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age system designed around this observation, archives

executable decoders along with the encoded content it

stores. VXA decoders run in a specialized virtual machine

that implements an OS-independent execution environ-

ment based on the standard x86 architecture. The VXA
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in C and assembly language, and permits decoders ac-
cess to performance-enhancing architecture features such Figure 2: Timeline of Processor Architectures
as vector processing instructions. The performance cost
of VXA’ virtualization is typically less than 15% com-
pared with the same decoders running natively. The stbas further accelerated this evolution. This constantrchur
age cost of archived decoders, typically 30-130KB each popular encoding formats, along with the prevalence of
can be amortized across many archived files sharing titber less common, proprietary or specialized schemes,
same compression method. creates substantial challenges to preserving the usabilit

of digital information over the long term [16].

Open compression standards, even when available and

1 Introduction widely adopted, do not fully solve these challenges. Spec-

ification ambiguities and implementation bugs can make
Data compression techniques have evolved rapidigntent encoded by one application decode incorrectly or
throughout the history of personal computing. Figurenot at all in another. Intellectual property issues such as
shows a timeline for the introduction of some of thpatents may interfere with the widespread availability of
most historically popular compression formats, both féiecoders even for “open” standards, as occurred in the last
general-purpose data and for specific media types. (Maj@cade [4] with several file formats based on the LZW al-
of these formats actually support multiple distinct congorithm [33]. Standards also evolve over time, which can
pression schemes_) As the timeline illustrates, commaake it increasingly difficult to find decoders for obsolete
compression schemes change every few years, and thd@sxwats that still run on the latest operating systems.
plosion of lossy multimedia encoders in the past decadeProcessor architectures, in contrast, have shown re-



markable resistance to change ever since the IBM BQ@mplex and difficult to validate, they are frequently ex-
first jump-started personal computing. As the architegesed to data arriving from untrusted sources such as the
ture timeline in Figure 2 illustrates, the persistently donieb, and they are usually perceived as too low-level and
inant x86 architecture has experienced only a few majmerformance-critical to be written in type-safe languages
architectural changes during its lifetime—32-bit registe

and addressing in 1985, vector processing upgrades start-

ing in 1996, and 64-bit registers and addressing in 20(%’7‘.2 Prototype Implementation
More importantly, each of these upgrades has religiously

preserved backward code compatibility. Of the other 8- rototype implementation of the VXA architecture,
chitectures introduced during this period, none have COMEZIP/yxUNZIP, extends the well-known ZIP/UnZIP
close to displacing the x86 architecture in the mainstreagicive tools with support for virtualized decoders. The

From these facts we observe tiatruction encodings yxz|p archiver can attach VXA decoders both to files it
are historically more durable than data encoding#/e compresses and to input files already compressed with
will still be able to run x86 code efficiently decades fro%cognized lossy or lossless algorithms. The vxUnZIP
now, but it is less likely that future operating systems anglchive reader runs these VXA decoders to extract com-
applications will still include robust, actively-maint&d pressed files. Besides enhancing the durability of ZIP files
decoders for today’s compressed data streams. themselves, vxZIP thus also enhances the durability of
pre-compressed data stored in ZIP files, and can evolve to
employ the latest specialized compression schemes with-
out restricting the usability of the resulting archives.

Virtual eXecutable Archive®r VXA, is a novel archival VXA decoders stored in vxZIP archives are themselves

storage architecture that preserves data usability by-pagkmpressed using a fixed algorithm (the “deflate” method
aging executable x86-based decoders along with coftandard for existing ZIP files) to reduce their storage
pressed content. These decoders run in a specialized @ferhead. The vxZIP prototype currently includes six
tual machine (VM) that minimizes dependence on evoldecoders for both general-purpose data and specialized
ing host operating systems and processors. VXA decod@gltimedia streams, ranging from 26 to 130KB in com-
run on a well-defined subset of the unprivileged 32-bit xggessed size. Though this storage overhead may be signif-
instruction set, and have no direct access to host OS deant for small archives, it is usually negligible for large
vices. A decoder only extracts archived data into simpl@chives in which many files share the same decoder.
and thus hopefully more “future-proof,” uncompressed The prototype vxZIP/vxUnZIP tools run on both the
formats: decoders cannot have user interfaces, open3@-bit and 64-bit variants of the x86 architecture, and rely
bitrary files, or communicate with other processes. only on unprivileged facilities available on any mature
By building on the ubiquitous native x86 architectur&86 operating system. The performance cost of virtualiza-
instead of using a specialized abstract machine suchtias, compared with native x86-32 execution, is between
Lorie’s archival “Universal Virtual Computer” [27], VXA 0 and 11% measured across six widely-available general-
enables easy re-use of existing decoders written in afpinpose and multimedia codecs. The cost is somewhat
trary languages such as C and assembly language, wiiigher, 8-31%, compared with native x86-64 execution,
can be built with familiar development tools such as GCgut this difference is due not to virtualization overhead
Use of the x86 architecture also makes execution of virut to the fact that VXA decoders are always 32-bit, and
tualized decoders extremely efficient on x86-based hdfais cannot take advantage of the new 64-bit instruction
machines, which is important to the many popular “shoget. The virtual machine that vxUnZIP uses to run the
term” uses of archives such as backups, software distriltichived decoders is also available as a standalone ljbrary
tion, and structured document compression. VXA permitdhich can be re-used to implement virtualization and iso-
decoders access to the x86 vector processing instructidapn of extension modules for other applications.
further enhancing the performance of multimedia codecs Section 2 of this paper first presents the VXA archi-
Besides preserving long-term data usability, the VXtecture in detail. Section 3 then describes the prototype
virtual machine also isolates the host system from buggyZIP/vxUnZIP tools, and Section 4 details the virtual
or malicious decoders. Decoder security vulnerabilitie®achine monitor in which vxUnZIP runs archived de-
such as the recent critical JPEG bug [31], cannot coneders. Section 5 evaluates the performance and storage
promise the host under VXA. This security benefit isosts of the virtualized decoders. Finally, Section 6 sum-
important because data decoders tend to be inherentlgrizes related work, and Section 7 concludes.

1.1 Virtualizing Decoders



2 System Architecture The above two trends unfortunately work against the
basic purpose of archival storage: to store data so that it
This section introduces th¥irtual eXecutable Archive remains available and usable later, perhaps decades later.
(VXA) architecture at a high level. The principles deEven if data is always archived using the latest encod-
scribed in this section are generic and should be apptig software, that software—and the operating systems it
cable to data compression, backup, and archival storages on—may be long obsolete a few years later when
systems of all kinds. All implementation details specifihe archived data is needed. The widespread use of lossy
to the prototype VXA archiver and virtual machine arencoding schemes compounds this problem, because peri-
left for the next section. odically decoding and re-encoding archived data using the
latest schemes would cause progressive information loss
and thus is not generally a viable option. This constraint
leads to VXA's third basic design principle:
Archived data is almost always compressed in some fash-
ion to save space. The one-time cost of compressing the Archive extraction must be possible without
data in the first place is usually well justified by the sav-  specific knowledge of the data’s encoding.

ings in storage costs (and perhaps network bandwidth) of- o ) ]
fered by compression over the long term. VXA satisfies these constraints by storing executable

A basic property of data compression, however, is trgcoders with all archived data, and by ensuring that these
the more you know about the data being compressed, gegcoders run in a simple, well-defined, portable, and thus

more effectively you can compress it. General Strmappefully relatively “future-proof” virtual environment

oriented compressors such@adp do not perform well

on digitized photographs, audio, or video, because the fh-2 Creating Archives

formation redundancy present in digital media does not

predominantly take the form of repeated byte strings, drigure 3 illustrates the basic structure of an archive write
is specific to the type of media. For this reason a widia the VXA architecture. The archiver contains a num-
Variety of media_specific compressors have appeared k?@[ of enCOder/deCOderOOdeq)airS: several SpeCiaIized
cently. Losslessompressors achieve moderate compreéidecs designed to handle specific content types such as
sion ratios while preserving all original information con@udio, video, or XML, and at least one general-purpose
tent, whilelossycompressors achieve higher compressi#ssless codec. The archiver's codec set is extensible
ratios by discarding information whose loss is deem¥Ht Plug-ins, allowing the use of specialized codecs for
“unlikely to be missed” based on semantic knowledge 8pmain-specific content when desired.

the data. Specialization of compression algorithms is notThe archiver accepts both uncompressed and already-
limited to digital media: compressors for semistructuré®@mpressed files as inputs, and automatically tries to com-
data such as XML are also available for example [26]7€SS previously uncompressed input files using a scheme
This trend toward specialized encodings leads to a figiiPropriate for the file’s type if available. The archiver

important design principle for efficient archival storage:attempts to compress files of unrecognized type using a
general-purpose lossless codec suchzs . By default

An archival storage system must permit use of the archiver uses only lossless encoding schemes for its
multiple, specialized compression algorithms. automatic compression, but it may apply lossy encoding
at the specific request of the operator.

Strong economic demand for ever more sophisticatedlhe archiver writes into the archive a copy of the de-
and effective data compression has led to a rapid evof@der portion of each codec it uses to compress data. The
tion in encoding schemes, even within particular domaiggchiver of course needs to include only one copy of a
such as audio or video, often yielding an abundanceg@i¥en decoder in the archive, amortizing the storage cost
mutually-incompatible competing schemes. Even whehthe decoder over all archived files of that type.
open standards achieve widespread use, the dominarthe archiver’s codecs can also recognize when an input
standards evolve over time: e.g., from Uiampress file is alreadycompressed in a supported format. In this
to gzip to bzip2 . This trend leads to VXAs secondcase, the archiver just copies the pre-compressed data into
basic design principle: the archive, since re-compressing already-compressed

data is generally ineffective and particularly undesieabl
An archival storage system must permit its set when lossy compression is involved. The archiver still in-
of compression algorithms to evolve regularly. cludes a copy of the appropriate decoder in the archive,

2.1 Trends and Design Principles
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ensuring the data’s continuing usability even after the . . _
original codec has become obsolete or unavailable. Figure 4: Archive Reader Operation
Some of the archiver's codecs may be incapable of

compression, but may instead merely recognize files al-
P y y 9 archived files having an associated decoder, as shown in

ready encoded using other, standalone compressors,
attach a suitable decoder to the archived file. We refer'%oqure 4, ensuring that encoded data remains decipherable

even if “native” decoders for the format disappear.
such pseudo-codecs geognizer-decodersr redecs . .
This capability also helps protect against data corrup-

tion caused by codec bugs or evolution of standards. If
2.3 Reading Archives an archived audio file was generated by a buggy MP3 en-

coder, for example, it may not play properly later under a
Figure 4 illustrates the basic structure of the VXA archiwdifferent MP3 decoder after extraction from the archive in
reader. Unlike the writer, the reader does not require a cobmpressed form. As long as the audio file was originally
lection of content-specific codecs, since all the decodarghived with the specific (buggy) MP3 decoder that can
it needs are embedded in the archive itself. Instead, ttecode the file correctly, however, the archive reader can
archive reader implements a virtual machine in which #iill be instructed to use that archived decoder to recover
run those archived decoders. To decode a compressedfilsable decompressed audio stream.
in the archive, the archive reader first locates the assoThe VXA archive reader does natwayshave to use
ciated decoder in the archive and loads it into its virtute archived x86-based decoders whenever it extracts files
machine. The archive reader then executes the decoddrdm an archive. To maximize performance, the reader
the virtual machine, supplying the encoded data to the dgight by default recognize popular compressed file types
coder while accepting decoded data from the decoderaitd decode them using non-virtualized decoders compiled
produce the decompressed output file. for the native host architecture. Such a reader would fall

The archive reader by default only decompresses filesck on running a virtualized decoder from the archive

that weren't already compressed when the archive waken no suitable native decoder is available, when the
written. This way, archived files that were already conmative decoder does not work properly on a particular
pressed in popular standard formats such as JPEG or M&8hived stream, or when explicitly checking the archive’s
which tend to be widely and conveniently usable in theimtegrity. Even if the archive reader commonly uses native
compressed form, remain compressed by default after eather than virtualized decoders, the presence of the VXA
traction. The reader can, however, be forced to deatidedecoders in the archive provides a crucial long-term fall-



back path for decoding, ensuring that the archived infartany small files, at the cost of introducing the risk that
mation remains decipherable after the codec it was combuggy or malicious decoder might “leak” information
pressed with has become obsolete and difficult to find. from one file to another during archive extraction, such as
Routinely using native decoders to read archives ifiom a sensitive password or private key file to a multi-
stead of the archived VXA decoders, of course, creat@edia stream that is likely to appear on a web page. The
the important risk that a bug in a VXA decoder might garchive reader can minimize this security risk in practice
unnoticed for a long time, making an archive seem wobly always re-initializing the virtual machine whenever the
fine in the short term but be impossible to decode latggcurity attributes of the files it is processing changehsuc
after the native decoder disappears. For this reason, id$sUnix owner/group identifiers and permissions.
crucial that explicit archive integrity tests always rueth The VXA virtual machine is based on the standard 32-
archived VXA decoder, and in general it is safest if thieit x86 architecture: all archived decoder executables are
archive reader always uses the VXA decoder even whepresented as x86-32 code, regardless of the actual pro-
native decoders are available. Since users are unlike§ssor architecture of the host system. The choice of the
to adopt this safer operational model consistently unlagsiquitous x86-32 architecture ensures that almost any ex-
VXA decoder efficiency is on par with native executioristing decoder written in any language can be easily ported
the efficiency of decoder virtualization is more importarid run on the VXA virtual machine.
in practice than it may appear in theory. Although continuous improvements in processor hard-
ware are likely to make the performance of an archived
. . VXA decoder largely irrelevant over the long term, com-
2.4 The VXA Virtual Machine pressed archives are frequently used for more short-term
The archive reader’s virtual machine isolates the decodgysrpos.es.as_well, su.ch as making and restoring bgck-
. : ups, distributing and installing software, and packaging
it runs from both the host operating system and the prg: .
. . . : ML-based structured documents [43]. Archive extrac-
cessor architecture on which the archive reader itself rups : .
L . . iI0n performance is crucial to these short-term uses, and
Decoders running in the VXA virtual machine have access . .
. L . an archival storage system that performs poorly now is
to the computational primitives of the underlying proces- . . ; : .
L . unlikely to receive widespread adoption regardless of its
sor but are extremely limited in terms of input/output. Thle ) . X .
X ng-term benefits. Besides supporting the re-use of exist-
only I/O decoders are allowed is to read an encoded daa . . ) .
: : ng decoder implementations, VXAs adoption of the x86
stream supplied by the archive reader and produce a cofre-

: architecture also enables those decoders to run quite ef-
sponding decoded output stream. Decoders cannot ac¢cess
. . ficiently on x86-based host processors, as demonstrated
any host operating system services, such as to open fi

es, . . . .
communicate over the network, or interact with the user'.’ﬂsiz’lr n Sepuon S Imple_mentl_ng the VM efﬂmently on
. . . . ) other architectures requires binary translation, which is

Through this strong isolation, the virtual machine n

| hat decod . , q %Iore difficult and may be less efficient, but is nevertheless
only ensures that decoders remain generic and port ow a practical and proven technology [40, 9, 14, 3].
across many generations of operating systems, but it also

protects the host system from buggy or malicious de-
coders that may be embedded in an archive. Assuming the; Applicability
virtual machine is implemented correctly, the worst harm
a decoder can cause is to garble the data it was suppoBeel VXA architecture does not address the complete
to produce from a particular encoded file. Since a decogeoblem of preserving the long-term usability of archived
cannot communicate, obtain information about the hadigiital information. The focus of VXA is on preserv-
system, or even check the current system time, decodagscompressediata streams, for which simpler uncom-
do not have access to information with which they miglpressed formats are readily available that can represent th
deliberately “sabotage” their data based on the conditis@mme information. VXA will not necessarily help with
under which they are run. old proprietary word processor documents, for example,
When an archive contains many files associated wfthr which there is often no obvious “simpler form” that
the same decoder, the archive reader has the option ofor@serves all of the original semantic information.
initializing the virtual machine with a pristine copy of the Many document processing applications, however,
decoder’s executable image before processing each @ee moving toward use of “self-describing” XML-based
file, or reusing the virtual machine’s state to decode mulsitructured data formats [43], combined with a general-
ple files in succession. Reusing virtual machine state mayrpose “compression wrapper” such as ZIP [21] for stor-
improve performance, especially on archives containiage efficiency. The VXA architecture may benefit the



compression wrapper in such formats, allowing applica- Local file header

filename = “”

tions to encode documents using proprietary or special- method = DEFLATE VXA decoder

ized algorithms for efficiency while preserving the inter- L o pseudo-file

operability benefits of XML. VXA's support for special-

ized compression schemes may be particularly importan Flename = “wackod wav"

for XML, in fact, since “raw” XML is extremely space- e

inefficient but can be compressed most effectively give edrie D

some specialized knowledge of the data [26]. (VXA-compressed audio stream) et
Local file header > files

fiIenag:th:O‘(‘jtr:c\l/ﬁZA.wav"

3 Archiver Implementation VXA exisnaion header
Encoded File Data

Although the basic VXA architecture as described aboV! i

could be applied to many archival storage or backup sys-\ T\_ P Central Directory

tems, the prototype implementation explored in this pa- ackOTwav etacdatn

“track02.wav”

per takes the form of an enhancement to the venerable
ZIP/UnZIP archival tools [21]. The ZIP format was cho-
sen over thear /gzip format popular on Unix systems Figure 5: vxZIP Archive Structure
because ZIP compresses files individually rather than as

one continuous stream, making it amenable to treating _ )
files of different types using different encoders. tools to identify and extract them successfully. The vxZIP

For clarity, we will refer to the new VXA-enhanced Z”Jormat reserves one new “special” ZIP method tag for files

and UnZIP utilities here as vxZIP and vxUnZIP, and to th@mpressed using VXA codecs that do not have their own

modified archive format as “vxZIP format” In practice,Z|_P method tags, and which thus can only be extracted
Bh the help of an attached VXA decoder.

however, the new tools and archive format can be treat¥ ] i N
as merely a natural upgrade to the existing ones. Regardless of whether an archived file uses a traditional

or VXA compression scheme, vxZIP attaches a new VXA

. . extension header to each file, pointing to the file's associ-
3.1 ZIP Archive Format Modifications ated VXA decoder, as illustrated in Figure 5. Using this

The enhanced vxZIP archive format retains the same baeg%ensmn hegder, a V)_(A-aware archive reader can decode
structure and features as the existing ZIP format, and & archlvgd file even ifit has an unknow_n r’nethod tag. At
new utilities remain backward compatible with archive@e same time, vxUnZIP can still use a file's ZIP method

created with existing ZIP tools. Older ZIP tools can lidfd t0 recognize files compressed using well-known algo-

the contents of archives created with vxZIP, but canddf'Ms for which it may have a faster native decoder.

extract files requiring a VXA decoder. When vxZIP recognizes an input file that is already
The ZIP file format historically uses a relativehFOMPressed using a scheme for which it has a suitable

fixed, though gradually growing, collection of generaNXA decoder, it stores the pre-compressed file directly

purpose lossless codecs, each identified by a “comprédhout further compression and tags the file with com-
sion method” tag in a ZIP file. A particular ZIP utilityPr€SSion method 0 (no compression). This method tag in-

generally compresses all files using only one algorithfifates to vxUnZIP that the file should normally be left

by default—the most powerful algorithm it Supports_compressed on extraction, and enables older UnZIP utili-
and UnZIP utilities include built-in decoders for mosies to extra_ctthe file in its original compressed form. The

of the compression schemes used by past ZIP utilitig&Z!P archiver nevertheless attaches a VXA decoder to
(Decoders for the old LZW-based “shrinking” schemibe file in the same way as for automatically-compressed
were commonly omitted for many years due to the Lz\Njes, so that vxUnZIP can later be instructed to decode the
patent [4], illustrating one of the practical challenges fi€ all the way to its uncompressed form if desired.

preserving archived data usability.)

In the enhanced vxZIP format, an archive may contaifl» Archiving VXA Decoders
files compressed using a mixture of traditional ZIP com-
pression methods and new VXA-specific methods. Fil8nce the 64KB size limitation of ZIP extension head-
archived using traditional methods are assigned the stars precludes storing VXA decoders themselves in the file
dard method tag, permitting even VXA-unaware UnZlReaders, vxZIP instead stores each decoder elsewhere in




the archive as a separate “pseudo-file” having its own M/hile such an extension should not be difficult, several

cal file header and an empty filename. The VXA extetradeoffs are involved. A virtual machine for VXA en-

sion headers attached to “actual” archived files containders may require user interface support to allow users

only the ZIP archive offset of the decoder pseudo-filea configure encoding parameters, introducing additional

Many archive files can thus refer to one VXA decodeaystem complexity. While the performance impact of the

merely by referring to the same ZIP archive offset. VXA virtual machine is not severe at least on x86 hosts, as
ZIP archivers write acentral directoryto the end of demonstrated in Section 5, implementing encoders as na-

each archive, which summarizes the filenames and ottiee DLLs enables the archiving process to run with max-

meta-data of all files stored in the archive. The vxZlimum performance on any host. Finally, vendors of pro-

archiver includes entries in the central directory only farietary codecs may not wish to release their encoders for

“actual” archived files, and not for the pseudo-files comse in a virtualized environment, because it might make

taining archived VXA decoders. Since UnZIP tools noticense checking more difficult. For these reasons, virtu-

mally use the central directory when listing the archivedlized VXA encoders are left for future work.

contents, VXA decoder pseudo-files do not show up in

such listings even using older VXA-unaware UnZIP tools,

and old tools can still use the central directory to find afi  The Virtual Machine

extract any files not requiring VXA-specific decoders.

A VXA decoder itself is simply an ELF executable fofrhe most vital component of the vxUnZIP archive reader
the 32-bit x86 architecture [45], as detailed below in Seg-the virtual machine in which it runs archived decoders.
tion 4. VXA decoders are themselves compressed in #gis virtual machine is implemented by vx32, a novel
archive using a fixed, well-known algorithm: namely thgirt;;a| machine monito(VMM) that runs in user mode
ubiquitous “deflate” method used by existing ZIP toolgs part of the archive reader’s process, without requiring

and by thegzip  utility popular on Unix systems. any special privileges or extensions to the host operating
system. Decoders under vx32 effectively run within vx-
3.3 Codecs for the Archiver UnZIP's address space, but in a software-enforced fault

) , , . isolation domain [46], protecting the application process
Since a basic goal of the VXA architecture is to be abﬁeom possible actions of buggy or malicious decoders.

to support a wide variety of often specialized codecs e M is implemented as a shared library linked into

is unacceptable for vxZIP to have a fixed set of bu”t"{?xUnZIP; it can also be used to implement specialized
compressors, as was generally the case for previous ZiR .| machines for other applications.

tools. Instead, vxZIP.|ntroduces a plug-in architecture f(_) The vx32 VMM currently runs only on x86-based host
codecs to be used with the archiver. Each codec cons

ft . ts: ﬁlgcessors, in both 32-bit and the new 64-bit modes.
ot two main components: The VMM relies on quick x86-t0-x86 code scanning and
e The encoder is a standard dynamic-link librarffanslation techniques to sandbox a decoder’s code as it

(DLL), which the archiver loads into its own addresgXecutes. These techniques are comparable to those used
space at run-time, and invokes directly to recogni¥ Embra [48], VMware [42], and Valgrind [34], though
and compress files. The encoder thus runs “nativel(32 is simpler as it need only provide isolation, and not
on the host processor architecture and in the safi@ulate a whole physical PC or instrument object code

operating system environment as the archiver itselfor debugging. Full binary translation to make vx32 run
on other host architectures is under development.
e The decoder is an executable image for the VXA

virtual machine, which the archiver writes into the .
archive if it produces or recognizes any encodéll Data Sandboxing

files using this codec. The decoder is always an ) ) ) )
ELF executable for the 32-bit x86 architecture imlN€ VXA virtual machine provides decoders with a “flat”

dinsegmented address space up to 1GB in size, which al-
ys starts at virtual address 0 from the perspective of

he decoder. The VM does not allow decoders access to

the underlying x86 architecture’s legacy segmentation fa-
A natural future extension to this system would be ilities. The vx32 VMM does, howeveysethe legacy

run VXA encoders as well as decoders in a virtual maegmentation features of the x86 host processor in order

chine, making complete codec pairs maximally portabke.implement the virtual machine efficiently.

plemented by the VXA virtual machine, regardle
of the host processor architecture and operating s
tem on which the archiver actually runs.



4.2 Code Sandboxing

Although the VMM could similarly set up an x86 code
segment that maps only the decoder’s address space, do-
ing so would not by itself prevent decoders from execut-
ing arbitrary x86 instructions that are “unsafe” from the

VA VA VAV VAN perspective of the VMM, such as those that would modify

Host Operating System
Kernel

(x86-32 or x86-64)

vxUnZIP Application the segment registers or invoke host operating system calls
Address Space directly. On RISC-based machines with fixed instruction
(x86-32 or xB6-64) sizes, a software fault isolation VMM can solve this prob-

lem by scanning the untrusted code for “unsafe” code se-

Aggfe"s‘;eg;/a'\’c'e quences when the code is first loaded [46]. This solution
it bodel < (up to 1GB) is not an option on the x86’s variable-length instruction ar
Segments Decoder chitecture, unfortunately, because within a byte sequence
Becoderdataibssineap Segment comprising one or more legitimate instructions there may
Decoder code be sub-sequences forming unsafe instructions, to which
(always xB6-32) 0 the decoder code might jump directly. The RISC-based

techniques also reserve up to five general-purpose regis-
ters asdedicated registerso be used for fault isolation,
which is not practical on x86-32 since the architecture
provides only eight general-purpose registers total.

The vx32 VMM therefore never executes decoder code
directly, but instead dynamically scans decoder code se-
Archive reader code guences to be executed and transforms them into “safe”
b3z orxeo-od code fragments stored elsewhere in the VMM'’s process.
- As with Valgrind [34] and just-in-time compilation tech-

niques [15, 24], the VMM keeps transformed code frag-

Figure 6: Archive Reader and VMM Address Spacesments in a cache to be reused whenever the decoder sub-

sequently jumps to the same virtual entrypoint again.
The VMM must of course transform all flow control

Asillustrated in Figure 6, vx32 maps a decoder’s virtuaaistructions in the decoder’s original code so as to keep
address space at some arbitrary location within its owRrecution confined to the safe, transformed code. The
process, and sets up a special process-local (LDT) datM rewrites branches with fixed targets to point to
segment with a base and limit that provides access onlythe correct transformed code fragment if one already ex-
that region. While running decoder code, the VMM keefists. Branches to fixed but as-yet-unknown targets become
this data segment loaded into the host processor’s segnigahches to a “trampoline” that, when executed, trans-
registers that are used for normal data reads and writesns the target code and then back-patches the original
(DS, ES, and SS). The decoder’s computation and meftmansformed) branch instruction to point directly to the
ory access instructions are thus automatically restricteelv target fragment. Finally, the VMM rewrites indirect
to the sandbox region, without requiring the special codeanches whose target addresses are known only at run-
transformations needed on other architectures [46].  time (including function return instructions), so as tokoo

Although the legacy segmentation features that tHE the target address dynamically in a hash table of trans-
VMM depends on are not functional in the 64-bit addresrmed code entrypoints.
ing mode (“long mode”) of the new x86-64 processors,
thgse processors provi_de 64-bit qp_plications the abt?ityjfs Virtual System Calls
switch back to a 32-bit “compatibility mode” in which
segmentation features are still available. On a 64-bit syidte vx32 VMM rewrites x86 instructions that would nor-
tem, vxUnZIP and the VMM run in 64-bit long modemally invoke system calls to the host operating system,
but decoders run in 32-bit compatibility mode. Thuso as to return control to the user-mode VMM instead. In
vx32 runs equally well on both x86-32 and x86-64 hosthis way, vx32 ensures that decoders have no direct access
with only minor implementation differences in the VMMto host OS services, but can only make controlled “virtual
(amounting to about 100 lines of code). system calls” to the VMM or the archive reader.

Transformed code cache

VMM (shared library)

Archive reader data, bss, heap

o




Only five virtual system calls are available to defiles of unrecognized type while archiving. The remain-
coders running under vxUnZIRead , write , exit , ingcodecs are media-specific. All of the codecs are based
setperm , anddone. The first three have their standardirectly on publicly-available libraries written in C, and
Unix meanings, whilesetperm supports heap memorywere compiled using a basic GCC cross-compiler setup.
allocation, anaione enables decoders to signal to vxUn- The jpeg andjp2 codecs are recognizer-decoders
ZIP that they have finished decoding one stream and @i@decs”), which recognize still images compressed in
able to process another without being re-loaded. Decodg¥s lossy JPEG [47] and JPEG-2000 [23] formats, re-
have access to three standard “virtual file handles”spectively, and attach suitable VXA decoders to archived
stdin , stdout , andstderr —but have no way to images. These decoders, when run under vxUnZIP, out-
open any other files. A decoder’s virtusitlin  file han- put uncompressed images in the simple and universally-
dle represents the data stream to be decodeskdtsit  understood Windows BMP file format. Thverbis re-
is the data stream it produces by decoding the input, agst similarly recognizes compressed audio streams in the
stderr  serves the traditional purpose of allowing the déessy Ogg/Vorbis format [49], and attaches a Vorbis de-
coder to write error or debugging messages. (vxUnZbdder that yields an uncompressed audio file in the ubig-
only displays such messages from decoders when in yg@itous Windows WAV audio file format.
bose mode.) A VXA decoder is therefore a traditional Finally, flac is a full encoder/decoder pair for the
Unix filter in a very pure form. Free Lossless Audio Codec (FLAC) format [11]. Using

Since a decoder’s address space comprises a portiothid codec, vxZIP can not only recognize audio streams
vxUnZIP’s own address space, the archive reader can efifeady compressed in FLAC format and attach a VXA
ily access the decoder’s data directly for the purpose d¥coder, but it can also recognizaxcompressedu-
servicing virtual system calls, in the same way that thito streams in WAV format and automatically compress
host OS kernel services system calls made by appligaem using the FLAC encoder. This codec thus demon-
tion processes. To handle the decodesad andwrite  strates how a VXA archiver can make use of compression
calls, vxUnZIP merely passes the system call on to the Rghemes specialized to particular types of data, without
tive host OS after checking and adjusting the file handiequiring the archive reader to contain built-in decoders
and buffer pointer arguments. A decoder’s I/O calls thiisr each such specialized compression scheme.
require no extra data copying, and the indirection throughThe above codecs with widely-available open source
the VMM and vxUnZIP code is cheap as it does not Crogfiplementations were chosen for purposeswdluating
any hardware protection domains. the prototype vxZIP/vxUnZIP implementation, and are

not intended to serve as ideal examplesrotivatethe

VXA architecture. While the open formats above may
5 Evaluation and Results gradually evolve over time, their open-source decoder

implementations are unlikely to disappear soon. Com-
This section experimentally evaluates the prototypeercial archival and multimedia compression products
vxZIP/vxUnZIP tools in order to analyze the practicalitysually incorporate proprietary codecs, however, which
of the VXA architecture. The two most obvious quesnight serve as better “motivating examples” for VXA:
tions about the practicality of VXA are whether runningroprietary codecs tend to evolve more quickly due to in-
decoders in a virtual machine seriously compromises thtgnse market pressures, and and their closed-source im-
performance for short-term uses of archives such as baglementations cannot be maintained by the customer or
ups and software/data packaging, and whether embeddinged to new operating systems once the original product
decoders in archives entails a significant storage cost. is/@bsolete and unsupported by the vendor.
also consider the portability issues of implementing vir-

tual machines that run x86-32 code on other hosts. ) )
5.2 Performance of Virtualized Decoders

5.1 Test Decoders To evaluate the performance cost of virtualization, the
graph in Figure 7 shows the user-mode CPU time con-
The prototype vxZIP archiver includes codecs for sesumed running the above decoders over several test data
eral well-known compressed file formats, summarized sets, both natively and under the vx32 VMM. All exe-
Table 1. The two general-purpose codeeh) and cution times are normalized to the native execution time
bzip2 , are for arbitrary data streams: vxZIP can usmn an x86-32 host system. The data set used to test
either of them as its “default compressor” to comprefise general-purpose lossless codes is a Linux 2.6.11 ker-



Decoder || Description | Availability
General-Purpose Codecs

Output Format|

zlib “Deflate” algorithm from ZIP/gzip www.zlib.net (raw data)
bzip2 Popular BWT-based algorithm www.bzip.org (raw data)
Still Image Codecs
jpeg Independent JPEG Group (1JG) reference decqdesww.ijg.org BMP image
jp2 JPEG-2000 reference decoder from JasPer librasyww.jpeg.org/jpeg2000 BMP image
Audio Codecs
flac Free Lossless Audio Codec (FLAC) decoder flac.sourceforge.net WAV audio
vorbis Ogg Vorbis audio decoder www.vorbis.com WAV audio

Table 1: Decoders Implemented in vxZIP/vxUnZIP Prototype
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Figure 7: Performance of Virtualized Decoders

nel source tree; the data sets used for the media-specifids Figure 7 shows, the decoders running under the
codecs consist of typical pictures and music files in thv@32 VMM experience a slowdown of up to 11% rela-
appropriate format. All tests were run on an AMD Athlotive to native x86-32 execution. Theorbis decoder
64 3000+ with 512MB of RAM, on both the x86-32 andhitially experienced a 29% slowdown when compiled for
x86-64 versions of SUSE Linux 9.3. The same compil&XA unmodified, due to subroutine calls in the decoder’s
version (GCC 4.0.0) and optimization setting®8) were inner loop that accentuate the VMM’s flow-control over-
used for the native and virtualized versions of each deead by requiring hash table lookups (see Section 4.2).
coder, and the timings represent user-mode process timaing these two functions both improved the perfor-
as reported by thtme command so as to factor out disknance of the native decoder slightly (about 1%) and re-
and system overhead. Total wall-clock measurements dueed the relative cost of virtualization to 11%. The other
not shown because for all but the slowest decoder, jpcoders were unmodified from their original distribution
disk overhead dominates total wall-clock time and intréerm. The JPEG decoder became slightly faster under
duces enough additional variance between successive u82, possibly due to effects of the VMM'’s code rewrit-
to swamp the differences in CPU-bound decoding timeing on instruction cache locality; such effects are possibl
and have been exploited elsewhere [2].



The virtualized decoders fall farther behind in compashort code fragments that emulate individual x86 instruc-
ison with native execution on an x86-64 host, but this diftons. QEMU’s dynamic translator then scans the x86
ference is mostly due to the greater efficiency of the 64-bidtde at run-time and pastes together the appropriate na-
native code rather than to virtualization overhead. Virtudive code fragments to form translated code. While this
ized decoders always run in 32-bit mode regardless of thethod is unlikely to perform as well as a binary transla-
host system, so their absolute performance is almost ider-designed and optimized for a specific host architecture,
tical on 32-bit versus 64-bit hosts, as the graph shows. it provides a portable method of implementing emulators

that offer usable performance levels.
5.3 Decoder Storage Overhead Even without efficient binary translation for x86 code,

however, the cost of emulation does not necessarily make
To evaluate the storage overhead of embedding decodresV XA architecture impractical for non-x86 host archi-
in archives, Table 2 summarizes the size of each decodesstures. An archive reader can still provide fast native de
executable image when compiled and linked for the VXéoders for currently popular file formats, running archived
virtual machine. The code size for each decoder is flecoders under emulation only when no native decoder is
ther split into the portion comprising the decoder itse$fvailable. The resulting archival system is no slower in
versus the portion derived from the statically-linked C lpractice than existing tools based on a fixed set of com-
brary against which each decoder is linked. No special giessors, but provides the added assurance that archived
fort was made to trim unnecessary code, and the decod#is will still be decipherable far into the future. Itis nuc
were compiled to optimize performance over code sizebetter to be able to decode archived data slowly using em-

The significance of these absolute storage overheadslation than not to be able to decode it at all.
course depends on the size of the archive in which they
are embedded, since only one copy of a decoder need ST
be stored in the archive regardless of the number of eént-g Availability
coded files that use it. As a comparison point, howevahe vxZIP/vxUnZIP tools, the vx32 virtual machine, and
a single 2.5-minute CD-quality song in the dataset usgfk data sets used in the above tests can be obtained from
for the earlier performance tests, compressed at 120Kbg://pdos.csail.mit.edu/ baford/vxa/
using the lossy Ogg codec, occupies 2.2MB. The 130KB
Ogg decoder for VXA therefore represents a 6% space
overhead in an archive containing only this one song, oba Related Work
0.6% overhead in an archive containing a 10-song album.

The same 2.5-minute song compressed using the losslB3g importance and difficulty of preserving digital infor-
FLAC codec occupies 24MB, next to which the 48KmBnation over the long term is gaining increasing recogni-
vx32 decoder represents a negligible 0.2% overhead. tion [16]. This problem can be broken into two compo-
nents: preservinglata and preserving the datafsean-

ing [13]. Important work is ongoing to address the first
aspect [17, 12, 30], and the second, the focus of this pa-
A clear disadvantage of using the native x86 procg3er, is beginning to receive serious attention.

sor architecture as the basis for VXA decoders is that

porting the archive reader to non-x86 host architecturgﬁl_ Archival Storage Strategies

requires instruction set emulation or binary translation.
While instruction set emulators can be quite portable, th8yoring executable decoders with archived data is not new:
also tend to be many times slower than native executigopular archivers including ZIP often ship with tools to
making them unappealing for computation-intensive taskeateself-extracting archiveor executables that decom-
such as data compression. Binary translation providagss themselves when run [35, 21]. Such self-extracting
better performance and has entered widespread comraechives are designed for convenience, however, and are
cial use, but is not simple to implement, and even the béstditionally specific to a particular host operating sys-
binary translators are unlikely to match the performantam, making them as bad as or worse than traditional
of natively-compiled code. non-executable archives for data portability and longevit

The QEMU x86 emulator [6] introduces a binary transSelf-extracting archives also provide no security against
lation technique that offers a promising compromise bleugs or malicious decoders; E-mail viruses routinely dis-
tween portability and performance. QEMU uses a natigeiise themselves as self-extracting archives supposedly
C compiler for the host processor architecture to generatmtaining useful applications.

5.4 Portability Considerations



Decoder Code Size Compressed
Total | Decoder | C Library (zlib )
General-Purpose Codecs
zlib 46.0KB | 32.4KB (70%)| 13.6KB (30%) 26.2KB
bzip2 71.1KB| 60.9KB (86%)| 10.2KB (14%) 29.9KB
Still Image Codecs
ireg 103.3KB| 90.0KB (87%)| 13.3KB (13%) 48.6KB
ip2 220.2KB | 198.5KB (90%)| 21.7KB  (10%) 105.9KB
Audio Codecs
flac 102.5KB| 84.2KB (82%)| 18.3KB (18%) 47.6KB
vorbis 233.4KB | 200.3KB (86%)| 33.1KB (14%) 129.7KB

Table 2: Code Size of Virtualized Decoders

Rothenberg suggested a decade ago the idea of arciécoders with compressed dataw ensures that future
ing the original application and system software used t®@CKSS-style “migrate-on-access” converters will only
create data along with the data itself, and using emufeeed to read common historicahcompressedbrmats,
tors to run archived software after its original hardwameich as BMP images or WAV audio files, and not the
platform becomes obsolete [38]. Archiving entire systenfer more numerous and rapidly-evolving compressed for-
and emulating their hardware accurately is difficult, hownats. VXA therefore complements a “migrate-on-access”
ever, because real hardware platforms (including necésility by reducing the number and variety of source for-
sary 1/0O devices) are extremely complex and tend to bwts the access-time converters must support.
only partly standardized and documented [5]. Preserving

the functionalityof the original system is also not neces- . i i
sarily equivalent to preserving thesefulnessf the origi- 0-2 Specialized Virtual Environments

nal da_ta. The "?‘b_"'ty to View C.’Id fjata Inan emu'."’ltorw”\hrtual machines and languages have been designed for
dow via the original application’s archaic user mterfac?ﬁany specialized purposes, such as printing [1], boot

for exampI”e, is not the same as bging_ able to load or ‘_‘c ading [20], Web programming [19, 29], packet fil-
.and-pasFe th‘? data into new applications or process it Y&rs [32] and other OS extensions [41], active net-
ing new indexing or analysis tools. works [44], active disks [36], and grid computing [8]. In

Lorie later proposed to archive data along with speciahis tradition, VXA could be appropriately described as
ized decoder programs, which run on a specialized “Unrin architecture for “active archives.”
versal Virtual Computer” (UVC), and extract archived gjmilarly, dynamic code scanning and translation is
data into a self-describing XML-like format [27]. The\/videly used for purposes such as migrating legacy appli-
UVC's simplicity makes emulation easier, but since {ations across processor architectures [40, 9, 3], simulat
represents a new architecture substantially dif'feremtlfrqng complete hardware platforms [48], run-time code op-
those of real processors, UVC decoders must effectivgiyization [2], implementing new processors [14], and de-
be written from scratch in assembly language until highygging compiled code [34, 39]. In contrast with the com-
level languages and tools are developed [28]. More ifon “retroactive” uses of virtual machines and dynamic
portantly, the UVC's specialization to the “niche” of longtransiation to “rescue old code” that no longer runs on the
term archival storage systems virtually guarantees thafest systems, however, VXA applies these technologies
high-level languages, development tools, and libraries {§oactivelyto preserve the long-term usability and porta-
it will never be widely available or well-supported as theljlity of archived datapeforethe code that knows how to
are for general-purpose architectures. decompress it becomes obsolete.

The LOCKSS archival system supports data formatMost virtual machines designed to support safe ap-
converter plug-ins that transparently migrate data in gblication extensions rely on type-safe languages such as
solete formats to new formats when a user accessestaea [7]. In this case, the constraints imposed by the
data [37]. Over time, however, actively maintaining cofianguage make the virtual machine more easily portable
verter plug-ins for an ever-growing array of obsolete coraeross processor architectures, at the cost of requiring al
pressed formats may become difficult. Archiving VXAintrusted code to be written in such a language. While



just-in-time compilation [15, 24] has matured to a poimtique can provide each application with only one virtual

where type-safe languages perform adequately for meahdbox at a time, however, and it imposes constraints on

purposes, some software domains in which performaribhe kernel’'s own use of x86 segments that would make it

is traditionally perceived as paramount—such as damapossible to grant use of this facility to 64-bit applica-

compression—remain resolutely attached to unsafe léions on new x86-64 hosts.

guages such as C and assembly language. Advanced

digital media codecs also frequently take advantage of

the SIMD extensions of modern processors [22], which Conclusion

tend to be unavailable in type-safe languages. The de-

sire to support the many widespread open and proprietdhe VXA architecture for archival data storage offers a

data encoding algorithms whose implementations are onlgw and practical solution to the problem of preserv-

available in unsafe languages, therefore, makes type-safgthe usability of digital content. By including exe-

language technology infeasible for the VXA architectureutable decoders in archives that run on a simple and
OS-independent virtual machine based on the historically
enduring x86 architecture, the VXA architecture ensures

6.3 Isolation Technologies that archived data can always be decoded into simpler

and less rapidly-evolving uncompressed formats, long af-

The prototype vx32 VMM demonstrates a simple angd, the original codec has become obsolete and difficult
practical software fault isolation (SFI) strategy on thé X8y, fing. The prototype vxZIP/vxUnZIP archiver for x86-

which achieves performance comparable to previous teghzeq hosts is portable across operating systems, and de-
niques designed for on RISC architectures [46], despi§ers retain good performance when virtualized.
the fact that the RISC-based techniques are not easily ap-

plicable to the x86 as discussed in Section 4.2. RISC-
based SFI, observed to incur a 15—-20% overhead for f\cknowledgments
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