Efficient Peer-To-Peer Lookup Based on a
Distributed Trie

Michael J. Freedman! and Radek Vingralek?*

! MIT Lab for Computer Science, 200 Technology Sq., Cambridge, MA 02139 USA
email: mfreed@lcs.mit.edu
2 QOracle Corp., 500 Oracle Parkway, Redwood Shores, CA 94065 USA

email: radek.vingralek@Qoracle.com

Abstract. Two main approaches have been taken for distributed key-
value lookup operations in peer-to-peer systems: broadcast searches [1,
2] and location-deterministic algorithms [5-7,9]. We describe a third al-
ternative based on a distributed trie. This algorithm functions well in a
very dynamic, hostile environment, offering security benefits over prior
proposals. Our approach takes advantage of working-set temporal local-
ity and global key/value distribution skews due to content popularity.
Peers gradually learn system state during lookups, receiving the sought
values and/or internal information used by the trie. The distributed trie
converges to an accurate network map over time. We describe several
modes of information piggybacking, and conservative and liberal vari-
ants of the basic algorithm for adversarial settings. Simulations show
efficient lookups and low failure rates.

1 Introduction

We describe a set of algorithms for key-based lookup in a distributed system
consisting of a number of uniform peers. A lookup service is a necessary com-
ponent for peer-to-peer file-sharing systems, which need to map filenames to
the location of peers that store them. Such an algorithm may return the files
themselves or the addresses of servers storing of files.

Most lookup algorithms deploy a lookup structure to efficiently locate values
associated with keys. The lookup structure can be organized as an (extendible)
hash table, a trie, a binary tree, a B-tree, etc. A distributed lookup algorithm
trades off the efficiency of lookups for the maintenance of the lookup structure.
Maintenance is initiated by either a key/value pair insert or by a membership
change.

Lookups can be made very efficient by replicating the lookup structure on
every peer. However, maintenance is slow as all peers must keep their lookup
structure replicas consistent. To date, peer-to-peer systems have taken two ap-
proaches to reducing the maintenance costs.

* This work was partially done while both authors were employed by InterTrust Tech-
nologies, STAR Lab, 4750 Patrick Henry Drive, Santa Clara, CA 95054 USA.

The first approach, adopted by Gnutella [2] and Freenet [1], eliminates the
lookup structure altogether and thus requires no maintenance. However, lookups
are implemented by a broadcast-like search on all known peers, costing efficiency
and scalability. (Freenet aims to reduce overhead by broadcasting first to neigh-
bors that previously returned similar keys and replicating key/value pairs along
the entire path between sender and receiver.)

The second approach partitions the lookup structure and distributes a subset
of partitions on each peer. Since maintenance updates are typically localized,
peers update only a smaller number of partition replicas. The system assigns
partitions to peers either statically or dynamically. In the static-assignment ap-
proach, peer addresses are mapped to the key space and each node replicates only
those partitions that are “close” to its address. Systems such as Chord [7] (map-
ping via consistent hashing), CAN [5] (routing on a d-torus), and Tapestry [9]
and Pastry [6] (both related to Plaxton trees [4]) adopt this model. The static
assignment, enables efficient message routing, with the worst case message over-
head limited by a logarithm of the network size (assuming no updates to the
lookup structure). However, if peers join and leave the network rapidly, the
lookup structure may never stabilize to a state that enjoys this provably loga-
rithmic bound. Furthermore, the routing overhead does not adapt to the work-
load. Consequently, peers will always incur a higher message overhead to access
“far away” parts of the key space. Moreover, the peers must dedicate resources
for upkeep of the routing information that they do not use. Finally, it is easy for
an attacker to target a specific part of the key space because she can determine
(using the static mapping) the peers that hold the corresponding partitions of
the lookup structure.

When the partitions are assigned dynamically, the distribution of the par-
titions can adapt to the workload by having peers replicate only the partitions
that they frequently access. It is also harder to attack a particular part of the
key space because it may be impossible to determine locations of all replicas of a
particular partition without inspecting routing tables of all peers. However, the
same property makes efficient routing more difficult.

Relaxing the consistency criteria for partition replicas can further reduce
maintenance costs. However, it can happen that peers hold stale replicas if they
update local lookup structures lazily [3,8]. They can commit addressing errors
when requesting values from peers that are unavailable or that no longer hold
the values. To ensure that the extra cost of addressing errors does not approach
the cost of a broadcast, peers must limit addressing errors by piggybacking the
updates on other traffic. Then, peers reconcile conflicting updates to achieve
replica convergence.

We present a set of algorithms that exploit both dynamic partitioning based
on peers’ access locality and lazy updates of the lookup structure to reduce
maintenance cost. All algorithms piggyback trie state on lookup responses. Peers
use timestamping to reconcile conflicting updates. The algorithms differ in the
volume of the trie structure piggybacked and how aggressively the requester uses
these partitions.

These algorithms do not preclude strong anonymity for either peers initiating
a lookup or peers storing the corresponding value. The trie structure can index
endpoints of fixed-length mix-net circuits, as opposed to the desired peers. The
mix-net circuit will relay messages from an endpoint to an anonymized recip-
ient. Therefore, our lookup algorithms (as well as Chord, CAN, Tapestry and
Pastry) can provide anonymity at a constant cost of extra messages, by treating
anonymity as a goal for the underlying communication channel.

2 System model

The system consists of n peers that all implement the following interface:

— lookup(key). The callee sends to the caller the value associated with key
if successful or a failure message. In both cases, the callee may piggyback
additional state on the response (algorithm dependent).

— insert(key, value). The callee inserts a < key,value > pair into its
lookup structure.

— join(). The callee sends to the caller initial state needed to bootstrap
lookup operations.

Peers cannot update or delete values that were previously inserted, although
they can re-insert new versions under a different (or even the same) key. The
caller is responsible for ensuring key uniqueness, if required. Peers join the system
only intermittently, where “join” is defined as an initial entry into the network,
not a reconnection after failure. Peers can leave at any time or fail silently; no
maintenance operations are necessary in either case.

Each peer stores a number of key/value pairs locally, that were either inserted
or looked up by the peer. The peer also stores partitions of a lookup structure
organized as a trie, as shown in Figure 1. A trie representation is insensitive
to the insertion ordering. Consequently, it is easier to merge two incomparable
versions of the lookup structure.

Internal trie nodes consist of 2™ routing tables. Fach routing table consists
of [entries. An entry consists of a peer address a and a timestamp ¢. Each level
of trie node “consumes” m bits of the k-bit key. If the node is a leaf (defined as
having depth [k/m]), then the entry in its matching routing table indicates that
peer a was known at time ¢ to hold the specified value. Otherwise, the entry at
its ith routing table indicates that peer a was known at time ¢ to hold a replica
of the ¢th child of the node. The timestamps are generated locally by each peer;
we assume loose clock synchronization (say, to within a few hours).

Each peer stores only the subset of trie nodes corresponding to its access
pattern. However, all peers maintain the following invariant:

Ancestor invariant: If a peer holds a trie node, it must hold all ancestors
of the node.

We represent trie paths more compactly by explicitly relying on this invari-
ant: If a peer appears in some routing table, it is known to hold not only the

Root
,,,,,,, el = Routing
Table

QOF#**xrxx QLFs*skars QERrrREss [QrRkerREs

m 10% 1r
Sl | EEEE BLEE BEEEE EEEH

o/ »
i

0100****** "0101 """ 0110’ 01171’
ElEEE B EEEE BEEEE

01010100** 01010101** 01010110** 01010111**
R §,§,§,§ EEEE] B

Fig. 1. Trie lookup structure (k = 10, m = 2).

node’s child, but also an entire path down to that child. Peers naturally maintain
this invariant by replacing trie nodes and routing table entries based on access
frequency. Logically, nodes closer to the trie root are more widely replicated by
peers, removing any single point of failure.

3 Algorithms

The algorithms we present for a distributed trie lookup share most of the basic
steps. They differ only in what state is piggybacked on lookup responses and how
this state is used. We first describe the basic framework shared by all algorithms
and subsequently the differences.

In order to join the distributed system, a peer needs to know the address of
at least one participating peer, called its introducer. The introducer responds to
a join request with its own root routing table, as labeled in Figure 1. The new
peer uses this root routing table as a bootstrap mechanism when it exhausts the
entries within its own trie during a lookup.

Insertion is performed locally by inserting the key/value pair (and the cor-
responding path from the root of the trie) into local storage. Alternatively, the
peer could send an insert request to other peers, similar to [1]. The peers may
decline to store the inserted pair. This paper does not consider such an insert
operation, in order to focus solely on the effect of piggybacking state in lookups.

The lookup caller first checks local storage for the value corresponding to the
lookup key. If present, the lookup process terminates. Otherwise, the caller initi-
ates a distributed lookup process. We present an example of 1ookup (0101000000)
for comprehension.

Caller A searches its local trie for a routing table that most specifically
matches lookup key. Such a routing table 010100%* is shown with a solid box

in Figure 1. Subsequently, caller A then sends a lookup query to peer B, who
has the latest timestamp in the routing table. Peer B is most recently known
(to Peer A) to hold the child trie node 010100 (that A does not currently
have). B returns the actual value if B holds it. B’s response may either contain
additional trie state or be a failure with no state. If B returns a deeper routing
table, A drops down to that level and repeats this process. If B returns failure,
caller A tries other peers in its routing table in decreasing timestamp order. If
all such peers fail, A backtracks in its local trie and repeats the same process on
the parent routing table. The figure shows a dashed line: routing table 010100%
failed and is crossed out, and A backtracked to routing table 0101x*.

Recall that each trie node’s routing tables are of maximum size [. Once the
caller starts backtracking, we enumerate larger “virtual” routing tables: an entry
list containing all peers thought to hold the desired child trie node. Peer A’s
virtual view of 0101* is that level’s actual routing table merged with all tables
in its subtrie (minus the entries in table 010100 already contacted). By the
ancestor invariant, the peers holding trie nodes in the subtrie must also have a
copy of the higher-level routing table. Therefore, we effectively increase the size
of the higher-level routing tables without additional storage. If an entry’s routing
table is full when new entries are installed, the least recent entry is evicted from
this table and propagates up the trie according to timestamp.

Peers may backtrack their local tries during lookup up to the root routing
table. If the value is not found at this time, the lookup process terminates with
a failure.

3.1 Bounded, unbounded, and full path modes

The bounded, unbounded, and full path modes explore the tradeoff between the
size of piggybacked trie state with the speed of convergence of peers’ tries to an
accurate network map.

In bounded mode, the callee responds to a lookup with its most specific routing
table matching the key (or the value itself), provided its routing table is more
specific (deeper) than the caller’s current table. Otherwise, the callee responds
with a failure. The caller integrates the more specific routing table into its local
trie and proceeds with the lookup on this table.

In unbounded mode, the callee responds with its most specific routing table
for the key, regardless of how this compares to the caller’s current routing table.
This additional state is useful to pre-fetch information about new peers or more
recent locations of higher-level trie nodes to be used when backtracking. The
caller integrates the returned routing table into its local table at that same
depth, by selecting the | most recent distinct entries from the two tables.

In full path mode, the callee responds with the entire path (consisting of
routing tables) from the root table to its most specific routing table for the key.
The caller integrates the path into its local trie using the same mechanism as in
the unbounded mode.

3.2 Comnservative and liberal modes

Most peer-to-peer lookup algorithms are susceptible to malicious behavior. We
describe one particular attack conceptually similar to DNS cache poisoning and
propose a conservative mode to resist this attack.

A malicious peer can effectively suppress access to a value by falsely adver-
tising the availability of some key (with a recent timestamp) and then dropping
lookup requests. A set of [malicious peers can cause innocent peers to com-
pletely replace the entries in their routing tables with malicious peer addresses.
While backtracking can help route around this problem by finding less-specific
routing tables, these malicious peers have caused the system to lose efficiency.

We propose a verified-only update heuristic for a conservative mode. Namely,
callers update their local trie with only the new entries that transitively led them
to the desired value. This assumes that peers can verify the validity of returned
data. For example, if peer B returns {C,D,E} to peer A at depth 1, peer C returns
{F,G,H} to A at depth 2, and peer F returns the actual value, peer A updates
his trie only with peers B, C, and F in the corresponding-depth routing tables.
Conservative mode ensures that entries in our routing tables have performed
useful work in the past. Therefore, we hope they will continue to be useful.

In liberal mode, callers immediately update their local tries with any piggy-
backed state.

4 Preliminary experimental evaluation

We implemented a simulator to compare the performance of algorithms modes
described in Section 3. We present preliminary simulation results in this section.

We simulated a system consisting of 200 peers. The tries maintained by
the peers were characterized by parameters £k = 10, m = 2 and [= 10. Each
experiment started with an initial loading phase, when the peers inserted a total
of 2,000 randomly-generated key/value pairs in the system. These pairs were
distributed randomly among all peers. The keys were uniformly distributed in
[0,2% — 1]. Subsequently, at each simulated time-step, we issued a lookup to a
randomly-selected peer and dynamically changed the membership by removing
peers or adding new ones with a probability 0.005.

For each lookup phase we collected the following statistics:

— Message overhead. We classify lookups as either local (i.e., those that could
be satisfied by a peer locally) or remote (i.e., those that required sending
lookup operations to other peers). For each remote lookup, we measured the
number of lookup operations that were sent to other peers (transitively) in
order to satisfy the request.

— Failure probability. For each lookup, we measured the probability of its fail-
ure. A lookup fails when the requesting peer’s trie did not contain sufficient
information to locate an existing key/value pair (even after contacting other
peers).

1000

T T

Bounded, conservative mode —+—

Bounded, liberal mode --

Unbounded, conservative mode --
Unbounded, liberal mode &

Full path, conservative mode --m-

Full path, liberal mode ---e---

T a2

""'X"*"X\x"*"X"x‘**»x»/x\x

e ~
X e

Remote lookup messages (90th percentile)

1 L L L L L L L
0 100 200 300 400 500 600 700

Average number of lookups per peer

Fig. 2. The 90" percentile of the number of messages generated by a remote lookup.

100 . .
Bounded, conservative mode —+—
Bounded, liberal mode --
Unbounded, conservative mode ---*

M Unbounded, liberal mode &
’“k Full path, conservative mode --m-
l>é % Full path, liberal mode ---o---

Remote lookup messages (50th percentile)

Average number of lookups per peer

Fig. 3. The 50" percentile of the number of messages generated by a remote lookup.

10

T T
Bounded, conservative mode —+—
Bounded, liberal mode --
Unbounded, conservative mode ---*:
Unbounded, liberal mode &

Full path, conservative mode --m-
Full path, liberal mode ---e---

Remote lookup messages (10th percentile)

500 600 700
Average number of lookups per peer

Fig. 4. The 10*" percentile of the number of messages generated by a remote lookup.

Probability of lookup failure

T T

Bounded, conservative mode —+— |

Bounded, liberal mode ---x---

Unbounded, conservative mode ---%---
Unbounded, liberal mode &

Full path, conservative mode --m-

Full path, liberal mode ---e---

0.012 |-

0.008
0.006 - i
0.004

0.002

0 100 200 300 400 500 600 700
Average number of lookups per peer

Fig. 5. The probability of lookup failure.

The message overheads of all algorithm modes are found in Figures 2, 3,

and 4. The three figures respectively show the 90t 50" and 10t* percentiles
of the number of query/response message pairs (i.e., lookup operations) that
were generated by a remote lookup. The reported values are conservative, as the
message overhead explicitly excludes lookups that were satisfied locally. We also
did not allow peers to benefit from access locality by generating keys according
to a skewed distribution. The failure probabilities of all algorithm modes are
found in Figure 5.

Based on the limited test data, we make the following conjectures:

— The message overheads of all modes converge toward less than logn lookup

operations per remote lookup. The failure probability of all modes converge
toward zero. Thus peers seem capable of correctly learning a recent view of
the distributed trie.

— There is an implicit trade-off between message size and convergence time to

low message overhead. Full path mode converges the fastest, yet sends the
largest messages. Bounded mode converges the slowest, but with the benefit
of sending smaller messages.

— The bounded and unbounded conservative modes converge slower than their

liberal counterparts. (The increases in message overhead for the conserva-
tive modes, as shown in Figure 2, is a consequence of the learning process:
While a lookup might fail after a node contacts its few known peers at the
beginning, it will exhaustively contact its increasing number of known peers
as the experiment progresses.) Consequently, there is a performance cost for
reducing risk of a system infiltration by malicious peers.

— The full path conservative and liberal modes converge with almost the same

rates. Therefore, if peers exchange enough state, they can reduce the risk of
malicious system infiltration with only small performance loss.

In addition to these experiments with dynamic membership, we ran a sim-
ilar series of experiments with static membership. The results were practically
the same as those reported in the included figures (we exclude the correspond-
ing graphs due to space constraints). Therefore, we conjecture that all of the
algorithm modes are relatively resilient to system membership changes.

5 Conclusions

We propose a new approach to key/value lookup in peer-to-peer systems based on
a distributed trie. Compared to broadcast-based routing, the algorithms clearly
lead to a lower message overhead.

Compared to the static-partitioning-based (or location-deterministic) ap-
proaches, these algorithms can deliver a lower message overhead, given sufficient
time for peers to learn the distribution of frequently-accessed keys. Message
overhead does not depend on the proximity between the peer address and the
looked-up key, nor are peers required to maintain state about regions of the
keyspace that they do not access. Our algorithms do not assume a globally
known mapping of peers address space into the key space. Consequently, it is
more difficult for an adversary to target all replicas of a particular key/value
pair because it is impossible to determine all locations of a particular key/value
pair without inspecting routing tables of all peers.

On the other hand, our algorithms can degenerate to a broadcast for peers
with very stale views, while the static-partitioning-based approaches have loga-
rithmic upper bounds on message overhead per lookup. (Although the logarith-
mic upper bounds assume absence of updates to the lookup structure.)

We believe that both static and dynamic partitioning algorithms have their
merits. The static algorithms provide a better worst case behavior and typically
require peers to store a smaller state. The dynamic algorithms can adapt to the
workload and are more resilient to certain types of attacks. We conceive that
both kinds of algorithms may be used in conjunction: A peer may send a limited
number of lookup operations based on its local trie and, only if all failed, revert
to a static-partitioning-based lookup. Symmetrically, if the static-partitioning
algorithms seek to reduce their (fixed) message overhead by caching additional
state, they can use our algorithms to maintain consistency of the cached state.

References

1. Tan Clarke, Oscar Sandberg, Brandon Wiley, and Theodore Hong. Freenet: A dis-
tributed anonymous information storage and retrieval system. In Proceedings of the
Workshop on Design Issues in Anonymity and Unobservability, pages 4666, July
2000.

2. Gnutella website. http://gnutella.wego.com.

3. W. Litwin, M. Neimat, and D. Schneider. [h* - linear hashing for distributed files.
In In Proceedings of the ACM SIGMOD Conference, May 1993. Washington, DC.

. C. Plaxton, R. Rajaraman, and A. Richa. Accessing nearby copies of replicated
objects in a distributed environment. In Proceedings of the ACM SPAA, pages
311-320, June 1997.

. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-
addressable network. In Proc. ACM SIGCOMM, San Diego, 2001.

. Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed object loca-
tion and routing for large-scale peer-to-peer systems. In Proceedings of the 18th
IFIP/ACM International Conference on Distributed Systems Platforms (Middle-
ware 2001), November 2001.

. Ton Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrish-
nan. Chord: A scalable peer-to-peer lookup service for internet applications. In
Proc. ACM SIGCOMM, San Diego, 2001.

. R. Vingralek, Y. Breitbart, and G. Weikum. Distributed file organization with
scalable cost/performance. In In Proceedings of the ACM-SIGMOD International
Conference on Management of Data, May 1994. Minneapolis, MN.

. Ben Zhao, John Kubiatowicz, and Anthony Joseph. Tapestry: An infrastructure for
fault-tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141,
Computer Science Division, U. C. Berkeley, April 2001.

