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Abstract

Usenet is a popular distributed messaging and file sharing ser-
vice: servers in Usenet flood articles over an overlay network to
fully replicate articles across all servers. However, replication
of Usenet’s full content requires that each server pay the cost of
receiving (and storing) over 1 Tbyte/day. This paper presents the
design and implementation of UsenetDHT, a Usenet system that
allows a set of cooperating sites to keep a shared, distributed
copy of Usenet articles. UsenetDHT consists of client-facing
Usenet NNTP front-ends and a distributed hash table (DHT) that
provides shared storage of articles across the wide area. This
design allows participating sites to partition the storage burden,
rather than replicating all Usenet articles at all sites.

UsenetDHT requires a DHT that maintains durability despite
transient and permanent failures, and provides high storage per-
formance. These goals can be difficult to provide simultane-
ously: even in the absence of failures, verifying adequate repli-
cation levels of large numbers of objects can be resource inten-
sive, and interfere with normal operations. This paper intro-
duces Passing Tone, a new replica maintenance algorithm for
DHash [7] that minimizes the impact of monitoring replication
levels on memory and disk resources by operating with only
pairwise communication. Passing Tone’s implementation pro-
vides performance by using data structures that avoid disk ac-
cesses and enable batch operations.

Microbenchmarks over a local gigabit network demonstrate
that the total system throughput scales linearly as servers are
added, providing 5.7 Mbyte/s of write bandwidth and 7 Mbyte/s
of read bandwidth per server. UsenetDHT is currently deployed
on a 12-server network at 7 sites running Passing Tone over the
wide-area: this network supports our research laboratory’s live
2.5 Mbyte/s Usenet feed and 30.6 Mbyte/s of synthetic read traf-
fic. These results suggest a DHT-based design may be a viable
way to redesign Usenet and globally reduce costs.

1 Introduction

For decades, the Usenet service has connected users
world-wide. Users post articles into newsgroups which
are propagated widely by an overlay network of servers.
Users host lively discussions in newsgroups and also, be-
cause articles can represent multi-media files, coopera-
tively produce a large shared pool of files. A major at-
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traction of Usenet is the incredible diversity and volume
of content that is available.

Usenet is highly popular and continues to grow: one
Usenet provider sees upwards of 40,000 readers reading at
an aggregate 20 Gbit/s [35]. Several properties contribute
to Usenet’s popularity. Because Usenet’s design [1, 19]
aims to replicate all articles to all interested servers, any
Usenet user can publish highly popular content without
the need to personally provide a server and bandwidth.
Usenet’s maturity also means that advanced user inter-
faces exist, optimized for reading threaded discussions or
streamlining bulk downloads. However, providing Usenet
service can be expensive: users post over 1 Tbyte/day of
new content that must be replicated and stored.

This paper presents UsenetDHT, a system that allows
a group of cooperating servers to share the network and
storage costs of providing Usenet service. Such an ap-
proach benefits both operators and users of Usenet: op-
erators can use the savings from UsenetDHT to provide
better service (for example, save articles for longer), or
pass on reduced costs to users. With costs lower, more
organizations may be able to afford to provide Usenet and
make Usenet available to more users.

UsenetDHT uses a distributed hash table (DHT) to
store and maintain Usenet articles across participating
sites [32]. A DHT provides a single logical storage sys-
tem for all sites; it handles data placement, load balance
and replica maintenance. Front-ends speaking the stan-
dard news protocol accept new articles and store them into
the common DHT. The front-ends then flood information
about the existence of each article to all other front-ends
in the UsenetDHT deployment. Instead of transmitting
and storing n copies of an article (one per server), Usenet-
DHT initially stores only two for the entire deployment;
the extra copy allows for recovery from failure. Thus, per
server, UsenetDHT reduces the load of receiving and stor-
ing articles by a factor of O(n).

To service reads, UsenetDHT front-ends must read
from the DHT. The front-ends employ caching to ensure
that each article is retrieved at most once for local clients.
Thus, even if clients read all articles, UsenetDHT never
creates more copies than Usenet. Further, statistics from
news servers at MIT indicate that, in aggregate, clients
read less than 1% of the articles received [29, 36]. If MIT
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partnered with similar institutions, UsenetDHT could re-
duce its costs for supporting Usenet substantially.

In addition to delivering cost savings, UsenetDHT is
incrementally deployable and scalable. UsenetDHT pre-
serves the NNTP client interface, allowing it to be de-
ployed transparently without requiring that clients change
their software. The use of an underlying DHT allows ad-
ditional storage and front-end servers to be easily added,
with the DHT handling the problem of re-balancing
load. Additionally, UsenetDHT preserves the existing
economic model of Usenet. Compared to alternative con-
tent distribution methods such as CDNs or ftp mirror
servers that put the burden of work and cost on the pub-
lisher, UsenetDHT leaves the burden of providing band-
width at the Usenet front-end, close to the consumer.

Despite the advantages of the UsenetDHT design, the
workload of Usenet places significant demands on a
DHT. The DHT must support sustained high through-
put writes of multiple megabytes per second. Further,
since even MIT’s fractional feed of 2.5 Mbyte/s generates
350 Gbyte/day of replicas, unless a new disk is acquired
every day, the system will run continuously at disk capac-
ity, necessitating continuous object deletions to reclaim
space.

The DHT that UsenetDHT uses must also provide
data availability and durability. This is achieved through
replica maintenance, where a DHT replaces lost replicas
to prevent data loss or unavailability. The goal of replica
maintenance is to avoid losing the last replica, but with-
out making replicas unnecessarily, since objects are ex-
pensive to copy across the network. To achieve this, a
maintenance algorithm must have an accurate estimate of
the number of replicas of each object in order to avoid los-
ing the last one. Since DHTs partition responsibility for
maintenance across servers, a simple solution would have
each DHT server check periodically with other servers to
determine how many replicas exist for objects in its parti-
tion. However, naïvely exchanging lists of object identi-
fiers in order to see which replicas are where can quickly
become expensive [16].

A more efficient mechanism would be to simply ex-
change lists once and then track updates: a synchroniza-
tion protocol (e.g., [4, 22]) can identify new objects that
were added since the last exchange as well as objects that
have been deleted to reclaim space. However, this alter-
native means that each server must remember the set of
replicas held on each remote server that it synchronizes
with. Further, each synchronization must cover objects
inserted in well-defined periods so that when a server tra-
verses its local view of replicas periodically to make re-
pair decisions, it considers the same set of objects across
all servers. These problems, while solvable, add complex-
ity to the system. The storage and traversal of such sets
can also cause disk activity or memory pressure, interfer-

ing with regular operations.
To handle maintenance under the workload of Usenet,

we introduce Passing Tone, a maintenance algorithm built
on Chord and DHash [7]. Instead having each object’s
successor ensure that sufficient replicas exist within the
successor list, Passing Tone has all servers in the ob-
ject’s successor list ensure that they replicate the object.
Each Passing Tone server makes maintenance decisions
by synchronizing alternately with its successor and pre-
decessor against the objects it stores locally. Synchro-
nization identifies objects that the server should replicate
but doesn’t. These objects are pulled from its neighbors.
In this way, Passing Tone ensures that objects are repli-
cated on the successor list without having to explicitly
track/count replicas, and without having to consider a con-
sistent set of objects across several servers. As a result,
Passing Tone can efficiently maintain replicas in a system
where constant writes produce large numbers of objects
and the need to continuously delete expired ones.

Our implementation of Passing Tone lays out data
structures on disk efficiently to make writes, deletions,
and synchronization operations efficient. We deployed
this implementation on 12 wide-area servers, and this de-
ployment handles the live 2.5 Mbyte/s Usenet feed re-
ceived at MIT. The deployment can support an aggregate
read throughput of 30.6 Mbyte/s from wide-area clients.
Benchmarks run over our local gigabit network show that
the total read and write capacity scale as servers are added.

This paper makes three contributions: it presents the
design of UsenetDHT, a system that reduces the individ-
ual cost of operating a Usenet server for n participants
by a factor of O(n) through the use of a DHT; it intro-
duces the Passing Tone algorithm that provides efficient
maintenance for DHTs for workloads with many concur-
rent write and expiration operations; and, it demonstrates
that an implementation of UsenetDHT can support MIT’s
Usenet feed and should scale to the full feed.

The rest of this paper is structured as follows. Section 2
describes Usenet and briefly characterizes its traffic load.
UsenetDHT’s design is presented in Section 3. Section 4
describes the Passing Tone algorithm. Section 5 discusses
the Passing Tone implementation, which is then evaluated
in Section 6. Finally, Section 7 presents related work and
we conclude in Section 8.

2 Usenet background

Usenet is a popular distributed messaging service that
has been operational since 1981. Over the years, its use
and implementation has evolved. Now people use Usenet
in two primary ways. First, users participate in discus-
sions about specific topics, which are organized in news-
groups. The amount of traffic in these text groups has
been relatively stable over the past years. Second, users
post binary articles (encoded versions of pictures, audio
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files, and movies). This traffic is increasing rapidly be-
cause Usenet provides an efficient way for users to dis-
tribute large multi-media files. Users can upload articles
to Usenet once and then Usenet takes charge of distribut-
ing the articles.

Usenet distributes articles using an overlay network
of servers that are connected in a peer-to-peer topology.
Servers are distributed world-wide and each server peers
with its neighbors to replicate all articles that are posted
to Usenet. The servers employ a flood-fill algorithm using
the NetNews Transfer Protocol (NNTP) to ensure that all
articles reach all servers [1, 19].

As a server receives new articles (either from local
posters or its neighbors), it floods NNTP CHECK mes-
sages to all its other peers who have expressed interest
in the newsgroup containing the article. If the remote peer
does not have the message, the server feeds the new article
to the peer with the TAKETHIS message. Because rela-
tionships are long-lived, one peer may batch articles for
another when the other server is unavailable, but today’s
servers typically stream articles to peers in real-time.

The size of Usenet is hard to measure as each site
sees a different amount of traffic, based on its peering
arrangements. An estimate from 1993 showed an an-
nual 67% growth in traffic [34]. Currently, in order to
avoid missing articles, top servers have multiple over-
lapping feeds, receiving up to 3 Tbyte of traffic per day
from peers, of which approximately 1.5 Tbyte is new con-
tent [10,12]. Growth has largely been driven by increased
postings of binary articles. The volume of text articles
has remained relatively stable for the past few years at
approximately 1 Gbyte of new text data, from approx-
imately 400,000 articles [14]. As a result of the large
volume of traffic, providers capable of supporting a full
Usenet feed have become specialized. Top providers such
as usenetserver.com and GigaNews have dedicated,
multi-homed data centers with many servers dedicated to
storing and serving Usenet articles.

A major differentiating factor between Usenet
providers is the degree of article retention. Because
Usenet users are constantly generating new data, it is
necessary to expire old articles in order to make room
for new ones. Retention is a function of disk space and
indicates the number of days (typically) that articles
are kept before being expired. The ability to scale and
provide high performance storage is thus a competitive
advantage for Usenet providers as high retention allows
them to offer the most content to their users. For example,
at the time of this writing, the longest retention available
is 200 days, requiring at least 300 Tbyte of data storage.

The read workload at major news servers can be ex-
tremely high: on a weekend in September 2007, the pop-
ular usenetserver.com served an average of over
40,000 concurrent clients with an aggregate bandwidth of

20 Gbit/s [35]. This suggests that clients are download-
ing continuously at an average of 520 Kbit/s, most likely
streaming from binary newsgroups.

Usenet’s economics are structured to allow providers to
handle the high costs associated with receiving, storing,
and serving articles. Perhaps surprisingly in the age of
peer-to-peer file sharing, Usenet customers are willing to
pay for access to the content on Usenet. Large providers
are able to charge customers in order to cover their costs
and produce a profit. Unfortunately, universities and other
smaller institutions may find it difficult to bear the cost of
operating an entire Usenet feed. UsenetDHT is an ap-
proach to bring these costs down and allow more sites to
operate Usenet servers.

3 UsenetDHT design

UsenetDHT targets mutually trusting organizations that
can cooperate to share storage and network load. Prime
examples of such organizations are universities, such as
those on Internet2, that share high-bandwidth connectiv-
ity internally and whose commercial connectivity is more
expensive. For such organizations, UsenetDHT aims to:

• reduce bandwidth and storage costs in the common
case for all participants;

• minimize disruption to users by preserving an NNTP
interface; and

• preserve the economic model of Usenet, where
clients pay for access to their local NNTP server and
can publish content without the need to provide stor-
age resources or be online for the content to be ac-
cessible.

UsenetDHT accomplishes these goals by replacing the
local article storage at each NNTP server with shared
storage provided by a distributed hash table (DHT). A
front-end that speaks the standard client transfer protocol
(NNTP) allows unmodified clients access to this storage
at each site.

3.1 Design overview

Each article posted to Usenet has metadata—header infor-
mation such as the subject, author, and newsgroups—in
addition to the article itself. Articles entering a Usenet-
DHT deployment (for example, from a traditional Usenet
feed or a local user) will come with metadata and the ar-
ticle bundled together. UsenetDHT floods the metadata
among its participating peers in the same way as Usenet
does. UsenetDHT, however, stores the articles in a DHT.

In UsenetDHT, each site contributes one or more
servers with dedicated storage to form a DHT, which acts
like a virtual shared disk. The DHT relieves Usenet-
DHT from solving the problem of providing robust stor-
age; DHT algorithms deal with problems of data place-
ment, maintenance in the face of failures, and load bal-
ance as the number of servers and objects in the system
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increases [5, 33]. To support a full feed, each server in
a homogeneous deployment need provide only O(1/n)-th
of the storage it would need to support a full feed by itself.

NNTP front-ends store incoming articles into the DHT
using put calls; these articles may come from local users
or from feeds external to the UsenetDHT deployment. To
send articles upstream to the larger Usenet, front-ends in
a UsenetDHT deployment have the option of arranging a
direct peering relationship with an external peer or desig-
nating a single front-end to handle external connectivity.

Usenet is organized into newsgroups; when an article
is posted, it includes metadata in its headers that tells the
NNTP front-ends which groups should hold the article. In
UsenetDHT, each NNTP front-end receives a copy of all
headers and uses that information to build up a mapping of
newsgroups to articles stored to local disk for presentation
to its local clients. In particular, each front-end keeps an
article index independently from other sites. UsenetDHT
does not store group lists or the mapping from newsgroups
to articles in the DHT.

Distributing metadata to all sites has several advan-
tages. First, it guarantees that a site will be able to respond
to NNTP commands such as LIST and XOVER without
consulting other front-ends. These commands are used
by client software to construct and filter lists of articles
to present to actual users, before any articles are down-
loaded and read. Second, it leaves sites in control over
the contents of a group as presented to their local users.
In particular, it allows sites to have different policies for
filtering spam, handling moderation, and processing can-
cellations.

Clients access UsenetDHT through the NNTP front-
ends. When a user reads an article, the NNTP front-end
retrieves the article using a DHT get call and caches it.
Local caching is required in order to reduce load on other
DHT servers in the system and also to ensure that Usenet-
DHT never sends more traffic than a regular Usenet mesh
feed would. If sites cache locally, no DHT server is likely
to experience more than n remote read requests for the
DHT object for a given article. This cache can also be
shared between servers at a site. Each site will need to de-
termine an appropriate cache size and eviction policy that
will allow it to serve its readership efficiently.

3.2 Write and read walk-through

To demonstrate the flow of articles in UsenetDHT more
precisely, this section traces the posting and reading of an
article. Figure 1 summarizes this process.

A news reader posts an article using the standard NNTP
protocol, contacting a local NNTP front-end. The reader
is unaware that the front-end is part of UsenetDHT, and
not a standard Usenet server. Upon receiving the posting,
the UsenetDHT front-end uses put to insert the article in
the DHT. In the put call, the front-end uses the SHA-1

Figure 1: Messages exchanged during during UsenetDHT
reads and writes. 1. Client A posts an article to his lo-
cal NNTP front-end. 2. The front-end stores the article in
DHash (via a DHash gateway, not shown). 3. After suc-
cessful writes, the front-end propagates the article’s meta-
data to other front-ends. 4. Client B checks for new news
and asks for the article. 5. Client B’s front-end retrieves
the article from the DHT and returns it to her.

hash of the article’s content as the key: since DHash par-
titions data across servers by the key, using a hash func-
tion ensures articles will be distributed evenly across the
participating servers. By providing this key in a get call,
any UsenetDHT front-end can retrieve the article from the
DHT. The use of a content-hash key also allows front-ends
to detect data corruption by verifying the integrity of data
received over the network.

After the article has been successfully stored in the
DHT, the front-end propagates the article to its peers us-
ing a TAKEDHT NNTP message. This message is simi-
lar to the standard TAKETHIS message but only includes
the header information and the content-hash key (as an
X-ChordID header). This information is sufficient for
the peers to insert the article into their local group indices,
provide a summary of the article to readers connecting to
the front-end and retrieve the contents of the article when
a reader requests it. Each front-end, upon receiving the
article, also shares the announcement with its other peers.
In this manner, the article’s existence is eventually flooded
to all front-ends in the deployment.

When a user wishes to read a newsgroup, his news
reader software requests a list of new articles from his
UsenetDHT front-end. The front-end responds with a
summary of articles that it has accumulated from its peers.
This summary is used by the reader to construct a view of
the newsgroup. When the client requests an article body,
the front-end first checks its local cache; if the article is
not present, it calls get, supplying the key for the article
as argument. When the front-end obtains the article data
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from the DHT, it inserts the article into the cache and re-
turns the article to the reader. As with posting, the reader
is unaware that the news server is part of UsenetDHT.

3.3 Expiration

UsenetDHT will insert dozens of objects into the DHT
per second, resulting in millions of objects per day. After
an initial start-up period, the DHT will be operating at
full storage capacity. Thus, some mechanism is needed to
delete older objects to make room for newer ones.

Usenet servers have long used expiration times to
bound the lifetime of articles. Each deployment of
UsenetDHT sets a single common expiration policy
across all participants. This policy can vary according to
the type of newsgroup (e.g., preserving text discussions
for longer than binary articles). A common policy is re-
quired to ensure that the list of articles for a given group
at any UsenetDHT front-end will accurately reflect the ar-
ticles that are available in the underlying DHT.

3.4 Discussion

UsenetDHT converts a fully decentralized system based
on pushing content to all servers into a partially decen-
tralized one, where individual front-ends pull the content
from their peers. Thus, servers must participate in pro-
cessing DHT lookups for all articles, even for readers
at other sites. Conversely, each server depends on other
servers to respond to its read requests. This motivates re-
quiring a trusted set of participating sites.

A DHT-based design also represents a sacrifice in terms
of site control. Sites lose control over what articles are
stored on and transit their servers. While sites retain the
ability to specify which newsgroups are indexed locally,
they must participate fully in the DHT and store articles
that are in groups that they do not make available to local
clients. Policies of content filtration, handled in regular
Usenet by filtering the list of newsgroups that are peered
to a site, must now be handled per deployment. Future
work may address this issue with the use of sub-rings [20].

The key benefit of the DHT approach is that each site
will receive article data proportional to the amount of stor-
age they contribute to the system, rather than a complete
copy of the feed. UsenetDHT reduces the cost of receiv-
ing and storing a Usenet feed at each site by a factor of
O(n) (assuming equal amounts of storage contributed by
each site) by eliminating the need to massively replicate
articles. Our UsenetDHT implementation replicates arti-
cles for durability at two servers, so the cost of receiving
and storing articles is reduced by a factor of n/2.

UsenetDHT employs local caching to use no more
bandwidth than standard Usenet in the worst case where
every article is read at every server. Fortunately, at the
organizations we target, it is unlikely that all articles will
be read, resulting in substantial savings per site overall.

As a result, total storage can be reduced or re-purposed to
provide additional retention instead of storing replicas.

The flooding network used by UsenetDHT to propagate
metadata follows peering relationships established by the
system administrators. A reasonable alternative may be
to construct a distribution tree automatically [17]. An ef-
ficient broadcast tree would reduce link stress by ensuring
that data is transmitted over each link only once. How-
ever, the metadata streams are relatively small and op-
erators may prefer to avoid the complexity and possible
fragility involved in deploying such an overlay.

4 Passing Tone

The DHT storing articles for UsenetDHT needs an effi-
cient maintenance algorithm that provides high availabil-
ity and durability for objects: maintenance ensures that a
sufficient number of replicas exists to prevent object loss
due to server failures. This section introduces the Passing
Tone algorithm; Passing Tone maintains replicated objects
through a user-specified expiration time while reducing
the number of disk seeks and memory required to make
maintenance decisions.∗

We present Passing Tone in the context of the DHash
DHT. Each server in DHash has a single database that is
shared across all of its virtual servers. DHash stores object
replicas initially on the first k successors of the object’s
key; this set of servers is called the replica set. Passing
Tone ensures that all members of the replica set have a
replica of the object, despite the fact that this set changes
over time. The value of k is set system-wide and affects
the ability of the system to survive simultaneous failures;
the reader is referred to our prior work for more on the
role of k [5]. For UsenetDHT, k = 2 is sufficient.

4.1 Challenges

The main challenge in the design of Passing Tone is bal-
ancing the desire to minimize bandwidth usage (e.g., by
not repeatedly exchanging object identifier lists and not
creating too many replicas) with the need to avoid stor-
ing and updating state about remote servers. This prob-
lem largely revolves around deciding what information to
keep on each server to make identifying objects that need
repair easy and efficient.

The ideal maintenance algorithm would only generate
repairs for those objects that have fewer than k remain-
ing replicas. Such an algorithm would minimize replica
movement and creation. A straightforward approach for
achieving this might be to track the location of all avail-
able replicas, and repair when k or fewer remain. In a
peer-to-peer system, where writes are sent to individual
servers without going through any central host, tracking

∗The name “Passing Tone” draws an analogy from the musical mean-
ing “Chord” to the action of the maintenance algorithm: passing tones
are notes that pass between two notes in a chord.
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replica locations would require that each server frequently
synchronize with other servers to learn about any new up-
dates. The resulting replica counts would then periodi-
cally be checked to identify objects with too few replicas
and initiate repairs.

The difficulty with this approach lies in storing state
about replica locations in a format that is easy to update
as objects are added and deleted but also easy to con-
sult when making repair decisions. For ease of update
and to allow efficient synchronization, information about
replicas on each server needs to be kept in a per-server
structure. However, to make repair decisions, each server
requires a view of replicas over all servers to know how
many replicas are currently available. While these views
can be derived from one another, with millions of objects
across dozens of servers, it is expensive to construct them
on the fly. For example, Merkle tree construction is CPU
intensive and would require either random disk I/O or use
significant memory. Storing both views is possible but
would also require random disk I/O that would compete
with regular work.

Worse, even if state about replica locations can be effi-
ciently stored, continuous writes and deletions means that
any local state quickly becomes stale. Unfortunately, if
information about objects on a remote server is stale—
perhaps because an object was written to both the local
and remote server but the local and remote have not yet
synchronized—the local server may incorrectly decide to
generate a new replica. Such spurious repairs can be ex-
pensive and are hard to avoid.

4.2 Passing Tone overview

Passing Tone deals with these challenges by removing
the need to track object locations explicitly. Instead each
server in Passing Tone:

• only keeps a synchronization data structure for ob-
jects stored locally;

• shares the responsibility of ensuring adequate repli-
cation with the other servers in the replica set; and

• makes decisions based only on differences detected
between itself and its immediate neighbors.

Passing Tone uses Merkle trees for synchronization [4].
As a consequence of keeping only a single Merkle tree
per server, reflecting that server’s actual objects, a Passing
Tone server must create a replica of objects that it is miss-
ing in order to avoid repeatedly learning about that object.
The count of available replicas is maintained implicitly as
servers synchronize with their neighbors: when the first k

servers in an object’s successor list have a replica, there
are at least k replicas.

Like Carbonite [5], Passing Tone uses extra replicas
to mask transient failures and provide durability. Each
server in Passing Tone has two maintenance responsibil-
ities. First, it must ensure that it has replicas of objects

n.local_maintenance():

a, b = n.pred_k, n # k-th predecessor to n

for partner in n.succ, n.pred:

diffs = partner.synchronize(a, b)

for o in diffs:

data = partner.fetch(o)

n.db.insert(o, data)

Figure 2: The local maintenance procedure ensures that
each server n has replicas of objects for which it is re-
sponsible. The synchronize(a,b)method compares
the local database with the partner’s database to identify
objects with keys in the range (a,b) that are not stored lo-
cally. Local maintenance does not delete objects locally
or remotely.

for which it is responsible. This is its local maintenance

responsibility. Second, it must ensure that objects it is no
longer responsible for but has stored locally are offered
to the new responsible server. This represents a server’s
global maintenance responsibility.

4.3 Local maintenance

The local maintenance algorithm distributes the responsi-
bility of ensuring that sufficient replicas exist to each of
the servers in the current replica set. To do this without
requiring coordination across all servers simultaneously,
Passing Tone’s local maintenance relies on an extension
to Chord that allows each server to know precisely which
replica sets it belongs to: Passing Tone asks Chord to
maintain a predecessor list which tracks the first O(logn)
predecessors of each server. The details of this are dis-
cussed in Section 5. Once the predecessor list is available,
each server will know the range of keys it is responsible
for replicating and can identify whether or not it needs to
replicate an object simply by considering the key relative
to its first k predecessors.

The algorithm that implements local maintenance is
shown in Figure 2. Each server synchronizes with only its
direct predecessor and successor, over the range of keys
for which it should be holding replicas, as determined by
its Chord identifier. Synchronization walks down the rel-
evant branches of the Merkle tree to efficiently identify
objects that the server is missing but that are present on
its neighbor.

Merkle trees store the keys of a server in a tree with
a 64-way branching factor: each node of the tree stores
a hash of the concatenation of the hashes of its children.
At the bottom, the leaves of the tree represent the hash of
the keys of the objects themselves. When two sub-trees
represent exactly the same set of keys, the hashes of the
root of the sub-trees will match: the synchronization pro-
tocol can detect this efficiently and avoid further process-
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Figure 3: Server n is responsible for objects whose keys
fall between its predecessor p1 and itself. In the figure,
objects are replicated with an initial replication level k =
3. Thus, objects that n is responsible for are replicated on
s1 and s2. The ranges of the objects held by each server
is shown with horizontal intervals; the intersection with
vertical regions such as A and B show which servers hold
particular objects.

ing of those sub-trees. The synchronization protocol also
restricts the branches considered based on the range to be
synchronized over. This allows the same tree to be used
to synchronize with any server.

Any objects that synchronization identifies as missing
locally are then replicated locally. By asking each server
to be responsible for replicating objects to itself, Passing
Tone ensures that no single server need count the number
of replicas of an object. Rather, the servers in a successor
list operate independently but cooperatively to ensure the
right number of replicas exist.

This approach ensures that the implementation will
never need to maintain or consult information from multi-
ple servers simultaneously. This reduces the memory and
disk impact of maintenance. This also avoids the problem
that can lead to spurious repairs: instead of accumulating
information and referring to it after it has become stale,
each server in Passing Tone make decisions immediately
upon synchronizing with its neighbor.

Synchronizing with the successor and predecessor is
sufficient to eventually ensure k replicas of any failed ob-
jects. This follows directly from how objects are arranged
in a Chord consistent hashing scheme. Replicating ob-
jects from the successor will allow servers to recover from
missed insertions or disk failures. Similarly, replicating
objects from the predecessor will help servers cover for
other servers that may have failed transiently.

This can be seen more clearly with reference to Fig-
ure 3. There are two cases to consider that cause object
movement: the failure of a server, or the addition of a
server. When server n fails, server s1 becomes responsi-
ble for holding replicas of objects in the region labeled A.
It can retrieve these replicas from its new predecessor p1;

n.global_maintenance():

a, b = n.pred_k, n # k-th predecessor to n

key = n.db.first_succ (b) # first key after b

while not between (a, b, key):

s = n.find_successor (key)

diffs = s.reverse_sync (key, s)

for o in diffs:

data = n.db.read (o)

s.store (o, data)

key = n.db.first_succ (s)

Figure 4: Global maintenance ensures objects are placed
in the correct replica sets. n periodically iterates over its
database, finds the appropriate successor for objects it is
not responsible for and offers them to that successor. The
reverse_sync call identifies objects present on n but
missing on s over the specified range.

it is unlikely to retrieve such objects from its successor s2,
though this is possible.

When n is joining the system, it divides the range of
keys that its successor is responsible for: n is now respon-
sible for keys in [p1,n) whereas s1 is now responsible for
[n,s1). In this case, n can obtain objects in region B from
s1. If n was returning from a temporary failure, this will
include objects inserted when n was absent.

Over time, even if an object is not initially present
on the successor or predecessor, it will migrate to those
servers because they themselves are executing the same
maintenance protocol. Thus, as long as one server in a
replica set has a replica of an object, it will eventually be
propagated to all such servers.

Despite only local knowledge, local maintenance does
not result in excessive creation of replicas. Temporary
failures do not cause replicas to be repeatedly created and
then deleted because Passing Tone allows objects to re-
main on servers even if there are already k replicas; ob-
jects are created once and “re-used” on subsequent fail-
ures. Our first maintenance algorithm [6] kept replicas on
exactly the first k successors, which was shown to be a bad
decision [5].

4.4 Global maintenance

While local maintenance focuses on objects that a server
is responsible for but does not have, global maintenance
focuses on objects that a server has but for which it is not
responsible. Global maintenance ensures that, even after
network partitions or other rapid changes in (perceived)
system size, a server’s objects are located in a way that
DHash’s read algorithm and Passing Tone’s local mainte-
nance algorithm will be able to access them.

Global and local maintenance in Passing Tone are coop-
erative and complementary: global maintenance explicitly
excludes those objects that are handled by local mainte-
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nance. At the same time, global maintenance in Passing
Tone relies on local maintenance to correctly propagate
replicas to other servers in the official replica set. That is,
once an object has been moved to the successor, the neigh-
bors of the successor will take responsibility for creating
replicas of that object across the replica set.

Figure 4 shows the pseudo-code for global mainte-
nance. Like local maintenance, global maintenance re-
quires the predecessor list to determine which objects
each server should maintain. Server n periodically iter-
ates over its database, identifying objects for which it is
not in the replica set. For each such object, it looks up the
current successor s and synchronizes with s over the range
of objects whose keys fall in s’s range of responsibility. s

then makes a copy of any objects that it is responsible for
which it does not have a replica. Once these transfers are
complete, global maintenance moves on to consider the
next set of objects.

Like in local maintenance, the global maintenance al-
gorithm does not delete replicas from the local disk, even
if they are misplaced. These replicas serve as extra insur-
ance against failures. Because the synchronization algo-
rithm efficiently identifies only differences, once the ob-
jects have been transferred to the actual successor, future
checks will be inexpensive.

4.5 Supporting expiration

The expiration time of an object merely acts as a guide-
line for deletion: a server can hold on to objects past their
expiration if there is space to do so. As described above,
however, the local and global maintenance algorithms do
not take expiration into account.

Failure to account for expiration in maintenance can
lead to two problems. First, repairing these objects are a
waste of system resources, since expired objects are ones
that the application has specified as no longer requiring
durability. Second, when expired objects are not expired
simultaneously across multiple servers, spurious repairs
can occur if one server chooses to delete an expired ob-
ject before its neighbor: the next local maintenance round
could identify and re-replicate that object.

One solution to this problem would be to include ex-
tra metadata during synchronization so that repairs can
be prioritized based on expiration time. Including the
metadata initially seems attractive: especially when inter-
acting with mutable objects, metadata may be useful for
propagating updates in addition to allowing expiration-
prioritized updates. OpenDHT implements a simple vari-
ant of this by directly encoding the insertion time into
the Merkle tree [27]; this complicates the construction of
Merkle trees however and requires a custom Merkle tree
be constructed per neighbor.

To address these issues, Passing Tone separates object
storage from the synchronization trees. The Merkle syn-

Process kLoC Role
usenetdht 3.4 Usenet front-end and DHash inter-

face.
lsd 28.4 Chord routing, DHash gateway

and server logic.
adbd 1.5 Main data storage.
maintd 6.8 Maintenance including Passing

Tone and Merkle synchronization.

Table 1: UsenetDHT and DHT processes breakdown.

chronization tree contains only those keys stored locally
that are not expired. Keys are inserted into the tree during
inserts and removed when they expire. Expired objects are
removed by DHash when the disk approaches capacity.

This expiration scheme assumes that servers have syn-
chronized clocks—without synchronized clocks, servers
with slow clocks will repair objects that other servers have
already expired from their Merkle trees.

5 Implementation

This section provides an overview of our DHash, Pass-
ing Tone and UsenetDHT implementations. We highlight
the particular problems and lessons that we learned while
implementing these systems to meet our performance re-
quirements.

5.1 Source code

DHash, Passing Tone and UsenetDHT are implemented in
C++ using the libasync libraries [21]. Each host runs
four separate processes, detailed in Table 1.
usenetdht implements NNTP to accept feeds and

interact with Usenet clients. It stores each article as a sin-
gle DHash content-hash object; use of a single object min-
imizes the overhead incurred by DHash during storage,
relative to chunking objects into, for example, 8 Kbyte
blocks. usenetdht maintains a database containing the
overview metadata and content-hash for each article, or-
ganized by newsgroup.

For performance, the UsenetDHT implementation
draws largely on techniques used in existing open-source
Usenet servers. For example, UsenetDHT stores overview
data in a BerkeleyDB database, similar to INN’s overview
database (ovdb). An in-memory history cache is used to
remember what articles have been recently received. This
ensures that checks for duplicate articles do not need to
go to disk. The current UsenetDHT implementation does
not yet support a DHT read-cache.

The DHash and Passing Tone implementation is struc-
tured into three processes to avoid having disk I/O calls
block and delay responses to unrelated network requests.
Network I/O and the main logic of Chord and DHash are
handled by lsd. Disk I/O is delegated to adbd, which
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handles storage, and maintd, which implements Passing
Tone and handles maintenance.

The complete DHash source base consists of approxi-
mately 38,000 lines of C++. This includes the Chord rout-
ing layer and research code for previous DHT and main-
tenance algorithms. The Merkle synchronization sub-
system consists of approximately 3,000 lines of code; the
Passing Tone implementation and supporting infrastruc-
ture is less than 1,000 lines of code.

5.2 Predecessor lists

In performing maintenance, Passing Tone requires infor-
mation about the objects for which each individual server
is responsible. This requires that each server know its first
k predecessors. Predecessor lists are maintained using the
inverse of the Chord successor list algorithm. Each server
periodically asks its current predecessor for their prede-
cessor list. When providing a predecessor list to a succes-
sor, a server takes its own predecessor list, pops off the
furthest entry and inserts itself.

Predecessor lists are not guaranteed to be correct.
Servers are not considered fully joined into the Chord ring
until they have received a notification from their predeces-
sor. The predecessor maintenance algorithm may return a
shortened, wrong or empty predecessor list in this situa-
tion. For this reason, this algorithm was rejected in the
design of Koorde [18], which relies on predecessor lists
for correct routing. However, this situation occurs fairly
rarely in practice, if at all, and we have never observed any
problems resulting from this implementation. Because
Passing Tone does not rely on predecessor lists for rout-
ing, we accept the occasional possibility of error. Even
in the event that an incorrect predecessor list is used for
determining maintenance, Chord stabilization will soon
cause the predecessor list to change and any outstanding
incorrect repairs will be flushed before significant band-
width has been used.

5.3 Load balance

DHash uses virtual servers for load balance [6]. To en-
sure that replicas are placed on virtual servers of differ-
ent physical servers, lsd filters co-located virtual servers
from the successor list during write operations, similar to
Y0 [13]. Co-located virtual servers are similarly filtered
from successor (and predecessor) lists during read and
maintenance. However, currently, administrators must
manually balance the number of virtual servers used so
that each physical servers does not receive more load than
its network link or disk can support. We know of no algo-
rithm that balances load over multiple constraints.

5.4 Expiration support

To support expiration in UsenetDHT, DHash now al-
lows applications to provide a per-object expiration time.

DHash treats this time as a recommendation: DHash
servers stop performing maintenance of expired objects
but only delete the objects when storage is needed for
new writes. In this way, the application maintains con-
trol of how long data is durably maintained, and DHash
servers can operate without consulting the application in
prioritizing objects for maintenance. The implementation
of expiration in DHash is inspired by the timehash system
used by INN (described in [31]).

5.5 Storage performance

adbd stores objects and metadata separately. It stores
objects in append-only flat files, and stores metadata, in-
cluding the Merkle synchronization tree, using Berke-
leyDB databases. BerkeleyDB databases provide a sim-
ple key-value store, here used to map object keys to meta-
data. Storing objects outside of BerkeleyDB is important
for performance. Since BerkeleyDB stores data and key
within the same BTree page and since pages are fixed size,
objects larger than a single page are stored on separate
overflow pages. This results in particularly poor disk per-
formance as overflow pages cause writes to be chunked
into page-sized fragments that are not necessarily located
contiguously, leading to additional disk seeks.
adbd names object storage files by approximate expi-

ration time. Each file holds 256 seconds worth of objects,
which works well for a system with high write workload.
Files can be appended to efficiently, and object data can be
read without extra seeks. Grouping multiple objects into
a single file allows efficient reclamation of expired data
when the disk approaches capacity: 256 seconds worth of
objects can be freed by unlinking a single file.
adbd uses one database to map object keys to meta-

data such as the object’s size, expiration time, and off-
set within the flat file storing the object data. A separate
pair of databases stores information corresponding to the
Merkle tree. adbd handles write requests and updates the
Merkle tree as new objects are written and old ones are
expired. maintd reads from this same tree during syn-
chronization. BerkeleyDB’s transaction system is used
to provide atomicity, consistency and isolation between
databases and between processes. For performance, the
implementation disables writing the transaction log syn-
chronously to disk.

Persistently storing the Merkle tree improves start-
up performance. An earlier implementation stored ob-
ject data with metadata and reconstructed an in-memory
Merkle tree during start-up. BerkeleyDB could not effi-
ciently enumerate the keys of the database; each page read
returned few keys and much data. Further, BerkeleyDB
does not include an API for enumerating the database in
on-disk order. A straightforward reconstruction of the
Merkle tree would require one seek per key over the entire
set of keys held in the tree. With a 120 Gbyte disk (hold-
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ing 600,000 173 Kbyte articles), at 5ms per seek, enumer-
ating these keys could take over 50 minutes.

The Merkle tree implementation currently stores the
pre-computed internal nodes of the Merkle tree in a sep-
arate database addressed directly by their prefix. Pre-
fix addressing allows maintd to directly retrieve inter-
nal nodes during synchronization without traversing down
from the root. maintd uses a BerkeleyDB internal in-
memory cache, sized to keep most of the nodes of the
Merkle tree in memory, retaining the performance bene-
fits of an in-memory implementation. The implementa-
tion stores object keys in a separate database. Since keys
are small, the backing database pages, indexed by expira-
tion time, are able to hold dozens of keys per page, allow-
ing key exchanges in Merkle synchronization to be done
with few disk seeks as well.

6 Evaluation

In this section, we demonstrate the following:
• In a simulated PlanetLab environment, Passing Tone

provides object durability;
• Our test deployment of UsenetDHT is able to support

a live Usenet feed;
• Passing Tone identifies repairs following transient

failures, permanent failures and server additions
without interfering with normal operations; and

• Our implementation of DHash and UsenetDHT
scales with the available resources.

6.1 Evaluation method

We evaluate the ability of Passing Tone to provide dura-
bility by considering its behavior using a trace-driven sim-
ulator. A trace of the disk and transient failures, from
March 2005 through March 2006, on the PlanetLab test-
bed [25] drives the simulation. The trace and simulator
first appeared in prior work [5].

Passing Tone is evaluated under load using a live wide-
area deployment. The deployment consists of twelve ma-
chines at universities in the United States: four machines
are located at MIT, two at NYU, and one each at the
University of Massachusetts (Amherst), the University of
Michigan, Carnegie Mellon University, the University of
California (San Diego), and the University of Washington.
Access to these machines was provided by colleagues at
these institutions and by the RON test-bed. While these
servers are deployed in the wide area, they are relatively
well connected, many of them via Internet2.

Unlike PlanetLab hosts, these machines are lightly
loaded, very stable and have high disk capacity. Each ma-
chine participating in the deployment has at least a single
2.4 Ghz CPU, 1 Gbyte of RAM and UDMA133 SATA
disks with at least 120 Gbyte free. These machines are
not directly under our control and are shared with other
users; write caching is enabled on these machines.
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Figure 5: Durability of objects in Passing Tone: the graph
shows a CDF of the number of replicas per object after a
one year PlanetLab trace. No objects are lost during this
simulation.

The load for the live deployment is a mirror of the
CSAIL news feed; the CSAIL feed is ranked 619th in the
Usenet Top 1000 servers [11]. This feed sees one mil-
lion articles per day on average and is around 10% of
the full feed. This feed generates a roughly continuous
2.5 Mbyte/s of write traffic. Binary articles have a median
article size of 240 Kbyte; text articles are two orders of
magnitude smaller, with a median size of 2.4 Kbyte.

Microbenchmarks, run on a private gigabit switched lo-
cal area network, demonstrate the scalability potential of
DHash and UsenetDHT. Using a local network eliminates
network bottlenecks and focuses on the disk and memory
performance.

6.2 Passing Tone durability

We evaluate Passing Tone’s durability in simulation over
a real-world PlanetLab trace. There are a total of 632
unique hosts experiencing 21,255 transient failures and
219 disk failures. Failures are not evenly distributed, with
466 hosts experiencing no disk failures, and 56 hosts ex-
periencing no disk or transient failures. At the start of
the trace, 50,000 20 Mbyte objects are inserted and repli-
cated according to standard DHash placement. With an
average of 490 online servers and k = 2 replicas, this cor-
responds to just over 4 Gbyte of data per server. To ap-
proximate PlanetLab bandwidth limits, each server has
150 Kbyte/s of bandwidth for object repairs. At this rate,
re-creating the contents of a single server takes approxi-
mately 8 hours.

For Passing Tone to be viable, it must not lose any ob-
jects. Passing Tone synchronizes with either its predeces-
sor or successor to generate repairs every ten minutes or
when these servers change. Figure 5 shows a CDF of the
number of replicas for each object at the end of the trace:
the most important feature is that all objects have at least
three replicas. No objects are lost, showing that Passing
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Figure 6: Number of crashes within an eight hour window
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CSAIL UsenetDHT deployment over a twelve hour pe-
riod. During normal operation, deferrals are very rare.

Tone can provide durability in a PlanetLab environment.
The CDF also demonstrates that some objects have

many more replicas; ten percent have over seven replicas.
To understand why, consider Figure 6, which shows the
number of times a given number of servers crashed (i.e.,
lost disks) within an 8 hour period over the entire trace;
the worst case data loss failure in the trace could only be
protected if at least nine replicas existed for objects on the
nine simultaneously failing servers. It is unlikely that the
actual failure in the trace would have mapped to a con-
tiguous set of servers on a Chord ring; however, the sim-
ulation shows that Passing Tone saw sufficient transient
failures to create nine replicas in at least some cases.

6.3 UsenetDHT wide-area performance

The CSAIL Usenet feed receives on average 14 articles
per second. This section demonstrates that UsenetDHT,
with DHash and Passing Tone, is able to meet the goal
of supporting CSAIL’s Usenet feed. DHash is configured
to replicate articles twice, prior to any maintenance; thus
to support the CSAIL feed, the system must write at least
28 replicas per second. Our deployment has supported
this feed since July 2007. This section also demonstrates
that our implementation supports distributed reads at an
aggregate 30.6 Mbyte/s.
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Figure 8: UsenetDHT aggregate read throughput. 100
hosts started article reads continuously against 12 servers.

Figure 7 shows the number of articles received by
UsenetDHT, posted into DHash writes, and deferred. De-
ferrals occur when DHash’s write window is full—during
initial server startup, deferrals occur since there is a back-
log of posts from the upstream feed that arrive faster
than the local DHash server can write replicas to remote
sites. The upstream later re-sends deferred posts. Dur-
ing normal operation, deferrals do not occur, showing
that UsenetDHT and DHash can keep up with the normal
workload from the CSAIL feed.

To evaluate the read capability of the system, we use
clients distributed on the PlanetLab test bed. We selected
100 of the servers with the lowest load that were geo-
graphically close to one of the seven sites that were run-
ning at the time of the experiment using CoMon [24].
Each client machine ran five parallel NNTP clients to the
UsenetDHT front-end closest to them and downloaded ar-
ticles continuously from newsgroups chosen at random.

Figure 8 plots the achieved aggregate bandwidth over
time: the client machines were able to achieve an col-
lectively 30.6 Mbyte/s or approximately 313 Kbyte/s per
client machine. This corresponds to reading on median
2612 Kbyte/s per disk. We estimate that each article read
requires seven disk seeks including metadata lookup at the
Usenet server, object offset lookup, opening the relevant
file and its inode, indirect and double-indirect blocks, data
read, and atime update. With at least 70ms of total seek
time per access, this means that each disk can support no
more than 14 reads per second: given an average article
size of 173 Kbyte (14×173 = 2422 Kbyte/s), this corre-
sponds well with the observed throughput per disk.

6.4 Passing Tone efficiency

When failures do arise, Passing Tone is able to identify
repairs without substantially affecting the ability of the
system to process writes. Figure 9 demonstrates the be-
havior of Passing Tone under transient failures and server
addition in a six hour window, by showing the total num-
ber of objects written: the number of objects repaired is
shown in a separate color over the number of objects writ-
ten. At 18:35, we simulated a 15 minute crash-and-reboot
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Figure 9: Number of repairs and number of writes over
time, where we introduce a simple transient failure, a
server addition, and a second transient failure. The sec-
ond failure demonstrates behavior under recovery and also
what would have happened in a permanent failure.

cycle on a server responsible for 8.5% of the data in the
system. Passing Tone immediately begins repairing and
ceases when that server comes back online at 18:50. A
more permanent failure would involve a longer period of
repairs, as repair speed is limited largely by bandwidth.

To demonstrate this limit, the next event occurs at
20:15, where we add a new server, responsible for 3% of
the data in the system. It begins transferring objects from
its successor and moves 11 Gbyte of data in just over 2.4
hours. This corresponds to 1.2 Mbyte/s, which is what the
link between that server and its successor can support.

Finally, we demonstrate a short transient failure of the
same new server at 00:05. Its neighbors begin repairing
the objects that were inserted to the failed server during its
four hour lifetime: however, none of the objects that were
stored on the original successor needed to be repaired be-
cause its replicas were not deleted. When the new server
is brought back online at 00:20, there are a few transient
repairs to bring it up to date with the objects that were
written during its downtime but not a repeat of the four
hour initial transfer. This second transient failure also in-
dicates how Passing Tone would behave after a permanent
failure: we expect the transient failures will create a small
buffer of extra replicas so that when a permanent failure
does occur, only those (relatively) few objects that have
been inserted since will require re-replication.

6.5 DHash microbenchmarks

The microbenchmarks were conducted on a cluster of 8
Dell PowerEdge SC1425 servers, with Intel® Xeon™
2.80 Ghz CPUs (HyperThreading disabled), 1 Gbyte of
RAM, and dual Maxtor SATA disks. Each machine runs
FreeBSD 5.4p22. The machines are each directly inter-
connected with a Gigabit Ethernet switch. These ma-
chines are under our direct control and write caching is
disabled. They can do sustained writes at 7 Mbyte/s on
average and read at 40 Mbyte/s; a half stroke seek takes
approximately 14ms. A separate set of machines are used
for generating client load.

Median bandwidth (Kbyte/s)
Number of DHT servers Write Read
1 6600 14000
2 12400 19000
3 18800 28000
4 24400 33900
5 30600 42600
6 36200 49200
7 42600 57200
8 46200 63300

Table 2: Read and write microbenchmark performance.

To test the read and write scalability of the implemen-
tation, we configure one client per DHT server and di-
rect each client to write (and read) a 2 Gbyte synthetic
stream of 200 Kbyte objects as fast as possible. Replica-
tion, maintenance and expiration are disabled. The result-
ing load is spread out over all the servers in the system.
The results are shown in Table 2.

Each individual machine contributes on average an ad-
ditional 5.7 Mbyte/s of write throughput; thus in an envi-
ronment that is not network constrained, our implemen-
tation easily operates each server at close to its disk bot-
tleneck. For reads, each additional machine contributes
on average 7 Mbyte/s of read throughput. This result is
largely driven by seeks. In the worst case, each 200 Kbyte
object requires at least one seek to look up the object’s off-
set in the metadata database, one seek to read the object
and possibly one seek to update the atime on the inode. In
this case, it would require 40ms simply to seek, limiting
the number of objects read per disk to 25 per second (or
≈ 5 Mbyte/s). Systems with fewer servers will do better
on this particular benchmark as objects are read in order
of insertion. Thus, with fewer write workloads intermin-
gled, fewer seeks will be required and operating system
read-ahead may work well. The observed 14 Mbyte/s in
the single server case corresponds to one seek per read on
average, where it is likely that BerkeleyDB has cached the
offset pages and the OS read-ahead is successful. In the
multi-server cases, the 7 Mbyte/s average increase corre-
sponds well to two seeks per read.

Thus, in a well-provisioned local network, the DHash
implementation can write a 2.5 Mbyte/s Usenet feed to
a single server (though with extremely limited reten-
tion). By adding additional servers (and hence disk arms),
DHash is also able to scale as needed to support reader
traffic and increase retention.

7 Related work

The problems of costs from repetitive article transmission
and replication of un-read articles in Usenet have been
noted previously. Newscaster [2] examined using IP mul-
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ticast to transfer news articles to many Usenet servers at
once. Each news article only has to travel over backbone
links once, as long as no retransmissions are needed. In
addition, news propagation times are reduced. However,
Newscaster still requires that each Usenet server maintain
its own local replica of all the newsgroups. IP multicast
also requires extensive infrastructure within the network,
which is not required by overlays such as DHash.

NewsCache [15] is one of several projects that reduce
bandwidth at servers by caching news articles. It is de-
signed to replace traditional Usenet servers that are leaf
nodes in the news feed graph, allowing them to only re-
trieve and store articles that are requested by readers. In
addition to filling the cache on demand, it can also pre-
fetch articles for certain newsgroups. These features are
also available as a mode of DNews [23], a commercial
high-performance server, which adds the ability to dy-
namically determine the groups to pre-fetch. Both News-
Cache and DNews reduce local bandwidth requirements
to be proportional to readership and use local storage for
caching articles of interest to local readers. UsenetDHT
employs these caching strategies but also makes use of a
DHT to removes the need to pay an upstream provider to
source the articles.

The Coral and CobWeb CDNs provide high-bandwidth
content distribution using DHT ideas [9, 37]. Coral uses
distributed sloppy hash tables that optimize for locality
and CobWeb locates data using Pastry [3] (with con-
tent optimally replicated using Beehive [26]). However,
CDNs cache content with the aim of reducing latency and
absorbing load from an origin server. UsenetDHT oper-
ates in a system without origin servers and must guarantee
durability of objects stored.

Dynamo is an Amazon.com-internal DHT and uses
techniques for load balance, performance and flexibil-
ity that are similar to those used in DHash and Pass-
ing Tone [8]. Dynamo is deployed in cluster-oriented
environments, with fewer wide area links than DHash.
OpenDHT is deployed on PlanetLab and provides a DHT
for public research use [27, 28]. Compared to DHash,
OpenDHT focuses on storing small data objects. Like
DHash, OpenDHT provides time-to-live (TTLs) but uses
them to guarantee fair access to storage across multi-
ple applications. Both Dynamo and OpenDHT also use
Merkle trees for synchronization but without explicit sup-
port for expiration.

Passing Tone optimizes maintenance for accuracy and
dealing with expiration. Like Carbonite, Passing Tone
keeps extra copies of objects on servers in the successor
list to act as a buffer that protects the number of avail-
able objects from falling during transient failures [5]. Like
Passing Tone, PAST allows more than k replicas of an ob-
ject but PAST’s replicas are primarily for performance not
durability [30]; Passing Tone manages disk capacity with

expiration, not diversion. Passing Tone’s division of lo-
cal and global maintenance originally was proposed by
Cates [4] and has also been used in OpenDHT [27].

Despite a high number of objects, Passing Tone’s use of
Merkle synchronization trees [4] reduces bandwidth use
during synchronization, without the complexity of aggre-
gation as used in Glacier [16]. The idea of eventual con-
sistency in Passing Tone is similar to Glacier’s use of ro-
tating Bloom filters for anti-entropy. However, Bloom fil-
ters still repetitively exchange information about objects
and, at some scales, may be infeasible. Minsky et al’s syn-
chronization algorithm [22] is more network efficient than
Merkle trees but available implementations do not sup-
port persistence; in practice synchronization bandwidth is
dwarfed by data transfer bandwidth.

8 Conclusions

After three decades, Usenet continues to be an impor-
tant network service because of its distinct advantages
over other data distribution systems. This results in over
1 Tbyte of new content posted to Usenet per day. Usenet
servers have improved dramatically to carry this level of
load, but the basic Usenet design hasn’t changed, even
though its flooding approach to distributing content is ex-
pensive. With the current design only a limited of servers
can provide the full Usenet feed. We propose to exploit
the recent advances in DHTs to reduce the costs of sup-
porting Usenet, using a design that we call UsenetDHT.

UsenetDHT aggregates n servers into a DHT that stores
the content of Usenet. This approach reduces the costs
of storing and receiving a feed to O(1/n). To enable a
DHT to store as much data as Usenet generates, we devel-
oped the Passing Tone maintenance algorithm, which pro-
vides good durability and availability, keeps the memory
pressure on servers low and avoids disks seeks. Exper-
iments with a small deployment show that Passing Tone
and UsenetDHT support the 2.5 Mbyte/s feed at CSAIL
and should be able to scale up to the full feed by adding
more servers. These results suggest that UsenetDHT may
be a promising approach to evolve Usenet and to allow it
to continue to grow.
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