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Abstract

Unmanaged Internet Protocol (UIP) is a fully self-
organizing network-layer protocol that implements scal-
able identity-based routing. In contrast with address-
based routing protocols, which depend for scalability on
centralized hierarchical address management, UIP nodes
use a flat namespace of cryptographic node identifiers.
Node identities can be created locally on demand and
remain stable across network changes. Unlike location-
independent name services, the UIP routing protocol can
stitch together many conventional address-based networks
with disjoint or discontinuous address domains, providing
connectivity between any pair of participating nodes even
when no underlying network provides direct connectivity.
The UIP routing protocol works on networks with arbi-
trary topologies and global traffic patterns, and requires
only O(log N) storage per node for routing state, enabling
even small, ubiquitous edge devices to act as ad-hoc self-
configuring routers. The protocol rapidly recovers from
network partitions, bringing every node up-to-date in a
multicast-based chain reaction of O(log N) depth. Sim-
ulation results indicate that UIP finds routes that are on
average within 2× the length of the best possible route.

This technical report describes a work in progress and does not con-
tain complete, final, or polished results. This research was conducted as
part of the IRIS project (http://project-iris.net/), supported
by the National Science Foundation under Cooperative Agreement No.
ANI-0225660.

1 Introduction

Routing protocols for flat node namespaces are tradition-
ally limited in scalability by per-node storage or per-node
routing traffic overheads that increase at least linearly with
the size of the network. The scalability of today’s In-
ternet to millions and soon billions of nodes is currently
possible only through address-based routing, in which
topology information is embedded into structured node
addresses. Classless Inter-Domain Routing (CIDR) [28]
enables IP routers to store detailed routing information
only for nodes and subnets within a local administrative
domain, aggregating all routing information about more
distant networks into larger address blocks.

The scalability of CIDR depends on careful assign-
ment of node addresses to mirror the structure of the net-
work, however. Manual IP address assignment is tedious
and technical, while dynamic assignment [7] makes ad-
dresses unstable over time and cripples nodes in edge net-
works that become temporarily disconnected from assign-
ment services [4]. Organizational resistance plagues IP
address renumbering efforts [2], and host mobility and
multihoming violate the hierarchical CIDR model, lead-
ing to extensions demanding additional care and feed-
ing [27, 11]. Firewalls and network address translators
(NATs) create discontinuous address domains [31], mak-
ing remote access and peer-to-peer communication diffi-
cult [13]. Finally, new networking technologies may re-
quire fundamentally different and incompatible address
architectures [33, 16]. These factors suggest that no
single address-based routing protocol, let alone a single
centrally-administered routing domain, may ever provide
connectivity between every pair of nodes in the world that
want to communicate.

UIP is a scalable identity-based internetworking proto-
col, designed to fill the connectivity gaps left by address-
based protocols such as IP. UIP stitches together multiple
address-based layer 2 and layer 3 networks into one large
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Figure 1: Today’s Internetworking Challenges

“layer 3.5” internetwork, in which nodes use topology-
free identifiers in a flat namespace instead of hierarchical
addresses. All UIP nodes act as self-configuring routers,
enabling directly- or indirectly-connected UIP nodes to
communicate via paths that may cross any number of ad-
dress domains.

1.1 A Motivating Example

Joe Average User has a Bluetooth-enabled phone, a laptop
with both Bluetooth and 802.11 support, and several other
802.11-only devices on his home network, as illustrated
in Figure 1. He just moved in, however, and does not yet
have a working Internet connection. With UIP running
on each of these devices, Joe’s Bluetooth phone can com-
municate through his laptop with all of his other 802.11
devices. The laptop acts as a self-configuring router for
all of the devices reachable on his home network, without
Joe having to assign any addresses manually.

Joe eventually obtains an Internet connection and de-
ploys a home NAT, which turns out to be located behind a
larger NAT deployed by his (cheap) ISP. When his Inter-
net connection becomes active, Joe’s home devices au-
tomatically merge into the global UIP network and he
can access them through any other Internet-connected
UIP host. While at his friend Jim’s home, for example,
Joe’s Bluetooth phone automatically discovers and con-
nects with Jim’s PC, a well-connected Internet node that
also runs UIP. Joe can then use his phone to control and
remotely access the devices in his home, exactly as he
would if he was at home. Again no configuration is re-
quired; Joe’s home devices and Jim’s PC automatically
conspire with other UIP nodes on the Internet to build the
necessary forwarding paths.

Joe’s company runs an IPv6 network behind a firewall

Figure 2: UIP in the Internet Protocol Architecture

with a highly restrictive forwarding policy, but the fire-
wall permits UIP traffic to and from specific internal hosts
whose installed software the company’s network adminis-
trator trusts. Joe is fortunate enough to have such a trusted
host at work, which likewise merges into the global UIP
network. Joe can now access his home devices from work
and his work PC from home, and he can access any of
them from his Bluetooth phone while at either location.
Joe’s network administrator must set up the firewall pol-
icy to allow UIP traffic to Joe’s work machine, but Joe
doesn’t have to do anything.

1.2 UIP’s Role in the Internet

UIP sits on top of existing address-based network-layer
protocols such as IPv4 and IPv6, and can also operate di-
rectly over link-layer protocols such as Ethernet, 802.11,
and Bluetooth (see Figure 2). Upper-level protocols and
applications use UIP in the same way they as they use
traditional address-based network-layer protocols. In-
stead of addresses, however, upper-level protocols and
applications name and connect with other UIP nodes us-
ing cryptographic identifiers, comparable to Moskowitz’s
proposed host identities [21]. Since UIP node identifiers
have no relationship to network topology, nodes can cre-
ate their own identifiers without reference to central au-
thorities, and node identifiers remain valid as long as de-
sired even as the node moves and the surrounding network
topology changes.

This paper focuses purely on UIP’s routing and for-
warding algorithms, leaving other aspects of UIP to be
developed in future work. For this reason, the exposition
of the protocol in this paper is high-level and algorithmic
in nature. The only properties UIP node identifiers have
that are of importance in this paper are that they are rela-
tively uniformly distributed in a flat namespace.
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1.3 Key Properties of UIP

In contrast with conventional routing algorithms for flat
namespaces, UIP’s routing protocol has only O(log N)
per-node storage and update traffic requirements. UIP
achieves this scalability by distributing routing informa-
tion throughout the network in a self-organizing struc-
ture adapted from the Kademlia distributed hash table
(DHT) algorithm [18]. Unlike location-independent nam-
ing services such as DHTs, UIP does not assume that un-
derlying protocols provide connectivity between any two
nodes. When address-based routing protocols fail to pro-
vide direct connectivity for any reason, such as intermit-
tent glitches, network address translators, or incompatible
address-based routing technologies, UIP routes around
these discontinuities by forwarding traffic through other
UIP nodes.

The cost of distributing routing information throughout
the network for scalability is that individual UIP nodes
rarely have enough information to determine the shortest
or “best” possible route to another node. In effect, UIP
does not implement a distributed “all-pairs shortest paths”
algorithm like conventional protocols for flat namespaces
do [15]. Instead, UIP attempts the more moderate goal
of efficiently finding some path whenever one exists, and
usually finding reasonably short paths. This goal is ap-
propriate for UIP since the purpose of UIP is to find com-
munication paths that address-based protocols such as IP
cannot find at all.

In general we cannot expect identity-based routing to
be as efficient as routing protocols that take advantage of
the locality and aggregation properties of structured ad-
dresses. UIP is not intended to replace address-based rout-
ing protocols, but to complement them. By using address-
based protocols such as IP to move data efficiently across
the many “short” hops comprising the core Internet in-
frastructure and other large managed networks, UIP only
needs to route data across across a few “long” hops, re-
solving the discontinuities between address domains and
bridging managed core networks to ad hoc edge networks.
For this reason, it is less important for UIP to find the best
possible route all the time, and more important for the al-
gorithm to be scalable, robust, and fully self-managing.

We explore two specific UIP forwarding mechanisms
based on the same routing protocol. One mechanism guar-
antees that nodes can operate in O(log N) space per node
on any network topology. The other forwarding mecha-
nism allows UIP to find somewhat better routes and still
uses O(log N) space on typical networks, but may require
O(N) space on worst-case network topologies. With ei-
ther forwarding mechanism, simulations indicate that UIP
consistently finds paths that are on average within 2× the

length of the best possible path. UIP occasionally chooses
paths that are much longer than the best possible path, but
these bad paths are rare.

1.4 Road Map

The rest of this paper is organized as follows. Section 2
details the routing protocol by which UIP nodes organize
and find paths to other nodes, and Section 3 describes
the two alternative mechanisms UIP nodes use to forward
data between indirectly connected nodes. Section 4 evalu-
ates the routing and forwarding protocol and demonstrates
key properties through simulations. Section 5 summarizes
related work, and Section 6 concludes.

2 The Routing Protocol

This section describes the distributed lookup and routing
structure that enables UIP nodes to locate and communi-
cate with each other by their topology-independent iden-
tities.

2.1 Neighbors and Links

Each node in a UIP network maintains a neighbor table,
in which the node records information about all the other
UIP nodes with which it is actively communicating at a
given point in time, or with which it has recently commu-
nicated. The nodes listed in the neighbor table of a node
A are termed A’s neighbors. A neighbor of A is not nec-
essarily “near” to A in either geographic, topological, or
node identifier space; the presence of a neighbor relation-
ship merely reflects ongoing or recent pairwise communi-
cation.

Some neighbor relationships are mandated by the de-
sign of the UIP protocol itself as described below, while
other neighbor relationships are initiated by the actions
of upper-level protocols. For example, a request by an
upper-level protocol on node A to send a packet to some
other node B effectively initiates a new UIP neighbor re-
lationship between A and B. These neighbor relation-
ships may turn out to be either ephemeral or long-term.
A UIP node’s neighbor table is analogous to the table an
IPv4 or IPv6 host must maintain in order to keep track of
the current path maximum transmission unit (MTU) and
other vital information about other endpoints currently or
recently of interest to upper-level protocols.

As a part of each entry in a node’s neighbor table, the
node’s UIP implementation maintains whatever informa-
tion it needs to send packets to that particular neighbor.
This information describes a link between the node and its
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Figure 3: Forwarding via Virtual Links

neighbor. A link between two nodes A and B may be ei-
ther physical or virtual. A physical link is a link for which
connectivity is provided directly by some underlying pro-
tocol. For example, if A and B are both well-connected
nodes on the Internet that can successfully communicate
via their public IP addresses, then AB is a physical link
from the perspective of the UIP layer, even though this
communication path may in reality involve many hops at
the IP layer and even more hops at the link layer. If a
physical link is available between A and B, then A and
B are termed physical neighbors, and each node stores
the other’s IP address or other address information for un-
derlying protocols in the appropriate entry of its neighbor
table.

A virtual link, in contrast, is a link between two nodes
that can only communicate by forwarding packets through
one or more intermediaries at the UIP level. We describe
such nodes as virtual neighbors. The mechanism for UIP-
layer packet forwarding and the contents of the neigh-
bor table entries for a node’s virtual neighbors will be
described later in Section 3. For now, however, we will
simply assume that the following general principle holds.
Given any two existing physical or virtual links AB and
BC with endpoint B in common, nodes A and C can con-
struct a new virtual link AC between them by establish-
ing a UIP-level forwarding path through B. That is, UIP
nodes can construct new virtual links recursively from ex-
isting physical and virtual links.

In Figure 3, for example, virtual link AC builds on
physical links AB and BC, and virtual link AD in turn
builds on virtual link AC and physical link CD. Once
these virtual links are set up, node A has nodes B, C, and
D in its neighbor table, the last two being virtual neigh-
bors. Node D only has nodes C and A as its neighbors;
D does not necessarily need to know about B in order to
use virtual link AC.

2.2 Constructing Virtual Links

UIP nodes construct new virtual links with a single ba-
sic mechanism, represented by the build link procedure

// build a link from node n to target node nt,
// using node nw as a waypoint if necessary
n.build link(nw, nt) {

assert (n and nw are neighbors)
assert (nw and nt are neighbors)

try to contact nt by its IP address, MAC address, etc.
if direct contact attempt succeeds {

build physical link from n to nt

} else {
build virtual link from n to nt via nw

}

assert (n and nt are neighbors)
}

Figure 4: Pseudocode to Build a Physical or Virtual Link

shown in Figure 4. A node n can only build a virtual link
to some other node nt if n already has some “waypoint”
node nw in its neighbor table, and nw already has nt in
its neighbor table respectively. Node n can then use the
build link procedure to construct a link from n to nt.

In the build link procedure, n first attempts to initiate
a direct connection to nt via underlying protocols, using
any network- or link-layer address(es) for nt that n may
have learned from nw. For example, if nt is a node with
several network interfaces each in different address do-
mains, then nt might publish both the IP addresses and
the IEEE MAC addresses of all of its network interfaces,
so that other UIP nodes in any of these domains can ini-
tiate direct connections with nt even if they don’t know
exactly which domain they are in. If at least one of these
direct connection attempts succeeds, then n now has nt as
a physical neighbor, and a virtual link is not necessary.

If all direct connection attempts fail (or do not succeed
quickly enough), however, then n constructs a virtual link
to nt using nw as a forwarding waypoint. In this way, the
build-link procedure takes advantage of underlying con-
nectivity for efficiency whenever possible, but succeeds
even when only indirect connectivity is available.

2.3 UIP Network Structure

While virtual links provide a basic forwarding mecha-
nism, UIP nodes must have an algorithm to determine
which virtual links to create in order to form a commu-
nication path between any two nodes. For this purpose,
all UIP connected nodes in a network self-organize into
a distributed structure that allows any node to locate and
build a communication path to any other by resolving the
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Figure 5: Neighbor Tables, Buckets, and Node ID Space

target node’s identifier one bit at a time from left to right.
The UIP network structuring algorithm is closely related
to peer-to-peer distributed hash table (DHT) algorithms
such as Pastry [30] and Kademlia [18]. Unlike DHTs,
however, UIP uses this self-organizing structure not only
to look up information such as the IP or MAC address(es)
of a node from its UIP identifier, but also as a basis for
constructing UIP-level forwarding paths between nodes
for which underlying protocols provide no direct connec-
tivity.

For simplicity of exposition we will assume that each
node has only one identifier, each node’s identifier is
unique, and all identifiers are generated by the same l-
bit hash function. We will treat UIP node identifiers as
opaque l-bit binary bit strings. The longest common pre-
fix (LCP) of two nodes n1 and n2, written lcp(n1, n2),
is the longest bit string prefix common to their respective
UIP identifiers. The proximity of two nodes prox(n1, n2)
is the length of lcp(n1, n2): the number of contiguous bits
their identifiers have in common starting from the left. For
example, nodes 1011 and 1001 have an LCP of 10 and
a proximity of two, while nodes 1011 and 0011 have an
empty LCP and hence a proximity of zero. Nodes that
are “closer” in identifier space have a higher proximity.
Since node identifiers are unique, 0 ≤ prox(n1, n2) < l
if n1 6= n2, and prox(n, n) = l.

Each node n divides its neighbor table into l buckets,
as illustrated in Figure 5, and places each of its neigh-
bors ni into bucket bi = prox(n, ni) corresponding to
that neighbor’s proximity to n. This distance metric, also
known as the XOR metric [18], has the important sym-
metry property that if node n2 falls into bucket b of node
n1’s neighbor table, then n1 falls into bucket b of n2’s
neighbor table. This symmetry facilitates the establish-

// build a communication path from node n

// to target node nt

n.build path(nt) {
i = 1
b1 = prox(n, nt)
n1 = n.neighbor table[b1]
while (ni 6= nt) {

bi+1 = prox(ni, nt)
assert (bi+1 > bi)

ni+1 = ni → find neighbor in bucket (bi+1)
if find neighbor in bucket request failed {

return failure: node nt does not exist or is not reachable.
}

n.build link(ni, ni+1)
assert (ni+1 is now n’s neighbor)

i = i + 1
}
return success: we now have a working link to nt.

}

Figure 6: Pseudocode to Build a Path to Any Node

ment of pairwise relationships between nodes, and allows
both nodes in such a relationship to benefit from requests
flowing between them in either direction.

In order for a UIP network to be fully functional, the
network must satisfy the following connectivity invariant.
Each node n perpetually maintains an active connection
with at least one neighbor in every bucket b, as long a
reachable node exists anywhere in the network that could
fit into bucket b. In practice each node attempts to main-
tain at least k active neighbors in each bucket at all times,
for some redundancy factor k.

2.4 Building Communication Paths

If the connectivity invariant is maintained throughout a
UIP network, then any node n can communicate with any
target node nt by the following procedure, outlined in
pseudocode in Figure 6.

Node n first looks in bucket b1 = prox(n, nt) of its
own neighbor table. If this bucket is empty, then nt does
not exist or is not reachable, and the search fails. If the
bucket contains nt itself, then the target node is already
an active neighbor and the search succeeds. Otherwise,
n picks any neighbor n1 from bucket b1. Since n1’s and
nt’s proximity to n are both b1, the first b1 bits of n1 and
nt match those of n’s identifier, while their immediately
following bits are both opposite that of n. The proximity
of n1 to nt is therefore at least b1 + 1.
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Node n now sends a message to n1 requesting n1’s
nearest neighbor to nt. Node n1 looks in bucket b2 =
p(n1, nt) in its neighbor table, and returns information
about at least one such node, n2, if any are found. The in-
formation returned includes the UIP identifier of the nodes
found along with any known IP addresses, IEEE MAC ad-
dresses, or other underlying protocol addresses for those
nodes. Node n then uses the build link procedure in Fig-
ure 4 to establish a connection to n2, via a direct physical
link if possible, or a virtual link through n1 otherwise.

Now n2 is also an active neighbor of n, falling into the
same bucket of n’s neighbor table as n1 but closer in prox-
imity to nt. The original node n continues the search it-
eratively from n2, resolving at least one bit per step and
building additional recursive virtual links as needed, un-
til it finds the desired node or the search fails. If the
search eventually succeeds, then n will have nt as an ac-
tive (physical or virtual) neighbor and communication can
proceed.

In practice, nodes can improve the robustness and re-
sponsiveness of the build path procedure by selecting a
set of up to k neighbor nodes at each iteration and mak-
ing find neighbor requests to all of them in parallel, in
much the same way that Kademlia parallelizes its DHT
lookups. Parallelizing the construction of UIP commu-
nication paths has the added benefit that the originating
node is likely to end up having discovered several alter-
nate paths to the same node. The originating node can
evaluate these alternative paths using some suitable crite-
ria and choose the best of them for subsequent communi-
cation, and keep information about the others stored away
for use if the primary path fails. The two endpoint nodes
can even balance their traffic load across these paths if
they can find reason to believe that the paths are suffi-
ciently independent for load-balancing to be effective in
improving overall performance.

2.5 The Merge Procedure

The above build path procedure is much like the lookup
procedure used in the Kademlia DHT, modified to support
construction of indirect forwarding paths between nodes
that cannot communicate directly via underlying proto-
cols. For network construction and maintenance, how-
ever, UIP requires a much more robust algorithm than
those used in Kademlia and other DHTs. DHTs gener-
ally assume not only that underlying protocols provide
full any-to-any connectivity between nodes, but also that
nodes join or leave the network at a limited rate and rel-
atively independently of each other. In the discontinuous
network topologies on which UIP is intended to run, how-

// merge node n into the portion of a network
// reachable from neighbor n1

n.merge(n1) {
i = 1
b1 = prox(n, n1)
while (bi < l) {

for j = 0 thru (bi − 1) {
if n.neighbor table[j] not already full {

nj = ni → find neighbor in bucket (j)
if find neighbor in bucket request succeeded {

n.build link(ni, nj)
}

}
}

ni+1 = ni → find neighbor in bucket (bi)
if find neighbor in bucket request failed

break
bi+1 = prox(n, ni+1)
assert (bi+1 > bi)

n.build link(ni, ni+1)
i = i + 1

}
}

Figure 7: Pseudocode to Merge a Node Into a Network

ever, a single broken link can split the network at arbitrary
points, causing the nodes in either partition to perceive
that all the nodes in the other partition have disappeared
en masse. If the network split persists for some time, the
nodes on either side will re-form into two separate net-
works, which must somehow be merged again once the
networks are re-connected.

Our algorithm assumes that underlying protocols pro-
vide some means by which topologically near UIP nodes
can discover each other and establish physical neighbor
relationships. For example, UIP nodes might use Eth-
ernet broadcasts IPv4 subnet broadcasts, or IPv6 neigh-
bor discovery to detect nearby neighbors automatically.
Nodes might also contain “hard-coded” IP addresses of
some well-known UIP nodes on the Internet, so that nodes
with working Internet connections can quickly merge into
the public Internet-wide UIP network. Finally, the user
might in some cases explicitly provide the address infor-
mation necessary to establish contact with other relevant
UIP nodes. Whenever a new physical link is established
by any of the above means, the node on each end of the
link performs the merge procedure outlined in Figure 7,
to merge itself into the network reachable from the other
node.
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The merge process works as follows. Suppose that
node n has node n1 as a neighbor, falling in bucket
b1 = p(n, n1) in its neighbor table. If b1 > 0, then n and
n1 have one or more initial identifier bits in common, and
any neighbors of n1 in buckets 0 through b1 − 1 are also
suitable for the corresponding buckets in n’s neighbor ta-
ble. Node n therefore requests information from n1 about
about at least one of n1’s neighbors in each of these buck-
ets, and builds a physical or virtual (via n1) link to that
node. Assuming n1’s neighbor table satisfied the connec-
tivity invariant, n’s neighbor table now does as well for
buckets 0 through b1 − 1.

Node n now asks n1 for any neighbor from n1’s bucket
b1 other than n itself, as if n was searching for its own
identifier in n1’s network. If such a node n2 is found,
then its proximity b2 = p(n, n2) must be at least b1 + 1.
Node n builds a link to n2 via n1, fills any empty buckets
0 < bi < b2 from n2’s neighbor table as above, and then
continues the process from n2 for neighbors with prox-
imity greater than b2. Eventually n reaches some node
ni with proximity bi, whose bucket bi contains no neigh-
bors other than n itself. This means that there are no other
nodes in n1’s network with greater proximity to n than pi,
and so n has satisfied the connectivity invariant in its own
neighbor table, at least with respect to the portion of the
network reachable from n1.

2.6 Merge Notifications

After a node n merges into another node n1’s network
via the merge procedure above, however, there may be
other nodes in n1’s network besides the ones that n con-
tacted directly that also need to learn about n before their
neighbor tables will satisfy the connectivity invariant for
the new, larger network. In addition, n may not be just
a “lone” node joining n1’s network, but may instead be a
member of a larger existing network (reachable from n’s
neighbor table) that previously split from or evolved inde-
pendently from n1’s network. In this case, many nodes
in n’s network may need to learn about nodes in n1’s
network, and vice versa, before the connectivity invariant
will be re-established globally.

To cause other nodes to update their neighbor tables
appropriately, UIP uses a simple notification mechanism.
Whenever a node n makes contact for any reason with
a new physical or virtual neighbor nn, and bucket bn =
prox(n, nn) of n’s neighbor table was not full before the
addition of nn, n sends a message to all of its existing
neighbors notifying them of the new node nn. In response
to this notification message, each of n’s existing neighbors
ni contacts nn via ni.build link(n, nn), and then likewise

merges into nn’s network via ni.merge(nn). If this pro-
cess helps ni to fill any of its previously underfull neigh-
bor table buckets, then ni subsequently sends notifications
to its neighbors, and so on. The chain reaction stops when
all of the affected nodes cease finding new nodes that fit
into underfull buckets in their neighbor tables.

To understand this process, consider two initially sepa-
rate UIP networks: a “red” network consisting of i nodes
r1 . . . ri, and a “green” network consisting of j nodes
g1 . . . gj . We say that any given node n satisfies the red
connectivity invariant if each bucket in n’s neighbor table
contains at least one red node if any red node exists that
could fit into that bucket. Similarly, we say that a node
n satisfies the green connectivity invariant if each of n’s
buckets contains at least one green node if any green node
exists that could fit into that bucket. We assume that all
green nodes initially satisfy the green connectivity invari-
ant, but no green nodes satisfy the red connectivity invari-
ant because there are initially no connections between the
red and green networks. Similarly, all red nodes satisfy
the red connectivity invariant but no red nodes satisfy the
green connectivity invariant.

Now suppose that a physical link is somehow estab-
lished between nodes r1 and g1, connecting the two net-
works. In response, r1 performs a merge(g1), filling any
underfull buckets in its neighbor table that can be filled
from green nodes reachable from g1, and g1 likewise per-
forms a merge(r1) to fill its buckets from nodes in the
red network. Node r1 effectively locates and builds links
with its nearest (highest-proximity) neighbors in the green
network, and g1 likewise locates and builds links with its
nearest neighbors in the red network. As a result, after the
merge process r1 satisfies the green connectivity invari-
ant and g1 satisfies the red connectivity invariant. Since
r1 and g1 already satisfied the red and green invariants,
respectively, and adding new neighbors to a node’s neigh-
bor table cannot “un-satisfy” a previously satisfied con-
nectivity invariant, both r1 and g1 now satisfy the global
connectivity invariant covering both red and green nodes.

Assuming node identifiers are reasonably uniformly
distributed, with high probability one or both of r1 and
g1 will find one or more new nodes in the opposite net-
work that fit into previously underfull buckets. Before the
merge, bucket b = prox(r1, g1) in both r1 and g1 may
already have been full, which is likely if r1 and g1 are
far apart in identifier space. There may even be no nodes
in the green network that fall into underfull buckets in r1,
but this event is unlikely unless the green network is much
smaller than the red network. Similarly, there may be no
nodes in the red network that fall into underfull buckets
in g1, but only if the red network is much smaller than
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the green network. If the two networks are similar in size,
then both r1 and g1 will almost certainly find new neigh-
bors that fit into underfull buckets.

At any rate, the discovery of new neighbors falling in
these underfull buckets causes r1 and/or g1 to send merge
notifications to their existing neighbors in the red and
green networks, respectively, supplying a link to the op-
posite node as a “hint” from which other nodes in each
network can start their merge processes. Each node in ei-
ther network that is notified in this way initiates its own
merge process to fill its neighbor table from nodes in the
other network, in the process triggering the merge process
in its other neighbors, eventually leaving all nodes satis-
fying the global connectivity invariant.

In practice it is important to ensure that the inevitable
flurry of merge notifications does not swamp the whole
network, especially when two relatively large networks
merge. Standard protocol engineering solutions apply to
this problem, however, such as rate-limiting the accep-
tance or spread of notifications, propagating merge no-
tifications periodically in batches, and keeping a cache in
each node of recently-seen merge notifications to avoid
performing the same merge many times in response to
equivalent merge notifications received from different
neighbors.

3 Packet Forwarding

The previous section described how UIP nodes form a
self-organizing structure in which any node can build a
communication path to any other node by recursively con-
structing virtual links on top of other links, but did not
specify exactly how virtual links operate. In this sec-
tion we explore the construction and maintenance of vir-
tual links in more detail. We will explore in particular
two alternative methods for implementing virtual links:
one based on source routing, the other based on recur-
sive tunneling. Source routing potentially enables nodes
to find more efficient routes and keeps the basic forward-
ing mechanism as simple as possible, while the recursive
tunneling approach minimizes the amount of state each
node must maintain in its neighbor table.

3.1 Source Routing

With source routing, each entry in a node’s neighbor ta-
ble that represents a virtual neighbor contains a complete
source route to the target node. The source route lists the
UIP identifiers of a sequence of nodes, starting with the
origin node and ending with the target node, such that
each adjacent pair in the sequence has (or recently had)

Figure 8: Source Routing versus Recursive Tunneling

a working physical link between them. Of course, since
these links need only be “physical” from the perspective
of the UIP layer, each link in a UIP source route may rep-
resent many hops at the IP routing or link layers.

Consider for example Figure 8, in which the five nodes
A, B, C, D, E are connected by a chain of physical links.
Nodes A and C have established a virtual link AC by
building a two-hop source route via their mutual neighbor
B, and nodes C and E have similarly established a vir-
tual link CE via D. Suppose node A subsequently learns
about E from C and desires to create a virtual link AE
via C. Node A contacts C requesting C’s source route to
E, and then appends C’s source route for CE (A, B, C)
to A’s existing source route for AC (C, D, E), yielding
the complete physical route A, B, C, D, E.

To send a packet to E, node A includes in the packet’s
UIP header the complete source route for the virtual link
AE stored in its neighbor table entry for E. Each UIP
node along the path examines the header to find the
packet’s current position along its path, and bumps this
position indicator to the next position before forwarding
the packet to the next UIP node in the path. Forwarding
by source routing in UIP is thus essentially equivalent to
source routing in IP [6].

In theory each node may have to store up to l×k entries
in its neighbor table, where l is the node identifier size and
hence the number of buckets in the neighbor table, and k
is the redundancy factor within each bucket. In practice
only the top log2N buckets will be non-empty, where N
is the total number of nodes in the network. With source
route forwarding, neighbor table entries may have to hold
source routes for paths up to N − 1 hops in length, in
the worst-case network topology of N nodes connected
together in one long chain. In this case each node may
require O(N log N) storage. In practical networks these
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source routes will of course be much shorter, so this large
worst-case storage requirement may not be a problem.

3.2 Recursive Tunneling

In contrast with source routing, where each entry in a
node’s neighbor table for a virtual neighbor contains a
complete, explicit route that depends only on physical
links, recursive tunneling preserves the abstraction prop-
erties of neighbor relationships by allowing the forward-
ing path describing a virtual link to refer to both physical
and (other) virtual links. As a result, each neighbor table
entry representing a virtual link only needs to hold two
UIP identifiers: the identifier of the target node, and the
identifier of the “waypoint” through which the virtual link
was constructed. Recursive tunneling therefore guaran-
tees that each node requires at most O(log N) storage,
since neighbor table entries have constant size.

In the example in Figure 8, node A has constructed vir-
tual link AC via B, and node C has constructed virtual
link CE via D, and as before, A learns about E from C
and wants to construct a virtual link AE via C. With re-
cursive tunneling, A does not need to duplicate its route
C or ask C for information about its route to E in order to
construct its new virtual link to E. Instead, A merely de-
pends on the knowledge that it already knows how to get
to C, and that C knows how to get to E, and constructs
a neighbor table entry for E describing the “high-level”
two-hop forwarding path A, C, E.

Recursive tunneling has several beneficial properties.
First, since each neighbor table entry for a virtual neigh-
bor needs to store only two UIP identifiers, the size of
each neighbor table entry can be limited to a constant, and
the size of a node’s entire neighbor table depends only on
the size of UIP identifiers (and hence the number of buck-
ets), and the number of entries in each bucket. Second, if
“low-level routes” in the network change, all “higher-level
routes” that are built on them will immediately use the
correct, updated information with no information propa-
gation delays. For example, if node D above goes down
making the path C, D, E unavailable, but C finds an al-
ternate route to E, then the virtual link AE will automati-
cally use this new route without A even having to be aware
that something in C’s neighbor table changed.

The actual packet forwarding mechanism for recursive
tunneling is of course slightly more involved than for
source routing. As illustrated in Figure 9, to send a packet
to E, node A wraps the packet data in three successive
headers. First, it prepends a UIP tunneling header describ-
ing the “second-level” virtual path from A to E via C.
Only nodes C and E will examine this header. Second,

Figure 9: Forwarding by Recursive Tunneling

A prepends a second UIP tunneling header describing the
“first-level” virtual path from A to C via B. Finally, A
prepends the appropriate lower-layer protocol’s header,
such as an IP or Ethernet header, necessary to transmit
the packet via the physical link from A to B.

When the packet reaches node B, B strips off the
lower-layer protocol header, and looks in the first-level
(outer) UIP tunneling header to find the UIP identifier of
the next hop. B then looks up this identifier in its neighbor
table, prepends the appropriate (new) lower-layer protocol
header, and transmits the packet to C.

When the packet reaches node C, C strips off both the
lower-layer protocol header and the first-level UIP tunnel-
ing header (since C was the destination according to that
header), and examines the second-level tunneling header
to find the final destination, E. C now looks up E in its
neighbor table and, finding that E is a first-level virtual
neighbor, C prepends a new first-level tunneling header
describing the route from C to E via D. Finally, C
prepends the lower-layer protocol header for the physi-
cal link from C to D and forwards the message to D. D
subsequently forwards the message to E, which finally
strips off the lower-layer protocol header and both of the
tunneling headers before interpreting the packet data.

3.3 Path Optimization

When an upper-layer protocol on one node attempts to
contact some other node via UIP, the build path pro-
cedure described in Section 2.4 searches the network
structure for the requested node identifier, and in the
process may build one or more virtual links using the
build link procedure of Section 2.1. The search process
through which these virtual links are constructed is essen-
tially driven by the distance relationships in UIP identifier
space, which have nothing to do with distance relation-
ships in the underlying physical topology.

Each UIP node has complete flexibility, however, in the
way it chooses the k nodes to fill a particular bucket in
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its neighbor table whenever there are more than k nodes
in the network that could fit into that bucket. If the net-
work contains N nodes with uniformly distributed identi-
fiers, then we expect nodes to have some flexibility in their
choice of neighbors throughout the first log2N − log2k
buckets. Further, we naturally expect nodes to select the
“best” k nodes they find for each such bucket: either the
closest in terms of physical topology (UIP hop count), or
the best according to some other pragmatic measure in-
volving latency, bandwidth, and/or reliability for exam-
ple.

In general, therefore, we expect the first few iterations
of the build path process to stay within the node’s im-
mediate topological vicinity, with subsequent hops cov-
ering larger topological distances as the remaining dis-
tance in identifier space is progressively narrowed. While
the first few build path hops will depend only on physi-
cal or inexpensive “low-order” virtual links, the last few
hops might each depend on an expensive “high-order” vir-
tual link, eventually resulting in a communication path
that criscrosses throughout the network in a highly non-
optimal fashion. It is therefore important that we find a
way to optimize the routes produced using this process.

The most basic path optimization is inherent in the
build link procedure. If a node A locates target node
B via the build path process, but A subsequently finds
that it can contact B directly using underlying protocols
such as IP using address information it discovers during
the process, then build link will “short-circuit” the path
from A to B with a physical link requiring no UIP-level
forwarding.

A second important path optimization is for nodes to
check for obvious redundancies in the routes produced as
higher-order virtual links are built from lower-order vir-
tual links. Source routing makes this type of path opti-
mization easier, since each node has information about
the complete physical route to each neighbor in its neigh-
bor table, but we will explore a more limited form of path
optimization as well that works with recursive tunneling.
Other path more sophisticated forms of path optimization
are certainly possible and desirable, such as optimizations
relying on a deeper analysis of the relationships between
known neighbors, or based on additional information ex-
changed between neighbors beyond the minimal infor-
mation requred to maintain the network and build virtual
links. We leave more advanced path optimizations for fu-
ture work, however, and focus for now on the effects of
simple optimizations that rely on strictly local informa-
tion.

Figure 10: Path optimization opportunities on different
topologies, when A builds a virtual link to F via D.

3.3.1 Source Route Optimization

In UIP forwarding by source routing, we optimize source
routes when combining two shorter paths into a longer one
simply by checking for nodes that appear in both shorter
paths. For example, in Figure 10(a), suppose node A has
established a virtual link AD via B with path A, B, C, D,
by building on virtual link BD with path B, C, D. A vir-
tual link also exists between D and F . A now learns about
F through D and attempts to create a virtual link AF via
D. Without path optimization, the resulting path will be
A, B, C, D, C, B, F . The path can be trivially shortened
to the optimal A, B, F , however, simply by noting that
B appears twice and eliminating the redundant hops be-
tween them.

The same optimization shortens the path from A to F
in Figure 10(b) from A, B, C, D, C, E, F to the optimal
A, B, C, E, F . This path optimization does not help in
the case of Figure 10(c), however, since A does not nec-
essarily know that B and E are direct neighbors.

3.3.2 Recursive Tunnel Optimization

Path optimization is not as easy in forwarding by recursive
tunnels, because the information needed to perform the
optimization is more spread out through the network. For
example, in Figure 10(a), node A knows that the first hop
along virtual link AD is the physical link AB, but A does
not necessarily know what type of link BD is and may
not even know that node C exists.

In general, for any virtual link from n to n1 via n2, node
n also contains in its neighbor table a virtual or physical
link representing the first hop from n to n2. If the lower-
order link from n to n2 is a virtual link via some node
n3, then n also contains in its neighbor table a physical or
virtual link from n to n3, and so on. We call this chain of
intermediate nodes along the path from n to n1 that n in-
herently knows about n’s first hop chain for n1. For exam-
ple, A’s first hop chain for D in Figure 10(a) is A, B, D,
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whereas D’s first hop chain for A is D, C, B, A.
To implement path optimization for recursive tunnels,

we extend the build link procedure of Section 2.1 so that
when a node n attempts to build a new virtual link to nt

via waypoint node nw, n contacts its existing neighbor nw

requesting nw’s first hop chain for nt. Node n then com-
pares the information returned against its own first hop
chain for nw, and short-circuits any redundant path ele-
ments.

For example, in Figure 10(a), node A is building a vir-
tual link to F via D, so A requests D’s first hop chain
to F , which is D, C, B, F . A compares this chain with
its first hop chain for D, which is A, B, D, discovering
redundant node B and shortening the path to A, B, F .

This form of path optimization does not help in Fig-
ure 10(b), however, where the redundant path component
between C and D is hidden from A because C is not in
A’s first hop chain. Similarly, this optimization does not
handle Figure 10(c) for the same reason that the source
routing optimization above fails.

4 Protocol Evaluation

In this section we use simulation results to evaluate the be-
havior of UIP’s routing and forwarding protocol. A “real-
world” implementation of the protocol is under develop-
ment, but until an implementation has been deployed and
a substantial critical mass of users has developed, sim-
ulations provide the only realistic option for tuning the
protocol and predicting how it will behave on the large
networks it is intended to support.

4.1 Performance Metrics

In order to asses the basic viability of the UIP routing pro-
tocol, we focus here on measuring the efficiency of the
network paths the protocol finds through random network
topologies. Many other important factors that will affect
the performance of real-world UIP networks remain for
future study. In particular, while our simulations confirm
that the protocol recovers from node failures and network
partitions, we do not yet have a full characterization of
the dynamic behavior of a UIP network under continuous
change.

In order to measure the efficiency of routing paths cho-
sen by UIP nodes, we define the UIP path length between
two nodes n1 and n2 to be the total number of physi-
cal hops in the path that n1 constructs to n2 using the
build path procedure in Figure 6. We define the stretch
between n1 and n2 to be the ratio of the UIP path length to

the length of the best possible path through the underlying
topology.

We measure the stretch for a given pair of nodes by
using build path to construct a path from one node to
the other, measuring the total number of physical hops
in the path, and then eliminating all the virtual links that
build path constructed so that the measurement of one
path does not affect the measurement of subsequent paths.
On networks of 100 nodes or less we measure all possible
paths between any two nodes; on larger networks we take
a sample of 10,000 randomly chosen node pairs.

4.2 Test Network Topology

Selecting appropriate network topologies for simulations
of UIP is difficult, because we have no way to predict the
topologies of the networks on which a protocol like UIP
will actually be deployed. Using topological maps of the
existing IPv4 Internet would not make sense: the exist-
ing well-connected Internet is precisely the portion of to-
day’s global network infrastructure across which UIP will
not have to find paths, because IP already does that well
enough, and UIP simply treats these paths as direct phys-
ical links. For the function UIP is designed provide, find-
ing paths between nodes on the Internet and nodes on the
many private and ad hoc networks attached to it, no reli-
able topological data is available precisely because most
of these adjoining networks are private.

Nevertheless, we can construct artificial topologies that
approximate the most important characteristics we believe
this global network infrastructure to have. First, we expect
the topology on which UIP is deployed to consist of many
clusters, in which each node in a given cluster can reliably
address and connect with any other node in the same clus-
ter, but nodes in one cluster have very limited connectivity
to nodes in other clusters. Second, because of the diver-
sity of existing networking technologies and deployment
scenarios, we expect the size of these clusters to follow a
power law distribution, with larger clusters having better
connectivity to neighboring clusters. Finally, we expect
all of these clusters to be within at most a few hops from
a single huge, central cluster, namely the public IP-based
Internet.

To construct an artificial topology having these char-
acteristics, we start with a single distinguished cluster we
will call the root cluster, initially containing a single node.
We then randomly “grow” the network one node at a time
as follows. For each new node, we choose the number
of attachment points the node will have based on a ge-
ometric random variable with a multihoming probability
parameter pm. Approximately pmN of the network’s N
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Figure 11: Network path stretch for source routing versus
recursive tunneling

nodes will have at least two attachment points, p2

mN have
at least three attachment points, and so on.

We choose each attachment point for a new node via
a random walk from the root cluster using a downstream
probability parameter pd and a new cluster probability pa-
rameter pn. At each step, with probability pd we move the
attachment point downstream, and with probability 1−pd

we terminate the process. To move the attachment point
downstream, we choose a node at random from the cur-
rent cluster, then we either create a new cluster “private”
to that node with probability pn, or else we with prob-
ability 1 − pn we pick at random any cluster that node
is attached to (which could be the cluster we just came
from). Once the random walk terminates, we add the new
node to the cluster at which the walk ended.

We call the resulting random network topology a rooted
topology, since it consists of many small clusters cen-
tered around the single large root cluster, approximating
the well-connected IP-based Internet surrounded by many
smaller private networks.

We choose somewhat arbitrarily the following “base-
line” parameters for our experiments. We use network
topologies of varying sizes constructed with a multihom-
ing probability pm = 1/10, a downstream probability
pd = 3/4, and new link probility pn = 1/2. On these
topologies we build UIP networks with a redundancy fac-
tor k = 3, by adding nodes to the network one at a time in
random order. We will vary these parameters to explore
their impact on the efficiency of the routing protocol.

4.3 Source Routing versus Recursive Tun-
neling

In Figure 11 we measure the average and maximum path
stretch observed (vertical axis) between any two nodes on
networks of a given size (horizontal axis), for both source
routing and recursive tunneling. The error bars indicate
standard deviation of the measured stretch. In the ran-
dom 10,000-node rooted topology, the root cluster con-
tains 3233 nodes (32% of the network), the average dis-
tance between any two nodes is 2.5 hops, and the maxi-
mum distance between any two nodes (total network di-
ameter) is 8 hops.

With both source routing and recursive tunneling, we
see that the UIP routing protocol consistently finds paths
that are on average no more than twice as long as the best
possible path. The average-case efficiency of recursive
tunneling is slightly worse than for source routing, due
to the more limited amount of information nodes have to
optimize paths they find through the network. The rout-
ing protocol occasionally chooses very bad paths—up to
6× stretch for source routing and up to 16× for recursive
tunneling—but the low standard deviation indicates that
these bad paths occur very rarely.

4.4 Rooted versus Unrooted Networks

We would next like to determine how much the UIP rout-
ing protocol benefits from the tree-like structure of rooted
network topologies. Is the UIP routing protocol only vi-
able when some underlying protocol such as IP is doing
most of the work of routing within the large central clus-
ter, or could UIP routing also be used to internetwork
a number of small link-layer networks joined in ad-hoc
fashion?

To explore this question, we modify the random net-
work creation procedure of Section 4.2 so that the random
walk to find each new attachment point for a given starts
at a cluster chosen uniformly at random from all exist-
ing clusters, rather than at a well-known root cluster. The
resulting unrooted topologies have a much more uniform
and unpolarized distribution in their cluster sizes and in
the connections between clusters. In the random 10,000-
node unrooted topology, for example, the largest cluster
contains only 11 nodes, the average distance between any
two nodes is 7.7 hops, and the network diameter is 19
hops. We expect efficient routing on such a diffuse net-
work to be more difficult than on a rooted network.

Figure 12 compares the path efficiency of UIP source
route-based forwarding on rooted and unrooted networks
of varying sizes. We find that unrooted networks indeed
yield greater stretch, but not by a particularly wide mar-
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Figure 12: Network path stretch for rooted versus un-
rooted networks

gin. This result suggests that UIP routing is not highly de-
pendent on rooted topologies and may be useable as well
on more diffuse topologies.

5 Related Work

In this section we first compare the UIP routing and for-
warding protocol with existing routing algorithms for both
wired and ad hoc networks, then we relate UIP to location-
independent name services and other systems with similar
features.

5.1 Routing Algorithms

In classic distance-vector algorithms [15] such as
RIP [12], as well as variants such as MS [19], WRP [23],
and DSDV [26], each router continuously maintains rout-
ing information about every other addressable node or
subnet. With these protocols, each router requires at least
O(N) storage for a network of size N , and must reg-
ularly exchange connectivity information of size O(N)
with each of its neighbors.

In link-state algorithms such as OSPF [22] and
FSR [24], routers maintain complete network connectiv-
ity maps. This approach can achieve faster routing ta-
ble convergence and avoid the looping problems of ba-
sic distance-vector algorithms, at the cost of even greater
storage requirements and maintenance overhead.

Reactive or “on demand” routing algorithms designed
for ad hoc networks, such as DSR [14] and AODV [25],
require routers to store information only about currently
active routes, limiting maintenance traffic and storage
overheads on networks with localized traffic patterns.

Routing queries for distant nodes may have to be broad-
cast through most of the network before the desired route
is found, however, limiting the scalability of these proto-
cols on networks with global traffic patterns.

Landmark [33], and related hierarchical protocols such
as LANMAR [9], L+ [3], and PeerNet [8], dynamically
arrange mobile nodes into a tree. The routing protocol
assigns each node a hierarchical address corresponding to
its current location in this tree, and implements a location-
indepdendent identity-based lookup service by which the
current address of any node can be found. Each non-leaf
node serves as a landmark for all of its children, and is re-
sponsible for routing traffic to them from nodes outside its
local subtree. Landmark routes local traffic purely within
the lowest levels of the tree, providing scalability when
traffic patterns are predominantly local. Since global traf-
fic must pass through the landmark nodes at the upper lev-
els of the hierarchy, however, these upper-level nodes are
easily overloaded in a network with global traffic patterns.

5.2 Location-Independent Name Services

Naming services such as the Internet’s domain name sys-
tem (DNS) [20] can translate location-independent node
names on demand to location-specific addresses. Name
services inherently assume, however, that each node has
some globally unique address at which it can be reached
from all other nodes. If a desired node is on a private IP
network behind a network address translator, for exam-
ple, then there is generally no IP address by which it can
be reached from outside the network, and name services
do not help. Name-based routing [10] can bridge multiple
IP address domains using DNS names, but its dependence
on the centrally-administered DNS namespace makes it
unsuitable for ad hoc networks.

Recent distributed hash table (DHT) algorithms such
as Pastry [30], Chord [5], and Kademlia [18], implement
fully decentralized, self-organizing name services that do
not depend on top-down, hierarchical administration as
DNS and other traditional name services do. The UIP
routing protocol uses a self-organizing network structure
closely related to the Kademlia DHT. Like conventional
name services, however, DHT algorithms do not provide
network-layer routing functionality. Although the process
of locating up an item in a DHT is sometimes called “rout-
ing” because it involves iteratively contacting a sequence
of nodes that are progressively closer to the desired item
in identifier space, this process still assumes that the node
initiating the lookup can directly contact each of the nodes
in the sequence using underlying protocols. UIP’s virtual
link abstraction described in Section 2, and the forward-
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ing mechanisms described in Section 3, provide the fun-
damental new functionality required to turn the Kademlia
DHT into a network-layer routing protocol.

The Internet Indirection Infrastructure (i3) [32] uses
a similar peer-to-peer search structure to implement
location-independent naming and communication with
multicast and anycast support. i3 provides special-case
support for forwarding traffic to hosts behind firewalls,
but it depends on all participating hosts being connected
to the Internet at all times and does not implement general
network-layer routing functionality.

5.3 Other Systems

A resilient overlay networks (RON) [1] serves a function
similar in spirit to UIP, increasing the reliability of an IP
network by detecting connectivity failures in the under-
lying network and forwarding traffic around them. RON
makes no attempt at scalability beyond a few dozen nodes,
however, and assumes that all participating nodes have
unique IP addresses.

Several protocols have been developed to provide
connectivity through firewalls and NATs, such as
SOCKS [17], STUN [29], and UPnP [34]. These special-
purpose protocols are tied to the characteristics and net-
work topologies of commonly deployed NATs and fire-
walls, however, and do not solve the more general prob-
lem of routing between different address domains con-
nected in arbitrary fashion.

6 Conclusion

Today’s global network infrastructure has grown in size
and diversity beyond the reach of any single address-
based internetworking protocol. IPv4 and IPv6 have the
scalability necessary to route between millions or billions
of nodes, but their centrally-administered hierarchical ad-
dress domains make edge networks dependent on either
tedious manual address assignment or continual connec-
tivity to address services such as DHCP. Existing ad hoc
networking protocols are fully self-configuring, but they
do not have the scalability of IP.

UIP, a scalable identity-based routing protocol, stitches
together multiple address-based routing domains into a
single flat namespace, enabling any-to-any communi-
cation via location-independent node identifiers. With
identity-based routing, participating nodes in private IP
address domains and ad hoc edge networks become uni-
formly accessible from anywhere while connected to the
global Internet. Even while disconnected from the global

Internet, however, with UIP these edge networks remain
functional and maximally interconnected.

Simulation-based experiments with UIP indicate that
its routing and forwarding protocol is practical and scal-
able. Although UIP nodes do not have enough informa-
tion to choose the best possible routes to other nodes, the
routes chosen by UIP nodes are on average no more than
twice as long as the optimal route. These preliminary re-
sults suggest that identity-based routing on Internet-scale
networks may indeed be viable.
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