VXA: A Virtual Architecture for
Durable Compressed Archives

Bryan Ford
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

http://pdos.csail.mit.edu/~baford/vxa/

The Ubiquity of Data Compression

Everything 1s compressed these days
— Archive/Backup/Distribution: ZIP, tar.gz, ...

— Multimedia streams: mp3, ogg, wmy, ...

- Office documents: XML-in-ZIP

- Digital cameras: JPEG, proprietary RAW, ...
— Video camcorders: DV, MPEG-2, ...

Compressed Data Formats

Observation #1:
Data compression formats evolve rapidly
&
& <
PP OQQQY&%QO \32”% Q?Q Q}& @& A

\j

Lossless Compression

l l l l l !
1980 1985 1990 1995 2000 2005

Compressed Data Formats

Observation #1:
Data compression formats evolve rapidly
Q@i O o ¥
S ST I F & & w
Lossless Compression N g
D € o
Q
SIS L8 N &
Image Encoding e N MO g
> e ¢ L L O
S SO ©
Video Encoding S -
C > A o O
~Q O &
U S R

Audio Encoding

l l
1980

Compressed Data Formats

Observation #1:
Data compression formats evolve rapidly

Problems:

— Inconvenient:
each new algorithm requires decoder install/upgrade

— Impedes data portability:
data unusable on systems without supported decoder

— Threatens long-term data usability:
old decoders may not run on new operating systems

Archiving Compressed Data

Observation #2:
Processor architectures evolve more conservatively

x86 Architecture

I I I I I I
1980 1985 1990 1995 2000 2005

Archiving Compressed Data

Observation #2:
Processor architectures evolve more conservatively

Fully Backward Compatible Extensions

x86 Architecture

I I I I I I
1980 1985 1990 1995 2000 2005

Archiving Compressed Data

Observation #2:
Processor architectures evolve more conservatively

© 4 2 = > .

© P & & J ESINSS

& Q NP SN

S & @@ & £
>

x86 Architecture ¢ < W

S R
& 2 ?%29 ® &%ﬁ 4\@@
S SR Q¥ 9 N

Other Architectures

I I I I I I
1980 1985 1990 1995 2000 2005

Archiving Compressed Data

Observation #2:
Processor architectures evolve more conservatively

(O \«QD \:D X
.\ ‘Jr' 9 9 - Q)
i & "9’ = 81 +

x86 Architecture o
Oth¢r Architectures -
1990 1995 ZJOO 2&05
"

I
80 1985

Archiving Compressed Data

Observation #2:
Processor architectures evolve more conservatively

ng 45)

0 - 4 F 9)
o B D < R\ L Q>
&) O° A < o \©
S @Q* % @Q *\SO @b‘

x86 Architecture

Other Architectures

fﬁr /8;;%(% QO‘“QSQ x\‘”y .

1980 1R85 1990 1995 2000 2005

Archiving Compressed Data

Observation #2:
Processor architectures evolve more conservatively

o 4 i @D ™
o P & & FSA
& 0° 40 DM Lo SO
S S F& o £
>
x86 Architecture
ra)gg?‘ s
/\»\“b
Other Architectures g
I I I I I I
1980 1985 1990 1995 2000 2005

Archiving Compressed Data

Observation #2:
Processor architectures evolve more conservatively

o
%
S

x86 Architecture

7

Other Architectures

I
1980

VXA: Virtual Executable Archives

Observation 1+2: Instruction formats are historically
more durable than compressed data formats

N\

: Make archive self-extracting (data + executable decoder)
%3

>

- To extract data, archive reader runs embedded decoder

Archive Archive =

Writer @ Reader =

m Encoder { 24 }
Decoder D D m

Make self-extracting archives...

Goals of VXA

3

Archive
Writer

Encoder

Decoder

Archive
Reader

\

/
3

Make self-extracting archives...

Goals of VXA

1. Safe: malicious decoders can't compromise host

2. Future-proof: simple, well-defined architecture [Lorie]

3

Archive
Writer

Encoder

Decoder

Archive
Reader

Emulator

—» | D

\

/
3

Make self-extracting archives...

Goals of VXA

1. Safe: malicious decoders can't compromise host

2. Future-proof: simple, well-defined architecture [Lorie]

3. Easy: allow reuse of existing code, languages, tools

ada

S

-

Archive
Writer

Encoder

Decoder

Archive
Reader

x86
Emulator

—» | D

— =

/

ada

Make self-extracting archives...

Goals of VXA

1. Safe: malicious decoders can't compromise host

2. Future-proof: simple, well-defined architecture [Lorie]

3. Easy: allow reuse of existing code, languages, tools

4. Efficient: practical for short term data packaging too

e
ml

Archive
Writer

Archive

Encoder

Decoder

L)

Archive
Reader

—» | D

Fast x86
Emulator

—» | D

_—

ik

Outline

* Archiver Operation

e vxZIP Archive Format

* Decoder Architecture

* Emulator Design & Implementation

e Evaluation (performance, storage overhead)

e Conclusion

Archive Writer Operation

VXA Archiver

Archive

Archive Writer Operation

Uncompressed Input Files

VXA Archiver

General
Compressor

Decoder;
N\
AN
XA
D,
N

Archive

Archive Writer Operation

Uncompressed Input Files
=5 il N
— —]
R

VXA Archiver

General
Compressor

Decoder;,
N\
AN
XA
D,
N

Archive

Archive Writer Operation

Uncompressed Input Files
=S L4l ===
= el s
R E——

General Image Audio
Compressor Compressor Compressor

Decoder;, Decoder, Decoder;
N\ \

\ N\ \I !

D, D, D3

= =

Archive

Archive Writer Operation

Uncompressed Input Files Pre-Compressed Input Files

=2 [== (lalfa) =1

v v ¥ Y {

General Image Audio
Compressor Compressor Compressor
Decoder; Decoder, Decodery
\\ \\

R\
YO =]

Archive

Archive Writer Operation

Uncompressed Input Files

Pre-Compressed Input Files

-:ﬁ -:ﬁ a = =l
= — sttt)

General Image Audio Image Format Audio Format

Compressor Compressor Compressor Recognizer Recognizer

Decoder; Decoder, Decodery Decoder, Decoders
\\ \ / //
\ ! / ,
D, Dj Dy Ds

H

(i

Archive

Archive Reader Operation

VXA Archive Reader

x86 Emulator

D, Ds

D,

Jal)| =) gl fad

Archive

Archive Reader Operation

Original Uncompressed Files

:

=

VXA Archive Reader

\

Decoder;

x86 Emulator

D, Ds

Jal = gl pal

D,

Archive

Archive Reader Operation

Original Uncompressed Files

:

=

ada

s ———
2

\

x86 ulator

\ VXA Ar¢hive Reader

Decoder; Decoder, Decoders
D, D,

R

D,

Archive

Archive Reader Operation

Original Uncompressed Files Original Pre-Compressed Files

=2 [== (lalfa) =1

VXA Ar¢hive Reader
x86 ulator

Decoder; Decoder, Decoders

f

fD3I D,
= =

Archive

Archive Reader Operation

Original Uncompressed Files

:

=

ada

s ———
et

De-compressed Files

| =

\

VXA Ar¢hive Reader
x86 ulator

Decoder;

Decoder,

Decoders

Decoder, Decoders

f

/

/o

R

I~
L)

Archive

vxZIP Archive Format

e Backward compatible
with legacy ZIP format

Image file

Audio file

Audio file

Central Directory

vxZIP Archive

vxZIP Archive Format

 Backward compatible | JP2Decoder
with legacy ZIP format ——
e Decoders intermixed ———
with archived files E>
Audio file
Audio file

Central Directory

vxZIP Archive

vxZIP Archive Format

e Backward compatible
with legacy ZIP format

e Decoders intermixed
with archived files

e Archived files have
new extension header
pointing to decoder

JP2 Decoder

Image file
(JP2-encoded)

V)

FLAC Decoder

Audio file
(FLAC-encoded)

Audio file
(FLAC-encoded)

Central Directory

vxZIP Archive

vxZIP Archive Format

e Backward compatible
with legacy ZIP format

e Decoders intermixed
with archived files

e Archived files have
new extension header
pointing to decoder

e Decoders are hidden,
“detlated” (gzip)

JP2 Decoder
(deflated)

Image file
(JP2-encoded)

FLAC Decoder
(deflated)

Audio file
(FLAC-encoded)

Audio file
(FLAC-encoded)

Central Directory

vxZIP Archive

vxZIP Decoder Architecture

e Decoders are ELF executables for x86-32

— Can be written in any language, safe or unsafe

— Compiled using ordinary tools (GCC)
* Decoders have access to five “system calls™:
- read stdin, write stdout, malloc, next file, exit

e Decoders cannot:

— open files, windows, devices, network connections, ...

— get system 1nfo: user name, current time, OS type, ...

Decoders Ported So Far

(using existing implementations in C, mostly unmoditied)

General-purpose (lossless):

e zlib: Classic gzip/deflate algorithm
* bzip2: Burrows-Wheeler algorithm

Still image codecs:

* jpeg: Classic lossy image compression scheme

* jp2: JPEG 2000 wavelet-based algorithm, lossy or lossless
Audio codecs:

e flac: Free Lossless Audio Codec

 vorbis: Standard lossy audio codec for Ogg streams

vx32 Emulator Architecture

Runs in vxUnZIP process

¢ [.oads decoder into

address space sandbox //\/\/\/\/\
* Restricts decoder's VXA Decoder Decoder
MEmOry accesses N Address Space Address
m"ess< (up to 1GB) Space
to sandbox Address \
Space 0
* Dispatches decoder's vx32 Emulator |ibrar3x VXA
VXA “system calls” }1 gyfltem
to vxUnZIP Ui -
vxUn
(not to host OS!) Application

vx32 Emulator Implementation

On x86-{32/64} hosts:

— Secure fault 1solation
[Wahbe]

— Data sandboxing via
custom LDT segments

— Code sandboxing via
instruction rewriting
[Sites, Nethercote]

— No privileges or
kernel extensions

Code
Rewriting

Flat-Model

Code/Data <

Segment

-
Kernel
Address Space

VXA Decoder Decoder
Data
Address Space Segment
(up to 1GB) (LDT)
TS 0
Transformed code caghe
vx32 Emulator library (szonctgzjlhercei
} Calls
vxunZIP
Application

vx32 Emulator Implementation

On other host architectures:

— Portable but slow “fallback’ instruction interpreter
(mostly done)

— Fast x86-to-PowerPC binary translator
(in progress)

— Hopefully more 1n the future

Emulator implemented as generic library

— Can be used for other sandboxing applications

Evaluation

Two issues to address:

e Performance overhead of emulated decoders

— not important for long-term archival storage, but...

— very important for common short-term uses of archives:
backups, software distribution, structured documents, ...

e Storage overhead of archived decoders

Performance Test Method

Run 6 ported decoders on appropriate data sets
— Athlon 64 3000+ PC running SuSE Linux 9.3

— Measure user-mode CPU time (not wall-clock time)
Compare:

— Emulated vs native execution

— Running on x86-32 vs x86-64 host environment

Performance Overhead

] native x86-32 7 vx32 on x86-32 | | native x86-64 | |vx32 on x86-64

QW] UOINDIXT SPOW-I3SN PIZI|eWIoN

Normalized User-mode Execution Time

1.2
1.1

0.9+
0.8
0.7+
0.6
0.5
0.4+
0.3+
0.2

0.1

Performance Overhead

zlib bzip2 jpeg jp2 flac vorbis

[native x86-32 |7 vx32 on x86-32 [l native x86-64 [vx32 on x86-64

Storage Overhead

Archiver stores only one copy of each decoder

— Storage cost amortized over all files of same type

— Relative overhead depends on size of archive
Therefore, measure only absolute decoder size

(compressed, as stored 1n archive)

Storage Overhead

130

-
= N
o O

-
o
o

(o)
o

o
o

N
o

Bl Decoder
] C library

(@)
o

A
o O

(O8]
o

Compressed code size (KBytes)

= N
o O
| |

(@)
|

zlib bzip2 jpeg jp2 flac vorbis

Conclusion

VXA makes self-extracting archives...

e Safe: decoders fully sandboxed
 Future-proof: simple, OS-independent environment
e Easy: re-use existing decoders, languages, tools

e Efficient: < 11% slowdown vs native x86-32

Available at: http://pdos.csail.mit.edu/~baford/vxa/

