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Abstract

Data compression algorithms change frequently, and ob-
solete decoders do not always run on new hardware and
operating systems, threatening the long-term usability of
content archived using those algorithms. Re-encoding
content into new formats is cumbersome, and highly un-
desirable when lossy compression is involved. Proces-
sor architectures, in contrast, have remained compara-
tively stable over recent decades. VXA, an archival stor-
age system designed around this observation, archives
executable decoders along with the encoded content it
stores. VXA decoders run in a specialized virtual machine
that implements an OS-independent execution environ-
ment based on the standard x86 architecture. The VXA
virtual machine strictly limits access to host system ser-
vices, making decoders safe to run even if an archive con-
tains malicious code. VXA’s adoption of a “native” pro-
cessor architecture instead of type-safe language technol-
ogy allows reuse of existing “hand-optimized” decoders
in C and assembly language, and permits decoders ac-
cess to performance-enhancing architecture features such
as vector processing instructions. The performance cost
of VXA’s virtualization is typically less than 15% com-
pared with the same decoders running natively. The stor-
age cost of archived decoders, typically 30–130KB each,
can be amortized across many archived files sharing the
same compression method.

1 Introduction

Data compression techniques have evolved rapidly
throughout the history of personal computing. Figure 1
shows a timeline for the introduction of some of the
most historically popular compression formats, both for
general-purpose data and for specific media types. (Many
of these formats actually support multiple distinct com-
pression schemes.) As the timeline illustrates, common
compression schemes change every few years, and the ex-
plosion of lossy multimedia encoders in the past decade

Figure 1: Timeline of Data Compression Formats

Figure 2: Timeline of Processor Architectures

has further accelerated this evolution. This constant churn
in popular encoding formats, along with the prevalence of
other less common, proprietary or specialized schemes,
creates substantial challenges to preserving the usability
of digital information over the long term [16].

Open compression standards, even when available and
widely adopted, do not fully solve these challenges. Spec-
ification ambiguities and implementation bugs can make
content encoded by one application decode incorrectly or
not at all in another. Intellectual property issues such as
patents may interfere with the widespread availability of
decoders even for “open” standards, as occurred in the last
decade [4] with several file formats based on the LZW al-
gorithm [33]. Standards also evolve over time, which can
make it increasingly difficult to find decoders for obsolete
formats that still run on the latest operating systems.

Processor architectures, in contrast, have shown re-



markable resistance to change ever since the IBM PC
first jump-started personal computing. As the architec-
ture timeline in Figure 2 illustrates, the persistently dom-
inant x86 architecture has experienced only a few major
architectural changes during its lifetime—32-bit registers
and addressing in 1985, vector processing upgrades start-
ing in 1996, and 64-bit registers and addressing in 2003.
More importantly, each of these upgrades has religiously
preserved backward code compatibility. Of the other ar-
chitectures introduced during this period, none have come
close to displacing the x86 architecture in the mainstream.

From these facts we observe thatinstruction encodings
are historically more durable than data encodings. We
will still be able to run x86 code efficiently decades from
now, but it is less likely that future operating systems and
applications will still include robust, actively-maintained
decoders for today’s compressed data streams.

1.1 Virtualizing Decoders

Virtual eXecutable Archives, or VXA, is a novel archival
storage architecture that preserves data usability by pack-
aging executable x86-based decoders along with com-
pressed content. These decoders run in a specialized vir-
tual machine (VM) that minimizes dependence on evolv-
ing host operating systems and processors. VXA decoders
run on a well-defined subset of the unprivileged 32-bit x86
instruction set, and have no direct access to host OS ser-
vices. A decoder only extracts archived data into simpler,
and thus hopefully more “future-proof,” uncompressed
formats: decoders cannot have user interfaces, open ar-
bitrary files, or communicate with other processes.

By building on the ubiquitous native x86 architecture
instead of using a specialized abstract machine such as
Lorie’s archival “Universal Virtual Computer” [27], VXA
enables easy re-use of existing decoders written in arbi-
trary languages such as C and assembly language, which
can be built with familiar development tools such as GCC.
Use of the x86 architecture also makes execution of vir-
tualized decoders extremely efficient on x86-based host
machines, which is important to the many popular “short-
term” uses of archives such as backups, software distribu-
tion, and structured document compression. VXA permits
decoders access to the x86 vector processing instructions,
further enhancing the performance of multimedia codecs.

Besides preserving long-term data usability, the VXA
virtual machine also isolates the host system from buggy
or malicious decoders. Decoder security vulnerabilities,
such as the recent critical JPEG bug [31], cannot com-
promise the host under VXA. This security benefit is
important because data decoders tend to be inherently

complex and difficult to validate, they are frequently ex-
posed to data arriving from untrusted sources such as the
Web, and they are usually perceived as too low-level and
performance-critical to be written in type-safe languages.

1.2 Prototype Implementation

A prototype implementation of the VXA architecture,
vxZIP/vxUnZIP, extends the well-known ZIP/UnZIP
archive tools with support for virtualized decoders. The
vxZIP archiver can attach VXA decoders both to files it
compresses and to input files already compressed with
recognized lossy or lossless algorithms. The vxUnZIP
archive reader runs these VXA decoders to extract com-
pressed files. Besides enhancing the durability of ZIP files
themselves, vxZIP thus also enhances the durability of
pre-compressed data stored in ZIP files, and can evolve to
employ the latest specialized compression schemes with-
out restricting the usability of the resulting archives.

VXA decoders stored in vxZIP archives are themselves
compressed using a fixed algorithm (the “deflate” method
standard for existing ZIP files) to reduce their storage
overhead. The vxZIP prototype currently includes six
decoders for both general-purpose data and specialized
multimedia streams, ranging from 26 to 130KB in com-
pressed size. Though this storage overhead may be signif-
icant for small archives, it is usually negligible for larger
archives in which many files share the same decoder.

The prototype vxZIP/vxUnZIP tools run on both the
32-bit and 64-bit variants of the x86 architecture, and rely
only on unprivileged facilities available on any mature
x86 operating system. The performance cost of virtualiza-
tion, compared with native x86-32 execution, is between
0 and 11% measured across six widely-available general-
purpose and multimedia codecs. The cost is somewhat
higher, 8–31%, compared with native x86-64 execution,
but this difference is due not to virtualization overhead
but to the fact that VXA decoders are always 32-bit, and
thus cannot take advantage of the new 64-bit instruction
set. The virtual machine that vxUnZIP uses to run the
archived decoders is also available as a standalone library,
which can be re-used to implement virtualization and iso-
lation of extension modules for other applications.

Section 2 of this paper first presents the VXA archi-
tecture in detail. Section 3 then describes the prototype
vxZIP/vxUnZIP tools, and Section 4 details the virtual
machine monitor in which vxUnZIP runs archived de-
coders. Section 5 evaluates the performance and storage
costs of the virtualized decoders. Finally, Section 6 sum-
marizes related work, and Section 7 concludes.



2 System Architecture

This section introduces theVirtual eXecutable Archive
(VXA) architecture at a high level. The principles de-
scribed in this section are generic and should be appli-
cable to data compression, backup, and archival storage
systems of all kinds. All implementation details specific
to the prototype VXA archiver and virtual machine are
left for the next section.

2.1 Trends and Design Principles

Archived data is almost always compressed in some fash-
ion to save space. The one-time cost of compressing the
data in the first place is usually well justified by the sav-
ings in storage costs (and perhaps network bandwidth) of-
fered by compression over the long term.

A basic property of data compression, however, is that
the more you know about the data being compressed, the
more effectively you can compress it. General string-
oriented compressors such asgzip do not perform well
on digitized photographs, audio, or video, because the in-
formation redundancy present in digital media does not
predominantly take the form of repeated byte strings, but
is specific to the type of media. For this reason a wide
variety of media-specific compressors have appeared re-
cently. Losslesscompressors achieve moderate compres-
sion ratios while preserving all original information con-
tent, whilelossycompressors achieve higher compression
ratios by discarding information whose loss is deemed
“unlikely to be missed” based on semantic knowledge of
the data. Specialization of compression algorithms is not
limited to digital media: compressors for semistructured
data such as XML are also available for example [26].
This trend toward specialized encodings leads to a first
important design principle for efficient archival storage:

An archival storage system must permit use of
multiple, specialized compression algorithms.

Strong economic demand for ever more sophisticated
and effective data compression has led to a rapid evolu-
tion in encoding schemes, even within particular domains
such as audio or video, often yielding an abundance of
mutually-incompatible competing schemes. Even when
open standards achieve widespread use, the dominant
standards evolve over time: e.g., from Unixcompress
to gzip to bzip2 . This trend leads to VXA’s second
basic design principle:

An archival storage system must permit its set
of compression algorithms to evolve regularly.

The above two trends unfortunately work against the
basic purpose of archival storage: to store data so that it
remains available and usable later, perhaps decades later.
Even if data is always archived using the latest encod-
ing software, that software—and the operating systems it
runs on—may be long obsolete a few years later when
the archived data is needed. The widespread use of lossy
encoding schemes compounds this problem, because peri-
odically decoding and re-encoding archived data using the
latest schemes would cause progressive information loss
and thus is not generally a viable option. This constraint
leads to VXA’s third basic design principle:

Archive extraction must be possible without
specific knowledge of the data’s encoding.

VXA satisfies these constraints by storing executable
decoders with all archived data, and by ensuring that these
decoders run in a simple, well-defined, portable, and thus
hopefully relatively “future-proof” virtual environment.

2.2 Creating Archives

Figure 3 illustrates the basic structure of an archive writer
in the VXA architecture. The archiver contains a num-
ber of encoder/decoder orcodecpairs: several specialized
codecs designed to handle specific content types such as
audio, video, or XML, and at least one general-purpose
lossless codec. The archiver’s codec set is extensible
via plug-ins, allowing the use of specialized codecs for
domain-specific content when desired.

The archiver accepts both uncompressed and already-
compressed files as inputs, and automatically tries to com-
press previously uncompressed input files using a scheme
appropriate for the file’s type if available. The archiver
attempts to compress files of unrecognized type using a
general-purpose lossless codec such asgzip . By default
the archiver uses only lossless encoding schemes for its
automatic compression, but it may apply lossy encoding
at the specific request of the operator.

The archiver writes into the archive a copy of the de-
coder portion of each codec it uses to compress data. The
archiver of course needs to include only one copy of a
given decoder in the archive, amortizing the storage cost
of the decoder over all archived files of that type.

The archiver’s codecs can also recognize when an input
file is alreadycompressed in a supported format. In this
case, the archiver just copies the pre-compressed data into
the archive, since re-compressing already-compressed
data is generally ineffective and particularly undesirable
when lossy compression is involved. The archiver still in-
cludes a copy of the appropriate decoder in the archive,



Figure 3: Archive Writer Operation

ensuring the data’s continuing usability even after the
original codec has become obsolete or unavailable.

Some of the archiver’s codecs may be incapable of
compression, but may instead merely recognize files al-
ready encoded using other, standalone compressors, and
attach a suitable decoder to the archived file. We refer to
such pseudo-codecs asrecognizer-decoders, or redecs.

2.3 Reading Archives

Figure 4 illustrates the basic structure of the VXA archive
reader. Unlike the writer, the reader does not require a col-
lection of content-specific codecs, since all the decoders
it needs are embedded in the archive itself. Instead, the
archive reader implements a virtual machine in which to
run those archived decoders. To decode a compressed file
in the archive, the archive reader first locates the asso-
ciated decoder in the archive and loads it into its virtual
machine. The archive reader then executes the decoder in
the virtual machine, supplying the encoded data to the de-
coder while accepting decoded data from the decoder, to
produce the decompressed output file.

The archive reader by default only decompresses files
that weren’t already compressed when the archive was
written. This way, archived files that were already com-
pressed in popular standard formats such as JPEG or MP3,
which tend to be widely and conveniently usable in their
compressed form, remain compressed by default after ex-
traction. The reader can, however, be forced to decodeall

Figure 4: Archive Reader Operation

archived files having an associated decoder, as shown in
Figure 4, ensuring that encoded data remains decipherable
even if “native” decoders for the format disappear.

This capability also helps protect against data corrup-
tion caused by codec bugs or evolution of standards. If
an archived audio file was generated by a buggy MP3 en-
coder, for example, it may not play properly later under a
different MP3 decoder after extraction from the archive in
compressed form. As long as the audio file was originally
archived with the specific (buggy) MP3 decoder that can
decode the file correctly, however, the archive reader can
still be instructed to use that archived decoder to recover
a usable decompressed audio stream.

The VXA archive reader does notalwayshave to use
the archived x86-based decoders whenever it extracts files
from an archive. To maximize performance, the reader
might by default recognize popular compressed file types
and decode them using non-virtualized decoders compiled
for the native host architecture. Such a reader would fall
back on running a virtualized decoder from the archive
when no suitable native decoder is available, when the
native decoder does not work properly on a particular
archived stream, or when explicitly checking the archive’s
integrity. Even if the archive reader commonly uses native
rather than virtualized decoders, the presence of the VXA
decoders in the archive provides a crucial long-term fall-



back path for decoding, ensuring that the archived infor-
mation remains decipherable after the codec it was com-
pressed with has become obsolete and difficult to find.

Routinely using native decoders to read archives in-
stead of the archived VXA decoders, of course, creates
the important risk that a bug in a VXA decoder might go
unnoticed for a long time, making an archive seem work
fine in the short term but be impossible to decode later
after the native decoder disappears. For this reason, it is
crucial that explicit archive integrity tests always run the
archived VXA decoder, and in general it is safest if the
archive reader always uses the VXA decoder even when
native decoders are available. Since users are unlikely
to adopt this safer operational model consistently unless
VXA decoder efficiency is on par with native execution,
the efficiency of decoder virtualization is more important
in practice than it may appear in theory.

2.4 The VXA Virtual Machine

The archive reader’s virtual machine isolates the decoders
it runs from both the host operating system and the pro-
cessor architecture on which the archive reader itself runs.
Decoders running in the VXA virtual machine have access
to the computational primitives of the underlying proces-
sor but are extremely limited in terms of input/output. The
only I/O decoders are allowed is to read an encoded data
stream supplied by the archive reader and produce a corre-
sponding decoded output stream. Decoders cannot access
any host operating system services, such as to open files,
communicate over the network, or interact with the user.

Through this strong isolation, the virtual machine not
only ensures that decoders remain generic and portable
across many generations of operating systems, but it also
protects the host system from buggy or malicious de-
coders that may be embedded in an archive. Assuming the
virtual machine is implemented correctly, the worst harm
a decoder can cause is to garble the data it was supposed
to produce from a particular encoded file. Since a decoder
cannot communicate, obtain information about the host
system, or even check the current system time, decoders
do not have access to information with which they might
deliberately “sabotage” their data based on the conditions
under which they are run.

When an archive contains many files associated with
the same decoder, the archive reader has the option of re-
initializing the virtual machine with a pristine copy of the
decoder’s executable image before processing each new
file, or reusing the virtual machine’s state to decode multi-
ple files in succession. Reusing virtual machine state may
improve performance, especially on archives containing

many small files, at the cost of introducing the risk that
a buggy or malicious decoder might “leak” information
from one file to another during archive extraction, such as
from a sensitive password or private key file to a multi-
media stream that is likely to appear on a web page. The
archive reader can minimize this security risk in practice
by always re-initializing the virtual machine whenever the
security attributes of the files it is processing change, such
as Unix owner/group identifiers and permissions.

The VXA virtual machine is based on the standard 32-
bit x86 architecture: all archived decoder executables are
represented as x86-32 code, regardless of the actual pro-
cessor architecture of the host system. The choice of the
ubiquitous x86-32 architecture ensures that almost any ex-
isting decoder written in any language can be easily ported
to run on the VXA virtual machine.

Although continuous improvements in processor hard-
ware are likely to make the performance of an archived
VXA decoder largely irrelevant over the long term, com-
pressed archives are frequently used for more short-term
purposes as well, such as making and restoring back-
ups, distributing and installing software, and packaging
XML-based structured documents [43]. Archive extrac-
tion performance is crucial to these short-term uses, and
an archival storage system that performs poorly now is
unlikely to receive widespread adoption regardless of its
long-term benefits. Besides supporting the re-use of exist-
ing decoder implementations, VXA’s adoption of the x86
architecture also enables those decoders to run quite ef-
ficiently on x86-based host processors, as demonstrated
later in Section 5. Implementing the VM efficiently on
other architectures requires binary translation, which is
more difficult and may be less efficient, but is nevertheless
by now a practical and proven technology [40, 9, 14, 3].

2.5 Applicability

The VXA architecture does not address the complete
problem of preserving the long-term usability of archived
digital information. The focus of VXA is on preserv-
ing compresseddata streams, for which simpler uncom-
pressed formats are readily available that can represent the
same information. VXA will not necessarily help with
old proprietary word processor documents, for example,
for which there is often no obvious “simpler form” that
preserves all of the original semantic information.

Many document processing applications, however,
are moving toward use of “self-describing” XML-based
structured data formats [43], combined with a general-
purpose “compression wrapper” such as ZIP [21] for stor-
age efficiency. The VXA architecture may benefit the



compression wrapper in such formats, allowing applica-
tions to encode documents using proprietary or special-
ized algorithms for efficiency while preserving the inter-
operability benefits of XML. VXA’s support for special-
ized compression schemes may be particularly important
for XML, in fact, since “raw” XML is extremely space-
inefficient but can be compressed most effectively given
some specialized knowledge of the data [26].

3 Archiver Implementation

Although the basic VXA architecture as described above
could be applied to many archival storage or backup sys-
tems, the prototype implementation explored in this pa-
per takes the form of an enhancement to the venerable
ZIP/UnZIP archival tools [21]. The ZIP format was cho-
sen over thetar /gzip format popular on Unix systems
because ZIP compresses files individually rather than as
one continuous stream, making it amenable to treating
files of different types using different encoders.

For clarity, we will refer to the new VXA-enhanced ZIP
and UnZIP utilities here as vxZIP and vxUnZIP, and to the
modified archive format as “vxZIP format.” In practice,
however, the new tools and archive format can be treated
as merely a natural upgrade to the existing ones.

3.1 ZIP Archive Format Modifications

The enhanced vxZIP archive format retains the same basic
structure and features as the existing ZIP format, and the
new utilities remain backward compatible with archives
created with existing ZIP tools. Older ZIP tools can list
the contents of archives created with vxZIP, but cannot
extract files requiring a VXA decoder.

The ZIP file format historically uses a relatively
fixed, though gradually growing, collection of general-
purpose lossless codecs, each identified by a “compres-
sion method” tag in a ZIP file. A particular ZIP utility
generally compresses all files using only one algorithm
by default—the most powerful algorithm it supports—
and UnZIP utilities include built-in decoders for most
of the compression schemes used by past ZIP utilities.
(Decoders for the old LZW-based “shrinking” scheme
were commonly omitted for many years due to the LZW
patent [4], illustrating one of the practical challenges to
preserving archived data usability.)

In the enhanced vxZIP format, an archive may contain
files compressed using a mixture of traditional ZIP com-
pression methods and new VXA-specific methods. Files
archived using traditional methods are assigned the stan-
dard method tag, permitting even VXA-unaware UnZIP

Figure 5: vxZIP Archive Structure

tools to identify and extract them successfully. The vxZIP
format reserves one new “special” ZIP method tag for files
compressed using VXA codecs that do not have their own
ZIP method tags, and which thus can only be extracted
with the help of an attached VXA decoder.

Regardless of whether an archived file uses a traditional
or VXA compression scheme, vxZIP attaches a new VXA
extension header to each file, pointing to the file’s associ-
ated VXA decoder, as illustrated in Figure 5. Using this
extension header, a VXA-aware archive reader can decode
any archived file even if it has an unknown method tag. At
the same time, vxUnZIP can still use a file’s ZIP method
tag to recognize files compressed using well-known algo-
rithms for which it may have a faster native decoder.

When vxZIP recognizes an input file that is already
compressed using a scheme for which it has a suitable
VXA decoder, it stores the pre-compressed file directly
without further compression and tags the file with com-
pression method 0 (no compression). This method tag in-
dicates to vxUnZIP that the file should normally be left
compressed on extraction, and enables older UnZIP utili-
ties to extract the file in its original compressed form. The
vxZIP archiver nevertheless attaches a VXA decoder to
the file in the same way as for automatically-compressed
files, so that vxUnZIP can later be instructed to decode the
file all the way to its uncompressed form if desired.

3.2 Archiving VXA Decoders

Since the 64KB size limitation of ZIP extension head-
ers precludes storing VXA decoders themselves in the file
headers, vxZIP instead stores each decoder elsewhere in



the archive as a separate “pseudo-file” having its own lo-
cal file header and an empty filename. The VXA exten-
sion headers attached to “actual” archived files contain
only the ZIP archive offset of the decoder pseudo-file.
Many archive files can thus refer to one VXA decoder
merely by referring to the same ZIP archive offset.

ZIP archivers write acentral directoryto the end of
each archive, which summarizes the filenames and other
meta-data of all files stored in the archive. The vxZIP
archiver includes entries in the central directory only for
“actual” archived files, and not for the pseudo-files con-
taining archived VXA decoders. Since UnZIP tools nor-
mally use the central directory when listing the archive’s
contents, VXA decoder pseudo-files do not show up in
such listings even using older VXA-unaware UnZIP tools,
and old tools can still use the central directory to find and
extract any files not requiring VXA-specific decoders.

A VXA decoder itself is simply an ELF executable for
the 32-bit x86 architecture [45], as detailed below in Sec-
tion 4. VXA decoders are themselves compressed in the
archive using a fixed, well-known algorithm: namely the
ubiquitous “deflate” method used by existing ZIP tools
and by thegzip utility popular on Unix systems.

3.3 Codecs for the Archiver

Since a basic goal of the VXA architecture is to be able
to support a wide variety of often specialized codecs, it
is unacceptable for vxZIP to have a fixed set of built-in
compressors, as was generally the case for previous ZIP
tools. Instead, vxZIP introduces a plug-in architecture for
codecs to be used with the archiver. Each codec consists
of two main components:

• The encoder is a standard dynamic-link library
(DLL), which the archiver loads into its own address
space at run-time, and invokes directly to recognize
and compress files. The encoder thus runs “natively”
on the host processor architecture and in the same
operating system environment as the archiver itself.

• The decoder is an executable image for the VXA
virtual machine, which the archiver writes into the
archive if it produces or recognizes any encoded
files using this codec. The decoder is always an
ELF executable for the 32-bit x86 architecture im-
plemented by the VXA virtual machine, regardless
of the host processor architecture and operating sys-
tem on which the archiver actually runs.

A natural future extension to this system would be to
run VXA encoders as well as decoders in a virtual ma-
chine, making complete codec pairs maximally portable.

While such an extension should not be difficult, several
tradeoffs are involved. A virtual machine for VXA en-
coders may require user interface support to allow users
to configure encoding parameters, introducing additional
system complexity. While the performance impact of the
VXA virtual machine is not severe at least on x86 hosts, as
demonstrated in Section 5, implementing encoders as na-
tive DLLs enables the archiving process to run with max-
imum performance on any host. Finally, vendors of pro-
prietary codecs may not wish to release their encoders for
use in a virtualized environment, because it might make
license checking more difficult. For these reasons, virtu-
alized VXA encoders are left for future work.

4 The Virtual Machine

The most vital component of the vxUnZIP archive reader
is the virtual machine in which it runs archived decoders.
This virtual machine is implemented by vx32, a novel
virtual machine monitor(VMM) that runs in user mode
as part of the archive reader’s process, without requiring
any special privileges or extensions to the host operating
system. Decoders under vx32 effectively run within vx-
UnZIP’s address space, but in a software-enforced fault
isolation domain [46], protecting the application process
from possible actions of buggy or malicious decoders.
The VMM is implemented as a shared library linked into
vxUnZIP; it can also be used to implement specialized
virtual machines for other applications.

The vx32 VMM currently runs only on x86-based host
processors, in both 32-bit and the new 64-bit modes.
The VMM relies on quick x86-to-x86 code scanning and
translation techniques to sandbox a decoder’s code as it
executes. These techniques are comparable to those used
by Embra [48], VMware [42], and Valgrind [34], though
vx32 is simpler as it need only provide isolation, and not
simulate a whole physical PC or instrument object code
for debugging. Full binary translation to make vx32 run
on other host architectures is under development.

4.1 Data Sandboxing

The VXA virtual machine provides decoders with a “flat”
unsegmented address space up to 1GB in size, which al-
ways starts at virtual address 0 from the perspective of
the decoder. The VM does not allow decoders access to
the underlying x86 architecture’s legacy segmentation fa-
cilities. The vx32 VMM does, however,use the legacy
segmentation features of the x86 host processor in order
to implement the virtual machine efficiently.



Figure 6: Archive Reader and VMM Address Spaces

As illustrated in Figure 6, vx32 maps a decoder’s virtual
address space at some arbitrary location within its own
process, and sets up a special process-local (LDT) data
segment with a base and limit that provides access only to
that region. While running decoder code, the VMM keeps
this data segment loaded into the host processor’s segment
registers that are used for normal data reads and writes
(DS, ES, and SS). The decoder’s computation and mem-
ory access instructions are thus automatically restricted
to the sandbox region, without requiring the special code
transformations needed on other architectures [46].

Although the legacy segmentation features that the
VMM depends on are not functional in the 64-bit address-
ing mode (“long mode”) of the new x86-64 processors,
these processors provide 64-bit applications the ability to
switch back to a 32-bit “compatibility mode” in which
segmentation features are still available. On a 64-bit sys-
tem, vxUnZIP and the VMM run in 64-bit long mode,
but decoders run in 32-bit compatibility mode. Thus,
vx32 runs equally well on both x86-32 and x86-64 hosts
with only minor implementation differences in the VMM
(amounting to about 100 lines of code).

4.2 Code Sandboxing

Although the VMM could similarly set up an x86 code
segment that maps only the decoder’s address space, do-
ing so would not by itself prevent decoders from execut-
ing arbitrary x86 instructions that are “unsafe” from the
perspective of the VMM, such as those that would modify
the segment registers or invoke host operating system calls
directly. On RISC-based machines with fixed instruction
sizes, a software fault isolation VMM can solve this prob-
lem by scanning the untrusted code for “unsafe” code se-
quences when the code is first loaded [46]. This solution
is not an option on the x86’s variable-length instruction ar-
chitecture, unfortunately, because within a byte sequence
comprising one or more legitimate instructions there may
be sub-sequences forming unsafe instructions, to which
the decoder code might jump directly. The RISC-based
techniques also reserve up to five general-purpose regis-
ters asdedicated registersto be used for fault isolation,
which is not practical on x86-32 since the architecture
provides only eight general-purpose registers total.

The vx32 VMM therefore never executes decoder code
directly, but instead dynamically scans decoder code se-
quences to be executed and transforms them into “safe”
code fragments stored elsewhere in the VMM’s process.
As with Valgrind [34] and just-in-time compilation tech-
niques [15, 24], the VMM keeps transformed code frag-
ments in a cache to be reused whenever the decoder sub-
sequently jumps to the same virtual entrypoint again.

The VMM must of course transform all flow control
instructions in the decoder’s original code so as to keep
execution confined to the safe, transformed code. The
VMM rewrites branches with fixed targets to point to
the correct transformed code fragment if one already ex-
ists. Branches to fixed but as-yet-unknown targets become
branches to a “trampoline” that, when executed, trans-
forms the target code and then back-patches the original
(transformed) branch instruction to point directly to the
new target fragment. Finally, the VMM rewrites indirect
branches whose target addresses are known only at run-
time (including function return instructions), so as to look
up the target address dynamically in a hash table of trans-
formed code entrypoints.

4.3 Virtual System Calls

The vx32 VMM rewrites x86 instructions that would nor-
mally invoke system calls to the host operating system,
so as to return control to the user-mode VMM instead. In
this way, vx32 ensures that decoders have no direct access
to host OS services, but can only make controlled “virtual
system calls” to the VMM or the archive reader.



Only five virtual system calls are available to de-
coders running under vxUnZIP:read , write , exit ,
setperm , anddone . The first three have their standard
Unix meanings, whilesetperm supports heap memory
allocation, anddone enables decoders to signal to vxUn-
ZIP that they have finished decoding one stream and are
able to process another without being re-loaded. Decoders
have access to three standard “virtual file handles”—
stdin , stdout , and stderr —but have no way to
open any other files. A decoder’s virtualstdin file han-
dle represents the data stream to be decoded, itsstdout
is the data stream it produces by decoding the input, and
stderr serves the traditional purpose of allowing the de-
coder to write error or debugging messages. (vxUnZIP
only displays such messages from decoders when in ver-
bose mode.) A VXA decoder is therefore a traditional
Unix filter in a very pure form.

Since a decoder’s address space comprises a portion of
vxUnZIP’s own address space, the archive reader can eas-
ily access the decoder’s data directly for the purpose of
servicing virtual system calls, in the same way that the
host OS kernel services system calls made by applica-
tion processes. To handle the decoder’sread andwrite
calls, vxUnZIP merely passes the system call on to the na-
tive host OS after checking and adjusting the file handle
and buffer pointer arguments. A decoder’s I/O calls thus
require no extra data copying, and the indirection through
the VMM and vxUnZIP code is cheap as it does not cross
any hardware protection domains.

5 Evaluation and Results

This section experimentally evaluates the prototype
vxZIP/vxUnZIP tools in order to analyze the practicality
of the VXA architecture. The two most obvious ques-
tions about the practicality of VXA are whether running
decoders in a virtual machine seriously compromises their
performance for short-term uses of archives such as back-
ups and software/data packaging, and whether embedding
decoders in archives entails a significant storage cost. We
also consider the portability issues of implementing vir-
tual machines that run x86-32 code on other hosts.

5.1 Test Decoders

The prototype vxZIP archiver includes codecs for sev-
eral well-known compressed file formats, summarized in
Table 1. The two general-purpose codecs,zlib and
bzip2 , are for arbitrary data streams: vxZIP can use
either of them as its “default compressor” to compress

files of unrecognized type while archiving. The remain-
ing codecs are media-specific. All of the codecs are based
directly on publicly-available libraries written in C, and
were compiled using a basic GCC cross-compiler setup.

The jpeg and jp2 codecs are recognizer-decoders
(“redecs”), which recognize still images compressed in
the lossy JPEG [47] and JPEG-2000 [23] formats, re-
spectively, and attach suitable VXA decoders to archived
images. These decoders, when run under vxUnZIP, out-
put uncompressed images in the simple and universally-
understood Windows BMP file format. Thevorbis re-
dec similarly recognizes compressed audio streams in the
lossy Ogg/Vorbis format [49], and attaches a Vorbis de-
coder that yields an uncompressed audio file in the ubiq-
uitous Windows WAV audio file format.

Finally, flac is a full encoder/decoder pair for the
Free Lossless Audio Codec (FLAC) format [11]. Using
this codec, vxZIP can not only recognize audio streams
already compressed in FLAC format and attach a VXA
decoder, but it can also recognizeuncompressedau-
dio streams in WAV format and automatically compress
them using the FLAC encoder. This codec thus demon-
strates how a VXA archiver can make use of compression
schemes specialized to particular types of data, without
requiring the archive reader to contain built-in decoders
for each such specialized compression scheme.

The above codecs with widely-available open source
implementations were chosen for purposes ofevaluating
the prototype vxZIP/vxUnZIP implementation, and are
not intended to serve as ideal examples tomotivatethe
VXA architecture. While the open formats above may
gradually evolve over time, their open-source decoder
implementations are unlikely to disappear soon. Com-
mercial archival and multimedia compression products
usually incorporate proprietary codecs, however, which
might serve as better “motivating examples” for VXA:
proprietary codecs tend to evolve more quickly due to in-
tense market pressures, and and their closed-source im-
plementations cannot be maintained by the customer or
ported to new operating systems once the original product
is obsolete and unsupported by the vendor.

5.2 Performance of Virtualized Decoders

To evaluate the performance cost of virtualization, the
graph in Figure 7 shows the user-mode CPU time con-
sumed running the above decoders over several test data
sets, both natively and under the vx32 VMM. All exe-
cution times are normalized to the native execution time
on an x86-32 host system. The data set used to test
the general-purpose lossless codes is a Linux 2.6.11 ker-



Decoder Description Availability Output Format

General-Purpose Codecs
zlib “Deflate” algorithm from ZIP/gzip www.zlib.net (raw data)
bzip2 Popular BWT-based algorithm www.bzip.org (raw data)

Still Image Codecs
jpeg Independent JPEG Group (IJG) reference decoderwww.ijg.org BMP image
jp2 JPEG-2000 reference decoder from JasPer librarywww.jpeg.org/jpeg2000 BMP image

Audio Codecs
flac Free Lossless Audio Codec (FLAC) decoder flac.sourceforge.net WAV audio
vorbis Ogg Vorbis audio decoder www.vorbis.com WAV audio

Table 1: Decoders Implemented in vxZIP/vxUnZIP Prototype

Figure 7: Performance of Virtualized Decoders

nel source tree; the data sets used for the media-specific
codecs consist of typical pictures and music files in the
appropriate format. All tests were run on an AMD Athlon
64 3000+ with 512MB of RAM, on both the x86-32 and
x86-64 versions of SuSE Linux 9.3. The same compiler
version (GCC 4.0.0) and optimization settings (-O3 ) were
used for the native and virtualized versions of each de-
coder, and the timings represent user-mode process time
as reported by thetime command so as to factor out disk
and system overhead. Total wall-clock measurements are
not shown because for all but the slowest decoder, jp2,
disk overhead dominates total wall-clock time and intro-
duces enough additional variance between successive runs
to swamp the differences in CPU-bound decoding time.

As Figure 7 shows, the decoders running under the
vx32 VMM experience a slowdown of up to 11% rela-
tive to native x86-32 execution. Thevorbis decoder
initially experienced a 29% slowdown when compiled for
VXA unmodified, due to subroutine calls in the decoder’s
inner loop that accentuate the VMM’s flow-control over-
head by requiring hash table lookups (see Section 4.2).
Inlining these two functions both improved the perfor-
mance of the native decoder slightly (about 1%) and re-
duced the relative cost of virtualization to 11%. The other
decoders were unmodified from their original distribution
form. The JPEG decoder became slightly faster under
vx32, possibly due to effects of the VMM’s code rewrit-
ing on instruction cache locality; such effects are possible
and have been exploited elsewhere [2].



The virtualized decoders fall farther behind in compar-
ison with native execution on an x86-64 host, but this dif-
ference is mostly due to the greater efficiency of the 64-bit
native code rather than to virtualization overhead. Virtual-
ized decoders always run in 32-bit mode regardless of the
host system, so their absolute performance is almost iden-
tical on 32-bit versus 64-bit hosts, as the graph shows.

5.3 Decoder Storage Overhead

To evaluate the storage overhead of embedding decoders
in archives, Table 2 summarizes the size of each decoder’s
executable image when compiled and linked for the VXA
virtual machine. The code size for each decoder is fur-
ther split into the portion comprising the decoder itself
versus the portion derived from the statically-linked C li-
brary against which each decoder is linked. No special ef-
fort was made to trim unnecessary code, and the decoders
were compiled to optimize performance over code size.

The significance of these absolute storage overheads of
course depends on the size of the archive in which they
are embedded, since only one copy of a decoder needs to
be stored in the archive regardless of the number of en-
coded files that use it. As a comparison point, however,
a single 2.5-minute CD-quality song in the dataset used
for the earlier performance tests, compressed at 120Kbps
using the lossy Ogg codec, occupies 2.2MB. The 130KB
Ogg decoder for VXA therefore represents a 6% space
overhead in an archive containing only this one song, or a
0.6% overhead in an archive containing a 10-song album.
The same 2.5-minute song compressed using the lossless
FLAC codec occupies 24MB, next to which the 48KB
vx32 decoder represents a negligible 0.2% overhead.

5.4 Portability Considerations

A clear disadvantage of using the native x86 proces-
sor architecture as the basis for VXA decoders is that
porting the archive reader to non-x86 host architectures
requires instruction set emulation or binary translation.
While instruction set emulators can be quite portable, they
also tend to be many times slower than native execution,
making them unappealing for computation-intensive tasks
such as data compression. Binary translation provides
better performance and has entered widespread commer-
cial use, but is not simple to implement, and even the best
binary translators are unlikely to match the performance
of natively-compiled code.

The QEMU x86 emulator [6] introduces a binary trans-
lation technique that offers a promising compromise be-
tween portability and performance. QEMU uses a native
C compiler for the host processor architecture to generate

short code fragments that emulate individual x86 instruc-
tions. QEMU’s dynamic translator then scans the x86
code at run-time and pastes together the appropriate na-
tive code fragments to form translated code. While this
method is unlikely to perform as well as a binary transla-
tor designed and optimized for a specific host architecture,
it provides a portable method of implementing emulators
that offer usable performance levels.

Even without efficient binary translation for x86 code,
however, the cost of emulation does not necessarily make
the VXA architecture impractical for non-x86 host archi-
tectures. An archive reader can still provide fast native de-
coders for currently popular file formats, running archived
decoders under emulation only when no native decoder is
available. The resulting archival system is no slower in
practice than existing tools based on a fixed set of com-
pressors, but provides the added assurance that archived
data will still be decipherable far into the future. It is much
better to be able to decode archived data slowly using em-
ulation than not to be able to decode it at all.

5.5 Availability

The vxZIP/vxUnZIP tools, the vx32 virtual machine, and
the data sets used in the above tests can be obtained from
http://pdos.csail.mit.edu/˜baford/vxa/ .

6 Related Work

The importance and difficulty of preserving digital infor-
mation over the long term is gaining increasing recogni-
tion [16]. This problem can be broken into two compo-
nents: preservingdata and preserving the data’smean-
ing [13]. Important work is ongoing to address the first
aspect [17, 12, 30], and the second, the focus of this pa-
per, is beginning to receive serious attention.

6.1 Archival Storage Strategies

Storing executable decoders with archived data is not new:
popular archivers including ZIP often ship with tools to
createself-extracting archives, or executables that decom-
press themselves when run [35, 21]. Such self-extracting
archives are designed for convenience, however, and are
traditionally specific to a particular host operating sys-
tem, making them as bad as or worse than traditional
non-executable archives for data portability and longevity.
Self-extracting archives also provide no security against
bugs or malicious decoders; E-mail viruses routinely dis-
guise themselves as self-extracting archives supposedly
containing useful applications.



Decoder Code Size Compressed
Total Decoder C Library (zlib )

General-Purpose Codecs
zlib 46.0KB 32.4KB (70%) 13.6KB (30%) 26.2KB
bzip2 71.1KB 60.9KB (86%) 10.2KB (14%) 29.9KB

Still Image Codecs
jpeg 103.3KB 90.0KB (87%) 13.3KB (13%) 48.6KB
jp2 220.2KB 198.5KB (90%) 21.7KB (10%) 105.9KB

Audio Codecs
flac 102.5KB 84.2KB (82%) 18.3KB (18%) 47.6KB
vorbis 233.4KB 200.3KB (86%) 33.1KB (14%) 129.7KB

Table 2: Code Size of Virtualized Decoders

Rothenberg suggested a decade ago the idea of archiv-
ing the original application and system software used to
create data along with the data itself, and using emula-
tors to run archived software after its original hardware
platform becomes obsolete [38]. Archiving entire systems
and emulating their hardware accurately is difficult, how-
ever, because real hardware platforms (including neces-
sary I/O devices) are extremely complex and tend to be
only partly standardized and documented [5]. Preserving
the functionalityof the original system is also not neces-
sarily equivalent to preserving theusefulnessof the origi-
nal data. The ability to view old data in an emulator win-
dow via the original application’s archaic user interface,
for example, is not the same as being able to load or “cut-
and-paste” the data into new applications or process it us-
ing new indexing or analysis tools.

Lorie later proposed to archive data along with special-
ized decoder programs, which run on a specialized “Uni-
versal Virtual Computer” (UVC), and extract archived
data into a self-describing XML-like format [27]. The
UVC’s simplicity makes emulation easier, but since it
represents a new architecture substantially different from
those of real processors, UVC decoders must effectively
be written from scratch in assembly language until high-
level languages and tools are developed [28]. More im-
portantly, the UVC’s specialization to the “niche” of long-
term archival storage systems virtually guarantees that
high-level languages, development tools, and libraries for
it will never be widely available or well-supported as they
are for general-purpose architectures.

The LOCKSS archival system supports data format
converter plug-ins that transparently migrate data in ob-
solete formats to new formats when a user accesses the
data [37]. Over time, however, actively maintaining con-
verter plug-ins for an ever-growing array of obsolete com-
pressed formats may become difficult. Archiving VXA

decoders with compressed datanow ensures that future
LOCKSS-style “migrate-on-access” converters will only
need to read common historicaluncompressedformats,
such as BMP images or WAV audio files, and not the
far more numerous and rapidly-evolving compressed for-
mats. VXA therefore complements a “migrate-on-access”
facility by reducing the number and variety of source for-
mats the access-time converters must support.

6.2 Specialized Virtual Environments

Virtual machines and languages have been designed for
many specialized purposes, such as printing [1], boot
loading [20], Web programming [19, 29], packet fil-
ters [32] and other OS extensions [41], active net-
works [44], active disks [36], and grid computing [8]. In
this tradition, VXA could be appropriately described as
an architecture for “active archives.”

Similarly, dynamic code scanning and translation is
widely used for purposes such as migrating legacy appli-
cations across processor architectures [40, 9, 3], simulat-
ing complete hardware platforms [48], run-time code op-
timization [2], implementing new processors [14], and de-
bugging compiled code [34, 39]. In contrast with the com-
mon “retroactive” uses of virtual machines and dynamic
translation to “rescue old code” that no longer runs on the
latest systems, however, VXA applies these technologies
proactivelyto preserve the long-term usability and porta-
bility of archived data,beforethe code that knows how to
decompress it becomes obsolete.

Most virtual machines designed to support safe ap-
plication extensions rely on type-safe languages such as
Java [7]. In this case, the constraints imposed by the
language make the virtual machine more easily portable
across processor architectures, at the cost of requiring all
untrusted code to be written in such a language. While



just-in-time compilation [15, 24] has matured to a point
where type-safe languages perform adequately for most
purposes, some software domains in which performance
is traditionally perceived as paramount—such as data
compression—remain resolutely attached to unsafe lan-
guages such as C and assembly language. Advanced
digital media codecs also frequently take advantage of
the SIMD extensions of modern processors [22], which
tend to be unavailable in type-safe languages. The de-
sire to support the many widespread open and proprietary
data encoding algorithms whose implementations are only
available in unsafe languages, therefore, makes type-safe
language technology infeasible for the VXA architecture.

6.3 Isolation Technologies

The prototype vx32 VMM demonstrates a simple and
practical software fault isolation (SFI) strategy on the x86,
which achieves performance comparable to previous tech-
niques designed for on RISC architectures [46], despite
the fact that the RISC-based techniques are not easily ap-
plicable to the x86 as discussed in Section 4.2. RISC-
based SFI, observed to incur a 15–20% overhead for full
virtualization, can be trimmed to 4% overhead by sand-
boxing memory writes but not reads, thereby protecting
the host application from active interference by untrusted
code but not from snooping. Unfortunately, this weaker
security model is probably not adequate for VXA: a func-
tional but malicious decoder for multimedia files likely to
be posted on the Web, for example, could scan the archive
reader’s address space for data left over from restoring
sensitive files such as passwords and private keys from a
backup archive, and surreptitiously leak that information
into the (public) multimedia output stream it produces.

The Janus security system [18] runs untrusted “helper”
applications in separate processes, using hardware-based
protection in conjunction with Solaris’s sophisticated pro-
cess tracing facilities to control the supervised applica-
tions’ access to host OS system calls. This approach is
more portable across processor architectures than vx32’s,
but less portable across operating systems since it relies on
features currently unique to Solaris. The Janus approach
also does not enhance the portability of the helper appli-
cations, since it does not insulate them from those host OS
services theyareallowed to access.

The L4 microkernel used an x86-specific segmentation
trick analogous to vx32’s data sandboxing technique to
implement fast IPC between small address spaces [25]. A
Linux kernel extension similarly used segmentation and
paging in combination to give user-level applications a
sandbox for untrusted extensions [10]. This latter tech-

nique can provide each application with only one virtual
sandbox at a time, however, and it imposes constraints on
the kernel’s own use of x86 segments that would make it
impossible to grant use of this facility to 64-bit applica-
tions on new x86-64 hosts.

7 Conclusion

The VXA architecture for archival data storage offers a
new and practical solution to the problem of preserv-
ing the usability of digital content. By including exe-
cutable decoders in archives that run on a simple and
OS-independent virtual machine based on the historically
enduring x86 architecture, the VXA architecture ensures
that archived data can always be decoded into simpler
and less rapidly-evolving uncompressed formats, long af-
ter the original codec has become obsolete and difficult
to find. The prototype vxZIP/vxUnZIP archiver for x86-
based hosts is portable across operating systems, and de-
coders retain good performance when virtualized.
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