten 733MHz machines. Then
we improved the program by letting it interactively
query the WSJ.com Web server (about 128 � 8
times) to determine the remaining 4 characters. Ex-
cluding the programming time, this second test took
less than 18 minutes of computation (1 second per
query because we did not want to flood the server
with requests).

Second, the crypt() function ignores all input after
the 8th character. WSJ.com ought to use a trans-
form that uses all of its input. For instance, SHA-1
takes an arbitrarily long string and produces a 20-
byte output.

Because of these two flaws, we were able to quickly
recover this semi-secret, “March20”. This is used as
a secret to create fastlogin cookies. The implication
is that cryptanalysis is straightforward and fast.

6. Lack of revocation

Even if a user changes his/her password, the fast-
login cookie remains the same. This prevents the
WSJ.com site from revoking a compromised ac-
count.

The implication is that stolen cookies are not revo-
cable. Even if a victim changes his or her pass-
word, the adversary can reuse an old stolen fastlogin
cookie.

7. The fastlogin cookie lasts forever

There is no cryptographically strong lifetime in
the fastlogin cookie. Although WSJ.com sets the
cookie to expire 11 hours later, a savvy user can
modify the cookies file to delay the expiration time
indefinitely. Our cookies still worked after 5 days.
One way to fix this is to include a timestamp in
the message authentication code to enforce a cookie
lifetime.

8. Patterns in encrypted text

WSJ.com sometimes uses a second cookie called
WSJIE LOGIN. This appears to be some function
of the username and password. However, the en-
cryption scheme in the WSJIE LOGIN cookie ex-
hibits too many patterns to be secure. We identify
ciphertext patterns below. A real encryption or hash

algorithm would result in random-looking output.
WSJIE LOGIN is far from random. For example,
the pairs below are correlated to the alphabet listed
backwards. For instance, ’a’ encrypts to ’v’, ’b’ en-
crypts to ’u’, ’c’ encrypts to ’t’, etc. However, some
encryptions appear to vary by username.

Password Encrypted Password
a v KfAnAfOi
b u KfAnAfOi
c t KfAnAfOi
... ...

[Spaces added for clarity.]

The implication is that an adversary may be able to
retrieve a password from this cookie.

9. WSJ.com allows invalid accounts

One can use non-existent usernames to log in to read
content on WSJ.com. While this does not affect
any particular user, it allows adversaries to read the
WSJ for free. For instance, the cookie in Figure 9
works fine even though it has fewer than 5 charac-
ters.

Sample authenticator

Cookie: fastlogin=bitdiddleMaRdw2J1h6Lfc

The program in Figure 11 will generate a cookie au-
thenticator given a username.

We used dynamic programming in an adaptive cho-
sen message attack to recover the rotating secret server
key, “March20”, in Figure 12. The program runs in
����� � � queries rather than the intended ���	��
 (1,024 vs.
72,057,594,037,927,936). Assuming each query takes 1
second, this program finishes in 17 minutes instead of
the intended � � ��� � years. The rotating secret was sup-
posed to be the current date, but the secret got stuck on
the rollout date, March 20.

Remedy

We met with Dow Jones, the parent company of the
Wall Street Journal, shortly after discovering the vulner-
ability. The cookie authentication scheme was immedi-
ately changed. However, we have not investigated the
new scheme. The people at Dow Jones were extremely
responsive and helpful.

20

.wsj.com TRUE / FALSE 1314159265 fastlogin abcdMaTFoOb31s/Gg

Figure 10: A cookie for a non-existent user where username = “abcd” and crypt() = “MaTFoOb31s/Gg”.

#!/usr/bin/perl
$salt = "Ma";
$pad = "March20";

print STDERR "Enter username: ";
$username = <STDIN>;
chop $username;

$in = $username . $pad;
while (length ($in) > 8) { chop $in; }

$fasterlogin = crypt ($in, $salt);

print STDERR "Place the following in your .netscape/cookies file.\n\n";
print ".wsj.com TRUE / FALSE 1314159265 fastlogin $username$fasterlogin\n";

Figure 11: A program to create WSJ.com cookie authenticators.

#!/usr/bin/perl
use LWP::UserAgent;
use HTTP::Cookies;

$mysalt = "Ma"; # The well-known 2-char salt
$url = "http://interactive.wsj.com/pages/money.htm"; # URL returning 200 only if cookie ok
$cookiefile = "/tmp/.netscape/cookies.txt";
$ua = new LWP::UserAgent;
$ua->agent("Cookie-Eaters/1.0");
$request = new HTTP::Request (’GET’, $url);
$cookie = HTTP::Cookies::Netscape->new (

File => $cookiefile,
AutoSave => 0,);

$username = "bitdiddl"; # Start with 7-character username to find the left-most padding char
$pad = ""; # What we know about the padding appended to the input of crypt.
$iteration = 1; # Try every character for the current pad character
for ($count = 0; $count <= 127; $count++) {

$guess = sprintf("%c", $count);
$out = crypt ($username . $pad . $guess, $mysalt);
$cookie->set_cookie(1, "fastlogin" => "$username$out", "/", ".wsj.com");
$cookie->add_cookie_header($request);
$ua->cookie_jar($cookie);
$response = $ua->simple_request($request);
if ($response->is_success) {

$pad = $pad . $guess;
}
if ($iteration == 8) {

print "Exhausted. Pad is so far: $pad\n"; exit;
}
$iteration++; sleep 1;

}

Figure 12: An adaptive chosen message attack to quickly recover the WSJ.com server secret.

21

