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The Ubiquity of Data Compression

Everything 1s compressed these days
— Archive/Backup/Distribution: ZIP, tar.gz, ...

— Multimedia streams: mp3, ogg, wmy, ...

- Office documents: XML-in-ZIP

- Digital cameras: JPEG, proprietary RAW, ...
— Video camcorders: DV, MPEG-2, ...



Compressed Data Formats

Observation #1:
Data compression formats evolve rapidly
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Compressed Data Formats

Observation #1:
Data compression formats evolve rapidly

Problems:

— Inconvenient:
each new algorithm requires decoder install/upgrade

— Impedes data portability:
data unusable on systems without supported decoder

— Threatens long-term data usability:
old decoders may not run on new operating systems



Archiving Compressed Data

Observation #2:
Processor architectures evolve more conservatively
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Archiving Compressed Data

Observation #2:
Processor architectures evolve more conservatively

Fully Backward Compatible Extensions
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Archiving Compressed Data

Observation #2:
Processor architectures evolve more conservatively
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VXA: Virtual Executable Archives

Observation 1+2: Instruction formats are historically
more durable than compressed data formats

N\

: Make archive self-extracting (data + executable decoder)
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Make self-extracting archives...

Goals of VXA
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Make self-extracting archives...

Goals of VXA

1. Safe: malicious decoders can't compromise host

2. Future-proof: simple, well-defined architecture [Lorie]
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Make self-extracting archives...

Goals of VXA

1. Safe: malicious decoders can't compromise host

2. Future-proof: simple, well-defined architecture [Lorie]

3. Easy: allow reuse of existing code, languages, tools
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Make self-extracting archives...

Goals of VXA

1. Safe: malicious decoders can't compromise host

2. Future-proof: simple, well-defined architecture [Lorie]

3. Easy: allow reuse of existing code, languages, tools

4. Efficient: practical for short term data packaging too
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Outline

* Archiver Operation

e vxZIP Archive Format

* Decoder Architecture

* Emulator Design & Implementation

e Evaluation (performance, storage overhead)

e Conclusion



Archive Writer Operation

VXA Archiver
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Archive Writer Operation

Uncompressed Input Files
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Archive Writer Operation

Uncompressed Input Files
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Archive Writer Operation

Uncompressed Input Files
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Archive Writer Operation

Uncompressed Input Files Pre-Compressed Input Files
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Archive Writer Operation

Uncompressed Input Files

Pre-Compressed Input Files
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Archive Reader Operation

VXA Archive Reader

x86 Emulator
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Archive Reader Operation

Original Uncompressed Files
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Archive Reader Operation

Original Uncompressed Files
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Archive Reader Operation

Original Uncompressed Files Original Pre-Compressed Files
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Archive Reader Operation

Original Uncompressed Files
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vxZIP Archive Format

e Backward compatible
with legacy ZIP format
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vxZIP Archive Format

e Backward compatible
with legacy ZIP format

e Decoders intermixed
with archived files

e Archived files have
new extension header
pointing to decoder
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vxZIP Archive Format

e Backward compatible
with legacy ZIP format

e Decoders intermixed
with archived files

e Archived files have
new extension header
pointing to decoder

e Decoders are hidden,
“detlated” (gzip)

JP2 Decoder
(deflated)

Image file
(JP2-encoded)

FLAC Decoder
(deflated)

Audio file
(FLAC-encoded)

Audio file
(FLAC-encoded)

Central Directory

vxZIP Archive




vxZIP Decoder Architecture

e Decoders are ELF executables for x86-32

— Can be written in any language, safe or unsafe

— Compiled using ordinary tools (GCC)
* Decoders have access to five “system calls™:
- read stdin, write stdout, malloc, next file, exit

e Decoders cannot:

— open files, windows, devices, network connections, ...

— get system 1nfo: user name, current time, OS type, ...



Decoders Ported So Far

(using existing implementations in C, mostly unmoditied)

General-purpose (lossless):

e zlib: Classic gzip/deflate algorithm
* bzip2: Burrows-Wheeler algorithm

Still image codecs:

* jpeg: Classic lossy image compression scheme

* jp2: JPEG 2000 wavelet-based algorithm, lossy or lossless
Audio codecs:

e flac: Free Lossless Audio Codec

 vorbis: Standard lossy audio codec for Ogg streams



vx32 Emulator Architecture

Runs in vxUnZIP process

¢ [ .oads decoder into

address space sandbox //\/\/\/\/\
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vx32 Emulator Implementation

On x86-{32/64} hosts:

— Secure fault 1solation
[Wahbe]

— Data sandboxing via
custom LDT segments

— Code sandboxing via
instruction rewriting
[Sites, Nethercote]

— No privileges or
kernel extensions
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vx32 Emulator Implementation

On other host architectures:

— Portable but slow “fallback’ instruction interpreter
(mostly done)

— Fast x86-to-PowerPC binary translator
(in progress)

— Hopefully more 1n the future

Emulator implemented as generic library

— Can be used for other sandboxing applications



Evaluation

Two issues to address:

e Performance overhead of emulated decoders

— not important for long-term archival storage, but...

— very important for common short-term uses of archives:
backups, software distribution, structured documents, ...

e Storage overhead of archived decoders



Performance Test Method

Run 6 ported decoders on appropriate data sets
— Athlon 64 3000+ PC running SuSE Linux 9.3

— Measure user-mode CPU time (not wall-clock time)
Compare:

— Emulated vs native execution

— Running on x86-32 vs x86-64 host environment



Performance Overhead
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Normalized User-mode Execution Time
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Storage Overhead

Archiver stores only one copy of each decoder

— Storage cost amortized over all files of same type

— Relative overhead depends on size of archive
Therefore, measure only absolute decoder size

(compressed, as stored 1n archive)



Storage Overhead
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Conclusion

VXA makes self-extracting archives...

e Safe: decoders fully sandboxed
 Future-proof: simple, OS-independent environment
e Easy: re-use existing decoders, languages, tools

e Efficient: < 11% slowdown vs native x86-32

Available at: http://pdos.csail.mit.edu/~baford/vxa/




