Language and Compiler Support for
Dynamic Code Generation
by
Massimiliano A. Poletto

S.B., Massachusetts Institute of Technology (1995)
M.Eng., Massachusetts Institute of Technology (1995)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 1999

(© Massachusetts Institute of Technology 1999. All rights reserved.

Department of Electrical Engineering and Computer Science
June 23, 1999

Certified Dyo
M. Frans Kaashoek

Associate Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted Dy . ..o e
Arthur C. Smith
Chairman, Departmental Committee on Graduate Students

Language and Compiler Support for
Dynamic Code Generation
by
Massimiliano A. Poletto

Submitted to the Department of Electrical Engineering and Computer Science
on June 23, 1999, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

Dynamic code generation, also called run-time code generation or dynamic compilation, is the cre-
ation of executable code for an application while that application is running. Dynamic compilation
can significantly improve the performance of software by giving the compiler access to run-time infor-
mation that is not available to a traditional static compiler. A well-designed programming interface
to dynamic compilation can also simplify the creation of important classes of computer programs.
Until recently, however, no system combined efficient dynamic generation of high-performance code
with a powerful and portable language interface. This thesis describes a system that meets these
requirements, and discusses several applications of dynamic compilation.

First, the thesis presents ‘C (pronounced “Tick-C”), an extension to ANSI C that allows the
programmer to express and manipulate C code fragments that should be compiled at run time. ‘C
is currently the only language to provide an imperative programming interface suitable for high-
performance dynamic compilation. It can be used both as an optimization, to improve performance
relative to static C code, and as a software engineering tool, to simplify software that involves
compilation and interpretation.

Second, the thesis proposes several algorithms for fast but effective dynamic compilation, in-
cluding fast register allocation, data flow analysis, and peephole optimization. It introduces a set
of dynamic compilation benchmarks, and uses them to evaluate these algorithms both in isolation
and as part of an entire ‘C implementation, tcc. Dynamic ‘C code can be significantly faster than
equivalent static code compiled by an optimizing C compiler: two- to four-fold speedups are common
on the benchmarks in this thesis. Furthermore, tcc generates code efficiently—at an overhead of
about 100 to 600 cycles per generated instruction—which makes dynamic compilation practical in
many situations.

Finally, the thesis establishes a taxonomy of dynamic optimizations. It highlights strategies for
improving code with dynamic compilation, discusses their limits, and illustrates their use in several
application areas.

Thesis Supervisor: M. Frans Kaashoek
Title: Associate Professor of Electrical Engineering and Computer Science

Acknowledgments

This thesis would not exist without Dawson Engler and Frans Kaashoek. Dawson was the main
designer of the ‘C language, and his enthusiasm for dynamic code generation sparked my interest
in this area. Throughout grad school he was a source of energy, ideas, and intellectual curiosity. I
am also happy and grateful to have worked with Frans. He has been an excellent advisor—friendly,
encouraging, and enthusiastic. I envy his energy and unshakeable optimism. He deserves all the
credit for convincing me to finish this thesis when I was nauseated and ready to abandon it all in
favor of new projects.

I also thank Wilson Hsieh, Vivek Sarkar, and Chris Fraser. Wilson was a great help at many
points in my ‘C work, and has given me friendship and good advice even though I once ate his ivy
plant. T much enjoyed working with Vivek, and thank him for the opportunity to be supported by
an IBM Cooperative Fellowship. Chris shared my enthusiasm for the Olympic Mountains, and his
minimalist aesthetic continues to influence my thinking about engineering.

My thanks to all of the PDOS group for providing an excellent (if sometimes abrasive) work
environment over the last five years. It was fun and a little humbling to interact with everyone,
from Anthony and Debby when I first started, to JJ, Chuck, and Benjie now that 'm almost done.
Neena made bureaucracy easy, and valiantly tried to keep my office plants alive: my evil dark thumb
eventually vanquished her good green thumb, and by this I am deeply saddened. A special thank-you
to my two long-time officemates, David and Eddie, who put up with my moods and taught me more
than most about computers and about myself, and also to Emmett, whose humor helped to keep
me out of the bummer tent.

I would have quit grad school many crises ago without the support and love of Rosalba. I hope
to have given back a fraction of what I have received.

Infine, di nuovo, un grazie di cuore ai miei genitori per tutto.

Sometimes a scream is better than a thesis.

Ralph Waldo Emerson

The ‘C language was originally designed by Engler et al. [23]. I was involved in later modifications and extensions
to the language. Several parts of this thesis, including much of Chapters 2, 3, and 4, are adapted from Poletto
et al. [57]. Section 5.2 is a revision of text originally published in Poletto and Sarkar [58].

I was supported in part by the Advanced Research Projects Agency under contracts N00014-94-1-0985, N66001-
96-C-8522, and F30602-97-2-0288, by a NSF National Young Investigator Award to Frans Kaashoek, and by an IBM
Cooperative Fellowship.

Contents

1 Introduction
1.1 AnExample L e e e e
1.2 Contributions L e e e e
1.3 Issues in Dynamic Compilation
1.3.1 Implementation Efficiency oo,
1.3.2 Interface Expressivenesso
1.4 Related Work L e
1.4.1 Ease of Use and Programmer Control
1.4.2 Compilation Overhead and Programmer Control
1.5 Outline L e e e e
2 Language Design
2.1 The ‘CLanguage o v v v v i e e e e e e e e e e e e e e e e
2.1.1 The Backquote Operator
2.1.2 Type Constructors o o it e e e e e e
2.1.3 Unquoting Operators o it
2.1.4 Special Forms oL
2.2 Subtleties and Pitfalls
2.2.1 The Dynamic Compilation Model
2.22 Unquoting o e
2.2.3 Imteractions with C. e
2.3 Potential Extensions to ‘C
2.3.1 Syntactic Sugar for Dynamic Code
2.3.2 Declarative Extensions
233 ToAddor Not to Add?
3 Applications
3.1 A Taxonomy of Dynamic Optimizations
3.1.1 Specialization to Data Values
3.1.2 Specialization to Data Types
3.1.3 Elimination of Call Overhead
3.1.4 Elimination of Interpretation Overhead
3.2 Limits of Dynamic Compilation
4 Implementation and Performance
4.1 Architecture
4.2 The Dynamic Compilation Process
4.2.1 Static Compile Time L
422 RunTime o 0 e e
4.3 Run-Time Systems L e
4.3.1 VCODE e
4.3.2 ICODE e e e
4.4 Evaluation Methodology

4.4.1 Benchmark-Specific Details o .

4.4.2 Measurement Infrastructure 0o
4.4.3 Comparison of Static and Dynamic Code
4.5 Performance Evaluation e
4.5.1 Performance e e e e e e
4.5.2 Analysis e e
4.6 SUMMATY o o vt e e it e e e e e e e e e e e e e e

Register Allocation

5.1 One-Pass Register Allocation
5.2 Linear Scan Register Allocation Lo oo
5.2.1 Background
5.2.2 The Algorithm
5.2.3 Evaluation
5.24 Discussion e e e e e e
5.3 Two-Pass Register Allocation e
One-Pass Data Flow Analyses
6.1 The Algorithms e e e
6.2 Evaluation. e
6.3 Summary e e e e e e e e e e e e e
Fast Peephole Optimizations
7.1 Related Work
7.2 Design o e
7.2.1 Rewrite Rules.
7.2.2 Optimizer Architecture o o
7.2.3 The bpo Interface
7.3 Efficient Pattern-Matching Code
74 Applications oL e e e
7.5 Evaluation
T6 SUmMmary e e e e e e e e e
Conclusion
8.1 Summary and Contributions L
81.1 Language
8.1.2 Implementation L.
8.1.3 Applications
8.2 Future Work
8.2.1 Code Generation Issues L
8.2.2 Architectural Interactions
8.2.3 Automatic Dynamic Compilation
8.3 Final Considerations
A Dynamic Compilation Cookbook
A.1 Numerical Methods 0 e
A.1.1 Matrix Operations o oL L e e e e e e
A.1.2 Numerical Integration e
A.1.3 Monte Carlo Integration
A.1.4 Evaluation of Functions e
A.1.5 Fast Fourier Transform
A 1.6 Statistics o L e e e e e e
A.1.7 Arbitrary Precision Arithmetic L.
A.2 Non-Numerical Algorithms
A.2.1 Sorting Algorithms

A3

A.2.2 Graph Algorithms 126
A .23 String and Pattern Matching oL 126
A.24 Circuit Simulation 127
A25 Compression e e e e e e e 128
Computer Graphics. oL L e 129
A3.1 Clpping . . . o o o o e e 129
A3.2 Shading 129
A.3.3 Scan Conversion of Conics 129
A.3.4 Geometric Modeling 129
A 3.5 Image Transformation 130

10

List of Figures

3-1
3-2

3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19

4-1
4-2
4-3
4-4
4-5

General outline of the dynamic compilation process. 16
An example of dynamic compilation. oL 16
Tradeoff of dynamic compilation overhead versus code quality.. 19
Dynamic compilation overhead versus code quality for Java. 19
Partial design space for dynamic code generation systems. 22
Another view of the dynamic code generation design space. 24
A hash function written in C. 45
Specialized hash function written in ‘C. oo 0oL 45
Code to create a specialized exponentiation function. 46
‘C code to specialize multiplication of a matrix by an integer. 46
A dot-product routine written in C. L Lo 47
‘C code to build a specialized dot-product routine. 47
A tail-recursive implementation of binary search. 47
‘C code to create a “self-searching” executable array. 47
An executable data structure for binary search. 48
Code to create a hard-coded finite state machine. oL, 49
‘C code to generate a specialized swap routine. L. 50
Generating specialized copy code in ‘C. 51
Sample marshaling code in ‘C. oL oo 52
Unmarshaling code in “‘C. L 52
‘C code that implements Newton’s method for solving polynomials. 53
A small pipe written in ‘C. 54
‘C code for composing data pipes. Lo e 55
Compilation of a small query language with ‘C. 56
A sample statement parser from a compiling interpreter written in ‘C. 57
Overview of the tcc compilation process. L. 60
Sample closure assignments. L. oLl ol e e e 61
Sample code-generating functions. L. 61
Speedup of dynamic code over staticcode. oL oo 68
Cross-over points, in number of runs.o o0 0oL 69
Dynamic code generation overhead using VCODE. 71
Dynamic code generation overhead using ICODE. 72
Linear scan register allocation algorithm. 79
An example set of liveintervals. Lo 80
Register allocation overhead for ‘C benchmarks. 82
Two types of pathological programs., 83
Register allocation overhead as a function of the number of simultaneously live vari-

ables for programs of type (a). L L 84
Register allocation overhead as a function of program size for programs of type (b).. 85
Run time of ‘C benchmarks compiled with different register allocation algorithms. . 85

11

5-8 Run time of static C benchmarks compiled with different register allocation algorithms. 86

59 An acyclic flow graph. 87
5-10 Overhead of full live variable analysis and SCC-based liveness analysis. 88
5-11 The two-pass register allocation process., 92
6-1 A small control flow graph. L Lo 97
6-2 Work done (basic blocks touched) during null pointer check removal. 99
6-3 Results from null pointer check removal. 99
6-4 Work done (basic blocks touched) during availability analysis. 99
6-5 Results from availability analysis. oL o0 100
7-1 Grammar for binary peephole optimization rewrite rules.. 102
7-2 Generating a binary peephole optimizer in two different ways. 103
7-3 An outline of the bpo rewriting process. oo oL 104
7-4 Example of bpo operation. oL 104
7-5 Generating efficient binary pattern matching code with multiway radix search trees. 106
7-6 An example of code generated by the MRST-based algorithm. 108
7-7 Comparative performance of lookup-table algorithm and MRST-based algorithm. . . 109
7-8 Run-time performance of code generated using VCODE and then optimized by bpo. 110
7-9 Compile-time performance of binary optimization. 111

12

List of Tables

2.1

4.1
4.2

5.1
5.2
5.3
5.4

5.5

The ‘Cspecial forms. 31
Descriptions of benchmarks. e 66
Performance of convolution on an 1152 x 900 image in xv. 70
Register allocation overhead for static C benchmarks using linear scan and binpacking. 83

Run time of static C benchmarks, as a function of register allocation algorithm. . . . 86
Run time of static C benchmarks compiled with linear scan allocation, as a function
of liveness analysis technique. L L Lo 88
Run time of static C benchmarks compiled with linear scan allocation, as a function
of flow graph numbering. L L 89
Run time of static C benchmarks compiled with linear scan allocation, as a function
of spilling heuristic. Lo 89

13

14

Chapter 1

Introduction

Traditional compilers operate in an off-line manner. Compilation—running the compiler to produce
an executable from source code—is seen as completely distinct from the execution of the compiler-
generated code. All instructions that are executed are located in the executable’s text segment,
and the text segment is never changed. On some architectures, the text segment is even mapped
into read-only memory. Split instruction and data caches underscore, at an architectural level, this
assumption of the fundamental difference between code and data.

Dynamic code generation (DCQ), also called run-time code generation (RTCG) or dynamic
compilation, blurs this traditional separation. A compiler that enables dynamic code produces both
“normal” static code and special code (often called a “generating extension” [43] in the partial
evaluation community) that generates additional code at run time. This process is outlined in
Figure 1-1. Delaying some compilation until run time gives the compiler information that it can use to
improve code quality and that is unavailable during static compilation. Information about run-time
invariants provides new opportunities for classical optimizations such as strength reduction, dead-
code elimination, and inlining. Furthermore, explicit access to dynamic compilation can simplify
some programming tasks, such as the creation of compiling interpreters and lightweight languages.
This thesis discusses ways to make dynamic code generation available to programmers and to improve
the quality of dynamic code beyond that of static code.

As a result of traditional compilers’ off-line nature, few care about their performance. It is
assumed that the optimizing compiler will be run only once, when development is complete, whereas
the resulting code may be run many times. As a result, static compiler optimizations are almost
always designed with the sole goal of improving the compiled code, without care for compilation
speed. In contrast, compilation overhead has a direct effect on the performance of programs that
involve dynamic code generation. More dynamic compilation effort usually leads to better dynamic
code, but excessive dynamic optimizations can be counterproductive if their overhead outweighs
their benefits. Much of this thesis addresses performance and implementation issues in fast dynamic
code generation.

1.1 An Example

One of the main applications of dynamic compilation is the creation of code that is specialized to
some run-time data—essentially, dynamic partial evaluation. Consider the example in Figure 1-2.
The static code on the left hand side implements a two-dimensional median filter. For each point in
the data set, it multiplies neighboring points by values in the mask, computes the mean, and writes
out the new value. For each data point, the code performs approximately 2ij memory reads and
17 multiplications. Furthermore, to handle the borders of the data, the code must either perform
special checks or use several convolution loops with masks of different shapes.

If the mask were to always remain the same, we could easily partially evaluate—either by hand or
automatically—this code with respect to the mask. If the mask contained all 1s, as in the example,
then the filter would simply take the mean of adjacent data points, and each data point would

15

source code
(dynamic and static)

()
.g static compiler
v
o
=
o
(&]
9
5] _ _
1} static code code to generate dynamic code
Dynamic compilation
()
§ executable dynamic code
=
=
@
\j

answer

Figure 1-1: General outline of the dynamic compilation process.

Mask: ! Data: Data:

[
(SRS
PP e

Dynamic compilation | coge: @~/ \ |
form=...

get data, compute mean

forn=..
store new data

get data
compute mean
store new data

Figure 1-2: An example of dynamic compilation. On the left, static code convolves a two-dimensional
data set with a convolution mask. On the right, dynamic code has been specialized with respect to
the convolution mask.

16

require only 7j memory reads and no multiplications. Border cases would be handled efficiently, and
maybe the main loop could be partially unrolled.

Dynamic compilation allows us to do exactly such optimizations, but even when the values in
the mask change at run time. The right half of Figure 1-2 illustrates the dynamically generated
code. Section 4.5 shows that this sort of optimization can considerably improve the performance
of a popular graphics package like xv. As we shall see in Chapter 3, dynamic optimizations can
take on many forms: executable data structures, dynamically inlined functions, simple and efficient
compiling interpreters, and many others.

1.2 Contributions

Dynamic code generation has been employed successfully in several systems [46] to provide per-
formance that could not have been attained with static code, but implementing it was generally
complicated and tedious. Interpreted programming environments such as Lisp [70] and Perl [75]
furnish primitives for dynamic construction and interpretation of code that are expressive and easy
to use, but they have high run-time overhead. Prior to the work in this thesis and to similar systems
developed at about the same time at the University of Washington [4, 38, 39] and at INRIA [14],
no language or tool offered practical and high-level access to efficient dynamic generation of high-
performance code.

This thesis describes the design and implementation of a language that provides these features,
and presents some of its applications. It addresses three central aspects of dynamic code generation:

Language support. It describes ‘C (pronounced “Tick-C”), an extension to ANSI C that supports
dynamic code generation, and discusses alternative methods of exposing dynamic compilation
to the programmer.

Implementation. It presents tcc, a ‘C compiler that we have implemented. It also introduces sev-
eral algorithms that can be used to improve the effectiveness of dynamic compilation. These
algorithms include three different schemes for fast register allocation, one-pass data flow anal-
yses, and fast binary peephole optimizations.

Applications. It establishes a taxonomy of applications for dynamic code generation, and illus-
trates several uses of dynamic compilation in areas such as numerical computing and computer
graphics.

‘C is a superset of ANSI C that supports high-level and efficient dynamic code generation. It
allows the programmer to express dynamic code at the level of C expressions and statements and to
compose arbitrary dynamic code at run time. It enables a programming style slightly similar to that
of Lisp, and simplifies the creation of powerful and portable dynamic code. Since ‘C is a superset
of ANSI C, it can be used incrementally to improve the performance of existing C programs. This
thesis describes ‘C in detail, and discusses possible extensions and other ways of expressing dynamic
code.

tce is an efficient and freely available experimental implementation of ‘C that has been used by
us and by others to explore dynamic compilation. It has two run-time systems that allow the user
to trade dynamic code quality for dynamic code generation speed. If compilation speed must be
maximized, dynamic code generation and register allocation can be performed in one pass; if code
quality is most important, the system can construct and optimize an intermediate representation
prior to code generation. The thesis describes the tcc implementation, and also evaluates fast
compilation algorithms, such as linear scan register allocation and fast binary peephole optimizations,
that are generally applicable to dynamic compilation.

The thesis explores applications of dynamic code in two ways. First, it defines a space of opti-
mizations enabled by dynamic compilation. It describes the space in terms of the underlying code
generation mechanisms and the higher-level objectives of the optimizations, and then populates it
with representative examples. Some of these examples form a suite of dynamic code benchmarks:
they served to obtain the measurements obtained in this thesis and have also been used by others [39].

17

Second, the thesis takes a more focused approach and presents uses of dynamic code generation in
the areas of numerical methods, algorithms, and computer graphics. Each of these examples makes
use of some of the methods that define the design space. The goal is both to span the breadth of
dynamic compilation techniques and to provide some realistic detail within some specific application
areas.

1.3 Issues in Dynamic Compilation

Dynamic code generation can serve two purposes. First, most commonly, it is used to improve
performance by exposing run-time information to the compiler. Second, less obviously, it can serve
as a programming tool: as we shall see, given an adequate interface, it can help to simplify important
classes of programming problems.

1.3.1 Implementation Efficiency

In most cases, dynamic code generation is employed because it can improve performance. This
fact places two requirements on any dynamic code generation system. First, dynamic code must
be efficient. If the dynamic compiler produces poor code, then even aggressive use of run-time
information on the part of the programmer may not result in performance improvements relative to
static code.

Second, the dynamic compilation process must be fast. The overhead of static compilation—
static compile time—does not matter much, but that of dynamic compilation—dynamic compile
time—does, because it is a part of the run time of the compiled program. We measure the overhead
of compilation in cycles required to produces one instruction of code. A static compiler such as gcc,
the GNU C compiler, requires tens of thousands of cycles to generate one binary instruction. A
dynamic compilation system should produce code hundreds of times more quickly—on the order of
tens or hundreds of cycles per instruction—to be practical. Even at such speeds, however, dynamic
compilation often provides a performance advantage relative to static code only if the overhead of
code generation can be amortized over several runs of the dynamic code. In other words, to obtain
good performance results when writing dynamic code, one must usually make sure that the dynamic
code is executed more than once after it is created.

Put differently, consider some static code s and equivalent dynamic code d. Let the run time
of one execution of s be simply Ts. We can express the total time necessary to create and run the
dynamic code as Ty = T4, + Ty, , where T, is the dynamic compile time and T}, is the run time of
dynamic code. Dynamic code improves performance when Ty > T + T}, . The first point discussed
above translates to minimizing T} ; the second point translates to minimizing Ty, . Since for many
problems T,. can be large relative to Ts and Ty, , one may wish to create dynamic code that is used
several (k) times, such that kTs > Ty, + kT4, . The value of k at which this inequality becomes true
is called the cross-over point.

Figure 1-3 illustrates these concepts. The horizontal axis is a high-level measure of work: for
instance, a count of the image frames processed with some filter. It is usually a linear function
of k in the discussion above. The vertical axis measures the amount of time required to perform
this work. For the purposes of this discussion, we ignore situations in which dynamic optimization
provides no benefit over static code. Static code is denoted in the figure by a line with a slope of
Ts: it takes T units of time to perform one unit of work. The line marked Fast DCG represents
mediocre dynamic code generated by a dynamic compiler that emphasizes compilation speed over
code quality. The dynamic code is faster than static code—the corresponding line has a smaller slope,
T,,. However, dynamic compilation requires some overhead, T;, before any work can done, so the
line does not start at the origin, but at a point along the vertical axis. The cross-over point for this
dynamic compiler is A: dynamic compilation improves performance whenever the amount of work to
be done is greater than that denoted by A. The third line, marked Good DCG, represents a dynamic
compiler that generates better good code more slowly. Its startup cost—the starting position on
the vertical axis—is even higher, but the resulting code is still faster—the line has smaller slope.
The cross-over point relative to static code occurs at B, but the cross-over point relative to “quick

18

B,_...,..;/-;;',':‘/"l(‘/“‘ Good DCG

C
2 A~ Fast DCG
[= s
Tl !
{’ Static ;
o code ! 3
Tac T{ | | |
I ‘ I I ‘
1
Work (k)

Figure 1-3: Tradeoff of dynamic compilation overhead versus code quality.

Interpreted -)
bytecode -

" JIT-compiled
bytecode

Time

Statically precompiled code

Work

Figure 1-4: Dynamic compilation overhead versus code quality for Java.

and dirty” dynamic code only happens at C. In other words, we can divide the space into three
regions separated by the dashed vertical lines in the figure. The leftmost region, to the left of A,
corresponds to a small workload, in which static code performs best. The central region, between A
and C, corresponds to an intermediate workload, and is best-suited to the mediocre dynamic code
generated quickly. Finally, the rightmost region corresponds to large workloads, in which the greater
speed of well-optimized dynamic code justifies the overhead of more dynamic optimization. The holy
grail of dynamic compilation is to minimize both the slope and the vertical offset of the lines in the
figure.

It is instructive to compare Figure 1-3 with Figure 1-4, which illustrates a similar tradeoff of
compilation overhead versus code quality for the case of mobile code such as Java [37]. Mobile code
is generally transmitted as bytecodes, which are then either interpreted or dynamically (“just-in-
time”) compiled to native code. Bytecode interpretation is slow but has low latency; just-in-time
compilation requires a little overhead but produces better code. However, it does not aim to exceed
the performance of static code. The goal of most JIT compilers is to approach the performance
of statically compiled code without incurring the overhead of full static compilation. This goal is
in contrast to dynamic compilation as discussed in this thesis, in which static code is taken as the
baseline to be improved by dynamic optimization.

19

One way to reduce Ty, without increasing Ty, is to shift as much work as possible to static
compile time. ‘C does this to some extent: for instance, it is statically typed, so type checking
of dynamic code can occur statically. However, as we shall see in Chapter 2, creation of dynamic
code in ‘C usually involves composing many small pieces of dynamic code. In general, the order of
composition can be determined only at run time, which reduces the effectiveness of static analysis
and makes dynamic optimization necessary. As a result, much of this thesis discusses fast code
improvement algorithms that can be used to reduce Ty, without excessively impacting Ty, . tcc,
the ‘C compiler we have implemented, also addresses this problem by having two run-time code
generation systems, which coincide with the two dynamic compilers illustrated in Figure 1-3. One
run-time system, based on VCODE [22], generates code of medium quality very quickly; it is useful
when the dynamic code will be used few times and when it will run faster than static code even
if it is not optimized. The second run-time system, ICODE, incurs greater dynamic compilation
overhead but produces better code, so it is suitable when one expects that the dynamic code will
run many times.

1.3.2 Interface Expressiveness

Dynamic code generation is naturally suited for simplifying programming tasks that involve compila-
tion and interpretation. Consider an interpreter for a little language. Traditionally, one would write
a parser that produces bytecodes and then a bytecode interpreter. With dynamic code generation,
on the other hand, one can write a front end that creates dynamic code during parsing, which leaves
the back end’s dirty work to the dynamic compilation system. This process removes the need for
bytecodes and a bytecode interpreter, and probably improves the performance of the resulting code.
The key to such flexibility is a powerful programming interface.

Current programming interfaces for dynamic compilation, fall into two categories: imperative
and declarative. The imperative style of dynamic compilation, adopted by ‘C, requires that the pro-
grammer explicitly create and manipulate pieces of dynamic code: until it is dynamically compiled,
dynamic code is data. Similarly, lists in Lisp and strings in Perl are data, but they can be evaluated
as code. This model requires some experience—the programmer must think about writing code that
creates code—but it provides a high degree of control. By contrast, in the declarative model, the
programmer simply annotates traditional static source code with various directives. These directives
usually identify run-time constants and specify various code generation policies, such as the aggres-
siveness of specialization and the extent to which dynamic code is cached and reused. Dynamic code
generation then happens automatically.

Declarative systems have the advantage that most annotations preserve the semantics of the
original code, so it is easy to remove them and compile and debug the program without them.
Furthermore, in the common case, inserting annotations into a program is probably easier than
writing in an imperative style. Declarative systems also have a slight performance advantage. Im-
perative dynamic code programming usually relies on composition and manipulation of many small
fragments of dynamic code. As a result, dynamic code is difficult to analyze statically, which lim-
its the amount of dynamic optimization that can be moved to static compile time. By contrast,
in declarative systems users cannot cannot arbitrarily combine and manipulate code. Annotations
have well-defined effects, so the compiler can usually predict at least the structure—if not the exact
size and contents—of the dynamic code. The difference in interface, therefore, has a fundamental
effect on the implementation of the two kinds of systems, and makes declarative systems somewhat
better suited to static set-up of dynamic optimizations.

Nonetheless, imperative systems have a significant advantage: expressiveness. We must first
distinguish between two kinds of expressiveness—that related to optimization, and that related
more closely to the semantics of the program. The first kind, optimization expressiveness, is the
degree to which the programming system allows the programmer to express dynamic optimization
and specialization. An imperative system like ‘C has a slight advantage in this area, but the most
sophisticated declarative system, DyC [38, 39], can achieve similar degrees of control.

The main appeal of imperative systems lies in their programming flexibility, the “semantic ex-
pressiveness” mentioned above. This flexibility goes beyond simple optimization, and is not one of

20

the design goals of declarative systems. Consider once again the little language interpreter example.
Using a sophisticated declarative system, we could dynamically partially evaluate the bytecode in-
terpreter with respect to some bytecodes, producing a compiler and therefore improving the code’s
performance. With an imperative system like ‘C, however, we would not even have to write the back
end or bytecode interpreter in the first place—we could write a parser that built up dynamic code
during the parse, and rely on the dynamic code generator to do everything else. The performance
of compiled code would come for free, as an incidental side effect of the simpler programming style!

Realistically, of course, not all applications contain compiler- or interpreter-like components.
In those cases, the main purpose of both imperative and declarative systems is to allow dynamic
optimizations, so the potentially greater ease of use of an annotation-based system may be preferable.
In the end, the choice of system is probably a matter both of individual taste and of the specific
programming situation at hand.

1.4 Related Work

Dynamic code generation has been used to improve the performance of systems for a long time [46].
Keppel et al. [47] demonstrated that it can be effective for several different applications. It has
served to increase the performance of operating systems [7, 24, 61, 62], windowing operations [55],
dynamically typed languages such as Smalltalk [20] and Self [12, 41], and simulators [74, 77]. Recent
just-in-time (JIT) compilers for mobile code such as Java [37] use dynamic compilation techniques to
improve on the performance of interpreted code without incurring the overhead of a static compiler.

Berlin and Surati [6] reported 40x performance improvements thanks to partial evaluation of
data-independent scientific Scheme code. The conversion from Scheme to a low-level, special pur-
pose program exposes vast amounts of fine-grained parallelism, which creates the potential for ad-
ditional orders of magnitude of performance improvement. They argued that such transformations
should become increasingly important as hardware technology evolves toward greater instruction-
level parallelism, deeper pipelines, and tightly coupled multiprocessors-on-a-chip. Although Berlin
and Surati used off-line partial evaluators, dynamic specialization of high-level languages like Scheme
can be expected to have similar benefits.

Unfortunately, past work on high-performance dynamic code generation was not concerned with
making it portable or easy to use in other systems. Keppel [45] addressed some of the issues in
retargeting dynamic code generation. He developed a portable system for modifying instruction
spaces on a variety of machines. His system dealt with the difficulties presented by caches and
operating system restrictions, but it did not address how to select and emit actual binary instructions.

Some languages already provide the ability to create code at run time: most Lisp dialects [44, 70],
Tcl [54], and Perl [75], provide an “eval” operation that allows code to be generated dynamically.
The main goal of this language feature, however, is programming flexibility rather than performance.
For instance, most of these languages are dynamically typed, so not even type checking can be
performed statically. Furthermore, the languages are usually interpreted, so the dynamic code
consists of bytecodes rather than actual machine code.

1.4.1 Ease of Use and Programmer Control

Figure 1-5 presents one view of a dynamic code generation design space. We distinguish several
dynamic code generation systems according to two criteria: on the horizontal axis, the degree of
control that the programmer has on the dynamic compilation process, and on the vertical axis,
the system’s ease of use. Both of these categories are somewhat subjective, and the figure is not
completely to scale, but the classification exercise is still useful.

At the top left of the scale are systems that do not give the programmer any control over
the dynamic compilation process, but that use dynamic compilation as an implicit optimization.
compilation. For instance, Self [12] uses dynamic profiling of type information and dynamic code
generation to optimize dynamic dispatch. Just-in-time Java [37] compilers use dynamic compilation
to quickly produce native code from bytecodes. In both of these cases, the programmer is unaware
that dynamic compilation is taking place and has no control over the optimization process.

21

Easier A
Smalltalk, Self, Java
Fabius
Tempo DyC
‘C
Ease of use

DCG
VCODE

Harder Y Synthesis

Less explicit Control More explicit

Figure 1-5: Partial design space for dynamic code generation systems.

At the other end of the spectrum are systems that provide instruction-level control of dynamic
code. Given the low level of abstraction, these are all inherently difficult to use. The Synthesis
kernel [62], for example, used manually generated dynamic code to improve scheduling and I/0 per-
formance, but required a heroic programming effort. More recently, Engler developed two libraries,
DCG [25] and VCODE [22], that make manual dynamic code generation simpler and more portable.
DCG allows the user to specify dynamic code as expression trees. VCODE provides a clean RISC-like
interface for specifying instructions, but leaves register allocation and most instruction scheduling
to the user—it is the closest existing approximation to a dynamic assembly language.

In between these two extremes, the center of the design space is occupied by high-level pro-
gramming systems that expose dynamic code generation to the programmer. They all enable a
high degree of control while remaining relatively easy to use. In general, however, as the amount
of control increases, the ease of use decreases. At one end of this range is the ‘C language, which
is discussed in detail in Chapter 2 and has also been described elsewhere [23, 56, 57]. ‘C is an
extension of ANSI C that enables imperative dynamic code generation: the programmer can write
fragments of C that denote dynamic code and then explicitly manipulate them to create large and
complex dynamic code objects. ‘C gives a vast amount of control over the compilation process and
the structure of dynamic code, but it requires a learning curve.

Other current high-level dynamic compilation systems adopt a declarative approach. Two such
systems have been developed at the University of Washington [4, 38, 39]. The first UW compiler [4]
provided a limited set of annotations and exhibited relatively poor performance. That system per-
formed data flow analysis to discover all derived run-time constants given the run-time constants
specified by the programmer. The second system, DyC [38, 39], provides a more expressive anno-
tation language and support for several features, including polyvariant division (which allows the
same program point to be analyzed for different combinations of run-time invariants), polyvariant
specialization (which allows the same program point to be dynamically compiled multiple times,
each specialized to different values of a set of run-time invariants), lazy specialization, and inter-
procedural specialization. Unlike ‘C, DyC does not provide mechanisms for creating functions and
function calls with dynamically determined numbers of arguments. Nonetheless, DyC’s features
allow it to achieve levels of functionality similar to ‘C, but in a completely different programming
style. Depending on the structure of the dynamic code, DyC generates code as quickly as or a little
more quickly than tcc. As illustrated in Figure 1-5, DyC gives less control over dynamic compilation

22

than ‘C, but it allows easier specification of dynamic optimizations.

Tempo [14], a template-based dynamic compiler derived from the GNU C compiler, is another
C-based system driven by user annotations. It is similar to DyC, but provides support for only
function-level polyvariant division and specialization, and does not provide means of setting policies
for division, specialization, caching, and speculative specialization. In addition, it does not support
specialization across separate source files. Unlike DyC, however, it performs conservative alias and
side-effect analysis to identify partially static data structures. The performance data indicate that
Tempo’s cross-over points tend to be slightly worse than DyC, but the speedups are comparable:
Tempo generates code of comparable quality, but more slowly. Tempo does not support complex
annotations and specialization mechanisms, so it is both easier to use and less expressive than DyC.
The Tempo project has targeted ‘C as a back end for its run-time specializer.

Fabius [51] is another declarative dynamic compilation system. It is based on a functional subset
of ML rather than on C. It uses a syntactic form of currying to allow the programmer to express run-
time invariants. Given these hints about run-time invariants, Fabius performs dynamic compilation
and optimization—including copy propagation and dead code elimination—automatically. Fabius
achieves fast code generation speeds, but it does not allow direct manipulation of dynamic code and
provides no annotations for controlling the code generation process. Thus, it is both the easiest to
use and the least flexible of the high-level systems we have considered so far.

The Dynamo project [50]—not pictured in Figure 1-5—is a successor to Fabius. Leone and
Dybvig are designing a staged compiler architecture that supports different levels of dynamic op-
timization: emitting a high-level intermediate representation enables “heavyweight” optimizations
to be performed at run time, whereas emitting a low-level intermediate representation enables only
“lightweight” optimizations. The eventual goal of the Dynamo project is to build a system that will
automatically perform dynamic optimization.

In summary, employing ease of use and degree of programmer control as metrics, we can divide
dynamic compilation systems into roughly three classes: those, like Self and Java implementa-
tions, that use dynamic compilation as an implicit optimization, without programmer intervention;
those, like VCODE, that give the programmer instruction-level—and therefore often excessively
complicated—control of code generation; and a “middle ground” of programming systems that ex-
pose dynamic compilation to the programmer at a high level. ‘C, the language described in this
thesis, falls into this intermediate category.

1.4.2 Compilation Overhead and Programmer Control

Another way to dissect the dynamic compilation design space is to look at code generation overhead.
Figure 1-6 uses the same horizontal axis as Figure 1-5, but the vertical axis measures the overhead
of dynamic code generation for each system.

As before, the Self implementation is in the top left corner. Unlike most other systems, Self uses
run-time type profiling to identify optimization candidates. It then performs aggressive dynamic
optimizations such as inlining and replacing any old activation records on the stack with equivalent
ones corresponding to the newly optimized code. However, Self is a relatively slow purely object-
oriented dynamically typed language, and dynamically optimized code can be almost twice as fast
as unoptimized code. As a result, the overhead of dynamic compilation is easily amortized.

Java just-in-time compilers cover a wide area of the spectrum; their overhead depends very much
on the amount of optimization that they perform. Naive translation of bytecodes to machine code
requires a few tens or hundreds of cycles per instruction; more ambitious optimizations can require
much more.

At the other end of the design space, low-level systems like VCODE or the dynamic code gener-
ation parts of the Synthesis kernel generate code in under fifty cycles per instruction.

Not unlike Java JITs, the ‘C implementation spans a wide range of code generation overhead.
The one-pass dynamic run-time system based on VCODE generates code of fair quality in under
100 cycles per instruction. The more elaborate run-time system, ICODE, generates better code but
incurs about six times more overhead.

The declarative systems have varying amounts of overhead, but they tend to be at the low end

23

More A
Self
Generation Java JITs
overhead
‘C
Tempo DCG
DyC
Fabius VCODE
Synthesis
Data specialization
Less ¥ (Memoization)
Less explicit Control More explicit

Figure 1-6: Another view of the dynamic code generation design space.

of the ‘C overhead spectrum. Fabius, which only provides limited annotations, is the fastest system,
but DyC, which supports a large set of annotations, also generates code in well under 100 cycles
per instruction. Such performance is not simply an artifact of specific implementations, but a side-
effect of these systems’ declarative programming interface. Declarative annotations allow the static
compiler to predict the structure of dynamic code more easily than imperative constructs. They
therefore increase the amount of compilation work that can be done at static compile time.

A final interesting point in this design space is data specialization [48]—essentially, compiler-
driven memoization. Unlike any of the previous systems, data specialization does not involve dy-
namic code generation. Most of the dynamic compilation systems described above have the following
type signature:

Code x Annotations — (Inputﬁm — (Inputyqr — Result))

In other words, the static code and dynamic code annotations—or imperative dynamic code
constructs—are compiled statically into a program that takes a fixed (run-time constant) set of
inputs and dynamically generates code that takes some varying inputs and produces a result. At a
high level, dynamic compilation is really dynamic partial evaluation.

By contrast, data specialization relies on memoization of frequently used values. As shown below,
the source code and annotations are compiled to code that stores the results of run-time constant
computations in a cache; the values in the cache are combined with non-run-time constant values to
obtain a result.

Code x Annotations — (Inputﬁa7 — Cache) x (Inputygy X Cache — Result)

This approach is simple and fast. Reads and writes to the cache are planned and generated
statically, and the dynamic overhead of cache accesses is limited to a pointer operation. Of course,
it is not as flexible as true dynamic compilation, but it can be very effective. Knoblock and Ruf report
speedups as high as 100x [48]. Sometimes it is just not necessary to generate code dynamically!

24

1.5 Outline

This thesis is divided into three parts. First, Chapter 2 discusses the design of the ‘C language,
including its most serious problems and potential extensions and improvements. Second, Chapter 3
presents applications of dynamic code generation. It describes the optimizations that are enabled
by dynamic compilation and the factors that limit its applicability, and provides many examples.
It is complemented by Appendix A, which studies uses of dynamic compilation in a handful of
specific application areas. Third, the rest of the thesis is concerned with implementation. Chap-
ter 4 gives an overview of the tcc implementation of ‘C and evaluates its overall performance on
several benchmarks. Chapters 5, 6, and 7 discuss and evaluate in more detail specific aspects of the
implementation, including register allocation and code improvement algorithms.

25

26

Chapter 2
Language Design

The usability and practicality of dynamic code generation depend to a large degree on the interface
through which it is provided. Early implementations of dynamic code generation were complex and
not portable. The natural solution to these problems is a portable library or language extension
that provides dynamic code generation functionality. The library approach is appealing because
it is simple to implement and can be adapted to provide excellent performance. For example, the
VCODE [22] library is implemented as a set of C macros that generate instructions with an overhead
of just a handful of instructions per generated instruction.

Libraries, however, have serious drawbacks. A library executes completely at run time: systems
more complicated than VCODE, which just lays out bits on the heap, can easily incur high overhead.
A language, on the other hand, allows the compiler to perform some part of dynamic compilation
at static compile time. Declarative systems such as DyC [39] are particularly effective at staging
compilation in this manner. In addition to performance, there is also a usability argument. A
library cannot interact with the type system, which limits its ability to check for errors statically.
Furthermore, the interface of any library is likely to be less flexible, succinct, and intuitive than
native language constructs. It is difficult to imagine a library that provides complete code generation
flexibility but does not expose a low-level ISA-like interface similar to VCODE’s. In contrast, the
possibility to express dynamic code in a language almost identical to that for static code should
result in large productivity and ease-of-use gains relative to library-based systems.

As aresult, a language-based approach is the one most likely to provide an efficient and portable
interface to dynamic code generation. Language extensions themselves can be either imperative or
declarative. The main advantages of the declarative style are that annotations preserve the semantics
of the original code, and that it enables more aggressive optimizations at static compile time. ‘C’s
choice of an imperative approach, on the other hand, can provide greater control over the dynamic
compilation process, and makes dynamic compilation a programming tool in addition to simply an
optimization tool. The ‘C approach is familiar to people who have programmed in languages that
allow code manipulation, such as Lisp and Perl. ‘C grew out of experience with such languages; its
very name stems from the backquote operator used in the specification of Lisp list templates [23].

This chapter describes ‘C, discusses several subtleties and difficulties of its design, and presents
some potentially useful extensions.

2.1 The ‘C Language
‘C [23] grew from the desire to support easy-to-use dynamic code generation in systems and appli-
cations programming environments. C was therefore the natural starting point on which to build

the dynamic compilation interface. This choice motivated some of the key features of the language:

e ‘C is a small extension of ANSI C: it adds few constructs and leaves the rest of the language
intact. As a result, it is possible to convert existing C code to ‘C incrementally.

27

e ‘C shares C’s design philosophy: the dynamic code extensions are relatively simple, and not
much happens behind the programmer’s back. To a large degree, the programmer is in control
of the dynamic compilation process. This desire for control is a significant reason for ‘C’s
imperative approach to dynamic compilation.

¢ Dynamic code in ‘C is statically typed. Static typing is consistent with C and improves the
performance of dynamic compilation by eliminating the need for dynamic type checking. The
same constructs used to extend C with dynamic code generation should be applicable to other
statically typed languages.

In ‘C, a programmer can write code specifications, which are static descriptions of dynamic code.
These code specifications differ from the specifications used in software engineering and verification;
they are simply fragments of C that describe (“specify”) code that will be generated at run time.
Code specifications can capture the values of run-time constants, and they may be composed at run
time to build larger specifications.

The compilation process in ‘C has three phases. At static compile time the ‘C compiler processes
the written program and generates code-generating code for each code specification. Dynamic com-
pilation, which occurs when the program runs, can be broken down into two phases. First, during
environment binding time, code specifications are evaluated and capture their run-time environment.
Then, during dynamic code generation time, a code specification is passed to ‘C’s compile special
form, which generates executable code for the specification and returns a function pointer.

2.1.1 The Backquote Operator

The backquote, or “tick”, operator (') is used to create dynamic code specifications. It can be
applied to an expression or compound statement and indicates that the corresponding code should
be generated at run time. A backquote expression can be dynamically compiled using the compile
special form, described in Section 2.1.4. For example, the following code fragment implements “Hello
World” in ‘C:

void make_hello(void) {
void (*f)() = compile(‘{ printf("hello, world"); }, void);
} (*f)0):;

The code within the backquote and braces is a specification for a call to printf that should be
generated at run time. The code specification is evaluated (environment binding time), and the
resulting object is then passed to compile, which generates executable code for the call to printf
and returns a function pointer (dynamic code generation time). The function pointer can then be
invoked directly.

‘C disallows the dynamic generation of code-generating code: the syntax and type system of
C are already sufficiently complicated. As a result, backquote does not nest—a code specification
cannot contain a nested code specification. This limitation appears to be of only theoretical interest:
three years of experience with ‘C have uncovered no need for dynamically generated code-generating
code.

Dynamic code is lexically scoped: variables in static code can be referenced in dynamic code.
Lexical scoping and static typing allow type checking and some instruction selection to occur at
static compile time, decreasing dynamic code generation overhead.

The use of several C constructs is restricted within backquote expressions. In particular, a
break, continue, case, or goto statement cannot be used to transfer control outside the enclosing
backquote expression. For instance, the destination label of a goto statement must be contained
in the same backquote expression that contains the goto. ‘C provides other means for transferring
control between backquote expressions; they are described in Section 2.1.4. The limitation on goto
and other C control-transfer statements enables a ‘C compiler to statically determine whether such
a statement is legal.

28

2.1.2 Type Constructors

‘C introduces two new type constructors, cspec and vspec. cspecs are static types for dynamic
code (the contents of backquote expressions), whereas vspecs are statics types for dynamic lvalues
(expressions that may be used on the left-hand side of an assignment). Their presence allows most
dynamic code to be type-checked statically.

A cspec or vspec has an associated evaluation type, which is the type of the dynamic value of the
specification. The evaluation type is analogous to the type to which a pointer points.

cspec Types

cspec (short for code specification) is the type of a dynamic code specification; the evaluation type
of the cspec is the type of the dynamic value of the code. For example, the type of the expression ‘4
is int cspec. The type of any dynamic statement or compound statement is void cspec. This type is
also the generic cspec type (analogous to the generic pointer void *).

Here are some simple examples of cspec:

int cspec exprl = ‘4; /* Code specification for expression ‘‘4"" */
float x;
float cspec expr2 = ‘(x + 4.); /* Capture free variable x: its value will be

bound when the dynamic code is executed */

/* All dynamic compound statements have type void cspec, regardless of
whether the resulting code will return a value */
void cspec stmt = ‘{ printf("hello world"); return 0; };

vspec Types

vspec (short for variable specification) is the type of a dynamically generated lvalue, a variable whose
storage class (whether it should reside in a register or on the stack, and in what location exactly)
is determined dynamically. The evaluation type of the vspec is the type of the lvalue. void vspec
is the generic vspec type. Objects of type vspec may be created by invoking the special forms local
and param. local is used to create a new local variable for the function currently under construction.
param is used to create a new parameter; param and vspecs allows us to construct functions with
dynamically determined numbers of arguments. See Section 2.1.4 for more details on these special
forms.

With the exception of the unquoting cases described in Section 2.1.3 below, an object of type
vspec is automatically treated as a variable of the vspec’s evaluation type when it appears inside a
backquote expression. A vspec inside a backquote expression can thus be used like a traditional C
variable, both as an lvalue and an rvalue. For example, the following function creates a cspec for a
function that takes a single integer argument, adds one to it, and returns the result:

void cspec plusl(void) {
/* Param takes the type and position of the argument to be generated */
int vspec i = param(int, 0);
return ‘{ int k = 1; i =i + k; return i; };

}

Explicitly declared vspecs like the one above allow dynamic local variables to span the scope of
multiple backquote expressions. However, variables local to just one backquote expression, such as
k in the previous code fragment, are dynamic variables too. Any such variable is declared using
only its evaluation type, but it takes on its full vspec type if it is unquoted. Sections 2.1.3 and 2.2.2
below discuss vspecs and unquoting in more detail.

29

2.1.3 Unquoting Operators

The backquote operator is used to specify dynamic code. ‘C extends C with two other unary prefix
operators, @ and $, which control the binding time of free variables within backquote expressions.
These two operators are said to “unquote” because their operands are evaluated early, at environment
binding time, rather than during the run time of the dynamic code. The unquoting operators may
only be used within backquote expressions, and they may not themselves be unquoted: in other
words, like the backquote operator, they do not nest.

The @ Operator

The @ operator denotes composition of cspecs and vspecs. The operand of @ must be a cspec or
vspec. @ “dereferences” its operand at environment binding time: it returns an object whose type
is the evaluation type of @’s operand. The returned object is incorporated into the cspec in which
the @ occurs. Therefore, it is possible to compose cspecs to create larger cspecs:

void cspec h = ‘{ printf("hello "); };
void cspec w = ‘{ printf("world"); };
h = *{ @h; @w; }; /* When compiled and run, prints “hello world” */

Similarly, one may incorporate vspecs and build up expressions by composing cspecs and vspecs.
Here is another take on our old friend, plusl:

void cspec plusl(void) {
int vspec i = param(int, 0); /* A single integer argument */
int cspec one = ‘1; /* Code specification for the expression ‘1" */
return ‘{ @ = @i + Qone; return @i; };

}

Applying @ to a function causes the function to be called at environment binding time. Of course,
the function must return a cspec or a vspec; its result is incorporated into the containing backquote
expression like any other cspec or vspec.

Dynamic code that contains a large number of @s can be hard to read. As a result, ‘C provides
implicit coercions that usually eliminate the need for the @ operator. These coercions can be
performed because ‘C supports only one level of dynamic code generation (dynamic code cannot
generate more dynamic code), so it is always possible to determine whether a cspec or vspec object
needs to be coerced to its evaluation type. An expression of type vspec or cspec that appears inside
a quoted expression is always coerced to an object of its corresponding evaluation type unless (1) it
is itself inside an unquoted expression, or (2) it is being used as a statement. The first restriction
also includes implicitly unquoted expressions; that is, expressions that occur within an implicitly
coerced expression are not implicitly coerced. For example, the arguments in a call to a function
returning type cspec or vspec are not coerced, because the function call itself already is. The second
restriction forces programmers to write h = '{ @h; @w; } rather than h = ‘{ h; w; }. The latter
would be confusing to a C programmer, because it appears to contain two expression statements
that have no side-effects and may therefore be eliminated.

Thanks to implicit coercions, we can rewrite the last version of plusl more cleanly:

void cspec plusl(void) {

int vspec i = param(int, 0); /* A single integer argument */
int cspec one = ‘1; /* Code specification for the expression ‘1" */
return ‘{ i = i + one; return i; }; /* Note the implicit coercions */

The $ Operator

The $ operator allows run-time values to be incorporated as run-time constants in dynamic code.
The operand of $§ can be any object not of type vspec or cspec. The operand is evaluated at

30

environment binding time, and its value is used as a run-time constant in the containing cspec. The
following code fragment illustrates its use:

int x = 1;

void cspec ¢ = ‘{ printf("$x = %d, x = %d", $x, x); };

x = 14;

(*compile(c, void))(); /* Compile and run: will print “$x = 1, x = 14”. */

The use of $ to capture the values of run-time constants can enable useful code optimizations such
as dynamic loop unrolling and strength reduction of multiplication. Examples of such optimizations
appear in Chapter 3.

2.1.4 Special Forms

‘C extends ANSI C with several special forms. Most of these special forms take types as arguments,
and their result types sometimes depend on their input types. The special forms can be broken into
four categories, as shown in Table 2.1.

| Category | Name | Synopsis
Management of dynamic code | compile | T (*compile(void cspec code, T))()
free_code | void free_code(T)
Dynamic variables local T vspec local(T)
Dynamic function arguments | param T vspec param(T, int param-num)
push_init | void cspec push_init(void)
push void push(void cspec args, T cspec next-arg)
Dynamic control flow label void cspec label()
jump void cspec jump(void cspec target)
self T self(T, other-args...)

Table 2.1: The ‘C special forms (T denotes a type).

Management of Dynamic Code

The compile and free_code special forms are used to create executable code from code specifications
and to deallocate the storage associated with a dynamic function, respectively. compile generates
machine code from code, and returns a pointer to a function returning type T. It also automatically
reclaims the storage for all existing vspecs and cspecs.

free_code takes as argument a function pointer to a dynamic function previously created by
compile, and reclaims the memory for that function. In this way, it is possible to reclaim the
memory consumed by dynamic code when the code is no longer necessary. The programmer can
use compile and free_code to explicitly manage memory used for dynamic code, similarly to how one
normally uses malloc and free.

Dynamic Variables

The local special form is a mechanism for creating local variables in dynamic code. The objects it
creates are analogous to local variables declared in the body of a backquote expression, but they can
be used across backquote expressions, rather than being restricted to the scope of one expression. In
addition, local enables dynamic code to have an arbitrary, dynamically determined number of local
variables. local returns an object of type T vspec that denotes a dynamic local variable of type T in
the current dynamic function. In ‘C, the type T may include one of two C storage class specifiers,
auto and register: the former indicates that the variable should be allocated on the stack, while the
latter is a hint to the compiler that the variable should be placed in a register, if possible.

31

Dynamic Function Arguments

The param special form is used to create parameters of dynamic functions. param returns an object
of type T vspec that denotes a formal parameter of the current dynamic function. param-num is
the parameter’s position in the function’s parameter list, and T is its evaluation type. param can
be used to create a function that has the number of its parameters determined at run time:

/¥ Construct cspec to sum n integer arguments. */
void cspec construct_sum(int n) {
int i, cspec ¢ = ‘0;
for i=0;i< n;i++){
int vspec v = param(int, i); /* Create a parameter */
¢ = ‘(c + v); /* Add param v’ to current sum */
}

return ‘{ return ¢; };

}

push_init and push complement param: they are used together to dynamically build argument
lists for function calls. push_init returns a cspec that corresponds to a new (initially empty) dynamic
argument list. push adds the code specification for the next argument, next-arg, to the dynamically
generated list of arguments args. The following function creates a code specification for a call to
the function created by construct_sum above. The number of arguments that the function takes and
with which it is called is determined at run time by the variable nargs.

int cspec construct_call(int nargs, int *arg_vec) {
int (*sum)() = compile(construct_sum(nargs), int);
void cspec args = push_init(); /* Initialize argument list */

int i;

for (i = 0; i < nargs; i++) /* For each arg in arg_vec... */
push(args, '$arg_vec[i]); /* push it onto the args stack */

return ‘($sum)(args); /* Bind the value of sum, so it is

available outside construct_call */

Dynamic Control Flow

To limit the amount of error checking that must be performed at dynamic compile time, ‘C forbids
goto statements from transferring control outside the enclosing backquote expression. Two special
forms, label and jump, are used for inter-cspec control flow: jump returns the cspec of a jump to its
argument, target. Target may be any object of type void cspec. label simply returns a void cspec that
may be used as the destination of a jump. Syntactic sugar allows jump(target) to be written as jump
target. Section 3.1.1 presents example ‘C code that uses label and jump to implement specialized
finite state machines.

Lastly, self allows recursive calls in dynamic code without incurring the overhead of dereferencing
a function pointer. T denotes the return type of the function that is being dynamically generated.
Invoking self results in a call to the function that contains the invocation, with other-args passed as
the arguments. self is just like any other function call, except that the return type of the dynamic
function is unknown at environment binding time, so it must be provided as the first argument. For
instance, here is a simple recursive dynamic code implementation of factorial:

void cspec mk_factorial(void) { /* Create a cspec for factorial(n) */
unsigned int vspec n = param(unsigned int, 0); /* Argument */
return ‘{ if (n > 2) return n * self(unsigned int /* Return type */, n—1);
else return n;

}

32

2.2 Subtleties and Pitfalls

C is a small and powerful language whose programming abstractions are closely related to the
underlying hardware of most computers. C does not have a completely defined semantics—much of
its definition depends on machine-specific hardware details or is implementation-dependent. Writing
C code that is portable and correct requires understanding the details of C’s definition and imposing
stylistic conventions that are usually unchecked by the compiler.

‘C adds functionality to C, but it also adds complexity and the potential for subtle errors. Three
aspects of the language are most confusing: its dynamic compilation model, its unquoting and
implicit promotion rules, and the details of its interaction with core C.

2.2.1 The Dynamic Compilation Model

Only one dynamic function can be constructed in ‘C at a given time. All cspecs and vspecs evaluated
before an invocation to compile are considered part of the function to be returned from compile.
After dynamic code generation time (i.e., after compile is called) all these cspecs and vspecs are
deallocated. Referring to them in subsequent backquote expressions, or trying to recompile them
again, results in undefined behavior. Some other dynamic compilation systems [14, 51] memoize
dynamic code fragments. In ‘C, however, the low overhead required to create code specifications,
their generally small size, and their susceptibility to changes in the run-time environment make
memoization unattractive. Here is a simple example of what can go wrong when a programmer
attempts to reuse code specifications:

void cspec hello = { printf("hello"); };
void cspec unused = ‘{ printf("unused"); };
void (*f)() = compile(hello, void); /* f prints “hello”’ and returns nothing */
void (*g)() = compile(unused, void); /* Undefined runtime error! “‘unused’’ was deallocated
by the previous compile, even though it was never used */

Not all errors are this obvious, though. Here is a tougher example:

void cspec make_return_const(int n) { return ‘{ return $n; }; }
void cspec make_print(int n) {
int (*f)() = compile(make_return_const(n), int);

return ‘{ printf("%d", ($f)()); }:

}
int main() {
void (*f)() = compile(make_print(77), void);
f(); /* This prints “77", as one would expect ... */
/¥ ... but the behavior of this is undefined ... */
f = compile(‘{ @make_print(77); }, void);
/¥ ... because compile inside make_print destroys the backquote expression above */
}

The second call to compile is undefined because its first argument is a backquote expression that
is destroyed (similarly to unused in the previous example) by the call to compile inside make_print.
One must take care to consider this sort of effect when writing ‘C code.

There are two alternatives to this behavior. The first is to keep the one-function-at-a-time
model, but to track allocated and deallocated cspecs and vspecs in the run-time system so as to
provide informative error messages. The second is to allow arbitrarily interleaved specification of
dynamic code, by associating each cspec and vspec and each call to compile with a “compilation
context.” Both options require additional run-time overhead, and the second option would also
make ‘C programs substantially clumsier and syntactically more complicated than they are. Given
the performance-centric and minimalist philosophy of C and ‘C, it appears reasonable to provide no
run-time check and to allow users to learn the hard way.

This style of minimal run-time checking and maximal user control extends to other aspects of

33

the language. For instance, just as in C, the value of a variable after its scope has been exited is
undefined. In contrast to ANSI C, however, not all uses of variables outside their scope can be
detected statically. Consider the following:

int (¥*make_nplus2(int n))() {
void cspec ¢ = ‘{ return n + 2; }; /* Should use $n instead of n */
return compile(c, int);

}
int main() {

int (*f)() = make_nplus2(4);

printf("%d", f()); /* May not print 6" */
}

The code created by compile references n, which no longer exists when f is invoked inside main. In
this toy example, of course, the right solution would be to make n a run-time constant inside the
backquote expression. In general, though, there are several ways to detect errors of this kind. First,
the compiler could perform a data-flow analysis to conservatively warn the user of a potential error.
Unfortunately, such checks are likely to find many false positives. Second, the run-time system
could tag dynamic code with scope information and issue an error at run time if an out-of-scope use
occurs. Accurate run-time detection with no false positives would require tagging free variables and
inserting tag checks in dynamic code, a prohibitively expensive proposition. Third, and even less
attractive, ‘C could support “upward funargs” and a Scheme-like environment model. This approach
completely breaks the stack-based model of C. In balance, providing no checks and requiring care
of the programmer is probably the most reasonable—and definitely the most C-like—solution.

A similar issue arises with values returned by dynamic functions. As mentioned previously, all
dynamic statements and compound statements have type void cspec. If a backquote expression
contains a return statement, the type of the return value does not affect the type of the backquote
expression. Since all type checking is performed statically, it is possible to compose backquote ex-
pressions to create a function at run time with multiple incompatible return types. Again, ‘C could
require run-time consistency checks, but such a decision would be at odds with the language’s philos-
ophy of minimal run-time activity. A better alternative would be to extend static typing of dynamic
code to differentiate dynamic expressions and compound statements. For instance, a dynamic ex-
pression with evaluation type int might have full type int espec (an “expression specification”), a
backquoted compound statement containing return statements of type int might have full type int
cspec (a “compound statement specification”), and a compound statement with no returns might
have full type void cspec. Only especs and compound statements of type void cspec or T' cspec could
be composed into objects of type T cspec; especs could be composed with each other arbitrarily using
implicit conversions. We have considered various schemes like this one, but have not implemented
them. They would eliminate the problem of incompatible return types, but they might also make
‘C more complicated and difficult to read.

2.2.2 Unquoting

Another subtle aspect of ‘C concerns unquoting and the sequence of dynamic compilation phases—
environment binding time, dynamic code generation time, and finally the actual run time of the
dynamic code. Specifically, within an unquoted expression, vspecs and cspecs cannot be passed to

34

functions that expect their evaluation types. Consider the following code:

void cspec f(int j);

int g(int j);

void cspec h(int vspec j);

int main() {
int vspec v;
void cspec cl = *{ @f(v); }; /* Error: f expects an int, and v is unquoted */
void cspec ¢2 = ‘{ $g(v); }; /* Error: g expects an int, and v is unquoted */
void cspec c3 = ‘{ int v; @f(v); }; /* Error: f expects an int, and v is unquoted */
void cspec c4 = ‘{ int v; @h(v); }; /* OK: h expects a vspec, and v is unquoted */
void cspec ¢5 = ‘{ int v; g(v); }; /* OK: g expects an int, and v is not unquoted */

}

Both f and g above expect an integer. In the first two backquote expressions, they are both
unquoted—f by the cspec composition operator @, g by the run-time constant operator $—so they
are both called (evaluated) at environment binding time. But at environment binding time v is not
yet an integer, it is only the specification of an integer (an int vspec) that will exist after dynamic
code generation time (i.e., after compile is invoked).

Of course, the same holds for variables local to a backquote expression, as illustrated by ¢3 in
the example. By contrast, the code assigned to c4 is correct, because h expects a vspec. The code
assigned to cb is also correct, because the call to g is not unquoted—in other words, it happens at
dynamic code run time.

Fortunately, all these conditions can be detected statically. Things get even more tricky and
unexpected when we try to walk the line between environment binding and dynamic compilation
time by using pointers to dynamic code specifications. Consider the following code (@ operators
have been added for clarity, but the coercions to evaluation type would happen automatically):

int main() {
int vspec av[3], vspec *v; /* Array of int vspecs, pointer to int vspec */
void cspec c;
av[0] = local(int); av[1l] = local(int); av[2] = local(int);
v = av;
c ="{ @* = 1; @%(v+1) = 0; @*(v+2) = 0; /* Dereferences happen at environment binding time */
v++; /* Increment happens at dynamic-code run time */
(©*v)++; /* Dereference at environment binding, increment at dynamic run time */
printf("%d %d", @*v, @*(v+1)); /* Will print 2 0" */
¥

}

One might expect that, when compiled, the code specified by ¢ would print “1 0”. The reasoning
would be this: the local variables denoted by v[0...2] are initialized to (1,0, 0); v is incremented; the
variable it points to is incremented (so that the three variables now have values (1,1, 0)); and finally
the last two variables are printed (“1 0”). The error in this logic is that the increment of v does not
occur until the run time of the dynamic code, whereas the unquoted dereference operations happen
at environment binding time. As a result, @*v is incremented to 2 at dynamic code run time, and
the other variables are left unchanged.

2.2.3 Interactions with C

Last but not least, we must consider some properties of C that influence ‘C programming, and
unexpected ways in which ‘C extends C.

35

Function Argument Conversions

In ISO C, when an expression appears as an argument to a call to a function that does not have
a prototype, the value of the expression is converted before being passed to the function [40]. For
instance, floats are converted to doubles, and chars and shorts are converted to ints. The full set of
conversions appears in [40].

In ‘C, dynamic functions currently do not have ISO prototypes. The reason for this is that the
return type of compile(cspec, T') is “pointer to T' function,” which is incompatible with a prototype
such as “pointer to T' function(Tyry,,-- -, Targ,).”

It is easy to see what can go wrong if one is not careful. Consider the following code:

main() {

float vspec p = param(float, 0);

void cspec ¢ = *{ printf("%f", p); };

void (*f)() = compile(c, void);

float x = 3.;

f(x); /* This will probably not print “3.0"'! */
}

f does not have a prototype, so x is converted from float to double before the call. Unfortunately,
the dynamic code expects a float. On most machines, float and double have different sizes and
representations, so f will probably not print “3.0”. The same effect, of course, can be obtained if
one does not use prototypes in static code:

main() { float x = 3.; foo(x); }
foo(float x) { printf("%f", x); } /* Probably not “3.0” */

Therefore, the current ‘C user has two options. She must either use the same care as a user of
traditional (non-ISO) C, invoking param only with the destination types of the function argument
conversions, or she must cast the result of compile to a function pointer type that explicitly specifies
the desired argument types. (The second option, of course, does not work for functions with a
dynamically determined number of arguments.)

A better, but unimplemented, alternative to explicit casting might be to extend compile to accept
information about the types of arguments of the dynamic function. For example, compile(c,int,float,char)
would compile the cspec ¢ and return a “pointer to int function(float, char).” This is less verbose than
an explicit cast to a function pointer type, and it provides the same functionality. With minimal
run-time overhead it could be extended to check that the prototype furnished to compile is compati-
ble with that dynamically created by calls to param; C’s static casts cannot offer such dynamic error
checking.

Dynamic Arrays

Consider the problem of creating a stack-allocated two-dimensional array whose size is specified
dynamically. One way to do this is to write:

‘{ int a[$dim1][$dim2]; ... }

where diml and dim2 are the run-time constant array dimensions. In this case, a is only available
within the containing backquote expression. Declaring a outside the backquote expression as an
explicit dynamic array vspec would make it available across multiple backquote expressions, but it
is not clear how to best write such a declaration. One option is the following;:

int (vspec a)[diml][dim2] = local(int[dim1][dim2]);

36

This is odd for C programmers, accustomed to seeing arrays defined with constant dimensions. Of
course, diml and dim2 are constant within the dynamic code, but things can still look pretty strange:

int (vspec a)[dim1][dim2];
diml++; dim2++;

a = local(int[dim1][dim2]);
c="Ha2B8] =7}

The dimension of the dynamic array changes from declaration to invocation of local! Furthermore,
in general the static compiler can only check syntactic equivalence, and not value equivalence, of
the dimension expressions in the array declaration and the call to local. The only feasible solution
is to use the dimensions when local is called; the vspec object can then keep track of its own
dimensions throughout the dynamic code. In fact, it appears less confusing to just allow dynamic
array declarations with unspecified dimensions, and to make only the call to local responsible for
specifying the dimensions:

int (vspec a)[][] = local(int[dim1][dim2]);

Unfortunately, this is still a little disconcerting, especially since the textually similar declaration of
a two-dimensional array of vspecs with unspecified dimensions, int vspec a[][], is clearly illegal (in
static C, one cannot declare an array with unspecified dimensions). The current ‘C implementation
does not support explicit array vspecs.

2.3 Potential Extensions to ‘C

Programming in ‘C usually involves the manipulation of many small code specifications. Code
specifications are composed at run time to build larger specifications before being dynamically
compiled to produce executable code. This method allows great expressiveness with a minimal set
of primitives, but it makes the creation of “common case” dynamic code more tedious than necessary.
This section proposes mechanisms to simplify common case programming situations. The mech-
anisms have not been implemented, but they could make ‘C more powerful and easier to use.

2.3.1 Syntactic Sugar for Dynamic Code

Although ‘C allows functions with a dynamically determined number of arguments, most dynamic
code has a fixed number of arguments. ‘C programs would become easier to read if syntactic sugar
allowed one to easily specify and name these fixed arguments.

The most intuitive approach is to provide a facility similar to the named-lambda available in
some Lisp dialects:

void cspec ¢ = ‘lambda f(int x, float y) { }

This statement introduces the names x and y within the body of the lambda, and it introduces the
names f@x and f@y in the scope containing the backquote expression. f@x and f@y are not parts of
the type of f—in fact, f does not even have a type, it is simply a label for the named-lambda. The
code above would be just sugar for the following:

int vspec f@x = param(int, 0);
float vspec f@y = param(float, 1);
void cspec ¢ = ‘{ };

This mechanism is convenient because it allows us write code like

return ‘lambda f(int y) { return y+%$x; };

37

and
int (*add_x)() = compile(‘lambda f(int y) { return y+%x; }, int);

The drawback of this scheme is that it adds names to lambda’s enclosing scope in a way that cir-
cumvents the standard C declaration syntax. It makes it possible to declare new dynamic argument
names at any point in the code, in a manner similar to C++. In the following code,

void cspec c;
if (cond) ¢ = ‘lambda f(int i, float f) { };
else ¢ = ‘lambda f(char ¢, double d) { };

the scope of f@i and f@f must be restricted to the first branch of the if, and that of f@c and f@d to
the second branch, similarly to the following C++ code:

if (cond) int x = 3; /* Scope of “‘int x”" is “‘then’” branch */
else float x = 4.; /* Scope of “‘float x"" is “‘else’”’ branch */

Unlike C++, however, “declarations” can occur inside expressions, too:
¢ = cond ? ‘lambda f(int i, float f) { } : ‘lambda f(char ¢, double d) { };

This statement introduces all four names, f@i, fOf, fOc, and f@d. However, depending on cond, only
the first two or the last two are initialized by param—the same pitfall created by the current ‘C
param mechanism!

The simplest fix to this problem is to actually introduce the name of the lambda (in our example,
f) in the containing scope. In this way, the above conditional expression becomes illegal because the
third operand (the lambda after the colon) redeclares f.

Another solution® is to make lambda a declarator. One would then write:

int lambda f(int i, float f);
which would be equivalent to

void cspec f = '{}; /* In addition, “int lambda’’ asserts that f should return int */
int vspec f@i = param(int, 0);
float vspec f@f = param(float, 1);

This method has three benefits. First, it does not radically extend the style of C declarations. Sec-
ond, it avoids the redeclaration issue illustrated by the conditional expression example above. Third,
it can be extended to elegantly declare dynamic locals visible across backquote expressions without
resorting to the local special form. Specifically, one could write: int f@i, or even int @i to specify
a dynamic local, rather than int vspec i = local(int). One could remove vspec and local altogether,
and only leave param as a way of creating functions with dynamically determined arbitrary numbers
of arguments. The main disadvantage of such a style of declaration would be that it changes the
semantics of a C declaration: programmers are used to the fact that declarations have only static
effects, and that only initializers and statements have dynamic effects. The lambda declarator, as
well as the declaration alternatives to local, require significant run-time activity. Also, it is probably
best not to remove vspec and local, since together they decouple the declaration of a vspec name
from the initialization of a vspec object, and thereby allow one name to refer to more than one
dynamic location.

2.3.2 Declarative Extensions

‘C’s imperative programming model is powerful but often unduly complicated. However, ‘C could be
extended with declarative annotations that would simplify common optimizations while preserving
the flexibility and compositional power of the imperative model.

1This idea is due to Eddie Kohler. 38

Fine-Grained Annotations

Run-time constants specified with the $ operator are at the center of ‘C dynamic optimizations.
They drive local optimizations such as strength reduction and dead code elimination. However,
some versions of the implementation also implicitly perform more global optimizations that have a
declarative flavor. For instance, if the bounds of a for loop are both run-time constants, and if the
number of iterations is determined to be relatively small, then the loop is fully unrolled automatically.

One can easily imagine further extensions. As described in Chapter 4, a more sophisticated im-
plementation could identify derived run-time constants (values that are run-time constants because
others are) and stage aggressive dynamic optimizations. One could also extend ‘C with annotations
to describe and control optimization policies. In this way, one could quickly optimize traditional
static code with annotations, as one does with DyC or Tempo, but ‘C’s expressive imperative con-
structs would still be available when necessary.

Partial Evaluation

It is often useful to dynamically partially evaluate a function with respect to one or two run-time
constant arguments. A classic example is printf and its format string argument. In ‘C this sort of
optimization can be done manually by enclosing the whole function in a code specification and using
different code and variable specifications for different combinations of specializing arguments. Some
other projects [3, 14, 38] have addressed the issue of partial evaluation in C in depth. This section
proposes a partial evaluation interface that is integrated into the ‘C code specification model.

The method relies on one additional keyword, bound, and one special form, specialize (though
maybe bind would be a more symmetrical name). As usual, we proceed by example:

int f(int x, float y); /* Prototype of f */
int f(bound int x, float y); /* Specialization prototype of f w.r.t. arg 1 */
int f(int x, bound float y); /* Specialization prototype of f w.r.t. arg 2 */

int f(int x, float y) { } /* Definition of f */

The above code contains the definition of some function f, an ISO prototype for f, and two “spe-
cialization prototypes” that contain the keyword bound. The first prototype refers to f specialized
with respect to its first argument, the second refers to it specialized with respect to its second argu-
ment. The compiler records this information about the desired specializations of f. Then, when it
encounters the definition of f, it generates both code for f and code-generating code for each of the
specialized versions of f.

The specialize special form takes as input a function name and a list of arguments with respect to
which the function should be specialized, and exposes the appropriate code-generating code to the
programmer. Consider a function g with return type 7, and n arguments with types Tg,,..., T, .
Given this function, specialize returns a function pointer with return type 7T;. vspec and, for each
unspecialized argument j of g, arguments of type Tj, vspec.

Values to be used for specialization are expressed via partially empty argument lists. For
instance, consider a function int h(char, int, float, double). If h has the specialization prototype
int h(bound char, int, bound float, double), then the statement specialize(h('a’, , x,)) specializes h
with respect to its first argument equal to ‘a’ and its third argument equal to the run-time value
of x. The second and fourth arguments, an int and a double, are left unspecified and must be pro-
vided as arguments at dynamic code run time. specialize therefore returns a function pointer of type
int cspec (*)(int vspec, double vspec).

Returning to our example function f from above, we have the following:

int cspec (*f1)(float vspec) = specialize(f(1,)); /* Specialize w.r.t. arg 1 */
int cspec (*f2)(int vspec) = specialize(f(,1.0)); /* Specialize w.r.t. arg 2 */
int cspec (*x)() = specialize(f(1,1.0)); /* Error! */

The first call to specialize returns a pointer to a function that returns an int cspec (since f has type

39

int) and takes a float vspec. This vspec corresponds to the unspecialized second argument of f. The
first argument, on the other hand, is hard-wired in the body of the specialized int cspec. Similarly,
the second call returns a pointer to a function that returns an int cspec, but whose argument is an
int vspec, corresponding to the unspecialized first argument. The third call is an error, because there
is no prototype int f(bound int, bound float). Note that the prototypes for f need to be in the scope
of calls to specialize. Also, f must be the name of a function; it cannot be a function pointer because
in general the pointer’s value cannot be determined statically.

The fact that specialize returns a function that returns a cspec and takes vspecs as arguments
would make it easy to integrate function-level specialization into ‘C’s dynamic compilation process.
For instance, one would write this:

int cspec (*f1)(int vspec) = specialize(f(1,)); /* Specialize w.r.t. arg 1 =1 */
int cspec (*fk)(int vspec) = specialize(f(k,)); /* Specialize w.r.t. arg 1 = k */
float vspec p = param(float, 0); /* The dynamic (unspecialized) argument */
int (*sum)(float) = (int (*)(float))compile(‘{ return @f1(p) + @fk(p); });

The two specialized bodies of f returned by f1 and fk would be automatically inlined into the dynamic
code that computes the sum, just like any other cspecs. If we had a function vf that took the same
arguments as f but did not return a value, we could not compose it into an expression, but cspec
composition would still work as usual:

void cspec (*vfl)(int vspec) = specialize(vf(1,)); /* Specialize w.r.t. arg 1 = 1; vf returns void */
float vspec p = param(float, 0); /* The dynamic argument */
void cspec ¢ = ‘{ @vfl(p); /* Compose a cspec as usual */ };

And if one simply wanted to create a specialized version of f, without composing it with any other
code, one could write something like the following:

int cspec (*f1)(int vspec) = specialize(f(1,)); /* Specialize w.r.t. arg 1 */
float vspec p = param(float, 0); /* Remaining dynamic (unspecialized) argument */
int (*f2)(float) = (int (*)(float))compile(‘{ return f1(p); }, int);

Or, leveraging the named-lambda syntactic sugar in Section 2.3.1, one could more succinctly write:
int (*f2)(float) = (int (*)(float))compile(‘lambda f3(float p) { return (*specialize(f(1,)))(p): }. int);

If such “stand-alone” specialization turned out to be common, one could easily wrap this rather
convoluted syntax into more sugar, such as this:

int (*f2)(float) = specialize_to_func(f(1,));

This interface to partial evaluation is relatively flexible and would fit well with the rest of ‘C. Its
implementation, however, would be non-trivial: good specialized code performance would require
encoding aggressive optimizations in the specialized code-generating functions. Grant et al. [38]
present some techniques that may be useful in this context.

2.3.3 To Add or Not to Add?

Language design is a difficult art: it involves not only engineering considerations, but also aesthetic
and social aspects. ‘C in its present form may be somewhat complex to use, but it reflects its
underlying computation model in a faithful and straightforward way. The extensions presented in
this section may make ‘C easier to use in the common case. They also make it “philosophically”
more distant from C, in that they distance the user from the underlying implementation and remove
some level of control. By contrast, they make ‘C more similar to some of the declarative dynamic
compilation systems for C [14, 38]. Insofar as ‘C is useful in situations where one desires full control
of dynamic compilation, the language is probably better left simple, free of these extensions. On the
other hand, the extensions might serve to bridge the space between ‘C and more high-level systems

40

and to provide some of the features of both worlds. The usefulness of such a union, however, is
really a social issue—it would require a lot more users of dynamic code generation to know for sure.

41

42

Chapter 3
Applications

Dynamic code generation can be useful in a number of practical settings. ‘C, in particular, can
both improve performance and simplify the creation of programs that would be difficult to write
in plain ANSI C. The programmer can use ‘C to improve performance by specializing code to run-
time invariants, performing dynamic inlining, creating “self-traversing” dynamic data structures,
and more. ‘C also simplifies the creation of programs—such as interpreters, just-in-time compilers,
and database query engines—that involve compilation or interpretation: the programmer can focus
on parsing and semantics, while ‘C automatically handles code generation.

This chapter illustrates techniques and coding styles that make ‘C useful, identifies some of the
limits to the applicability of dynamic code generation, and presents the benchmarks that are used
to evaluate the ‘C implementation later in this thesis. Appendix A complements this chapter by
describing in some depth several applications of dynamic code generation.

3.1 A Taxonomy of Dynamic Optimizations

At the highest level, dynamic optimizations are effective because they make use of run-time infor-
mation unavailable to traditional compilers. These optimizations can be classified into a handful
of categories based on the compilation mechanisms that are used to implement them and the spe-
cific objectives that they aim to fulfill. Such categorizations are imprecise, because many categories
overlap and any realistic use of dynamic compilation spans several categories. Nonetheless, this
taxonomy is helpful when one needs to write dynamic code or adapt static code to use dynamic
compilation.

To take advantage of ‘C, one must first identify the objectives that dynamic compilation can
help to achieve. There appear to be four fundamental goals:

1. Specialization to specific data values. This technique is the most intuitive application of
dynamic code generation. It simply customizes a piece of code to one or more pieces of data
that remain unchanged for some period of time. An interesting example is the self-searching
binary tree in Section 3.1.1.

2. Specialization to data types or sizes. Sometimes data changes too rapidly or is reused
too few times to allow specialization based on its value. Nonetheless, it may be possible to
obtain performance benefits by customizing dynamic code to the particular shape or size of
data structures. The customized copy and swap routines in Section 3.1.2 are simple examples
of these optimizations.

An important class of data type specialization is the optimization of byte vector marshaling
and unmarshaling code. Such code is often slow because it requires interpreting a vector that
describes the types of the data to be marshaled. ‘C’s facilities for constructing functions and
function calls with dynamically determined types and numbers of arguments help to create
marshaling code customized to frequently occurring data.

43

3. Elimination of call overhead. Inlining has been used for a long time to remove call over-
head and enable interprocedural optimization when the callee can be determined statically.
Unfortunately, function pointers make traditional inlining impossible. ‘C can be used to per-
form a kind of dynamic function inlining, as exemplified by the Newton’s method code in
Section 3.1.3.

4. Elimination of interpretation overhead. Most of the previous points actually describe
elimination of interpretation in some form or another—for instance, we reduce unmarshaling
overhead by removing interpretation of an argument description vector. In some cases, how-
ever, static code involves more explicit levels of interpretation: execution of bytecode, traversal
of complicated data structures, and so forth. Dynamic compilation can be used to strip out this
overhead. For example, ‘C makes it easy to write fast compiling interpreters (Section 3.1.4),
executable data structures (Section 3.1.1), and database queries (Section 3.1.4).

To achieve these objectives, ‘C relies on four main mechanisms and programming techniques:

1. Hardwiring run-time constants. This mechanism is the most straightforward use of the
$ operator. It allows arithmetic and other operations based on run-time constants to be
simplified, reduced in strength, or completely eliminated. A simple example is the specialized
hash function in Section 3.1.1. Hardwiring run-time constants can also have more large-scale
effects, such as dynamic dead code elimination and dynamic loop unrolling,.

2. Dynamic code construction. Code construction is probably the most widely used dynamic
optimization mechanism. It is employed whenever dynamic code is generated based on the
interpretation of some data structure or the execution of some other code-generating kernel.
It can be used to specialize code both to values, as in the binary search example in Sec-
tion 3.1.1, and to particular types and data structures, as in the swap routine in Section 3.1.2.
It is also useful when eliminating interpretation overhead, as in the compiling interpreter in
Section 3.1.4.

3. Dynamic inlining. If we replace function pointers with cspecs, and function definitions
with backquote expressions, we transparently obtain the equivalent of dynamic inlining across
function pointers. This functionality frequently eliminates the overhead of calls through a
function pointer, as illustrated in Section 3.1.3.

4. Dynamic call construction. To our knowledge, ‘C is the only dynamic compilation system
that allows programmers to create functions—and matching function calls—with run-time
determined types and numbers of arguments. Section 3.1.2 shows how this feature can be
used.

The rest of this section looks at each of the abovementioned objectives in more detail and provides
examples of how ‘C’s optimization mechanisms can be used to achieve them.

3.1.1 Specialization to Data Values

If a set of values will be used repeatedly, dynamic compilation can serve to produce efficient code
tailored to those values. The values can be used to enable traditional optimizations like strength
reduction and dead-code elimination, or to create more exotic objects such as executable data
structures.

Hashing

A simple example of ‘C is the optimization of a generic hash function, where the table size is
determined at run time, and where the function uses a run-time value to help its hash. Consider the
C code in Figure 3-1. The C function has three values that can be treated as run-time constants:
ht—hte, ht—scatter, and ht—norm. As illustrated in Figure 3-2, using ‘C to specialize the function
for these values requires only a few changes. The resulting code can be considerably faster than

44

struct hte { /¥ Hash table entry structure */

int val; /* Key that entry is associated with */
struct hte *next; /* Pointer to next entry */
Va4
}
struct ht { /¥ Hash table structure */
int scatter; /* Value used to scatter keys */
int norm; /* Value used to normalize */
struct hte **hte; /* Vector of pointers to hash table entries */
}

/¥ Hash returns a pointer to the hash table entry, if any, that matches val. */
struct hte *hash(struct ht *ht, int val) {

struct hte *hte = ht—>hte[(val * ht—>scatter) / ht—>norm];

while (hte && hte—>val != val) hte = hte—>next;

return hte;

Figure 3-1: A hash function written in C.

/* Type of the function generated by mk_hash: takes a value as input
and produces a (possibly null) pointer to a hash table entry */
typedef struct hte *(*hptr)(int val);

/* Construct a hash function with the size, scatter, and hash table pointer hard-coded. */
hptr mk_hash(struct ht *ht) {
int vspec val = param(int, 0);
void cspec code = *{
struct hte *hte = ($ht—>hte)[(val * $ht—>scatter) / $ht—>norm];
while (hte && hte—>val |= val) hte = hte—>next;
return hte;
};

return compile(code, struct hte *); /* Compile and return the result */

Figure 3-2: Specialized hash function written in ‘C.

the equivalent C version, because tcc hardcodes the run-time constants hte, scatter, and norm in the
instruction stream, and reduces the multiplication and division operations in strength. The cost of
using the resulting dynamic function is an indirect jump on a function pointer.

Exponentiation

The last example used dynamic compilation to perform strength reduction and avoid memory in-
direction. We can be more ambitious and actively create dynamic code based on run-time values.
For instance, in computer graphics it is sometimes necessary to apply an exponentiation function
to a large data set [21]. Traditionally, exponentiation is computed in a loop which performs re-
peated multiplication and squaring. Given a fixed exponent, we can unroll this loop and obtain
straight-line code that contains the minimum number of multiplications. The ‘C code to perform
this optimization appears in Figure 3-3.

Matrix Scaling

The problem of scaling a matrix by an integer constant gives us the opportunity to combine the
techniques from the previous two examples: hardwiring run-time constants to perform strength
reduction and avoid memory indirection, and code construction to unroll loops. The routine in

45

typedef double (*dptr)();
dptr mkpow(int exp) {
double vspec base = param(double, 0); /* Argument: the base */
double vspec result = local(register double); /* Local: running product */
void cspec squares;
int bit = 2;

/¥ Initialize the running product */
if (1&exp) squares = ‘{ result=base; };
else squares = '{ result=1.; };

/* Multiply some more, if necessary */

while (bit <= exp) {
squares = '{ @squares; base *= base; };
if (bit & exp) squares = ‘{ @squares; result *= base; };
bit = bit << 1;

}

/* Compile a function which returns the result */

return compile(‘{ @squares; return result; }, double);

Figure 3-3: Code to create a specialized exponentiation function.

void cspec mkscale(int **m, int n, int s) {
return ‘{

int i, j;

for (i = 0; i < $n; i++) { /* Loop can be dynamically unrolled */
int *v = ($m)[i];
for j =0;j < $n; j++)

v[jl = v[j] * $s; /* Multiplication can be strength-reduced */
Fh

Figure 3-4: ‘C code to specialize multiplication of a matrix by an integer.

Figure 3-4 generates dynamic code specialized to the pointer to the current matrix, the size of the
matrix, and the scale factor. It is a simple benchmark of the potential effects of dynamic loop
unrolling and strength reduction.

Vector Dot Product

Dynamic code generation can also be used to perform dead code elimination based on run-time data
values. Consider the C code to compute dot product shown in Figure 3-5. If one of the vectors will be
used several times, as in matrix multiplication, it may be useful to generate dynamic code customized
to computing a dot product with that vector. The dynamic code can avoid multiplication by zeros,
strength-reduce multiplication, and encode values from the run-time constant vector directly into
the instruction stream. Figure 3-6 shows the ‘C code that implements these optimizations.

Binary Search

This style of value-specific dynamic code construction leads us naturally to more complex executable
data structures—data structures whose contents are embedded into specialized code that implements
a common traversal or extraction operation. Consider the recursive binary search code in Figure 3-
7. Of course, an iterative version is more efficient, but it still incurs overhead and memory access
overhead, and the recursive version is much more clear.

When the same input array will be searched several times, one can use ‘C to write code like that in
Figure 3-8. The structure of this code is very similar to that of the recursive binary search. However,

46

void dot(int *a, int *b, int n) {
int sum, k;
for (sum = k = 0; k < n; k++) sum += a[k]*b[k];
return sum;

Figure 3-5: A dot-product routine written in C.

void cspec mkdot(int row[], int n) {
int k;
int *vspec col = param(int *, 0); /* Input vector for dynamic function */
int cspec sum = ‘0; /* Spec for sum of products; initally 0 */
for (k = 0; k < n; k++) /* Only generate code for non-zero multiplications */
if (row[k]) /* Specialize on index of col[k] and value of row[k] */
sum = ‘(sum + col[$k] * $row[k]);
return ‘{ return sum; };

Figure 3-6: ‘C code to build a specialized dot-product routine.

int bin(int *x, int key, int I, int u, int r) {

int p;
if (I > u) return —1;
p=u-—r

if (x[p] == key) return p;
else if (x[p] < key) return bin(x, key, p+1, u, r/2);
else return bin(x, key, I, p—1, r/2);

Figure 3-7: A tail-recursive implementation of binary search.

void cspec gen(int *x, int vspec key, int |, int u, int r) {

int p;

if (I > u) return *{ return —1; };
p=u-—rn

return * {

if ($(x[p]) == key) return $p;
else if ($(x[p]) < key) @gen(x, key, p+1, u, r/2);
else @gen(x, key, |, p—1, r/2);

}

Figure 3-8: ‘C code to create a “self-searching” executable array.

47

A sorted list: ’1|2 |3 |4 |5 |6 |7‘

Binary search tree: /
D

ynamic
code for
binary search:

k=47

return

Figure 3-9: An executable data structure for binary search.

rather than searching the input array, it generates code customized to searching that specific array.
The values from the input array are hardwired into the customized instruction stream, and the loop
is unrolled into a binary tree of nested if statements that compare the value to be found to constants.
As a result, the search involves neither loads from memory nor looping overhead, so the dynamically
constructed code is considerably more efficient than its static counterpart. Figure 3-9 illustrates
the relationship between data structure and executable data structure for the case of binary search
on a specific seven-element, array. For small input vectors (on the order of 30 or so elements), this
technique results in lookup performance superior even to that of a hash table. A jump table could
be faster, but it would only be practical if the values in the vector were relatively contiguous.

By adding a few dynamic code generation primitives to the original algorithm, we have created
a function that returns a cspec for binary search that is tailored to a given input set. We can easily
create a C function pointer from this cspec as follows:

typedef int (¥ip)(int key);

ip mksearch(int n, int *x) {
int vspec key = param(int, 0); /* One argument: the key to search for */
return (ip)compile(gen(x, key, 0, n—1, n/2), int);

Finite State Machines

A sorted array is a simple data structure, but we can certainly specialize code for more complex
data. For example, ‘C can be used to translate a deterministic finite automaton (DFA) description
into specialized code, as shown in Figure 3-10. The function mk_dfa accepts a data structure that
describes a DFA with a unique start state and some number of accept states: at each state, the
DFA transitions to the next state and produces one character of output based on the next character
in its input. mk_dfa uses ‘C’s inter-cspec control flow primitives, jump and label (Section 2.1.4), to
create code that directly implements the given DFA: each state is implemented by a separate piece
of dynamic code, and state transitions are simply conditional branches. The dynamic code contains
no references into the original data structure that describes the DFA.

48

typedef struct {

int n; /% State number (start state has n=0) */
int acceptp; /* Non-zero if this is an accept state */
char *in; /* 1/0 and next state info: on input infk] */
char *out; /% produce output out[k] and go to state */
int *next; /* number next[k] */
} *state_t;
typedef struct {
int size; /* Number of states */
state_t *states; /* Description of each state */
} *dfa_t;

int (*mk_dfa(dfa_t dfa))(char *in, char *out) {

char * vspec in = param(char *, 0); /* Input to dfa */
char * vspec out = param(char *, 1); /* Output buffer */
char vspec t = local(char);
void cspec *labels = (void cspec *)malloc(dfa—>size * sizeof(void cspec));
void cspec code = ‘{}; /* Initially dynamic code is empty */
int 1;
for (i = 0; i < dfa—>n_states; i++)

labels[i] = label(); /* Create labels to mark each state */
for (i = 0; i < dfa—>n_states; i++) { /* For each state ... */

state_t cur = dfa—>states]i];

int j =0;

code = ‘{ @code; /* ... prepend the code so far */

Qlabels[i]; /* ... add the label to mark this state */
t = *in; }; /* ... read current input */
while (cur—>in[j]) { /* ... add code to do the right thing if */
code = ‘{ @code; /* this is an input we expect */
if (t == $cur—>in[j]) {
in++; *out++ = $cur—>out[j];
jump labels[cur—>next[j]];
Ph

i+t

code = ‘{ @code; /* ... add code to return 0 if we're at end */
if (t ==0){ /* ofinputin an accept state, or */
if ($cur—>acceptp) return 0;
else return —2; /* -2 if we're in another state */
} /* or -1 if no transition and not end of input */
else return —1; };

}

return compile(code, int);

Figure 3-10: Code to create a hard-coded finite state machine.

49

typedef void (*fp)(void *, void *);

fp mk_swap(int size) {
long * vspec src = param(long *, 0); /* Arg 0: source */
long * vspec dst = param(long *, 1); /* Arg 1: destination */
long vspec tmp = local(long); /* Temporary for swaps */
void cspec s = ‘{}; /* Code to be built up, initially empty */
Int 1;

for (i = 0; i < size/sizeof(long); i++) /* Build swap code */
s = '{ @s; tmp = src[$i]; src[$i] = dst[$i]; dst[$i] = tmp; };
return (fp)compile(s, void);

Figure 3-11: ‘C code to generate a specialized swap routine.

3.1.2 Specialization to Data Types

The examples so far have illustrated specialization to specific values. Value specialization can im-
prove performance, but it may be impractical if the values change too frequently. A related approach
that does not suffer from this drawback is specialization based on more general properties of data
types, such as their size or structure.

Swap

It is often necessary to swap the contents of two regions of memory: in-place sorting algorithms are
one such example. As long as the data being manipulated is no larger than a machine word, this
process is quite efficient. However, when manipulating larger regions (e.g., C structs), the code is
often suboptimal. One way to copy the regions is to invoke the C library memory copy routine,
memcpy, repeatedly. Using memcpy incurs function call overhead, as well overhead within memcpy
itself. Another way is to iteratively swap one word at a time, but this method incurs loop overhead.

‘C allows us to create a swap routine that is specialized to the size of the region being swapped.
The code in Figure 3-11 is an example, simplified to handle only the case where the size of the
region is a multiple of sizeof(long). This routine returns a pointer to a function that contains only
assignments, and swaps the region of the given size without resorting to looping or multiple calls to
memcpy. The size of the generated code—and therefore the cost of generating it—is usually quite
small, which makes this a profitable optimization. We can obtain additional benefits by dynamically
inlining the customized swap routine into the main sorting code.

Copy

Copying a memory region of arbitrary size is another common operation. It occurs frequently, for
instance, in computer graphics [55]. Similarly to the previous code for swapping regions of memory,
the example code in Figure 3-12 returns a function customized for copying a memory region of a
given size.

The procedure mk_copy takes two arguments: the size of the regions to be copied, and the number
of times that the inner copying loop should be unrolled. It creates a cspec for a function that takes
two arguments, pointers to source and destination regions. It then creates prologue code to copy
regions which would not be copied by the unrolled loop (if » mod unrollz # 0), and generates the
body of the unrolled loop. Finally, it composes these two cspecs, invokes compile, and returns a
pointer to the resulting customized copy routine.

50

typedef void (*fp)(void *, void *);
fp mk_copy(int n, int unrollx) {
int i, j;
unsigned * vspec src = param(unsigned *, 0); /* Arg 0: source */
unsigned * vspec dst = param(unsigned *, 1); /* Arg 1: destination */
int vspec k = local(int); /* Local: loop counter */
cspec void copy = ‘{}, unrollbody = '{}; /* Code to build, initially empty */

for (i = 0; i < n % unrollx; i++) /* Unroll the remainder copy */
copy = ‘{ Q@copy; dst[$i] = src[$i]; };

if (n >= unrollx) /* Unroll copy loop unrollx times */
for (j = 0; j < unrollx; j ++)
unrollbody = ‘{ @unrollbody; dst[k+$j] = src[k+$j]; };

copy = ‘{ /* Compose remainder copy with the main unrolled loop */
Qcopy;
for (k = $i; k < $n; k += $unrolix) Qunrollbody;

}i

/* Compile and return a function pointer */

return (fp)compile(copy, void);

Figure 3-12: Generating specialized copy code in ‘C.

Marshaling and Unmarshaling Code

Marhsaling and unmarshaling data into and out of byte vectors are important operations—for exam-
ple, they are frequently used to support remote procedure call [8]. Unfortunately, both are expensive
and clumsy to implement with static C code. Consider marshaling data into a byte vector. One
option is to statically write one marshaling function for every combination of data types to be
marshaled—efficient but unrealistic. Another option is to write a function with a variable number of
arguments (“varargs”), whose first argument describes the number and type of the remaining ones.
This approach is reasonable, but it is inefficient if the same sort of data is marshaled repeatedly.

Unmarshaling is even more awkward. Whereas C supports functions with variable numbers of
arguments, it does not support function calls with variable numbers of arguments. As a result, at
best, an unmarshaling function may use a switch statement to call a function with the right signature
depending on the contents of the byte vector. If the byte vector contains data not foreseen by the
switch statement, a consumer routine is forced to explicitly unmarshal its contents. For instance, the
Tcl [54] run-time system can make upcalls into an application, but Tcl cannot dynamically create
code to call an arbitrary function. As a result, it marshals all of the upcall arguments into a single
byte vector, and forces applications to explicitly unmarshal them. If Tcl had access to a mechanism
for constructing arbitrary upcalls, clients would be able to write their code as normal C routines,
simplifying development and decreasing the chance of errors.

‘C helps to implement practical and efficient marshaling and unmarshaling code by providing
support for functions and function calls with dynamically determined types and numbers of argu-
ments. ‘C allows programmers to generate marshaling and unmarshaling routines customized to the
structure of the most frequently occurring data. Specialized code for the most active marshaling and
unmarshaling operations can significantly improve performance [72]. This functionality distinguishes
‘C: neither ANSI C nor any of the dynamic compilation systems discussed in Section 1.4 provides
mechanisms for constructing function calls dynamically.

We present two functions, marshal and unmarshal, that dynamically construct marshaling and
unmarshaling code, respectively, given a “format vector,” types, that specifies the types of arguments.

51

typedef union { int i; double d; void *p; } type;
typedef enum { INTEGER, DOUBLE, POINTER } type_t; /* Types we expect to marshal */
extern void *alloc();
void cspec mk_marshal(type_t *types, int nargs) {
int 1;
type *vspec m = local(type *); /* Spec of pointer to result vector */
void cspec s = ‘{ m = (type *)alloc(nargs * sizeof(type)); };

for (i = 0; i < nargs; i++) { /* Add code to marshal each param */
switch(types[i]) {
case INTEGER: s = ‘{ @s; m[$i].i = param(8$i, int); }; break;
case DOUBLE: s = ‘{ @s; m[$i].d = param($i, double); }; break;
case POINTER: s = ‘{ @s; m[$i].p = param($i, void *); }; break;
}

}

/* Return code spec to marshal parameters and return result vector */

return ‘{ @s; return m; };

Figure 3-13: Sample marshaling code in ‘C.

typedef int (*fptr)(); /* Type of the function we will be calling */
void cspec mk_unmarshal(type_t *types, int nargs) {
int i;
fptr vspec fp = param(fptr, 0); /* Arg 0: the function to invoke */
type *vspec m = param(type *, 1); /* Arg 1: the vector to unmarshal */
void cspec args = push_init(); /* Initialize the dynamic argument list */

for (i = 0; i < nargs; i++) { /* Build up the dynamic argument list */
switch(types[i]) {
case INTEGER: push(args, 'm[$i].i); break;
case DOUBLE: push(args, ‘m[$i].d); break;
case POINTER: push(args, ‘m[$i].p); break;
}

/* Return code spec to call the given function with unmarshaled args */
return ‘{ fp(args); };

Figure 3-14: Unmarshaling code in ‘C.

The sample code in Figure 3-13 generates a marshaling function for arguments with a particular
set of types (in this example, int, void *, and double). First, it specifies code to allocate storage for
a byte vector large enough to hold the arguments described by the type format vector. Then, for
every type in the type vector, it creates a vspec that refers to the corresponding parameter, and
constructs code to store the parameter’s value into the byte vector at a distinct run-time constant
offset. Finally, it specifies code that returns a pointer to the byte vector of marshaled arguments.
After dynamic code generation, the function that has been constructed will store all of its parameters
at fixed, non-overlapping offsets in the result vector. Since all type and offset computations have
been done during environment binding, the generated code will be efficient. Further performance
gains might be achieved if the code were to manage details such as endianness and alignment.

The code in Figure 3-14 generates an unmarshaling function that works with the marshaling
code in Figure 3-13. It relies on ‘C’s mechanism for constructing calls to arbitrary functions at
run time. The generated code takes a function pointer as its first argument and a byte vector
of marshaled arguments as its second argument. It unmarshals the values in the byte vector into
their appropriate parameter positions, and then invokes the function pointer. mk_unmarshal works
as follows. It creates the specifications for the generated function’s two incoming arguments, and

52

typedef double cspec (*dptr)(double vspec);

/* Dynamically create a Newton-Raphson routine. n: max number of iterations;
tol: maximum tolerance; p0: initial estimate; f: function to solve; fprime: derivative of f. */
double newton(int n, double tol, double usr_p0, dptr f, dptr fprime) {
void cspec ¢s = {
int i; double p, p0 = usr_p0;
for (i=10; i < $n; i++) {
p = p0 — f(p0) / fprime(p0); /* Compose cspecs returned by f and fprime */
if (abs(p — p0) < tol) return p; /* Return result if we've converged enough */
p0 = p; /* Seed the next iteration */

error("method failed after %d iterations“n", i);

}

return (*compile(cs,double))(); /* Compile, call, and return the result. */

}

/¥ Function that constructs a cspec to compute f(x) = (x+1)"2 */

double cspec f(double vspec x) { return ‘((x + 1.0) * (x + 1.0)); }

/* Function that constructs a cspec to calculate f'(x) = 2(x+1) */

double cspec fprime(double vspec x) { return ‘(2.0 * (x + 1.0)); }

/* Call newton to solve an equation */

void use_newton(void) { printf("Root is %f“n", newton(100, .000001, 10., f, fprime)); }

Figure 3-15: ‘C code that implements Newton’s method for solving polynomials. This example
computes the root of the function f(z) = (z + 1)2.

initializes the argument list. Then, for every type in the type vector, it creates a cspec to index into
the byte vector at a fixed offset and pushes this cspec into its correct parameter position. Finally, it
creates the call to the function pointed to by the first dynamic argument.

3.1.3 Elimination of Call Overhead

‘C makes it easy to inline and compose functions dynamically. This feature is analogous to dy-
namic inlining through indirect function calls. It improves performance by eliminating function call
overhead and by creating the opportunity for optimization across function boundaries.

Parameterized Library Functions

Dynamic function composition is useful when writing and using library functions that would nor-
mally be parameterized with function pointers, such as many mathematical and standard C library
routines. The ‘C code for Newton’s method [59] in Figure 3-15 illustrates its use. The function new-
ton takes as arguments the maximum allowed number of iterations, a tolerance, an initial estimate,
and two pointers to functions that return cspecs to evaluate a function and its derivative. In the
calls f(p0) and fprime(p0), p0 is passed as a vspec argument. The cspecs returned by these functions
are incorporated directly into the dynamically generated code. As a result, there is no function call
overhead, and inter-cspec optimization can occur during dynamic code generation.

Network Protocol Layers

Another important application of dynamic inlining is the optimization of networking code. The mod-
ular composition of different protocol layers has long been a goal in the networking community [13].
Each protocol layer frequently involves data manipulation operations, such as checksumming and
byte-swapping. Since performing multiple data manipulation passes is expensive, it is desirable to
compose the layers so that all the data handling occurs in one phase [13].

53

unsigned cspec byteswap(unsigned vspec input) {
return ‘((input << 24) | ((input & 0xff00) << 8) |
((input >> 8) & 0xff00) | ((input >> 24) & 0xff));

}

/¥ "“Byteswap’’ maintains no state and so needs no initial or final code */
void cspec byteswap_initial(void) { return ‘{}; }
void cspec byteswap_final(void) { return '{}; }

Figure 3-16: A sample pipe written in ‘C: byteswap returns a cspec for code that byte-swaps input.

‘C can be used to construct a network subsystem that dynamically integrates protocol data
operations into a single pass over memory (e.g., by incorporating encryption and compression into
a single copy operation). A simple design for such a system divides each data-manipulation stage
into pipes that each consume a single input and produce a single output. These pipes can then
be composed and incorporated into a data-copying loop. The design includes the ability to specify
prologue and epilogue code that is executed before and after the data-copying loop, respectively. As
a result, pipes can manipulate state and make end-to-end checks, such as ensuring that a checksum
is valid after it has been computed.

The pipe in Figure 3-16 can be used to do byte-swapping. Since a byte swapper does not need
to maintain any state, there is no need to specify initial and final code. The byte swapper simply
consists of the “consumer” routine that manipulates the data.

To construct the integrated data-copying routine, the initial, consumer, and final cspecs of each
pipe are composed with the corresponding cspecs of the pipe’s neighbors. The composed initial
code is placed at the beginning of the resulting routine; the consumer code is inserted in a loop and
composed with code which provides it with input and stores its output; and the final code is placed
at the end of the routine. A simplified version would look like the code fragment in Figure 3-17.
In a mature implementation of this code, we could further improve performance by unrolling the
data-copying loop. Additionally, pipes would take inputs and outputs of different sizes that the
composition function would reconcile.

3.1.4 Elimination of Interpretation Overhead

Dynamic compilation can serve to strip away a layer of interpretation required to process bytecodes,
database queries, complex data structures, and so forth. Furthermore, ‘C’s imperative approach to
dynamic code generation makes it well-suited for writing programs—such as compilers and compil-
ing interpreters—that involve compilation. For such programs, an expressive dynamic compilation
interface can be not only an optimization mechanism, but also a software design tool. Rather than
writing a parser that generates bytecodes and then a bytecode interpreter, or a parser and then a
full compiler back end, one need only write a parser that uses ‘C. As the parser processes its input,
it can build up a dynamic code specification that represents the input. When the parsing is done,
the compile special form does all the work that would normally be done by a back end. Thus, ‘C
both generates efficient code and simplifies the overall development task.

Domain-Specific Languages

Small, domain-specific languages can benefit from dynamic compilation. The small query languages
used to search databases are one class of such languages [47]. Since databases are large, dynamically
compiled queries will usually be applied many times, which can easily pay for the cost of dynamic
code generation.

We provide a toy example in Figure 3-18. The function mk_query takes a vector of queries. Each
query contains the following elements: a database record field (i.e., CHILDREN or INCOME); a value
to compare this field to; and the operation to use in the comparison (i.e., <, >, etc.). Given a query

54

typedef void cspec (*vptr)();
typedef unsigned cspec (*uptr)(unsigned cspec);
/* Pipe structure: contains pointers to functions that return cspecs
for the initialization, pipe, and finalization code of each pipe */
struct pipe {
vptr initial, final; /* initial and final code */
uptr pipe; /* pipe */

/* Return cspec that results from composing the given vector of pipes */

void cspec compose(struct pipe *plist, int n) {
struct pipe *p;
int vspec nwords = param(int, 0); /% Arg 0: input size */
unsigned * vspec input = param(unsigned *, 1); /* Arg 1: pipe input */
unsigned * vspec output = param(unsigned *, 2); /* Arg 2: pipe output */
void cspec initial = ‘{}, cspec final = '{}; /* Prologue and epilogue code */
unsigned cspec pipes = ‘input[i];/* Base pipe input */

for (p = &plist[0]; p < &plist[n]; p++) { /* Compose all stages together */
initial = ‘{ @initial; @p—>initial(); }; /* Compose initial statements */
pipes ='p—>pipe(pipes); /* Compose pipes: one pipe’s output is the next one’s input */
final = '{ @final; @p—>final(); }; /* Compose final statements */
}
/* Create a function with initial statements first, consumer statements
second, and final statements last. */
return ‘{ int i;
Qinitial;
for (i = 0; i < nwords; i++) output[i] = pipes;
©final;

Figure 3-17: ‘C code for composing data pipes.

95

typedef enum { INCOME, CHILDREN /* ... */ } query; /* Query type */
typedef enum { LT, LE, GT, GE, NE, EQ } bool_op; /* Comparison operation */

struct query {

query record_field; /* Field to use */
unsigned val; /* Value to compare to */
bool_op bool_op; /* Comparison operation */

}

struct record { int income; int children; /* ... */ }; /* Simple database record */

/¥ Function that takes a pointer to a database record and returns 0 or 1,
depending on whether the record matches the query */
typedef int (*iptr)(struct record *r);

iptr mk_query(struct query *q, int n) {
int i, cspec field, cspec expr = ‘1; /* Initialize the boolean expression */
struct record * vspec r = param(struct record *, 0); /* Record to examine */

for (i = 0; i < n; i++) { /* Build the rest of the boolean expression */
switch (q[i].record_field) { /* Load the appropriate field value */
case INCOME: field = ‘(r—>income); break;
case CHILDREN: field = ‘(r—>children); break;

/r

switch (q[i].bool_op) { /* Compare the field value to runtime constant qfi] */
case LT: expr = ‘(expr && field < $q[i].val); break;
case EQ: expr = ‘(expr && field == $q][i].val); break;
case LE: expr = ‘(expr && field <= $q[i].val); break;
/Y.
}
}

return (iptr)compile(‘{ return expr; }, int);

Figure 3-18: Compilation of a small query language with ‘C.

56

enum { WHILE, IF, ELSE, ID, CONST, LE, GE, NE, EQ }; /* Multi-character tokens */

int expect(); /* Consume the given token from the input stream, or fail if not found */
int cspec expr(); /% Parse unary expressions */

int gettok(); /* Consume a token from the input stream */

int look(); /* Peek at the next token without consuming it */

int cur_tok; /* Current token */

int vspec lookup_sym(); /* Given a token, return corresponding vspec */

void cspec stmt() {
int cspec e = ‘0; void cspec s = ‘{}, s1 = ‘{}, s2 = ‘{};
switch (gettok()) {
case WHILE: /* ‘while’ (" expr ’)’ stmt */
expect('(’); e = expr();
expect(’')’); s = stmt();
return ‘{ while(e) @s; };
case IF: /* if’ (" expr °)’ stmt { ’else’ stmt } */
expect('(’); e = expr();
expect(’)’); sl = stmt();
if (look(ELSE)) {
gettok(); s2 = stmt();
return ‘{ if (e) @sl; else @s2; };
} else return ‘{ if (e) @sl; };
case '{': /* {’ stmt* '}’ */
while (!look('}")) s = *{ @s; @stmt(); };
return s;

case ';': return ‘{};

case ID: { /* ID ‘=" expr ;" */
int vspec Ivalue = lookup_sym(cur_tok);
expect('="); e = expr(); expect(’;’);
return ‘{ Ivalue = e; };

}

default: parse_err("expecting statement");

}

Figure 3-19: A sample statement parser from a compiling interpreter written in ‘C.

vector, mk_query dynamically creates a query function which takes a database record as an argument
and checks whether that record satisfies all of the constraints in the query vector. This check is
implemented simply as an expression which computes the conjunction of the given constraints. The
query function never references the query vector, since all the values and comparison operations in
the vector have been hardcoded into the dynamic code’s instruction stream.

The dynamically generated code expects one incoming argument, the database record to be
compared. It then “seeds” the boolean expression: since we are building a conjunction, the initial
value is 1. The loop then traverses the query vector and builds up the dynamic code for the
conjunction according to the fields, values, and comparison operations described in the vector. When
the cspec for the boolean expression is constructed, mk_query compiles it and returns a function
pointer. That optimized function can be applied to database entries to determine whether they
match the given constraints.

Compiling Interpreters

Compiling interpreters (also known as JIT compilers) are important pieces of technology: they com-
bine the flexibility of an interpreted programming environment with the performance of compiled
code. For a given piece of code, the user of a compiling interpreter pays a one-time cost of compila-
tion, which can be roughly comparable to that of interpretation. Every subsequent use of that code
employs the compiled version, which can be much faster than the interpreted version. Compiling

57

interpreters are currently very popular in shippable code systems such as Java.

Figure 3-19 contains a fragment of code for a simple compiling interpreter written in ‘C. This
interpreter translates a simple subset of C. As it parses the input program, it builds up a cspec that
represents it. At the end of the parse, the cspec is passed to compile, which automatically generates
executable code.

3.2 Limits of Dynamic Compilation

After this discussion, it is instructive to take a negative approach. In what sorts of problems is
dynamic code generation not applicable? Given a static routine or an algorithm, can we imme-
diately determine whether dynamic compilation is not the right solution to provide performance
improvements? To some degree, yes. A few important obstacles account for most of the cases in
which dynamic code generation is inapplicable:

Frequent data changes. This situation can also be viewed as low data reuse. For instance, the ‘C
matrix factorization codes in Section A.1.1 may not provide performance advantages relative
to static code if the matrices involved change frequently—most dynamic code must be reused
at least a few times before the cumulative time savings obtained thanks to its high level of
optimization outweigh the overhead of generating it.

Data-dependent control flow. If control flow is not data-dependent, then it may still be pos-
sible to perform some dynamic optimizations (for instance, loop unrolling), even though the
data that is being manipulated changes from run to run. In a sense, therefore, this factor is
complementary to frequent data changes. For example, the mergesort routine in Section A.2.1
can be specialized to a particular input length because mergesort is not sensitive to its input.
Quicksort, on the other hand, could not be optimized in this way because its choice of pivots
depends on the values in the array that is being sorted.

Analogously, as long as the data changes rarely enough, it may not matter that control flow is
data-dependent. For instance, the specialized Huffman compression code in Section A.2.5 has
data-dependent control flow, but the data—the values in the Huffman code—do not change
frequently and can be reused for many compression runs. By contrast, the data processed by
quicksort changes every time (presumably, a given array only needs to be sorted once), which
makes the algorithm unsuitable for dynamic optimization.

Big loops. Data-dependent loop unrolling is an effective optimization enabled by dynamic code
generation. However, big loops have negligible loop overhead, may cause cache misses when
unrolled, and may require considerable overhead to generate dynamically. It therefore helps to
focus on small, tight loops when converting existing static code to use dynamic compilation.

Floating point constants. Unfortunately, most processors cannot encode floating point instruc-
tion operands as immediates, making it impossible to benefit from run-time constant floating
point values. This fact is one of the greatest limitations to the applicability of dynamic opti-
mizations in numerical code.

The first three problems are inherent to dynamic compilation—one must always take into account
the tradeoff between dynamic code performance improvement and generation overhead. The fourth
problem is caused by current instruction set architectures—if it were possible to encode floating
point immediates in an instruction word, dynamic compilation would be dramatically more effective
for numerical code. As we have seen, however, despite these limitations, ‘C and dynamic compilation
in general can be used effectively in a variety of practical situations.

58

Chapter 4

Implementation and Performance

The ‘C compiler, tcc, tries to achieve two goals: high-quality dynamic code and low dynamic compi-
lation overhead. The challenge is to reconcile these two goals with ‘C’s imperative code generation
model, which makes it difficult to optimize dynamic code at static compilation time. This chapter
describes how tcc handles this tradeoff and evaluates tcc’s performance.

4.1 Architecture

The tce compiler is based on lcc [31, 30], a portable compiler for ANSI C. lcc performs common
subexpression elimination within extended basic blocks, and uses lburg [32] to find the lowest-cost
implementation of a given IR-level construct. Otherwise, it performs few optimizations.

Figure 4-1 illustrates the interaction of static and dynamic compilation in tcc. All parsing
and semantic checking of dynamic expressions occurs at static compile time. Semantic checks are
performed at the level of dynamically generated expressions. For each cspec, tce performs internal
type checking. It also tracks goto statements and labels to ensure that a goto does not transfer
control outside the body of the containing cspec.

Unlike traditional static compilers, tcc uses two types of back ends to generate code. One is
the static back end, which compiles the non-dynamic parts of ‘C programs, and emits either native
assembly code or C code suitable for compilation by an optimizing compiler. The other, referred to
as the dynamic back end, emits C code to generate dynamic code. Once produced by the dynamic
back end, this C code is in turn compiled by the static back end.

As mentioned in Section 1.3, tcc provides two dynamic code generation run-time systems so as to
trade code generation speed for dynamic code quality. Both systems provide a RISC-like interface
that can be used to specify instructions to be generated. The more lightweight run-time system
is VCODE [22], which emits code quickly in one pass and requires as few as 10 instructions per
generated instruction in the best case. Although it is fast, it only has access to local information
about backquote expressions. However, generating efficient code from composed cspecs requires, in
general, optimization analogous to function inlining and interprocedural optimization. As a result,
the quality of code generated by VCODE could often be improved. The second run-time system,
ICODE, produces better code at the expense of additional dynamic compilation overhead. Rather
than emitting code in one pass, it builds and optimizes an intermediate representation prior to code
generation.

lcc is not an optimizing compiler. The assembly code emitted by its traditional static back ends
is usually significantly slower (even three or more times slower) than that emitted by optimizing
compilers such as gcc or vendor C compilers. To improve the quality of static code emitted by
tce, we implemented a static back end that generates ANSI C from ‘C source; this code can then
be compiled by any optimizing compiler. lcc’s traditional back ends can thus be used when static
compilation must be fast (i.e., during development), and the C back end can be used when the
performance of the code is critical.

99

‘C source

C preprocessor

tcc front end

)) o
£ static code code specifications
Q@
=))
c tce static tcc dynamic
2 back end back end
(&S]
I
S
"
executable executable code executable code
static code to bind environments to create
of dynamic code dynamic code 2
2
code specifications =
Q
are evaluated IS
s
s
closures for :
o code specifications
- c
c Q
=] -~ T
14 . 9]
compile() S
(2]
is invoked)
=
o
o
Q
executable dynamic code £
¢ S
a

answer

Figure 4-1: Overview of the tcc compilation process.

4.2 The Dynamic Compilation Process

The creation of dynamic code can be divided into three phases: static compilation, environment
binding, and dynamic code generation. This section describes how tcc implements these three
phases.

4.2.1 Static Compile Time

During static compilation, tcc compiles the static parts of a ‘C program just like a traditional C
compiler. It compiles each dynamic part—each backquote expression—to a code-generating function
(CGF), which is invoked at run time to generate code for dynamic expressions.

In order to minimize the overhead of dynamic compilation, tcc performs as much work as possible
statically. The intermediate representation of each backquote expression is statically processed by
the common subexpression elimination and other local optimizations performed by the lcc front end.
Instruction selection that depends on operand types is performed statically. tcc also uses copt [29)
to perform static peephole optimizations on the code-generating macros used by CGFs.

However, not all instruction selection and register allocation can occur statically. For instance,
it is not possible to determine statically what vspecs or cspecs will be incorporated into other cspecs
when the program is executed. Hence, allocation of dynamic lvalues (vspecs) and of results of
composed cspecs must be performed dynamically. Dynamic register allocation is discussed further
in Section 4.3 and Chapter 5.

60

cspec_t i = ((closure0 = (closure0_t)alloc_closure(4)),
(closure0—>cgf = cgf0), /* code gen func */
(cspec-t)closure0);

cspec_t ¢ = ((closurel = (closurel_t)alloc_closure(16)),
(closurel—>cgf = cgfl), /* code gen func */
(closurel—>cs_i = i), /* nested cspec */
(closurel—>rtc_j = j), /* run-time const */
(closurel—>fv_k = &k),/* free variable */
(cspec_t)closurel);

Figure 4-2: Sample closure assignments.

unsigned int cgf0 (closure0_t c) {
vspec_t itmp0 = local (INT); /* int temporary */
seti (itmp0, 5); /* set it to 5 */
return itmp0; /* return the location */

}

void cgfl (closurel_t *c) {
vspec_t itmp0 = local (INT); /* some temporaries */
vspec_t itmpl = local (INT);
Idii (itmpl,zero,c—>fv_k); /* load from addr of free variable k */
mulii (itmpl,itmpl,c—>rtc_j); /* multiply by run-time const j */
/* now apply i’'s CGF to i’s closure: cspec composition! */
itmp0 = (*c—>cs_i—>cgf)(c—>cs_i);
addi (itmpl,itmp0,itmpl); /* add the result to the total */
reti (itmpl); /* emit a return (not return a value) */

Figure 4-3: Sample code-generating functions.

State for dynamic code generation is maintained in CGFs and in dynamically allocated closures.
Closures are data structures that store five kinds of necessary information about the run-time envi-
ronment of a backquote expression: (1) a function pointer to the corresponding statically generated
CGF; (2) information about inter-cspec control flow (i.e., whether the backquote expression is the
destination of a jump); (3) the values of run-time constants bound via the $ operator; (4) the ad-
dresses of free variables; (5) pointers to the run-time representations of the cspecs and vspecs used
inside the backquote expression. Closures are necessary to reason about composition and out-of-
order specification of dynamic code.

For each backquote expression, tcc statically generates both its code-generating function and the
code to allocate and initialize closures. A new closure is initialized each time a backquote expression
is evaluated. Cspecs are represented by pointers to closures.

For example, consider the following code:

int j, k;
int cspec i = ‘b;
void cspec ¢ = ‘{ return i+$j*k; };

tce implements the assignments to these cspecs by assignments to pointers to closures, as illustrated
in Figure 4-2. i’s closure contains only a pointer to its code-generating function. ¢ has more
dependencies on its environment, so its closure also stores other information.

61

Simplified code-generating functions for these cspecs appear in Figure 4-3. cgf0 allocates a
temporary storage location, generates code to store the value 5 into it, and returns the location.
cgfl must do a little more work: the code that it generates loads the value stored at the address of
free variable k into a register, multiplies it by the value of the run-time constant j, adds this to the
dynamic value of i, and returns the result. Since i is a cspec, the code that computes the dynamic
value of i is generated by calling i’s code-generating function.

4.2.2 Run Time

At run time, the code that initializes closures and the code-generating functions run to create
dynamic code. As illustrated in Figure 4-1, this process consists of two parts: environment binding
and dynamic code generation.

Environment Binding

During environment binding, code such as that in Figure 4-2 builds a closure that captures the envi-
ronment of the corresponding backquote expression. Closures are heap-allocated, but their allocation
cost is greatly reduced (down to a pointer increment, in the normal case) by using arenas [28].

Dynamic Code Generation

During dynamic code generation, the ‘C run-time system processes the code-generating functions.
The CGF's use the information in the closures to generate code, and they perform various dynamic
optimizations.

Dynamic code generation begins when the compile special form is invoked on a cspec. Compile
calls the code-generating function for the cspec on the cspec’s closure, and the CGF performs most
of the actual code generation. In terms of our running example, the code int (*f)() = compile(j,
int); causes the run-time system to invoke closurel—cgf(closurel).

When the CGF returns, compile links the resulting code, resets the information regarding dy-
namically generated locals and parameters, and returns a pointer to the generated code. We attempt
to minimize poor cache behavior by laying out the code in memory at a random offset modulo the
i-cache size. It would be possible to track the placement of different dynamic functions to improve
cache performance, but we do not do so currently.

Cspec composition—the inlining of code corresponding to one cspec, b, into that corresponding
to another cspec, a, as described in Section 2.1.3—occurs during dynamic code generation. This
composition is implemented simply by invoking b’s CGF from within a’s CGF. If b returns a value,
the value’s location is returned by its CGF, and can then be used by operations within a’s CGF.

The special forms for inter-cspec control flow, jump and label, are implemented efficiently. Each
closure, including that of the empty void cspec ‘{}, contains a field that marks whether the cor-
responding cspec is the destination of a jump. The code-generating function checks this field, and
if necessary, invokes a VCODE or ICODE macro to generate a label, which is eventually resolved
when the run-time system links the code. As a result, label can simply return an empty cspec. jump
marks the closure of the destination cspec appropriately, and then returns a closure that contains a
pointer to the destination cspec and to a CGF that contains an ICODE or VCODE unconditional
branch macro.

Within a CGF, tcc also generates code that implements some inexpensive dynamic optimizations.
These optimizations do not depend on elaborate run-time data structures or intermediate forms;
rather, they are performed directly by the code that is generated at static compile time. They
significantly improve code quality without greatly increasing dynamic compilation overhead. In
fact, in some cases they even decrease compilation overhead.

tce implements several simple optimizations of this type:

Loop unrolling. Some versions of tcc emit code-generating code that automatically unrolls loops
based on run-time constants. If a loop is bounded by constants or run-time constants, then
control flow can be determined at dynamic code generation time.

62

For example, consider the simple code:
{for (i=8i<8hi++} {... /*loop body */ ...} }i

Since the loop is bounded by run-time constants (I and h), looping can occur at dynamic
compile time to produce loop-free dynamic code. The code-generating function looks like this:

for (i = rtc_l; i < rtc_h; i++4) {
/¥ code to generate loop body, with i treated as a constant */

}

The only dynamic compile-time overhead of this loop unrolling—other than the inevitable need
to emit multiple loop bodies—is the loop bounds check and increment of i.

Run-time constant information can also propagate down loop nesting levels: for example, if
a loop induction variable is bounded by run-time constants, and it is in turn used to bound
a nested loop, then the induction variable of the nested loop is considered run-time constant
too, within each unrolled iteration of the nested loop.

Dead code elimination. Dead code elimination works on the same principle as loop unrolling.
The dynamic code

‘{ if ($condition) { ... /¥ do X */ } };
is generated by the following code:
if (rtc_condition) { ... /* generate code to do X */ }

Since the if statement tests a run-time constant, it can be performed at run-time. If the
condition is true, the generated code contains no test. If it is false, the code is not generated,
which improves the performance of both the dynamic code and the dynamic compilation
process.

Although tcc implements only the basic functionality, this scheme can be extended to more
sophisticated tests. For instance,

Jif ($x && y || $w && 2) { ...}

could be compiled to

if (rtc_x) { /* emit “if (y) goto X;” */ }
if (rtc_w) { /* emit “if (z) goto X;” */ }
if (rtc_x || rtc_w) {
/¥ emit “goto Y;” */
/% emit “X: body of if statement” */
/* emit Y ¥/
}

Constant folding. The code-generating functions evaluate at dynamic compile time any parts of an
expression that consist of static and run-time constants. The dynamically emitted instructions
then encode these values as immediates.

It would not be difficult to rearrange commutative expressions to improve constant folding
even further. For instance, tcc folds the expression a+$x+3+8%y into just one addition, but
$x+a+3+9%y is folded to two additions, because the run-time constants are in non-adjacent
branches of the expression tree.

Strength reduction of multiplication. The code-generating functions automatically replace mul-
tiplication by a run-time constant integer with a minimal series of shifts and adds, as described

63

in Briggs and Harvey [10]. Multiplications by zero are replaced by a clear instruction, and
multiplications by one by a move instruction.

The structure of lcc, on which tcc is based, makes it awkward to implement data flow analyses.
As a result, all of these optimizations in tcc are local and rather ad-hoc. A better solution would
be to implement a data flow analysis pass to propagate information about run-time constants in
dynamic code. It would enable tcc to identify derived run-time constants and to stage aggressive
constant and copy propagation based on run-time constants. At present, some of these optimizations
can be performed by the ‘C programmer by cleverly composing cspecs and run-time constants, but
more aggressive staged data flow analysis would improve dynamic code and probably also speed up
dynamic compilation. DyC, for example, benefits substantially from staged data flow analysis and
optimization [39]. Even without compile-time data flow analysis, however, the staged optimizations
improve dynamic code and incur negligible dynamic compile-time overhead.

4.3 Run-Time Systems

As described earlier, tce provides two run-time systems for generating code. VCODE emits code
locally, with no global analysis or optimization. ICODE builds up an intermediate representation
that allows it to optimize the code after the order of composition of cspecs has been completely
determined.

These two run-time systems allow programmers to choose the appropriate level of run-time
optimization. The choice is application-specific: it depends on the number of times the code will be
used and on the code’s size and structure. Programmers can select which run-time system to use
when they compile a ‘C program.

4.3.1 VCODE

To reduce code generation overhead, the user can make tcc generate CGFs that contain VCODE
macros. VCODE provides an idealized load/store RISC interface. Each instruction in this interface
is a C macro which directly emits the corresponding instruction (or series of instructions) for the
target architecture.

VCODE generates code and allocates registers all in one pass. It uses a simple and fast one-pass
register allocation algorithm, which is described in detail Section 5.1. To further reduce register
allocation overhead, tcc reserves a limited number of physical registers. These registers are not
allocated dynamically, but instead are managed at static compile time by tcc’s dynamic back end.
They can only be used for values whose live ranges do not span composition with a cspec, and are
typically employed for expression temporaries. As a result of these optimizations, VCODE register
allocation is quite fast. However, it does not always produce the best code, especially when many
cspecs composed together create high register pressure.

VCODE can be optionally followed by a peephole optimization pass. The peephole optimizer,
bpo, is described in Chapter 7. It is designed to efficiently perform local optimizations on binary
code. For instance, it effectively removes redundant register moves introduced when vspecs are
composed in cspecs. bpo is conceptually the last stage of dynamic compilation in tcc, but it runs in
an incremental manner. It rewrites and optimizes basic blocks one by one as they are emitted by
VCODE. This strategy limits the necessary temporary storage to the size of the biggest basic block,
and allows linking—resolution of jumps and jump targets—to be done more easily and quickly than
after a complete peephole optimization pass over the entire dynamic code.

4.3.2 ICODE

To improve code quality, the user can make tcc generate CGFs that contain ICODE macros. ICODE
generates an intermediate representation on which optimizations can be performed. For example, it
can perform global register allocation on dynamic code more effectively than VCODE in the presence
of cspec composition.

64

ICODE provides an interface similar to that of VCODE, with two main extensions: an infinite
number of registers and primitives to express changes in estimated usage frequency of code. The
first extension allows ICODE clients to emit code that assumes no spills, leaving the work of global,
inter-cspec register allocation to ICODE. The second allows ICODE to obtain estimates of code
execution frequency at low cost. For instance, prior to invoking ICODE macros that correspond to
a loop body, the ICODE client could invoke refmul(10); this tells ICODE that all variable references
occurring in the subsequent macros should be weighted as occurring 10 times (an estimated average
number of loop iterations) more than the surrounding code. After emitting the loop body, the
ICODE client should invoke a corresponding refdiv(10) macro to correctly weight code outside the
loop. The estimates obtained in this way are useful for several optimizations; they currently provide
approximate variable usage counts that help to guide register allocation.

ICODE’s intermediate representation is designed to be compact (two four-byte machine words
per ICODE instruction) and easy to parse in order to reduce the overhead of subsequent passes.
When compile is invoked in ICODE mode, ICODE builds a flow graph, performs register allocation,
and finally generates executable code.

ICODE builds a control-flow graph in one pass after all CGFs have been invoked. The flow graph
is a single array that uses pointers for indexing. In order to allocate all required memory at the same
time, ICODE computes an upper bound on the number of basic blocks by summing the numbers
of labels and jumps emitted by ICODE macros. After allocating space for an array of this size, it
traverses the buffer of ICODE instructions and adds basic blocks to the array in the same order in
which they exist in the list of instructions. Forward references are initially stored in an array of pairs
of basic block addresses; when all the basic blocks are built, the forward references are resolved by
traversing this array and linking the pairs of blocks listed in it. As it builds the flow graph, ICODE
also collects a minimal amount of local data-flow information (def and use sets for each basic block).
All memory management occurs through arenas [28], which ensures low amortized cost for memory
allocation and essentially free deallocation.

Good register allocation is the main benefit that ICODE provides over VCODE. ICODE currently
implements three different register allocation algorithms: graph coloring, linear scan, and a simple
scheme based on estimated usage counts. Linear scan, in turn, can obtain live intervals from full
live variable information or via a faster, approximate method that coarsens the flow graph to the
level of strongly connected components. All three register allocation algorithms are described in
Section 5.2. They allow ICODE to provide a variety of tradeoffs of compile-time overhead versus
quality of code. Graph coloring is most expensive and usually produces the best code, linear scan
is considerably faster but sometimes produces worse code, and the usage count allocator is faster
than linear scan but can produce considerably worse code. However, given the relatively small size
of most ‘C dynamic code, the algorithms perform similarly on the benchmarks presented in this
chapter. As a result, Section 4.5 presents measurements only for a representative case, the linear
scan allocator using live intervals derived from full live variable information.

After register allocation, ICODE translates the intermediate representation into executable code.
The code emitter makes one pass through the ICODE intermediate representation; it invokes the
VCODE macro that corresponds to each ICODE instruction, and prepends and appends spill code
as necessary. Peephole optimizations, if any, are performed at this time.

ICODE has several hundred instructions (the Cartesian product of operation kinds and operand
types), so a translator for the entire instruction set is quite large. Most ‘C programs, however, use
only a small subset of all ICODE instructions. tcc therefore keeps track of the ICODE instructions
used by an application. It encodes this usage information for a given ‘C source file in dummy symbol
names in the corresponding object file. A pre-linking pass then scans all the files about to be linked
and emits an additional object file containing an ICODE-to-binary translator tailored specifically to
the ICODE macros present in the executable. This simple trick significantly reduces the size of the
ICODE code generator; for example, for the benchmarks presented in this chapter it usually shrank
the code generators by a factor of five or six.

ICODE is designed to be a generic framework for dynamic code optimization; it is possible to
extend it with additional optimization passes, such as copy propagation, common subexpression
elimination, and so forth. However, much dynamic optimization beyond good register allocation is

65

Benchmark | Description | Section | Page |

ms Scale a 100x100 matrix by the integers in [10, 100] 3.1.1 46

hash Hash table, constant table size, scatter value, and 3.1.1 45
hash table pointer: one hit and one miss

dp Dot product with a run-time constant vector: 3.1.1 47
length 40, one-third zeroes

binary Binary search on a 16-element constant array; 3.1.1 47
one hit and one miss

pow Exponentiation of 2 by the integers in [10, 40] 3.1.1 46

dfa Finite state machine computation 3.1.1 49
6 states, 13 transitions, input length 16

heap Heapsort, parameterized with a specialized swap: 3.1.2 50
500-entry array of 12-byte structures

mshl Marshal five arguments into a byte vector 3.1.2 52

unmshl Unmarshal a byte vector, and call a function of 3.1.2 52
five arguments

ntn Root of f(z) = (z + 1)? to a tolerance of 10~° 3.1.3 53

ilp Integrated copy, checksum, byteswap of a 16KB buffer 3.1.3 55

query Query 2000 records with seven binary comparisons 3.14 56

Table 4.1: Descriptions of benchmarks.

probably not practical: the increase in dynamic compile time is usually not justified by sufficient
improvements in the speed of the resulting code.

4.4 Evaluation Methodology

To evaluate the performance of tcc and of specific dynamic compilation algorithms, we use some of
the routines presented in Chapter 3. Table 4.1 briefly summarizes each of these benchmarks, and
lists the section in which it is described.

4.4.1 Benchmark-Specific Details

Since the performance improvements of dynamic code generation hinge on customizing code to data,
the performance of all of these benchmarks is data-dependent to some degree. In particular, the
amount of code generated by the benchmarks is in some cases dependent on the input data. For
example, since dp generates code to compute the dot product of an input vector with a run-time
constant vector, the size of the dynamic code (and hence its i-cache performance) is dependent on
the size of the run-time constant vector. Its performance relative to static code also depends on the
density of 0s in the run-time constant vector, since those elements are optimized out when generating
the dynamic code. Similarly, binary and dfa generate more code for larger inputs, which generally
improves their performance relative to equivalent static code until negative i-cache effects come into
play.

Some other benchmarks—ntn, ilp, and query—involve dynamic function inlining that is affected
by input data. For example, the code inlined in ntn depends on the function to be computed, that
in ilp on the nature of the protocol stack, and that in query on the type of query submitted by the
user. The advantage of dynamic code over static code increases with the opportunity for inlining and
cross-function optimization. For example, an ilp protocol stack composed from many small passes
will perform relatively better in dynamic code that one composed from a few larger passes.

Lastly, a few benchmarks are relatively data-independent. pow, heap, mshl, and unmshl generate
varying amounts of code, but the differences are small for most reasonable inputs. ms obtains

66

performance improvements by hardwiring loop bounds and strength-reducing multiplication by the
scale factor. hash makes similar optimizations when computing a hash function. The values of
run-time constants may affect performance to some degree (e.g., excessively large constants are not
useful for this sort of optimization), but such effects are much smaller than those of more large-scale
dynamic optimizations.

4.4.2 Measurement Infrastructure

The machine used for all measurements of ‘C benchmarks is a Sun Ultra 2 Model 2170 workstation
with 384MB of main memory and a 168MHz UltraSPARC-I CPU. The UltraSPARC-I can issue up
to two integer and two floating-point instructions per cycle, and has a write-through, nonallocating,
direct-mapped, on-chip 16KB cache. It implements the SPARC version 9 architecture [67]. tcc
also generates code for the MIPS family of processors. For clarity, and since results on the two
architectures are similar, this thesis reports only SPARC measurements.

Run times were obtained by summing the system and user times reported by the UNIX getrusage
system call. The time for each benchmark trial was computed by timing a large number of iterations
(between 100 and 100,000, depending on the benchamrk, so as to provide several seconds of granu-
larity), and dividing the result by the number of iterations so as to obtain the average overhead of
a single iteration. This form of measurement ignores the effects of cache refill misses, but is repre-
sentative of how these applications would likely be used (e.g., in tight inner loops). Reported values
for each benchmark were obtained by taking the mean of ten such trials. The standard deviation
for each set of trials was negligible.

Certain aspects of linear scan register allocation (Section 5.2) and fast peephole optimizations
(Chapter 7) were evaluated on other platforms, specifically a Digital Alpha-based workstation and a
Pentium-based PC. Details about these platforms and measurements appear in the relevant sections.

4.4.3 Comparison of Static and Dynamic Code

To compare the performance of dynamic code with that of static code, each benchmark was written
both in ‘C and in equivalent static C. The speedup due to dynamic code generation is computed
by dividing the time required to run the static code by the time required to run the corresponding
dynamic code. Overhead is measured in terms of each benchmark’s cross-over point, if one exists.
As explained in Section 1.3, this point is the number of times that dynamic code must be used so
that the time gained by running the dynamic code equals or exceeds the overhead of dynamic code
generation.

The ‘C programs were compiled with both the VCODE and the ICODE-based tcc back ends.
Performance numbers for the ICODE run-time system were obtained using linear scan register
allocation with live intervals derived from live variable information. Comparative data for the other
register allocation algorithms appears in Chapter 5. Neither VCODE nor ICODE were followed by
peephole optimization. Therefore, the measurements reported for VCODE correspond to the fastest
code generation and poorest dynamic code obtainable with tcc on these benchmarks.

The static C programs were compiled both with the lcc compiler and with the GNU C com-
piler, gcc. The code-generating functions used for dynamic code generation are created from the
lcc intermediate representation, using that compiler’s code generation strategies. As a result, the
performance of lcc-generated code should be used as the baseline to measure the impact of dynamic
code generation. Measurements collected using gcc serve to compare tcc to an optimizing compiler
of reasonable quality.

4.5 Performance Evaluation

‘C and tcc support efficient dynamic code generation. In particular, the measurements in this section
demonstrate the following results:

67

= icode-lcc
)
de-Icc
g 1 g voodere
‘; W icode-gcc
'g M vcode-gcc
c
>
©
)
£
Q
5]
z °
o
>
°
o)
)
o
Sl ulh i |
ms hash dp binary pow dfa heap mshl unmshl ntn ilp query

Benchmark

Figure 4-4: Speedup of dynamic code over static code.

By using ‘C and tcc, we can achieve good speedups relative to static C. Speedups by a factor
of two to four are common for the programs that we have described.

‘C and tcc do not impose excessive overhead on performance. The cost of dynamic compilation
is usually recovered in under 100 runs of a benchmark; sometimes this cost can be recovered
in one run of a benchmark.

The tradeoff between dynamic code quality and dynamic code generation speed must be made
on a per-application basis. For some applications, it is better to generate code faster; for
others, it is better to generate better code.

Dynamic code generation can result in large speedups when it enables large-scale optimization:
when interpretation can be eliminated, or when dynamic inlining enables further optimization.
It provides smaller speedups if only local optimizations, such as strength reduction, are per-
formed dynamically. In such cases, the cost of dynamic code generation may outweigh its
benefits.

4.5.1 Performance

This section presents results for the benchmarks in Table 4.1 and for xv, a freely available image
manipulation package. The results show that dynamic compilation can frequently improve code
performance by a factor of two or more, and that code generation overhead can often be amortized
with fewer than 100 runs of the dynamic code. VCODE generates code approximately three to eight
times more quickly than ICODE. Nevertheless, the code generated by ICODE can be considerably
faster than that generated by VCODE. A programmer can choose between the two systems to trade
code quality for code generation speed, depending on the needs of the application.

68

~10000+

{g icode-Icc
® M vcode-Icc
o 10004

o W icode-gcc
g [l vcode-gcc
S 1004

©

&2 104

E

>

A=

£ 1

<)

o

2 014

9

]

8

S 0.014

0.001- "
ms hash binary pow dfa heap mshl unmshl ntn ilp query

Benchmark

Figure 4-5: Cross-over points, in number of runs. If the cross-over point does not exist, the bar is
omitted.

Speedup

Figure 4-4 shows that using ‘C and tcc improves the performance of almost all of our benchmarks.
Both in this figure and in Figure 4-5, the legend indicates which static and dynamic compilers are
being compared. icode-lcc compares dynamic code created with ICODE to static code compiled
with lcc; vcode-lcc compares dynamic code created with VCODE to static code compiled with lcc.
Similarly, icode-gcc compares ICODE to static code compiled with gcec, and vcode-gcec compares
VCODE to static code compiled with gcc.

In general, dynamic code is significantly faster than static code: speedups by a factor of two
relative to the best code emitted by gcc are common. Unsurprisingly, the code produced by ICODE
is faster than that produced by VCODE, by up to 50% in some cases. Also, the GNU compiler
generates better code than lcc, so the speedups relative to gcc are almost always smaller than those
relative to lcc. As mentioned earlier, however, the basis for comparison should be lcc, since the
code-generating functions are generated by an lcc-style back end, which does not perform static
optimizations.

The benchmarks that achieve the highest speedups are those in which dynamic information
allows the most effective restructuring of code relative to the static version. The main classes of
such benchmarks are numerical code in which particular values allow large amounts of work to be
optimized away (e.g., dp), code in which an expensive layer of data structure interpretation can be
removed at run time (e.g., query), and code in which inlining can be performed dynamically but
not statically (e.g., ilp). Dynamic code generation does not pay off in only one benchmark, unmshl.
In this benchmark, ‘C provides functionality that does not exist in C. The static code used for
comparison implements a special case of the general functionality provided by the ‘C code, and it is
very well tuned.

Cross-over

Figure 4-5 indicates that the cost of dynamic code generation in tcc is reasonably low. Remember
that the cross-over point on the vertical axis is the number of times that the dynamic code must

69

Convolution mask (pixels) Times (seconds)

lcc | gee | tec (ICODE) | DCG overhead
3x3 5.79 | 2.44 1.91 2.5x 1077
77 17.57 | 6.86 5.78 3.5x1073

Table 4.2: Performance of convolution on an 1152 x 900 image in xv.

be used in order for the total overhead of its compilation and uses to be equal to the overhead of
the same number of uses of static code. This number is a measure of how quickly dynamic code
“pays for itself.” For all benchmarks except query, one use of dynamic code corresponds to one run
of the dynamically created function. In query, however, the dynamic code is used as a small part
of the overall algorithm: it is the test function used to determine whether a record in the database
matches a particular query. As a result, in that case one use of dynamic code is defined to be one
run of the search algorithm, which corresponds to many invocations (one per database entry) of the
dynamic code. This methodology realistically measures how specialization is used in these cases.

In the case of unmshl, the dynamic code is slower than the static one, so the cross-over point
never occurs. Usually, however, the performance benefit of dynamic code generation occurs after a
few hundred or fewer runs. In some cases (ms, heap, ilp, and query), the dynamic code pays for itself
after only one run of the benchmark. In ms and heap, this occurs because a reasonable problem size
is large relative to the overhead of dynamic compilation, so even small improvements in run time
(from strength reduction, loop unrolling, and hardwiring pointers) outweigh the code generation
overhead. In addition, ilp and query exemplify the types of applications in which dynamic code
generation can be most useful: ilp benefits from extensive dynamic function inlining that cannot be
performed statically, and query dynamically removes a layer of interpretation inherent in a database
query language.

Figures 4-4 and 4-5 show how dynamic compilation speed can be exchanged for dynamic code
quality. VCODE can be used to perform fast, one-pass dynamic code generation when the dynamic
code will not used very much. However, the code generated by ICODE is often considerably faster
than that generated by VCODE; hence, ICODE is useful when the dynamic code is run more times,
so that the code’s performance is more important than the cost of generating it.

XV

xv is a popular image manipulation package that consists of approximately 60,000 lines of code.
It serves as an interesting test of the performance of tcc on a relatively large application. For the
benchmark, one of xv’s image-processing algorithms was rewritten in ‘C to make use of dynamic
code generation. One algorithm is sufficient, since most of the algorithms are implemented similarly.
The algorithm, Blur, applies a convolution matrix of user-defined size that consists of all 1’s to the
source image. The original algorithm was implemented efficiently: the values in the convolution
matrix are known statically to be all 1’s, so convolution at a point is simply the average of the image
values of neighboring points. Nonetheless, the inner loop contains image-boundary checks based on
run-time constants, and is bounded by a run-time constant, the size of the convolution matrix.

Results from this experiment appear in Table 4.2. For both a 3 x 3 and 7 x 7 convolution mask,
the dynamic code obtained using tcc and ICODE is approximately 3 times as fast as the static
code created by lcc, and approximately 20% faster than the static code generated by gec with all
optimizations turned on. Importantly, the overhead of dynamic code generation is almost three
orders of magnitude less than the performance benefit it provides.

xv is an example of the usefulness of dynamic code generation in the context of a well-known
application program. Two factors make this result significant. First, the original static code was
quite well tuned. Second, the tcc code generator that emits the code-generating code is derived
from an lcc code generator, so that the default dynamic code, barring any dynamic optimizations, is
considerably less well tuned than equivalent code generated by the GNU compiler. Despite all this,

70

250+

Code generation

c Il Environment binding
S 200

3]

2

g

= 1504

S

9

c

2

S 1004

o

[79)

Q@

(&)

> 50

6]

0 —_-_-_-_I_-_-J_._—_._-;

ms hash dp binary pow dfa heap mshlunmshl ntn ilp query
Benchmark

Figure 4-6: Dynamic code generation overhead using VCODE.

the dynamic code is faster than even aggressively optimized static code, and the cost of dynamic
code generation is insignificant compared to the benefit obtained.

4.5.2 Analysis

This section analyzes the code generation overhead of VCODE and ICODE. VCODE generates
code at a cost of approximately 100 cycles per generated instruction. Most of this time is taken up
by register management; just laying out the instructions in memory requires much less overhead.
ICODE generates code roughly three to eight times more slowly than VCODE. Much of this overhead
is due to register allocation: the choice of register allocator can significantly influence ICODE
performance.

VCODE Overhead

Figure 4-6 breaks down the code generation overhead of VCODE for each of the benchmarks. The
VCODE back end generates code at approximately 100 cycles per generated instruction: the geo-
metric mean of the overheads for the benchmarks in this chapter is 119 cycles per instruction. The
cost of environment binding is small—almost all the time is spent in code generation.

The code generation overhead has several components. The breakdown is difficult to measure
precisely and varies slightly from benchmark to benchmark, but there are some broad patterns:

e Laying instructions out in memory (bitwise operations to construct instructions, and stores to
write them to memory) accounts for roughly 15% of the overhead.

e Dynamically allocating memory for the code, linking, delay slot optimizations, and prologue
and epilogue code add approximately another 25%.

e Register management (VCODE’s putreg/getreg operations) accounts for about 50% of the
overhead.

e Approximately 10% of the overhead is due to other artifacts, such as checks on the storage
class of dynamic variables and calls to code-generating functions.

These results indicate that dynamic register allocation, even in the minimal VCODE implemen-
tation, is a major source of overhead. This cost is unavoidable in ‘C’s dynamic code composition

71

Code generation
B Register allocation
[l Live interval construction
1000+ Live variable analysis
[Setup/FG construction
B R layout

[l Environment binding L
L L
L
L L

L U L
500
I I U I I
U
U
U I U U I U
2 i

L
il
-

Cycles/generated instruction

ms hash dp binary pow dfa heap mshl unmshl ntn ilp query
Benchmark

Figure 4-7: Dynamic code generation overhead using ICODE. Columns labeled L denote ICODE
with linear scan register allocation; those labeled U denote ICODE with a simple allocator based on
usage counts.

model; systems that can statically allocate registers for dynamic code should therefore have a con-
siderable advantage over ‘C in terms of dynamic compile-time performance.

ICODE Overhead

Figure 4-7 breaks down the code generation overhead of ICODE for each of the benchmarks. For
each benchmark we report two costs. The columns labeled L represent the overhead of using ICODE
with linear scan register allocation based on precise live variable information. For comparison, the
columns labeled U represent the overhead of using ICODE with the simple allocator that places
the variables with the highest usage counts in registers. Data on the performance of both of these
algorithms, independently of other code generation costs, appears in Section 5.2.

For each benchmark and type of register allocation, we report the overhead due to environment
binding, laying out the ICODE intermediate representation, creating the flow graph and doing some
setup (allocating memory for the code, initializing VCODE, etc.), performing various phases of
register allocation, and finally generating code.

In addition to register allocation and related liveness analyses, the main sources of overhead are
flow graph construction and code generation. The latter roughly corresponds to the VCODE code
generation overhead. Environment binding and laying out the ICODE intermediate representation
are relatively inexpensive operations.

ICODE’s code generation speed ranges from about 200 to 800 cycles per instruction, depending
on the benchmark and the type of register allocation. The geometric mean of the overheads for the
benchmarks in this chapter, when using linear scan register allocation, is 615 cycles per instruction.

4.6 Summary
This section has described tcc, an experimental implementation of ‘C. tcc generates traditional

machine code for the static parts of ‘C programs as well code-generating code that creates dynamic
code at run time. Performance measurements indicate that ‘C can improve the performance of several

72

realistic benchmarks by a factor of two to four, and that the overhead of dynamic compilation is
usually low enough—about 100 to 600 cycles per generated instruction, depending on the level of
optimization—to be recouped within 100 uses of the dynamic code.

The next three chapters will focus on specific algorithms that can improve the performance
of dynamic code without incurring excessive dynamic compilation overhead. Chapter 5 discusses
three efficient register allocation algorithms. The first is very fast but generates relatively poor
code, and is implemented in the VCODE run-time system; the second is slower but generates better
code, and is implemented in the ICODE run-time system; the third is still unimplemented, but
it promises to merge the best performance features of each of the existing algorithms. Chapter 6
presents some fast approximate data flow analysis algorithms. They are still too slow to be useful
in a lightweight dynamic compilation environment like that of ‘C, so they are not a part of tcc.
However, they are several times faster than traditional data flow analyses, so they may be useful in
other dynamic code applications. Finally, Chapter 7 covers fast peephole optimizations. It presents
bpo, a peephole optimizer that is part of tcc, and shows that peephole optimizations can be efficient
and can significantly improve dynamic code.

73

74

Chapter 5

Register Allocation

Good register allocation is an important optimization. It can improve the performance of code by
an order of magnitude relative to no or poor register allocation. Unfortunately, as explained in
Section 1.3, the code composition inherent to ‘C’s programming model makes it difficult to per-
form good register allocation on dynamic code statically. Therefore, an effective ‘C implementation
requires a good but fast run-time register allocator.

This chapter presents three different register allocation algorithms. The first is a simple one-
pass greedy algorithm used in tcc’s VCODE run-time system. It is fast but easily makes poor spill
decisions. The second algorithm, linear scan, coarsens variable liveness information into approximate
live intervals, and allocates registers in one pass over a sorted list of intervals. It is more expensive
than the first algorithm, but usually produces better code. It is used in tcc’s ICODE optimizing
run-time system. The third algorithm is a compromise between the two: it should handle dynamic
code composition more gracefully than the first algorithm, but at lower overhead than the second.
This third algorithm has not yet been implemented.

5.1 Omne-Pass Register Allocation

The simplest way to allocate registers at run time is to track available registers with a bit vector.
If a physical register is available, it is represented as a one in the bit vector; if it is being used, it
is represented as a zero. If no register is available when one is needed, the corresponding variable
is placed in a stack location. Once a register is no longer needed, the corresponding bit in the bit
vector is turned back on.

This simple algorithm is used by tcc’s VCODE run-time system, described in Chapter 4. VCODE
maintains a bit vector for each register class (for instance, integer registers and floating point regis-
ters), and provides getreg and putreg operations that operate on these bit vectors by allocating and
deallocating registers, respectively.

As explained in Chapter 4, tcc creates one code-generating function (CGF) for every cspec.
Each CGF contains macros and calls to one of the two run-time systems, VCODE or ICODE, that
actually emit dynamic code. The code-generating code that uses VCODE calls the getreg and putreg
functions as well as macros that generate machine instructions. For instance, the simple dynamic
code

‘{int a, b, ¢; a = b+c; };

75

is generated by VCODE macros that look like this:

reg_t rl, r2, r3; /* These typically store values in 0-31 */

v_getreg(&rl, INT, VAR); /* Get a register for int variable a */
v_getreg(&r2, INT, VAR); /* Get a register for int variable b */
v_getreg(&r3, INT, VAR); /* Get a register for int variable ¢ */
v_addi(rl, r2, r3); /* This macro generates an integer add instruction */
v_putreg(rl, INT); /* Free the register whose number is in r1 */
v_putreg(r2, INT); /* Free the register whose number is in r2 */
v_putreg(r3, INT); /* Free the register whose number is in r3 */

cspec composition is implemented by calling the nested cspec’s code-generating function from within
the outer cspec’s CGF. Unfortunately, cspec composition interacts poorly with the simple greedy
register allocation scheme. If a register is allocated in the outer cspec and not deallocated until after
the call to the nested cspec’s CGF, then it is unavailable to the nested cspec and other cspecs nested
within it. In this situation, spills will occur after only a few levels of cspec nesting, even though a
more global view could avoid them. Furthermore, since deeply nested cspecs frequently correspond
to more heavily executed code (fragments of loop bodies, for example), variables in those cspecs may
be particularly poor spill candidates.

Another drawback of VCODE’s one-pass approach is that it cannot determine the end of the live
range of a dynamic variable (an explicitly declared vspec) that is live across multiple cspecs. For
instance, if one declares

int vspec v = local(int);

v is considered live across the entire dynamic function that is being generated. With the exception
of the topmost (enclosing) CGF, none of the CGFs that generate code that uses v can reclaim v’s
dynamic storage location, because v may be used later in code generated by another CGF. As a
result, v can end up occupying a valuable register even when it is no longer live.

tee follows some simple heuristics to improve code quality. First, expression trees are rearranged
so that cspec operands of instructions are evaluated before non-cspec operands. This minimizes the
number of temporaries that span cspec references, and hence the number of registers allocated by the
code-generating function of one cspec during the execution of the CGF of a nested cspec. Second,
a cspec does not allocate a register for the return value of a nested non-void cspec. Rather, the
CGF for the nested cspec is in charge of allocating the register for the result, and then returns this
register name to the CGF of the enclosing cspec. Third, explicitly declared vspecs, such as v in the
previous paragraph, are allocated to stack locations unless one explicitly declares them as register
variables (for instance, with v = local(register int)).

If after all this there are still no unallocated registers when getreg is invoked, getreg could return
a spilled location designated by a negative number; VCODE macros could recognize this number
as a stack offset and emit the necessary loads and stores around each instruction. However, such
spilling results in poor dynamic code, and the register checks around every VCODE macro decrease
compilation performance. Therefore, the current VCODE implementation simply halts dynamic
compilation when getreg cannot find a register, and the user can then switch to ICODE.

Section 4.5 discussed the performance of this simple register allocation algorithm. Although the
algorithm is quite fast and the heuristics described above make it generate passable code, it often
makes rather poor spilling decisions. Linear scan register allocation was developed to solve this
problem.

5.2 Linear Scan Register Allocation
The drawback of the algorithm described in the previous section is that local allocation decisions
(for example, allocating a register to an expression temporary) can have undesirable global effects

(for example, making registers unavailable in cspecs nested in the same expression). An alternative
is to use an algorithm that takes a more global view of liveness information.

76

Unfortunately, global register allocation algorithms for most static optimizing compilers are
heavily skewed toward performance of compiled code rather than small compilation overhead. These
compilers usually employ a variant of graph coloring register allocation [11], in which the interference
graph can have a worst-case size that is quadratic in the number of live ranges.

Linear scan register allocation, by contrast, is a global register allocation algorithm that is not
based on graph coloring, but rather allocates registers in a greedy fashion in just one pass of the
program’s live range representation. The algorithm is simple, efficient, and produces relatively good
code: it is up to several times faster than even a fast graph coloring register allocator that performs
no coalescing, yet the resulting code is within 12% as fast as code generated by an aggressive graph
coloring algorithm for all but two of our benchmarks. Linear scan register allocation is used in the
ICODE optimizing run-time system of tcc, and is should be well-suited also to other applications
where compile time and code quality are important, such as “just-in-time” compilers and interactive
development environments.

The rest of this section first presents some related work on global register allocation, and then
describes the algorithm, evaluates its performance, and outlines possible extensions.

5.2.1 Background

Global register allocation has been studied extensively in the literature. The predominant approach,
first proposed by Chaitin [11], is to abstract the register allocation problem as a graph coloring
problem. Nodes in the graph represent live ranges (variables, temporaries, virtual registers) that
are candidates for register allocation. Edges connect live ranges that interfere—those that are live
simultaneously in at least one program point. Register allocation then reduces to the graph coloring
problem in which colors (registers) are assigned to the nodes such that two nodes connected by an
edge do not receive the same color. If the graph is not colorable, some nodes are deleted from the
graph until the reduced graph becomes colorable. The deleted nodes are said to be spilled because
they are not assigned to registers. The basic goal of register allocation by graph coloring is to find
a legal coloring after deleting the minimum number of nodes (or more precisely, after deleting a set
of nodes with minimum total spill cost).

Chaitin’s algorithm also features coalescing, a technique that can be used to eliminate redun-
dant moves. When the source and destination of a move instruction do not share an edge in the
interference graph, the corresponding nodes can be coalesced into one, and the move eliminated.
Unfortunately, aggressive coalescing can lead to uncolorable graphs, in which additional live ranges
need to be spilled to memory. More recent work on graph coloring ([10], [36]) has focused on
removing unnecessary moves in a conservative manner so as to avoid introducing spills.

Some simpler heuristic solutions also exist for the global register allocation problem. For example,
lee [31] allocates registers to the variables with the highest estimated usage counts, places all others
on the stack, and allocates temporary registers within an expression by doing a tree walk.

Linear scan can be viewed as a global extension of a special class of local register allocation
algorithms that have been considered in the literature [35, 42, 31, 53], which in turn take their
inspiration from an optimal off-line replacement algorithm that was studied for virtual memory [5].

Since the original description of the linear scan algorithm in Poletto et al. [56], Traub et al. have
proposed a more complex linear scan algorithm, which they call second-chance binpacking [73]. This
algorithm is an evolution and refinement of binpacking, a technique used for several years in the DEC
GEM optimizing compiler [9]. At a high level, the binpacking schemes are similar to linear scan,
but they invest more time in compilation in an attempt to generate better code. The second-chance
binpacking algorithm both makes allocation decisions and rewrites code in one pass. The algorithm
allows a variable’s lifetime to be split multiple times, so that the variable resides in a register in
some parts of the program and in memory in other parts. It takes a lazy approach to spilling, and
never emits a store if a variable is not live at that particular point or if the register and memory
values of the variable are consistent. At every program point, if a register must be used to hold the
value of a variable vy, but vy is not currently in a register and all registers have been allocated to
other variables, the algorithm evicts a variable v, that is allocated to a register. It tries to find a vy
that is not currently live (to avoid a store of v2), and that will not be live before the end of v1’s live
range (to avoid evicting another variable when both v; and ve become live).

7

Binpacking can emit better code than linear scan, but it does more work at compile time. Unlike
linear scan, binpacking keeps track of the “lifetime holes” of variables and registers (intervals when
a variable maintains no useful value, or when a register can be used to store a value), and maintains
information about the consistency of the memory and register values of a reloaded variable. The
algorithm analyzes all this information whenever it makes allocation or spilling decisions. Further-
more, unlike linear scan, it must perform an additional “resolution” pass to resolve any conflicts
between the non-linear structure of the control flow graph and the assumptions made during the
linear register allocation pass. Section 5.2.3 compares the performance of the two algorithms and of
the code that they generate.

5.2.2 The Algorithm

First, we must establish some conventions. This section assumes a program intermediate represen-
tation that consists of RTL-like quads or pseudo-instructions. Register candidates (live ranges) are
represented by an unbounded set of “virtual registers” that can be used directly in arithmetic oper-
ations. Variables are not live on entry to the start node in the flow graph; initialization of procedure
parameters is captured by explicit assignment statements.

The linear scan algorithm assumes that the intermediate representation pseudo-instructions are
numbered according to some order. One possible ordering is that in which the pseudo-instructions
appear in the intermediate representation. Another is depth-first ordering, the reverse of the order
in which nodes are last visited in a preorder traversal of the flow graph [1]. This section uses depth-
first order. The choice of instruction ordering does not affect the correctness of the algorithm, but
it may affect the quality of allocation. Section 5.2.4 discusses alternative orderings.

Central to the algorithm is the notion of a live interval. Given some numbering of the intermediate
representation, [4, j] is said to be a live interval for variable v if there is no instruction with number
j' > j such that v is live at j', and there is no instruction with number i’ < i such that v is live at
i'. This information is a conservative approximation of live ranges: there may be subranges of [i, j]
in which v is not live, but they are ignored. The “trivial” live interval for any variable v is [1, N],
where N is the number of pseudo-instructions in the intermediate representation: this live interval
is correct and takes no time to compute, but it also yields no information. All other live intervals lie
on the spectrum between the trivial live interval and accurate live interval information. The order
chosen for numbering pseudo-instructions influences the extent and accuracy of live intervals, and
hence the quality of register allocation, but the definition of live intervals does not rely on or make
assumptions about a particular numbering.

Given live variable information (obtained, for example, via data-flow analysis [1]), live intervals
can be computed easily with one pass through the intermediate representation. Interference among
live intervals is captured by whether or not they overlap. Given R available registers and a list of
live intervals, the linear scan algorithm must allocate registers to as many intervals as possible, but
such that no two overlapping live intervals are allocated to the same register. If n > R live intervals
overlap at any point, then at least n — R of them must reside in memory.

Details

The number of overlapping intervals changes only at the start and end points of an interval. Live
intervals are stored in a list that is sorted in order of increasing start point. Hence, the algorithm
can quickly scan forward through the live intervals by skipping from one start point to the next.
At each step, the algorithm maintains a list, active, of live intervals that overlap the current point
and have been placed in registers. The active list is kept sorted in order of increasing end point.
For each new interval, the algorithm scans active from beginning to end. It removes any “expired”
intervals—those intervals that no longer overlap the new interval because their end point precedes
the new interval’s start point—and makes the corresponding register available for allocation. Since
active is sorted by increasing end point, the scan needs to touch exactly those elements that need to
be removed, plus at most one: it can halt as soon as it reaches the end of active (in which case active
remains empty) or encounters an interval whose end point follows the new interval’s start point.

78

LINEARSCANREGISTERA LLOCATION

active « {}
foreach live interval 7, in order of increasing start point

EXPIREOLDINTERVALS (%)
if length(active) = R then
SPILLATINTERVAL(%)

else
register|i] < a register removed from pool of free registers

add i to active, sorted by increasing end point

ExXPIREOLDINTERVALS(%)
foreach interval j in active, in order of increasing end point
if endpoint[j] > startpoint]i] then
return
remove j from active
add register{j] to pool of free registers

SPILLATINTERVAL(%)
spill < last interval in active
if endpoint[spill] > endpoint[i] then
register|i] < register|spill]
location[spill] + new stack location
remove spill from active
add ¢ to active, sorted by increasing end point
else
location[i] < new stack location

Figure 5-1: Linear scan register allocation. Indentation denotes nesting level. Live intervals (includ-
ing startpoint and endpoint information) have been computed by a prior liveness analysis phase.

79

A
B
c
b :
E | ‘
1 2 ‘3 4 5

Figure 5-2: An example set of live intervals. Letters on the left are variable names; the corresponding
live intervals appear to the right. Numbers in italics refer to steps in the linear scan algorithm
described in the text.

The length of the active list is at most R. The worst case scenario is that active has length R
at the start of a new interval and no intervals from active are expired. In this situation, one of the
current live intervals (from active or the new interval) must be spilled. There are several possible
heuristics for selecting a live interval to spill. The heuristic described here is based on the remaining
length of live intervals. The algorithm spills the interval that ends last, furthest away from the
current point. It can find this interval quickly because active is sorted by increasing end point: the
interval to be spilled is either the new interval or the last interval in active, whichever ends later.
In straight-line code, and when each live interval consists of exactly one definition followed by one
use, this heuristic produces code with the minimal possible number of spilled live ranges [5, 53].
Although in our case a live interval may cover arbitrarily many definitions and uses spread over
different basic blocks, the heuristic still appears to work well. Figure 5-1 contains the pseudocode
for the linear scan algorithm with this heuristic. All results in Section 5.2.3 are also based on this
heuristic.

An Example

Consider, for example, the live intervals in Figure 5-2 for the case when the number of available
registers is R = 2. The algorithm performs allocation decisions 5 times, once per live interval, as
denoted by the italicized numbers at the bottom of the figure. By the end of step 2, active = (A, B)
and both A and B are therefore in registers. At step 3, three live intervals overlap, so one variable
must be spilled. The algorithm therefore spills C, the one whose interval ends furthest away from
the current point, and does not change active. As a result, at step 4, A is expired from active,
making a register available for D, and at step 5, B is expired, making a register available for E.
Thus, in the end, C is the only variable not allocated to a register. Had the algorithm not spilled
the longest interval, C, at step 3, both one of A and B and one of D and E would have been spilled
to memory.

Complexity

Let V be the number of variables (live intervals) that are candidates for register allocation, and R be
the number of registers available for allocation. As can be seen from the pseudocode in Figure 5-1,
the length of active is bounded by R, so the linear scan algorithm takes O(V) time if R is assumed
to be a constant.

Since R can be large in some current or future processors, it is worthwhile understanding how
the complexity depends on R. Recall that the live intervals in active are sorted in order of increasing
endpoint. The worst-case execution time complexity of the linear scan algorithm is dictated by the
time taken to insert a new interval into active. If a balanced binary tree is used to search for the
insertion point, then the insertion takes O(log R) time and the entire algorithm takes O(V x log R)
time. An alternative is to do a linear search for the insertion point, which takes O(R) time, thus
leading to a worst case complexity of O(V x R) time. This is asymptotically slower than the previous
result, but may be faster for moderate values of R because the data structures involved are much
simpler. The implementations evaluated in Section 5.2.3 use a linear search.

80

5.2.3 Evaluation

This section evaluates linear scan register allocation in terms of both compile-time performance and
the quality of the resulting code. We first describe our methodology, then evaluate the compile-time
performance of the algorithm, and finally discuss the run-time performance of the generated code.
As described below, each part of the evaluation was performed with two different implementations
and benchmark infrastructures.

Methodology

The data for this evaluation was obtained using two systems. ICODE, tcc’s optimizing run-time
system, was used primarily to measure compile-time performance. SUIF [2], on the other hand,
provided a good platform for measuring run-time performance of the generated code.

Performance of the Register Allocation Algorithm. Linear scan is the default register allo-
cation algorithm in ICODE, tcc’s optimizing run-time system. Evaluating the algorithm in ICODE
is a convincing benchmark of compile-time performance because ICODE is already well-tuned for
efficient compilation. We use two sets of benchmarks to evaluate our ICODE implementation. The
first set consists of the ‘C applications described in Section 4.4. For each of these benchmarks,
we compare linear scan register allocation against two other algorithms implemented in ICODE: a
well-tuned graph coloring algorithm and a simple “usage count” register allocation scheme. The
graph coloring algorithm tries to be fast without overly penalizing code quality: it does not do coa-
lescing, but employs estimates of usage counts to guide spilling. The live variable information used
by this allocator is obtained by an iterative data-flow pass over the ICODE flow graph. Both the
liveness analysis and the register allocation pass were carefully implemented for speed. The “usage
count” algorithm ignores liveness information altogether. It allocates the k available registers to the
k variables and compiler-generated temporaries with the highest estimated usage counts, and places
all others on the stack.

The second set of benchmarks consists of pathological programs that perform no useful compu-
tation but have huge numbers of simultaneously live variables that make register allocation difficult.
We use these benchmarks to compare the performance of graph coloring and linear scan as the size
of the allocation problem increases.

All these measurements were performed on the hardware and with the methodology described
in Section 4.4.

Performance of the Resulting Code. The ‘C benchmarks are all relatively small, so their run-
time performance is similar for all the register allocation algorithms. In order to measure the effect
of linear scan on the performance of larger, well-known programs, it was necessary to implement it in
Machine SUIF [66], an optimizing scalar back end infrastructure for SUIF [2]. This implementation
served to compile various SPEC benchmarks (from both the SPEC92 and SPEC95 suites) and
two UNIX utilities. As before, linear scan register allocation is compared against a graph coloring
algorithm and the simple algorithm based on usage counts. It is also compared against second-chance
binpacking [73]. The graph coloring allocator is an implementation of iterated register coalescing [36)
developed at Harvard. For completeness, this section also reports the compile-time performance of
the SUIF implementation of binpacking and linear scan in Section 5.2.3, even though the underlying
SUIF infrastructure has not been designed for efficient compile times.

All benchmarks were compiled with SUTF and Machine SUIF. Measurements are the user time
from the best of ten runs on an unloaded DEC Alpha workstation with a 500MHz Alpha 21164
processor and 128MB of RAM.

Compile-Time Performance

ICODE Implementation. Figure 5-3 illustrates the overhead of register allocation for the dy-
namic code kernels described in Section 5.2.3. The vertical axis measures compilation overhead, in
cycles per generated instruction. Larger values indicate larger overhead. The horizontal axis of the

81

Register allocation

800+ I Allocation setup
I Live variable analysis c
600-] c ¢ c

400+

Cycles/generated instruction

200+

ms hash dp binary pow dfa heap mshl unmshl ntn ilp query

Benchmark

Figure 5-3: Register allocation overhead for ‘C benchmarks (ICODE infrastructure). U denotes a
simple algorithm based on usage counts. L denotes linear scan. C denotes graph coloring.

figure denotes different benchmarks written in ‘C. For each benchmark, there are three bars: U refers
to the usage count algorithm; L refers to linear scan register allocation; C refers to graph coloring.
Each bar contains up to three different regions:

1. Live variable analysis: refers to traditional iterative live variable analysis, and hence does
not appear in the U column.

2. Allocation setup: refers to work necessary prior to register allocation. It does not apply to
U. In the case of L, it refers to the construction of live intervals by coarsening live variable
information obtained through live variable analysis. In the case of C, it refers to construction
of the interference graph.

3. Register allocation: in the case of U, it involves sorting variables by usage count, and
allocating registers to the most used ones until none are left. In the case of L, it refers to linear
scan of the live intervals. In the case of C, it refers to coloring the interference graph.

Liveness analysis and allocation setup for the U case are essentially null function calls. Small
positive values for these two phases, as well as small differences in the live variable analysis overheads
in the L and C cases, are due to slight variability in the getrusage measurements. Times for individual
compilation phases were obtained by repeatedly interrupting compilation after the phase of interest,
subtracting the time required up to the previous phase, and dividing by the number of (interrupted)
compiles.

The figure indicates that linear scan allocation (L) can be considerably faster than even a simple
and fast graph coloring algorithm (C). In particular, although creating live intervals from live variable
information is roughly similar to building an interference graph from live variable information, linear
scan of live intervals is always much faster than coloring the interference graph. The one benchmark
in which graph coloring is faster than linear scan is binary. In this case, the code uses few variables
but consists of many basic blocks, so it is faster to build the small interference graph than to extract
live intervals from liveness information at each basic block. However, note that even for binary the
actual time spent on register allocation is smaller for linear scan (L) than for graph coloring (C).

SUIF Implementation. Table 5.1 compares the compile-time performance of the SUIF imple-
mentation of binpacking and linear scan on representative files from the benchmark set. It does not

82

File (Benchmark) Time in seconds Ratio

Linear scan | Binpacking | (Binpacking / linear scan)
swim.f (swim) 0.42 1.07 2.55
xlist.c (1i) 0.31 0.60 1.94
xleval.c (li) 0.14 0.29 2.07
tomcatv.f (tomcatv) 0.19 0.48 2.53
compress.c (compress) 0.14 0.32 2.29
cvrin.c (espresso) 0.61 1.14 1.87
backprop.c (alvinn) 0.07 0.19 2.71
fpppp.f (fpppp) 3.35 4.26 1.27
twldrv.f (fpppp) 1.70 3.49 2.05

Table 5.1: Register allocation overhead for static C benchmarks using linear scan and binpacking
(SUTF infrastructure).

@) (b)

Figure 5-4: Two types of pathological programs.

present data for graph coloring: Traub et al. [73] and Section 5.2.3 provide convincing evidence that
both binpacking and linear scan are much faster than graph coloring, especially as the number of
register candidates grows.

The times in Table 5.1 refer to only the core allocation routines: they include neither setup
activities such as CFG construction and liveness analysis, nor any compilation phase after allocation.
In most cases, linear scan is roughly two to three times faster than binpacking.

These results, however, under-represent the difference between the two algorithms. For simplicity,
the linear scan implementation uses the binpacking routine for computing “lifetime holes” [73].
However, linear scan does not need or use full information on lifetime holes—it just considers the
start and end of each variable’s life interval. As a result, an aggressive linear scan implementation
could be considerably faster. For example, if one does not count lifetime hole computation, the
compilation overhead for fpppp.f is 2.79s with binpacking and 1.88s with linear scan, and that of
twldrv.f is 2.28s with binpacking and 0.49s with linear scan.

Pathological Cases. The ICODE framework was also used to compile pathological programs
intended to stress register allocators. This study considers programs with two different kinds of
structure, as illustrated in Figure 5-4. One kind, labeled (a) in the figure, contains some number, 7,
of overlapping live intervals (simultaneously live variables). The other kind, labeled (b), contains k
staggered “sets” of live intervals in which no more than m live intervals overlap.

Figure 5-5 illustrates the overhead of graph coloring and linear scan as a function of the number
n of overlapping live intervals in code of type (a). Both axes are logarithmic. The horizontal axis
indicates problem size; the vertical axis indicates time. Although the costs of graph coloring and
linear scan are comparable when the number of overlapping live intervals is small, linear scan scales
much more gracefully to large problem sizes. With 512 simultaneously live variables, linear scan
is over 600 times faster than graph coloring. Unlike linear scan, graph coloring appears to suffer

83

2564
128+

w o
N
P

=
o
I

—=— Graph coloring
—e—Linear scan

ime (seconds)
o
AR

T

o

)

a
1

0.1254
0.0625+
0.03124
0.01561

0.00781

1 2 2 8 16 32 64 128 256 512
Size (Simultaneously live variables, n)

Figure 5-5: Overhead of graph coloring and linear scan as a function of the number of simultaneously
live variables for programs of type (a) (ICODE infrastructure). Both algorithms generate the same
number of spills.

from the O(n?) time required to build and color the interference graph. Importantly, the reported
overhead is for the entire code generation process—not just allocating registers, but also setting up
the intermediate representation, computing live variables, and generating code, so both algorithms
share a common fixed cost that reduces the relative performance gap between them. Furthermore,
the code generated by both allocators for this pathological case contains the same number of spills.

Figure 5-6 compares the overhead of graph coloring and linear scan for programs with live
interval patterns of type (b). As in the previous experiment, linear scan in this case generates
the same number of spills as graph coloring. Again, the axes are logarithmic and the vertical axis
indicates time. The horizontal axis denotes the number of successive staggered sets of live intervals,
k in Figure 5-4b. Different curves denotes different numbers of simultaneously live variables (m
in Figure 5-4b): for example, “Linear Scan (m=24)” refers to linear scan allocation with m = 24.
With increasing k, the overhead of graph coloring grows more quickly than that of linear scan.
Moreover, the vertical space between graph coloring curves for increasing m grows more quickly
than for the corresponding linear scan curves. This data is consistent with the results in Figure 5-5:
the performance of graph coloring degrades as the number of simultaneously live variables increases.

Run-time Performance

ICODE Implementation. Figure 5-7 shows the run-time performance of code compiled with the
ICODE implementation of the algorithms. As before, the horizontal axis denotes different bench-
marks, and for each benchmark the different bars denote different register allocation algorithms,
labeled as in Figure 5-3. The vertical axis is logarithmic, and indicates run time in seconds. Unfor-
tunately, these dynamic code kernels are small, and do not have enough register pressure to illustrate
the differences among the allocation algorithms. The three algorithms generate code of similar qual-
ity for all benchmarks other than dfa and heap. In these two cases, the code emitted by the simple
allocator based on usage count is considerably slower than that created by graph coloring or linear
scan.

SUIF Implementation. Figure 5-8 presents the run time of several large benchmarks compiled
with the SUIF implementation of the algorithms. Once again, the horizontal axis denotes different
benchmarks, and the logarithmic vertical axis measures run time in seconds. In addition to the
three algorithms (U, L, and C) measured so far, the figure also presents data for second-chance

84

—x—Graph coloring (m=24)

-x- Graph coloring (m=16) _x
16 - Graph coloring (m=8) 7
s/ —x— Graph coloring (m=4) ///
—e-Linear scan (m=24) s
44 - Linear scan (m=16) 7

--e-- Linear scan (m=8) 7
—e—Linear scan (m=4) -

0.25+
0.125+

ime (seconds)

T
o
o
)
N
a1

1

0.0312+
0.0156+
0.00781+
0.00391+
0.00195+

1 5 10 20 40
Size (Number of successive sets, k)

Figure 5-6: Overhead of graph coloring and linear scan as a function of program size for programs
of type (b) (ICODE infrastructure). The horizontal axis denotes the number of staggered sets of
intervals (k in Figure 4b). Different curves denote values for different numbers of simultaneously
live variables (m in Figure 4b). Both algorithms generate the same number of spills.

uLC
10
U
w LC
B uLc U
o
o 1
iv';, uLC LC uLc
£
£ ULc ULC
= uLC
x UlLc
0.1 ULc
ULC
0.01 - :
ms hash dp binary pow dfa heap mshl unmshl ntn ilp query
Benchmark

Figure 5-7: Run time of ‘C benchmarks compiled with different register allocation algorithms
(ICODE infrastructure). U denotes the simple scheme based on usage counts. L denotes linear
scan. C denotes graph coloring.

85

U
1000
U U
w u
°
S 1004 LcB
S LcB
) LcB LcB
2 U
£ LcB
=
35
: h J“ Ju JII
1- I
espresso sort alvinn swim compress tomcatv fpppp
Benchmark

Figure 5-8: Run times of static C benchmarks compiled with different register allocation algorithms
(SUITF infrastructure). U, L, and C are as before. B denotes second-chance binpacking.

binpacking [73], labeled B. Table 5.2 contains the same data, and also provides the ratio of the run
time of each benchmark compiled with each register allocation method relative to the run time of
that benchmark compiled with graph coloring.

The measurements in Figure 5-8 and Table 5.2 indicate that linear scan makes a fair performance
tradeoff. It is considerably simpler and faster than graph coloring and binpacking, yet it usually
generates code that runs within 10% of the speed of that generated by the two more complicated
algorithms, and several times faster than that generated by the simple usage count allocator.

5.2.4 Discussion

Since it is so simple, linear scan allocation lends itself to several extensions and optimizations. This
section describes a fast algorithm for conservative (approximate) live interval analysis, discusses
the effect of different flow graph numberings and spilling heuristics, mentions some architectural
considerations, and outlines possible future refinements to linear scan allocation.

Benchmark Time in seconds (ratio to graph coloring)
Usage counts | Linear scan | Graph coloring | Binpacking
espresso 21.3 (6.26) 4.0 (1.18) 3.4 (1.00) 0 (1.18)
compress 131.7 (3.42) 43 1(1.12) 38 5 (1.00) 42 9 (1.11)
li 13.7 (2.80) 4 (1.10) 9 (1.00) 1 (1.04)
alvinn 26.8 (1.15) 24 8 (1.06) 23 3 (1.00) 24 8 (1.06)
tomcatv 263.9 (4.62) | 60.5 (1.06) 57.1 (1.00) | 59.7 (1.05)
swim 273.6 (6.66) | 44.6 (1.09) 41.1 (1.00) | 44.5 (1.08)
fpppp 1039.7 (11.64) 90 8 (1.02) 89 3 (1.00) 87 8 (0.98)
we 18.7 (4.67) 7 (1.43) .0 (1.00) 3 (1.07)
sort 9.8 (2.97) 5 (1.06) .3 (1.00) .3 (1.00)

Table 5.2: Run time of static C benchmarks, as a function of register allocation algorithm (SUIF
infrastructure).

86

Figure 5-9: An acyclic flow graph. Nodes are labeled with their depth-first numbers.

Fast Live Interval Analysis

Figure 5-3 shows that most of the overhead of linear scan register allocation is due to live variable
analysis and “allocation setup,” the coarsening of live variable information into live intervals. This
section considers an alternative algorithm that trades accuracy for speed, and quickly builds a
conservative approximation of live intervals without requiring full iterative live variable analysis.

The algorithm is based on the decomposition of the flow graph into strongly connected compo-
nents, so let us call it “SCC-based liveness analysis.” It relies on two simple observations. First,
consider an acyclic flow graph in which nodes are numbered in depth-first order (also known as
“reverse postorder” [1]), as shown in the example in Figure 5-9. Recall that this order is the reverse
of the order in which nodes are last visited, or “finished” [15], in a preorder traversal of the graph.
If the assignment to a variable v with the smallest depth-first number (DFN) has DFN i, and the
use with the greatest DEN has DFN j, then [i, j] is a live interval of v. For example, in Figure 5-9, a
conservative live interval of v is [2,7]. The second observation pertains to cyclic flow graphs: when
all the definitions and uses of a variable v appear within a single strongly connected component, C,
of the flow graph, the live interval of v will span at most exactly C.

As a result, the algorithm can compute conservative live intervals as follows. (1) Compute SCCs
of the flow graph, and for each SCC, construct the set of variables used or defined in it. Also obtain
each SCC’s DFN in the (acyclic) SCC graph. (2) Traverse the SCCs once, extending the live interval
of each variable v to [¢,j], where ¢ and j are, respectively, the smallest and largest DFNs of any
SCCs that use or define v.

This algorithm is appealing because it is simple and it minimizes expensive bit-vector operations
common in live variable analysis. The improvements in compile-time relative to linear scan are
impressive, as illustrated in Figure 5-10.

Unfortunately, however, the quality of generated code suffers from this approximate analysis. The
difference is minimal for the small ‘C benchmarks, but becomes prohibitive for large benchmarks.
Table 5.3 compares the run time of applications compiled with full live variable analysis to that
of applications compiled with SCC-based liveness analysis. These results indicate that SCC-based
liveness analysis may be of interest for quickly compiling small functions, but that it is not suitable
as a replacement for full live variable analysis in large programs.

Numbering Heuristics

As mentioned in Section 5.2.2, the definition of live intervals used in linear scan allocation holds for
any numbering of flow graph nodes, not just the depth-first numbering discussed so far.

This section used depth-first order because it is the most natural, and it supports SCC-based
liveness analysis. Another reasonable alternative is linear, or layout, order, i.e. the order in which
the pseudo-instructions appear in the intermediate representation. As shown in Table 5.4, linear
and depth-first order produce roughly similar code for our set of benchmarks.

87

Register allocation

800+ I Allocation setup

c I Live variable analysis
K]

©

2 600+

7]

£

°

e

o

9 400+

o)

>

[%]

Q

©

>

@]

ms hash dp binary pow dfa heap mshl unmshl ntn ilp query

Benchmark

Figure 5-10: Comparison of register allocation overhead of linear scan with full live variable analysis
(L) and SCC-based liveness analysis (S) (ICODE infrastructure).

Benchmark | Time in seconds (ratio to graph coloring)

SCC-based analysis | Full liveness analysis
espresso 22.7 (6.68) 4.0 (1.18)
compress 134.4 (3.49) 43 1(1.12)
li 14.2 (2.90) 4 (1.10)
alvinn 40.2 (1.73) 24 8 (1.06)
tomcatv 290.8 (5.09) 60.5 (1.06)
swim 303.5 (7.38) 44.6 (1.09)
fpppp 484.7 (5.43) 90 8 (1.02)
wce 23.2 (5.80) 7 (1.43)
sort 10.6 (3.21) 5 (1.06)

Table 5.3: Run time of static C benchmarks compiled with linear scan allocation, as a function of
liveness analysis technique (SUIF infrastructure).

88

Benchmark Time in seconds
Depth-first | Linear (layout)
espresso 4.0 4.0
compress 43.3 43.6
li 5.3 5.5
alvinn 24.9 25.0
tomcatv 60.9 60.4
swim 44.8 44.4
fpppp 90.8 91.1
we 5.7 5.8
sort 3.5 3.6

Table 5.4: Run time of static C benchmarks compiled with linear scan allocation, as a function of
flow graph numbering (SUIF infrastructure).

Benchmark Time in seconds
Interval length | Interval weight
espresso 4.0 4.0
compress 43.1 43.0
li 5.4 5.4
alvinn 24.8 24.8
tomcatv 60.5 60.2
swim 44.6 44.6
fpppp 90.8 198.6
wce 5.7 5.7
sort 3.5 3.5

Table 5.5: Run time of static C benchmarks compiled with linear scan allocation, as a function of
spilling heuristic (SUIF infrastructure).

Spilling Heuristics

The spilling heuristic presented in Section 5.2.2 uses interval length. A potential alternative spilling
heuristic is based on interval weight, or estimated usage count. In this case, the algorithm spills the
interval with the least estimated usage count among the new interval and the intervals in active.

Table 5.5 compares the run time of programs compiled using interval length and interval weight
spilling heuristics. In general, the results are similar; only in one benchmark, fpppp, does the interval
length heuristic significantly outperform interval weight. Of course, the relative performance of the
two heuristics depends entirely on the structure of the program being compiled. The interval length
heuristic has the additional advantage that it is slightly simpler, since it does not require maintaining
usage count information.

Architectural Considerations

Many machines place restrictions on the use of registers: for instance, only certain registers may be
used to pass arguments or return results, or certain operations must target specific registers.
Operations that target specific registers can be handled by pre-allocating the register candi-
dates that are targets of these instructions, and modifying the allocation algorithm to take the
pre-allocation into account. In the case of linear scan, if the scan encounters a pre-allocated live
interval, it must spill (or assign to a different register) the interval in active, if any, that already uses

89

the register of the pre-allocated interval. However, because live intervals are so coarse, it is possible
that two intervals that both need to use a particular register overlap: in this case, the best solution
is to extend linear scan so that a variable may reside in different locations throughout its lifetime,
as in binpacking [73].

The issue of when to use caller-saved registers is solved elegantly by the binpacking algorithm,
which extends the concept of lifetime holes to physical registers [73]. The lifetime hole of a register is
any region in which that register is available for allocation; the lifetime holes of caller-saved registers
simply do not include function calls. Linear scan does not use lifetime holes. The simplest solution
is to use all registers, and insert saves and restores where appropriate around function calls after
register allocation. Another solution is to actually introduce the binpacking concept of register
lifetime hole, and to allocate a live interval to a register only if it fits entirely within the register’s
lifetime hole. The ICODE implementation uses the former solution, and the SUIF implementation
uses the latter one.

Optimizations

The most beneficial optimization in terms of code quality is probably live interval splitting. Splitting
does not involve changes to linear scan itself, but only to the definition of live intervals. With
splitting, a variable has one live interval for each region of the flow graph throughout which it
is uninterruptedly live, rather than one interval for the entire flow graph. This definition takes
advantage of holes in variable lifetimes, and is analogous to binpacking without the second-chance
technique [73]. Past work on renaming scalar variables, including renaming into SSA form [16], can
be useful in subsuming much of the splitting that might be useful for register allocation.

Another possible optimization is coalescing of register moves. If the live interval of a variable v;
ends where the live interval of another variable, v, begins, and the program at that point contains a
copy vz < v1, then vy can be assigned vy ’s register, and if vs is not subsequently spilled, the move can
be eliminated after register allocation. It is not difficult to extend the routine EXPIREOLDINTERVALS
in Figure 5-1 to enable this optimization. However, in order to be effective, move coalescing depends
on live interval splitting: without splitting, the opportunities for coalescing are few and can occur
only outside of loops.

Although some of these extensions are interesting, none of them have been implemented. The
key advantage of the linear scan algorithm is that it is fast and simple, yet can produce relatively
good code. Additions to linear scan would make it slower and more complicated, and may not
improve the generated code much. If one is willing to sacrifice some compile-time performance to
obtain better code, then the second-chance binpacking algorithm might be a better alternative.

5.3 Two-Pass Register Allocation

The two alternatives described so far are somewhat opposite points of the design space: the simple
algorithm of Section 5.1 is very lightweight and uses no global information, whereas the linear
scan algorithm of Section 5.2, although faster than traditional algorithms, requires various data
structures and is several times more expensive than the simple algorithm. This section describes
a compromise solution inspired by the two-pass approach of the Sethi-Ullman register allocation
algorithm. This two-pass algorithm has not been implemented yet, but it could be interesting future
work. It promises to generate good code at low overhead despite ‘C’s dynamic code composition
model.

The Sethi-Ullman algorithm [65] uses dynamic programming to perform optimal register allo-
cation for expression trees. The first part of the algorithm traverses the tree and computes in
bottom-up fashion the number of registers required by each subtree. For instance, consider a node
p that has two children, [and r, which require n; and n, registers respectively. If n; = n,., then the
number of registers required by p is n, = n; + 1: one register is needed to store the result of r while
[is being evaluated. If n; # n,., then the subtree with greater register needs can be evaluated first.
For example, if n; > n,., then n; > n, + 1, so the extra register needed to temporarily store the result
of I while r is being computed is hidden by the overhead of I. As a result, n, = max(n;,n,). When

90

all register requirements are computed, the second part of the algorithm traverses the expression
tree once again, assigning registers and inserting spills according to the register need information
computed in the first phase.

In retrospect, many of the benefits of linear scan allocation for ‘C might be obtained without re-
sorting to an intermediate representation such as ICODE’s, but simply applying a two-pass approach
like that of the Sethi-Ullman algorithm to tcc’s code-generating functions. The code generated by
the CGFs is not a single expression tree, but the structure of cspec composition is indeed a tree,
albeit one with arbitrary and irregular branching factors. This tree is exactly the CGF call tree.
Of course, code generated by the CGFs may have side effects, so the call tree cannot be rearranged
in the same way that one rearranges expression trees in the Sethi-Ullman algorithm. However, the
latter’s two-pass approach is still valuable.

The live range of a variable is represented implicitly by the CGF call tree—a temporary defined
inside a given cspec cannot be live in an enclosing cspec, and will not be referenced in an enclosed
cspec—so it should not require the creation of explicit live intervals or other data structures. The
trick is to summarize the register requirements of nested cspecs in a compact way—with integers.
The algorithm is based on code-generating functions that use VCODE macros and are extended in
simple ways. In the first pass, all CGFs are invoked as normal, but a flag ensures that no VCODE
macros are executed and that therefore no code is generated. Instead, each CGF returns to its caller
the number of registers that it needs. How to compute the “right” value is not as obvious as in the
Sethi-Ullman case. For example, the CGF might return more detailed information, such as the total
number of registers it would like and the fraction of those that it absolutely needs for performance.
Consider the following dynamic code specification, in which the loop body incorporates a cspec
denoted by c:

‘{ ... while (condition) { ... @c; ... } ... };

Assume that c reports a need for n registers, that m local temporaries are live across the reference
to ¢, and that at most k variables are ever simultaneously live in the rest of the backquote expression
(the compiler can discover k statically, since it is information local to one backquote expression).
The CGF for this backquote expression might tell its caller that it needs max(k,m + n) registers;
or that it would like that many but really needs only m + n (for the loop); or—in the limit, if it is
willing to save and restore—that it needs no registers at all.

At the end of the first pass, each code-generating function has information about the register
requirements of every CGF that it calls. In the second pass, the VCODE macros emit code as
normal. However, before every call to a CGF, the current CGF must compare the number of free
registers (available, for instance, in the VCODE bit vectors) against those requested by the called
CGF in the first pass, and generate any necessary spill code. After the call, the calling CGF should
emit symmetric code that reloads the values into registers. The more detailed the register usage
information returned by the called CGF in the first pass, the more intelligent the spilling decisions
that can be made by the calling CGF. Figure 5-11 illustrates the operation of this algorithm in the
case of a small set of nested cspecs.

In summary, this scheme requires a few simple changes to code-generating functions:

e VCODE macros that emit code are guarded by checks to prevent code generation in the first
pass. To decrease overhead, adjacent macros can all be guarded by one check.

e The epilogue of each CGF contains code that, in the first pass, returns the number of needed
registers, computed as a function of local temporaries and the needs of nested CGFs.

e Every call to a CGF is followed by code that, in the first pass, stores the number of required
registers returned by that CGF.

e Where necessary—for instance, in code that generates a loop—a call to a CGF is preceded by
code that, in the second pass, generates whatever spills are necessary to reconcile the number
of available registers with the number of registers requested by the nested CGF. The call is
also followed by code that generates the corresponding restores.

91

,,,,,,,,,,, = Analysis

***** -+ Code generation

Figure 5-11: The two-pass register allocation process. Each cloud denotes a cspec; solid lines denote
cspec composition. During the first pass (dotted lines), CGFs of nested cspecs communicate their
register requirements to their parents in the composition tree. During the second pass (dashed lines),
CGFs generate normal code and spill code as appropriate. For instance, if composition occurs in a
loop, a CGF may generate code to save (and later restore) as many registers as are needed by the
nested cspecs.

The advantage of this algorithm over the simple one from Section 5.1 is that allocation decisions
are no longer purely local and greedy. The prepass that collects register requirements allows the
subsequent code-generating pass to move spills out of frequently used code like inner loops, and to
ensure that heavily used variables are always assigned to registers. In fact, the two-pass scheme
can never perform more poorly than the greedy one-pass algorithm. If each CGF reports to its
parent that it requires no registers, then the code generation and spilling phase obtains no useful
information, and the two-pass algorithm simply reduces to the greedy one.

The dynamic compile-time cost of these benefits should be low; since the first pass is lightweight,
the whole algorithm should add no more than 30-40% to standard code generation with VCODE.
In fact, the algorithm could be made almost no slower than the current VCODE register allocation
by folding the first pass into the environment binding phase. Recall that the first pass simply
passes register use information up from nested cspecs to enclosing cspecs. Composition of cspecs
at environment binding time, described in Chapter 4, also works in this bottom up manner: cspecs
are composed together into bigger, higher-level cspecs, and once a cspec exists, nothing more can be
added to the tree of cspecs that it encloses. As a result, the register requirements of each cspec can be
stored in the corresponding closure and propagated to the closures of enclosing cspecs during cspec
composition, all at environment binding time. This solution eliminates a recursive traversal of all
CGFs, and should make the overhead of the two-pass algorithm competitive with that of VCODE.

The two-pass algorithm’s expected performance makes it an attractive alternative to linear scan
for solving the register allocation problem posed by cspec composition. Linear scan may generate
slightly better code, because it has finer-grain information about the length and weight of live
intervals, but the difference should be small and the dynamic compile-time savings substantial.

92

Furthermore, the two-pass approach could be extended—at a slight increase in compile-time—to
implement linear scan without the overhead of the ICODE intermediate representation. The idea is
to change the first pass so that it tracks not just overall register requirements, but the live interval
of each local or temporary. To do this, the code would increase a position counter at each VCODE
macro while traversing the CGF call tree, and extend the live interval of a variable according to
the position of each macro that used or defined the variable. The result would be a set of live
intervals that could be allocated using linear scan prior to emitting code in a second traversal of the
CGFs. If—as is currently the case—the ICODE run-time system is used primarily to enable register
allocation, its full-blown IR is probably not necessary. The two-pass process just described could
be used to eliminate most of the overhead of ICODE’s intermediate form without affecting register
allocation quality.

Finally, it may be possible to extend this approach beyond register allocation, to other kinds
of analyses and optimizations. For instance, tcc could statically generate a summary of data flow
information for each cspec; during dynamic compilation, this information could be used to quickly
perform coarse-grain data flow analyses and optimizations. This scheme is similar to region- and
structure-based analyses [1], in which analysis performance is improved by summarizing the data
flow effects of hierarchical program regions. While simple in principle, such inter-cspec analysis is
tricky. For instance, any set-based analysis could involve an arbitrary, run-time determined number
of elements. Dynamically growing the associated data structures, such as bit vectors, and keeping
track of the individual set elements in the presence of composition would be complicated and require
considerable overhead. It is not clear that the benefit of such optimizations would be worth the
associated overhead. For now, though, using the two-pass algorithm to improve register allocation
with minimal run-time overhead is certainly a promising approach.

93

94

Chapter 6

One-Pass Data Flow Analyses

The success of the linear scan register allocation described in Chapter 5 suggested that a similar
approach might be adaptable to other optimizations, including data flow analyses and optimizations.
The linear scan algorithm achieves good performance by coarsening liveness information into con-
servative live intervals. Such coarsening of data is unlikely to work for data flow analysis, because
data flow information is inherently more fine-grained and complex than liveness information. If we
were to coarsen data flow information in a similar manner (for example, creating gen and kill sets for
entire strongly connected components of the flow graph), the resulting data flow sets would probably
be mostly empty due to conservative assumptions during coarsening. This claim is not backed by
measurements—and such a coarsening may be interesting future research—but it is a reasonable
assumption.

As a result, the focus for data flow analysis shifted from coarsening information to coarsening
action—reducing the number of nodes that are visited during an analysis. One-pass data flow
analyses are based on a “90/10” assumption that it may frequently be possible to obtain most of the
benefit of data flow analysis while doing only a fraction of the work. The idea is to touch each node
in the flow graph exactly once and to make conservative assumptions about data flow information
so as to decrease the analysis time at only a slight cost in accuracy and optimization effectiveness.

Other work on fast data flow analysis has focused on structure-based analyses, such as those based
on the T} — Ty transformation and hierarchical loop decomposition [1]. The goal of these analyses,
however, is to improve the efficiency with which data flow information is propagated without affecting
the accuracy of the analysis. Extracting the necessary structural information from the control flow
graph can be a relatively complicated and time-consuming process. The end of the previous chapter
proposed a similar structural approach, in which data flow information is summarized statically for
each cspec and then combined at dynamic compile time, but this approach is also complicated and
likely to have considerable overhead. The algorithms in this chapter attempt to avoid these problems
by compromising on the quality of the analysis.

Although these analyses are faster than traditional ones by a significant constant factor, the
overall overhead required to set up the analysis and perform the optimization is probably too high
for most dynamic compilation applications. Nonetheless, the results are interesting and may be
useful in long-running dynamic code applications.

6.1 The Algorithms

This section describes the overall structure of these one-pass algorithms. We begin with a traditional
relaxation algorithm, and move on to more efficient but less accurate versions that touch each node
exactly once. We focus only on forward data flow problems, but the discussion can easily be extended
to backward problems by reversing control flow edges.

For each algorithm, we assume that we have a flow graph G = (V, E) with a distinct entry node
ng € V. Nodes may correspond to basic blocks or to individual pseudo-instructions in the compiler
IR. Each node n is associated with input and output data flow sets and a (forward) data flow function

95

fn such that out(n) = fn(in(n)). These parameters, as well as the data flow meet operator, may be
changed to implement different analyses. For example, in the case of the null pointer check removal
evaluated in Section 6.2, the data flow information at a given point is the set of pointers for which
pointer checks are available along all paths to that point. As a result, the input and output sets are
initialized to the empty set, the meet operator is set intersection, and f,, removes any pointers that
are modified in n and not checked after the modification, and adds any pointers that are checked in
n and not modified after the check.

The following “traditional” algorithm, TRAD, repeatedly traverses the entire flow graph in breadth-
first order until the data flow information reaches a fixed point. The traversal order is breadth-first
only for the purpose of comparison with later algorithms; it could easily be changed to another
order, such as depth-first or layout order.

TRAD(G) TRAD_NODE(n)
foreach n € G do orig < out(n)
out(n) in(n) < {} in(n) ﬂ out(p)
cha.nge true pepreds(n)nvisited
while (change) do out(n) « fn(in(n))

visited < {}

worklist < {no}

change < false

while (worklist # {}) do
n < pop(worklist)
change < change V TRAD_NODE(n)
foreach s € suce(n) — visited do

append s to worklist

visited < visited U {n}
return orig = out(n)

It is easy to do less work than this algorithm, without sacrificing analysis accuracy, by keeping
track of nodes that need to be reexamined due to changes in the data flow information of their
predecessors. The algorithm below analyzes all the nodes once, and thereafter uses a worklist to
only ever touch those nodes that really need to be updated.

OPTRAD(G) OPTRAD_NODE(n)
foreach n € G do orig < out(n)
out(n) < in(n) < {} in(n) ﬂ out(p)

worklist < {}
foreach n € G in breadth-first order do
append n to worklist
while (worklist # {}) do
n < pop(worklist)
if OPTRAD_NODE(n) then
foreach s € succ(n) do
append s to worklist

pepreds(n)nuvisited
out(n) < fn(in(n))
visited < visited U {n}
return orig = out(n)

The OPTRAD algorithm above is an efficient implementation of full data flow analysis. However,
it may still touch many nodes several times due to changes in data flow information carried by back
edges. The fast approximate algorithms below ignore information from back edges, and traverse the
flow graph just once, making conservative assumptions about loops.

The BFS algorithm below is the most radical example of this idea. It touches each node in the flow
graph exactly once; if it ever examines a node before all of its predecessors, it makes conservative,
worst-case assumptions about the unexamined predecessors. The order of traversal is breadth-first
because it provides good chances of visiting a node after all of its predecessors. An interesting
variation might be the simple linear layout order, which would enable traversal of the IR without
building a control flow graph.

96

Figure 6-1: A small control flow graph. Nodes are labeled with their depth-first numbers.

BFs(G) BFS_NODE(n)

foreach n € G do visited < visited U {n}
out(n) + in(n) < {} in(n) < out
visited < {} =) m (®)

worklist < {no}

while (worklist # {}) do
n < pop(worklist)
BFS_NODE(n)
foreach s € succ(n) — visited do

append s to worklist

pepreds(n)
out(n) < fn(in(n))

In its emphasis on touching each node exactly once, BFS makes some extremely conservative
assumptions. For example, consider the control flow graph in Figure 6-1. One possible order in which
BFS touches the nodes is 1,2, 3, 5,4]. When it reaches node 5, the algorithm has not yet visited node
4, which is a predecessor of 5, so it must make the most conservative possible assumption about the
data flow information flowing into 5.

We can refine BFS and potentially make it more effective by traversing the flow graph in topolog-
ical sort order. Then, at least for acyclic code, no basic block is visited until all of its predecessors
are visited. In the case of loops, we simply make conservative assumptions about the information
available at loop headers, and can therefore visit loop headers before their predecessors. Unfortu-
nately, this means we must first perform a depth-first search to identify loops—in other words, each
node is touched twice, rather than once as in the BFs algorithm. However, this is still less than full
relaxation algorithms such as TRAD, and it may provide better results than BFS.

The pseudocode for this algorithm based on topological order appears below:

TOP(G)
foreach n € G do
out(n) < in(n) < {}
npreds(n) < number of predecessors of n
Perform DFS(G) to identify loop headers
worklist + {no}
while (worklist # {}) do
n < pop(worklist)
TOP_NODE(n)
foreach s € succ(n) — visited do
npreds(s) < npreds(s) — 1
if npreds(s) = 0 or s is loop header then
append s to worklist

97

TOP_NODE(n)
visited < visited U {n}
if n is loop header then
in(n) « {}
else
in(n) ﬂ out(p)
pepreds(n)
out(n) < fa(in(n))

6.2 FEvaluation

One-pass data flow analyses have not been implemented in a dynamic compiler. The overhead
required to create the necessary data structures and to perform optimizations would most probably
reduce the speed of a system like ICODE by a factor of two or more. The relatively low performance
benefits of any one data flow optimization (common subexpression elimination, copy propagation,
etc.) make such increases in compilation overhead potentially unattractive. Despite these problems,
one-pass analyses are interesting curiosities. Initial results indicate that they perform surprisingly
well.

Each of the data flow analysis methods described above was implemented as a SUIF [2] pass and
served as a base for three optimizations:

e Redundant null pointer check removal for Java. Java requires that all object derefer-
ences be checked, and that the run-time system throw an exception in case of null pointers.
Often, null pointer checks are redundant because checks on a given pointer are available on all
paths to a particular use of that pointer. The check removal optimization basically does an
“available check” analysis, and deletes redundant checks.

¢ Copy propagation. Again, this is an availability analysis, but not limited to the Java pointer
check case: a copy may be propagated to a use if it is available on all paths to that use.

¢ Common subexpression elimination. Another availability analysis: an expression is re-
placed by a reference to a temporary if it is available on all paths to its use.

For the Java benchmarks, the Toba 1.0 compiler from the University of Arizona [60] translated
the Java to C code that was compiled by SUIF. After analysis, the SUIF representation was converted
to C and compiled by gcc. Unfortunately, this infrastructure made it difficult to obtain run-time
measurements. As a result, this chapter reports only compile time and static measurements of the
effectiveness of the optimizations. Dynamic measurements of the effectiveness of common subexpres-
sion elimination on a couple of SPEC 95 benchmarks (li, compress) and some simple Unix utilities
(sort, wc) suggest that—at least for those benchmarks—static measurements are quite similar to
dynamic ones. (Dynamic measurements had to be obtained by inserting counters into the code,
confirming the relative ineffectiveness of single data flow optimizations like CSE on most code.)

The Java benchmarks used for null pointer check removal include an animation library, a simple
drawing program, a set of matrix routines for 3D graphics, a spreadsheet, two compression programs
(ICE and DES), a regular expression package, a random number generator, and an audio file format
converter (.wav to .au). Copy propagation was evaluated on all these benchmarks except for DES,
and also on files from two SPEC 95 benchmarks, lisp (130.1i) and perl (134.perl).

For each benchmark and type of analysis, we report two metrics: compile-time overhead and
effectiveness of optimizations. Due to the very high overhead of SUIF, compile-time cost was mea-
sured by counting the number of times that basic blocks had to be “touched” to recompute data
flow information. However, for some of the bigger benchmarks (such as DES), the approximate
algorithms were visibly faster, in one case cutting runtime of the SUIF pass down from about 30
minutes to about 5 minutes. The effectiveness of the analyses was measured statically. In the case
of null pointer check removal, it is the static count of deleted null pointer checks; in the case of copy
propagation, it is the static count of copies found available.

Figures 6-2 and 6-3 show the overhead and benefit, respectively, of null pointer check removal.
Figures 6-4 and 6-5 show the same information for the copy propagation analysis. These results can
be summarized in three points:

e The approximate algorithms do a lot less work (frequently five times less) than the traditional
ones. In particular, for the null pointer check analysis, they touch fewer basic blocks than
there are in the program, because they delete a check (and its associated “error” basic block)
as part of the analysis, as soon as they detect that it is redundant.

e For most benchmarks, the approximate algorithms provide benefits comparable to those of the
traditional ones. In the case of null pointer check removal, they are often within 90% of the
effectiveness of the traditional algorithms.

98

Basic blocks touched (log)

Number of basic blocks
BFS
100004 [l Topological
B Traditional
[l Optimized traditional
} I\L I“\
10

animator arctest matrix spreadsheet ice regexp rngpack des wav2au
Benchmark

Figure 6-2: Work done (basic blocks touched) during null pointer check removal.

Number of null pointer checks
BFS

1000+ B Topological

H Traditional

[l Optimized traditional

Hadila

animator arctest matrix spreadsheet ice regexp rngpack des wav2au
Benchmark

Null pointer checks removed (log)

?

Figure 6-3: Results from null pointer check removal: static count of null pointer checks removed.

Number of basic blocks
—~ BFS
D
£ 100004 I Topological
3 ll Traditional
é ll Optimized traditional
e
(2]
4
g 1000
=
2
@
o
100+ - . . .
animator arctest matrix spreadsheet ice regexp rngpack wav2au lisp perl

Benchmark

Figure 6-4: Work done (basic blocks touched) during availability analysis.

99

BFS
=) .
Topological
£ 1000 W Topolog
st i Traditional
% [l Optimized traditional
‘2
c
ie]
[72]
[%]
o 1004
o
x
o
Q
Ks
K]
g
< IIL
10— " " "
animator arctest matrix spreadsheet ice regexp rngpack wav2au lisp perl

Benchmark

Figure 6-5: Results from availability analysis: static count of expressions found available.

o The effectiveness of the approximate algorithms relative to the traditional algorithms is slightly
lower for copy propagation than for null pointer check removal. This suggests that the success
in null pointer check removal may be due in part to the particular stylized way in which Toba
translates Java and the associated pointer checks to C.

These results are far from complete—the lack of run-time performance data is the biggest prob-
lem. However, they already show that approximate analyses can be almost as effective as traditional
ones, at one third to one fifth of the compile-time overhead.

Future work should measure run-time performance more extensively, use more benchmarks, and
extend the one-pass approach to other types of data flow analysis. Such a study would provide
a more accurate picture of the effectiveness of one-pass analysis. The algorithms also need to be
compared to local analysis: for some optimizations, local analysis might do almost as well as this
approximate global analysis. In addition, it will be interesting to explore how the order in which
the control flow graph is traversed affects the effectiveness of approximate algorithms, and whether
coarsening data flow information—for instance, at the level of strongly connected components, as in
linear scan allocation—provides any benefits.

6.3 Summary

This chapter has discussed one-pass data flow analyses. These analyses traverse the flow graph in
one sweep and make conservative assumptions about unavailable data flow information. They are
surprisingly effective at improving analysis performance without excessively degrading accuracy.

However, despite their effectiveness, one-pass analyses are probably still unsuitable for lightweight
dynamic compilation like that in ‘C. Data flow analysis is only one part of the optimization process:
other parts, such as setting up the data structures necessary for the analysis and actually performing
the optimization, are also time-consuming. Furthermore, even if the cost of data flow analysis is
reduced by a factor of three to five, it remains relatively high due to bit vector operations and
the manipulation of the data structures that store the bit indices of variables and expressions. As
mentioned earlier, the improvement in code quality is probably not worth the increase in dynamic
compile time.

Nonetheless, one-pass analyses could be useful for long-running dynamic code applications in
which the performance of generated code is crucial. For instance, a Java just-in-time compiler for
long-running server-like applets (“servlets”) might benefit from this sort of optimization. One-pass
analyses could also serve to improve the performance of static optimizing compilers without greatly
decreasing the resulting code quality. Certainly, static compilers that perform many optimizations
may be better served by an incremental representation such as static single assignment form [16],
rather than by fast non-incremental analyses. However, building the SSA representation requires
considerable overhead, so in some situations one-pass analyses may be preferable.

100

Chapter 7

Fast Peephole Optimizations

The one-pass analyses presented in Chapter 6 are effective, but still incur considerable overhead. A
technique that can substantially improve dynamic code with lower run-time overhead is peephole
optimization, which tries to replace short instruction sequences within a program with equivalent
but smaller or faster instruction sequences. The term “peephole” [52] refers to the local nature of
this optimization: the compiler only looks at a small sliding window (or peephole) of code at one
time.

Peephole optimizations are simple and useful. They are usually performed late in the compila-
tion process, and can improve code quality without greatly increasing compilation cost or compiler
complexity. This makes them attractive for optimizing hastily generated dynamic code, such as that
produced with ‘C or by a just-in-time compiler.

Past work on peephole optimizations, however, has been primarily in the context of assembly
code or compiler intermediate representations. This chapter describes the issues involved in direct
peephole optimization of binary code and proposes a solution to the problem. It presents bpo
(“binary peephole optimizer”), a generic binary peephole optimization tool that accepts a set of
rewrite rules and a buffer of binary data, and produces a new buffer in which the data has been
transformed according to the rewrite rules. bpo is simple, portable, and fast, and has been used
successfully to improve the quality of dynamic code written in ‘C.

7.1 Related Work

Peephole optimizations are in widespread use today. The GNU C compiler [69], for example, per-
forms peephole optimization on its RTL intermediate representation. Apparently, however, no sys-
tem other than bpo performs direct optimization on binary code.

Tanenbaum et. al. [71] successfully used table-driven peephole optimization to improve interme-
diate code of a portable compiler. Davidson and Fraser described PO, a peephole optimizer for a
compiler intermediate representation (register transfer language) that generated good code and al-
lowed the rest of the compiler to be made simpler and easier to retarget [17, 18]. They also extended
the system to automatically infer new peephole optimization rules by tracking the behavior of an
optimizer on a code testbed [19]. Similarly, Fraser and Wendt tightly integrated a peephole optimizer
with a code generator to speed up code generation and improve code quality [33, 34, 76]. They also
explored the creation of code generators and peephole optimizers from compact specifications of the
intermediate code and target machine. Fraser also implemented copt [29], a very simple rule-based
peephole optimizer for rewriting ASCII text. Text rewriting is useful for optimizing assembly code,
and as described in Chapter 4, copt is employed in tcc.

Executable editing tools, such as Morph [78], Etch [63], EEL [49], and Atom [68], rewrite binary
code, but they are not quite comparable to bpo. They provide generic frameworks for binary editing,
rather than addressing the specific problem of peephole optimization. They also do not have the
performance constraints imposed by dynamic code generation. However, bpo can be—and has
been—used effectively as part of an executable editing tool.

101

rules m= rule rules | empty

rule n= input output

mnput n= data =

output n= data +

data u= { const | variable | newline | comment }*

const = {1]|0}+

varigble == {[a-Z] | [A-Z] }-*

comment = # (any character other than newline) newline

Figure 7-1: Grammar for binary peephole optimization rewrite rules.

Generating code that efficiently decides whether one of a set of binary rewrite rules is applicable
to some data is similar to generating good code for a C switch statement. bpo’s efficient pattern
matching is based on multiway radix search trees (MRSTSs) [26], which have been used to implement
fast switch statements.

7.2 Design

A binary peephole optimizer has somewhat different requirements than a peephole optimizer for
textual assembly code or compiler intermediate representation. The most obvious difference is that
a binary optimizer works on arbitrary bit patterns, below the level of a byte or machine word,
whereas the other optimizers manipulate pointers or strings of characters. The second difference is
that a binary rewrite rule has a natural notion of length, as well as position, whereas text or IR
rules generally only have a notion of position. In other words, one would like to write, “match bits
4-7 of word 2,” whereas in a traditional rule one would write, “match operand 2,” or “match the
string between , and [.”

Because it can be used at run time, a binary peephole optimizer must have excellent performance.
Several other important details must also be addressed when optimizing binary code: they are
described in Section 7.2.3.

7.2.1 Rewrite Rules

bpo rules are written in a simple language for describing bit patterns whose BNF grammar appears
in Figure 7-1. Each rule consists of an input pattern that is matched against binary input data, and
an output pattern that determines how the input is rewritten if the input pattern matches. The
language is centered around bit addressing: each character in a pattern corresponds to one bit of
binary data. As a result, there are only two constants, 0 and 1. Variables (wildcards) are denoted
by a letter of the alphabet, optionally followed by a sequence of dashes which denote the number
of bits assigned to that variable. For example, a— matches a sequence of four bits, bound to the
variable a. In each rule, the input pattern is separated from the output pattern by the = character,
and rules are separated from each other by the + character.

For instance, the rule a-1001a-=a-a-1111+ matches any byte in which the two most significant
bits are the same as the two least significant bits, and the middle four bits have value 1001. It
replaces any matching byte with a new byte in which the four most significant bits are copies of
the original byte’s two most significant bits, and the bottom bits are 1111. Similarly, the rule
11110000=+ removes any bytes that have value 0xf0.

Input and output patterns need not have the same length, but their length must be a multiple
of the size (in bits) of a machine data type. This unit, which we call the rewrite element, is the level
of granularity at which matches occur; it is usually a byte or word.

102

binary rewrite rules

C function C data
implementing representing
rewrite rules rewrite rules
‘ C compiler ‘ ‘ C compiler
bpo.o
linker linker
fast but big small but slow
optimizer optimizer

Figure 7-2: Generating a binary peephole optimizer in two different ways.

7.2.2 Optimizer Architecture

The need to have both excellent performance and support for easily changeable rewrite rules led to
a two-part design similar to that of yacc and other compiler compilers. Figure 7-2 illustrates this
structure. The use of an optimizer generator does not affect the usability of the system, since rule
sets change infrequently and recompiling them takes a negligible amount of time.

A “binary optimizer generator,” bog, accepts a set of binary rewrite rules written in the language
described above. bog can then generate either C initializers for data structures that encode the rules
(basically a big rule table), or a C function that directly implements the rules. The C initializers
must be linked with a driver program, labeled bpo.o in the figure, which is responsible for applying
the rules encoded in the C data structures to a provided buffer. The C function created by bog,
on the other hand, provides the same interface as the driver program but implements the rules
directly, using a variant of multiway radix search. These two alternatives provide a tradeoff: the
data structures and bpo driver implement a slow but compact optimizer; the hard-coded algorithm
takes up more space (the code can be tens of times bigger, though this is offset in part by the lack
of rule tables) but is much faster (approximately an order of magnitude).

7.2.3 The bpo Interface

The functioning of bpo is outlined in Figure 7-3. The most important parts of the bpo interface are
two buffers, input and output. Initially, input contains all the data to be rewritten, and output is
empty. When bpo terminates, output contains the result of applying the rewrite rules to input, and
input contains garbage. When a rule matches, its output is added to output one rewrite element at
a time, and as each element is added all rules are tried against the end of output.

For example, consider Figure 7-4, which illustrates a simple rewriting. At each step, one rewrite
element is copied from the head of the input buffer to the tail of the output buffer. bpo tries to
apply all its rules to the tail of the output buffer. If a match occurs, the input of the rewrite rule is
removed (with a simple pointer change) from the output buffer, and the output of the rewrite rule
is prepended to the head of the input buffer. It is then moved onto the output buffer one rewrite
element at a time, just like any other data in the input buffer. This two-buffer scheme allows the

103

while input is not empty do
remove rewrite unit at head of input, and append it to tail of output
foreach r in rules do
try to match input pattern of r on tail of output
if r matches then
remove matched rewrite units from tail of output
push output pattern of r (with values assigned to variables) onto head of input
break

Figure 7-3: An outline of the bpo rewriting process.

Output buffer

A B
/l

Input buffer

A B C D E

Figure 7-4: Example of bpo operation. The binary data ABCDE (where each letter is a rewrite
element) is being rewritten according to the rule AB=WX+. First, A is copied from the input buffer
to the output buffer; bpo finds no matches. Then B is copied, the rule matches, and its output is
added to the head of the input buffer.

optimizer to transparently consider fragments of previous rewrites, possibly preceded or followed by
additional inputs, as the input to new rewrite rules. It also ensures that data does not have to be
copied and “pushed down” in memory if the output of a rule is longer than its input.

On architectures with variable instruction width, notably the Intel x86, some suffixes of instruc-
tions may themselves be legal instructions. As a result, a rewrite rule may fire when it actually should
not, because it matched an instruction suffix rather than the instruction it was really intended to
match. To solve this problem, bpo can be parameterized with a function—such as a disassembler—
that identifies the boundaries of instructions in the input buffer. bpo stores the instruction lengths
provided by this function and uses them to ensure that matches in the output buffer happen only
on instruction boundaries.

Another difficulty is that some information in the input buffer may not be rewritable. For
instance, bpo should not mangle jump tables, even if some data in them may look like instructions
and match some peephole optimization rules. For this purpose, bpo accepts a vector that maps onto
the input buffer and indicates which sections of the input should not be touched.

Lastly, it may be necessary to track the permutations of rewrite elements performed by bpo.
For example, one may need to adjust the destination of a jump after bpo has changed the order
of some instructions. bpo can optionally create a buffer that maps onto the output buffer and
denotes the position that each rewrite element in the output buffer had in the input buffer. It only
tracks permutations of variables spanning entire rewrite elements—Dbit permutations within a rewrite
element and new constant values cannot be tracked easily, and they do not need to be.

104

7.3 Efficient Pattern-Matching Code

As described above, bog can generate code which directly implements the specified rewrite rules,
which avoids the data structure interpretation performed by the bpo driver. Generating code to
match a set of rules is somewhat similar to generating code for a C switch or Pascal and Ada case
statement. In fact, if all rules have only constant values (i.e., there are no variables or wildcards)
and all rules have input patterns of the same length, then each input pattern is analogous to a case
label in a switch statement, and the process of matching an input is analogous to switching on that
input. In this simple case, a technique for generating efficient switch statements, such as multiway
radix search trees, would suffice for peephole optimization also. However, bpo rules are usually not
so simple: input patterns may each have arbitrary lengths, and they may contain arbitrarily many
variables. This section presents a generalization of multiway radix search that produces efficient
pattern-matching code in bpo.

The original paper on MRSTs [26] defines the important concepts of a window and a critical
window. We repeat those definitions here. Let Z be the set of all k-bit values, for some positive
integer k. Denote the bits of k-bit values by bg_1,...,b9. A window W is a sequence of consecutive
bits by, ..., b., where k > 1 > r > 0. Let val(s, W) be the value of the bits of s visible in the window
W. For example, if W = bs, bs, b3, val(1010012, W) = 101, = 5. A window W =b;,...,b, is critical
on S C Z if the cardinality of the set Vi = {val(s,W) | s € S} is greater than 2" ". A window W
is most critical if the cardinality of |Vyy| is greater than or equal to the cardinality of Vyy for all
equally long windows W"'.

In other words, since W can represent 2!~ "*! values, W is critical on S if the number of values
in S that differ in W is greater than half the number of values that W can represent. The MRST
algorithm finds the most critical window of a set of case labels so as to (1) identify the sequence
of consecutive bits that maximally differentiates the input with respect to the case labels and (2)
create jump tables [1] that are more than half full. Once it has partitioned the possible input based
on a critical window, MRST applies itself recursively to each partition and creates a tree of jump
tables, each indexed by the most critical window on the set of values that could reach it. This
scheme produces a switch statement that performs the minimal number of tests while maintaining
jump tables at least half full. (Of course, one could trivially perform just one test, looking at all bits
of the input and using them to index into just one huge jump table. However, this method would
waste huge amounts of memory and decrease performance due to paging.) The details of how to find
critical windows, as well as the MRST algorithm for generating switch statements, are described by
Erlingsson et al. [26].

The first issue that must be addressed to extend the MRST algorithm to binary rewriting is how
to match input patterns that differ in length. Consider, for example, one rule, r1, with input pattern
abc, and another rule, ry, with input pattern bc. When using the table-driven approach, the bpo
driver applies all rules in the order in which they appear in the rule list. Thus, if r5 appeared before
r1, 1 would never be applied because r, would always match first. As a result, a programmer would
never write a rule ry after a rule ro whose input pattern was a suffix of r{’s input pattern.

bog uses this fact to generate a tree-based pattern matcher. The generated matcher first tries to
identify an input by matching it against the common suffix of all input patterns. If this suffix is not
enough to identify the matching pattern (if any), the matcher considers bigger suffixes (i.e., moves
towards the front of input patterns). If one pattern is the suffix of another, the algorithm attempts
to match against the longer pattern before the shorter one, in keeping with the semantics described
above.

The core of the algorithm is two mutually recursive procedures, META-MRST and MRST-AT-POS,
shown in Figure 7-5. META-MRST searches for a rewrite element in a position that is common to
all input patterns in rules and that has a critical window more critical than that of any other such
rewrite element that has not been processed yet. It then invokes MRST-AT-POS to perform a variant
of the MRST algorithm at that position.

Let us look in more detail at the pseudocode in Figure 7-5. Initially, META-MRST is called with all
known rewrite rules. The rules may look like this example (where each letter is a rewrite element):

105

MRST-AT-POS(rules, pos, mil, status)

if rules = {} then return
mask < MASK-AT-POSITION(rules, pos)
W <— CRITICAL-WINDOW(rules, pos, mask)
if (w = 0) then
if done € status[j] for all j in 1..mil then
longrules < {r € rules | input-length[r] > pos}
shortrules < rules\ longrules
META-MRST (longrules, status)
EMIT-CHECKS (shortrules)
else
META-MRST(rules, status)
return
GENERATE-SWITCH(pos, w)
foreachiin 0. .. gleftbit(w)—rightbit(w)+1
GENERATE-CASE(i)
r2 < {r € rules | val(r, pos,w) = i}
MRST-AT-POS(r2, pos, mil, copy(status))
GENERATE-BREAK()

META-MRST(rules, status)

if rules = {} then return

mil <~ MAX-COMMON-INPUT-LEN(rules)

pPos ¢ CRITICAL-WINDOW-POSITION(rules, mil, status)
status[pos] < status[pos] U {done}
MRST-AT-POS(rules, pos, mil, status)

Glossary

pos: the position of a given rewrite element within an input pattern, relative to the end of the input
pattern. For example, in the input part of the rule abcd=b+, where each letter is a rewrite element,
d has position 1, ¢ has position 2, b has position 3, and a has position 4.

status: for each position, a set of flags pertaining to it. done € status[pos] indicates that position pos
has been visited by META-MRST.

MAX-COMMON-INPUT-LEN(7ules): returns the length of the shortest input pattern in rules.

CRITICAL-WINDOW-POSITION(rules, mil, status): returns the position p of the rewrite element with
the most critical window among all those with position p’ < mil and such that status[p’] F done.

MASK-AT-POSITION(rules, pos): returns a bit mask identifying those bits that can be used to differen-
tiate rules at the given position. Some bits may not be usable because they correspond to wildcards.

CRITICAL-WINDOW (rules, pos, mask): this is the critical window algorithm from Erlingsson et al. [26],
adapted to ignore bits not specified in mask. This extension is required to handle wildcards correctly.

EMIT-CHECKS(r): generate if statements to sequentially match all the rules in r.
GENERATE-SWITCH(pos, w): generate a switch on window w of position pos.
GENERATE-CASE(7): generate case label 1.

GENERATE-BREAK: generate a break statement.

Figure 7-5: Generating efficient binary pattern matching code with multiway radix search trees.

106

ABC = Q+ // rewrites ABC to Q
C=D+ // rewrites C to D; fires if input ends in C but not ABC
XY = WZ+ // rewrites XY to WZ

For clarity, we have formatted the rules so that input rewrite elements are lined up vertically
according to their distance from the end of the input pattern: the last rewrite elements of each
pattern (C, C, and Y) are in one column, and so forth. The distance from the end of an input
pattern is the position. Thus, in the first rule, C has position one and B has position two. Initially,
the status flag indicates that no position has been processed.

In accordance with our earlier insight about the “precedence” of small rules over large ones,
META-MRST must find the rules’ greatest common input length, or simply the shortest input length
of any rule. In the case of the example, that length is one, since the second rule is short. It
then iterates over all these common positions (only one in our case), and uses the critical window
calculation algorithm from Erlingsson et al. [26] at each position to find the position at which the
most critical window is more critical than that at any other position. Having thus picked a fixed-
length rewrite element, we mark its position as “done” and call MRST-AT-POS to apply an extension
of the original MRST algorithm at that input position.

MRST-AT-POS highlights the second difference between generation of switch statements and binary
pattern matching: not only do inputs vary in length, but some bits—those corresponding to wildcards
or variables—cannot be used to differentiate among rules. For instance, in the byte-rewriting rules
below

a——-1010=10101010+
a——-0101=01010101+

the first four bits cannot be used to decide whether one rule or the other matches the input. There-
fore, MRST-AT-POS first computes a mask of significant bits at the given input position, and then
computes the critical window based on that mask.

If the critical window exists, then MRST-AT-POS behaves like the original MRST algorithm.
Beginning with the call to GENERATE-SWITCH, it generates a switch statement in which each case
handles a possible value of the critical window. For each case, it calls itself recursively, creating a
tree of switch statements as necessary to differentiate all rules.

However, a critical window may not exist. For instance, all remaining bits may correspond to
wildcards or variables. In that case, there are two alternatives. If any of the positions between
position one and the maximum common input length have not been processed yet, MRST-AT-POS
calls META-MRST, which will pick the position with the most critical window.

If, on the other hand, no positions up to the maximum common input length remain to be
processed, then the algorithm has “bottomed out.” It divides the rules into long rules—those longer
than the maximum common input length—and short rules. As discussed earlier, if a short rule is
the suffix of a long rule and is checked before the long rule, then the long rule will never be applied.
As a result, MRST-AT-POS first generates code to match the long rules, by calling META-MRST on
them. It then calls EMIT-CHECKS to generate if statements that sequentially match all the remaining
short rules—in other words, those that fall into this case of the pattern matching switch statement.
These if statements include assignments to and checks on the values of variables, and their bodies
directly implement the rewrite actions specified by the rules.

Figure 7-6 provides an example of the generated C code. The code is compiled by an optimizing
C compiler to provide a fast tree-based implementation of the given rewrite rules.

7.4 Applications
The binary peephole optimizer is used in the ‘C compiler, tcc. At compiler compile time, bog
generates a peephole optimizer based on rewrite rules for tcc’s target architecture (either MIPS or

SPARC). The peephole optimizer can be table-driven or based on MRSTSs, depending on the desired
run-time performance. Then, during the run time of code compiled by tcc, the peephole optimizer

107

if (ot—0 >= oh) { /* begin bounds check */
switch((ot][— 0]&0x3)>>0) {
case 0: switch((ot[— 0]&0x1000)>>12) {
case 0:
if ((tnf || blengthmatch(lhl, Ihp, 2))
&& (ot—1 >= oh)) {
if (((ot] — 1]&O0xfffffF00) == 0xf070100)
&& ((ot][— 0]&0xfe03feff) == 0x4020c10)
&& (((c = ((ot[— 1]&0xff)>>0)))|1)
&& (((a = ((ot[— 0]&0x1fc0000)>>18)))|1)
&& (((b = ((ot][— 0]&0x100)>>8)))|1))

{

/* Implements:
000011110000011100000001¢c—-
0000010a 100000110b00010000

00000001000011000000001100001100
0000011b0000011100b01111a 0
+
*/
ih[— 1] = 0x10c030c ;
ih[— 0] = 0x6070f00
| ((b<<24)&0x1000000)
| ((b<<13)&0x2000)
| ((a<<1)&0xfe);
ot —=1;
ith —= 1;
goto nextpass;

——

Figure 7-6: An example of code generated by the MRST-based algorithm.

is invoked as the last phase of dynamic code generation. The details of tcc’s implementation appear
in Chapter 4. Binary peephole optimization of dynamic code can be effective: it is separate from
the rest of the compiler and therefore does not add complexity to it, and it sometimes improves
dynamic code significantly. Section 7.5 below shows some performance results.

Fast binary peephole optimization, however, is not limited to improving dynamic code. For
example, bpo was designed to be easy to plug into executable editing frameworks. Experience with
a binary editing tool at Microsoft Research confirms that bpo can be useful in this sort of situation.

Furthermore, binary peephole optimizations are in some sense at the bottom of the “food chain”
of peephole optimizations'. For instance, they can be used to implement other kinds of peephole
optimizations. Consider a text-based peephole optimizer that takes rules such as this

loadi %regl, %imm
add %reg2, %reg2, %regl # reg2 = reg2 + regl

addi %reg2, %reg2, %imm

and applies them to assembly code. Such an optimizer probably represents literal strings, as well as
wildcard variables, by their pointers. It is not difficult to implement this optimizer on top of bpo, so
that text transformation happens as a result of bpo rewriting a buffer of string pointers and indices
(i.e., replacing one pointer with another) rather than through actual change to the contents of the
strings.

IThis insight is due to Chris Fraser.

108

0.154

'g Il Multi-way Radix Search Tree
¥ 0.104

— Lookup Table

)

£

o

$ 0.05-

x

0.00- - l

¥512,1 512,10 512,100 4K,1 4K,10 4K,100 32K,1 32K,10 32K,100

Data size (bytes), number of rules

Figure 7-7: Comparative performance of lookup-table algorithm and multiway radix search algo-
rithm. Points on the horizontal axis correspond to input buffers of 512, 4K, and 32K bytes, each
processed with 1, 10, and 100 rules. The vertical axis reports processing time in seconds.

Given a text rewriter built on top of bpo, it is possible to go one step further: the bpo implemen-
tation uses the text rewriter to simplify the creationg of binary rewrite rules. Rather than writing
the bpo binary rewrite rules as long strings of 1s, 0s, and dashes, which is tedious and error-prone,
one writes the rewrite rules in an assembly-like syntax similar to the short example above. One
then writes a second set of rewrite rules that implement a simple assembler: when applied by the
text-based peephole optimizer, these “assembler” rules translate the bpo rules written in assembly-
like syntax to real bpo rewrite rules. Writing the assembler rules is a little tricky, but simpler and
faster than writing a real translator from assembly to bpo rule syntax, especially since one usually
wants to translate only a subset of the machine instructions. Once the assembler rules are written,
creating additional bpo rules is simple.

7.5 Evaluation

This evaluation of bpo tries to answer two questions. First, does the extra complexity of the MRST-
based pattern matching algorithm relative to a simple table-driven matcher really translate into
improved performance Second, are peephole optimizations actually practical in o dynamic compila-
tion context

To answer the first question, we compare the performance of the MRST-based and table-driven
algorithms on various inputs. Each algorithm was tested with three different rule sets—consisting
of one, ten, and 100 rules, respectively—and four different input buffers—with sizes of 512 bytes,
4K bytes, 32K bytes, and 1M byte, respectively. One megabyte is larger than most conceivable
dynamic code, but it nonetheless provides a useful data point. Both the rewrite rules and the input
buffers were generated randomly. Depending on the number of rules and the size of the input buffers,
the number of rules matched (and transformations performed) in one test run varied between two
and 200. These measurements were run on an IBM Thinkpad 770 with a 200MHz Pentium MMX
processor and 128MB of physical memory. The measurement methodology is the same as that
described in Section 4.4.

The results for inputs up to 32K bytes appear in Figure 7-7. The overhead of the MRST-
based and table-driven algorithms grows similarly with increasing buffer size: in both cases, the
relationship is roughly linear. However, the MRST algorithm scales more effectively than the table-
driven algorithm as the number of rules increases. For example, with 32K byte inputs, the MRST

109

Code run time

1.0

1l

Benchmark

Ratio (bpo enabled / bpo disabled)

Figure 7-8: Run-time performance of code generated using VCODE and then optimized by bpo. For
each benchmark, the left bar is the ratio of optimized to unoptimized run-time; the right bar is the
ratio of optimized to unoptimized code length. Values below one mean that the optimized code is
faster or smaller.

algorithm is roughly three times faster than the table-driven one when using one rewrite rule, but
almost ten times as fast when using 100 rewrite rules. The numbers for 1IMB are not plotted in
the figure because they swamp the differences for smaller inputs, but the trend is the same: with
1M byte input and 100 rules, the MRST-based routine takes 0.48 seconds, and the table-driven one
requires 5.1 seconds. These results coincide with intuition, since the key feature of the MRST-based
algorithm is its ability to efficiently distinguish among many rewrite rules.

To answer the second question—whether binary peephole optimizations are actually useful in
dynamic compilation—we evaluated bpo with the MRST-based algorithm in the tcc compiler. We
measured the effect of bpo on the code generated by VCODE, tcc’s fast but non-optimizing dynamic
run-time system. Measurements were performed on a Sun UltraSPARC, as described in Section 4.4,
using a subset of the benchmarks presented in that section. The peephole optimizations consisted
of ten rules that eliminate redundant moves introduced by VCODE to “patch” cspec and vspec
composition. The peephole optimizations were not performed in conjunction with ICODE because
it does not generate those redundant moves.

Figure 7-8 reports the effect of peephole optimizations on the performance of dynamic code,
and Figure 7-9 reports their effect on the dynamic compilation overhead. Figure 7-8 reports two
values for each benchmark: the bar on the left is the ratio of dynamic code run time after peephole
optimizations to run time before peephole optimizations; the bar on the right shows the ratio of code
size, which gives an indication of how many instructions were removed by peephole optimization.
Figure 7-9 shows the ratio of dynamic compile time including bpo to dynamic compile time without
bpo.

Figure 7-8 indicates that binary peephole optimizations can decrease the run time of generated
code by up to 40%, with an average improvement of about 15% across the tested benchmarks. At
the same time, as shown in Figure 7-9, they only roughly double the overhead of VCODE, tcc’s fast
run-time system. In some cases, such as the ilp benchmark, VCODE and bpo together produce code
that runs as quickly as that produced by ICODE: the peephole optimizations remove all redundant
moves, and there are no other differences, such as extra spills, between VCODE and ICODE. Yet the
overhead of VCODE plus bpo is a quarter to a third of ICODE overhead. bpo could be used with
ICODE, too—though of course one would need to provide more useful rewrite rules, since ICODE
does not usually generate redundant moves. Since the overhead of ICODE is about five times
greater than that of VCODE (see Chapter 4), the impact of bpo on its compilation performance is

110

Ratio (bpo enabled / bpo disabled)

2]
| I I
0

binary dfa hash ilp query

Benchmark

Figure 7-9: Compile-time performance of binary optimization. For each benchmark, the bar is the
ratio of the overhead of VCODE and bpo together to the overhead of VCODE alone. For instance,
a value of 1.8 means that bpo increases the cost of dynamic compilation by 80%.

lower; however, since the generated code is better to begin with, peephole optimizations are also less
useful. In summary, it appears that efficient on-the-fly peephole optimization can be most useful in
high-speed, one-pass dynamic compilation systems such as VCODE.

7.6 Summary

This chapter has discussed binary peephole optimizations, simple local optimizations performed
directly on executable code. We introduced a fast technique for binary pattern matching based on
multiway radix search trees, and described bpo, a binary peephole optimizer that uses this technique
to provide fast peephole optimizations within the tcc compiler. Experimental results indicate that
the fast matching technique is an order of magnitude faster than a simple table-based matcher.
Furthermore, peephole optimizations used in tcc can improve code performance by as much as 40%,
yet they only increase the overhead of the fastest code generator by about a factor of two.

111

112

Chapter 8

Conclusion

8.1 Summary and Contributions

This thesis has described ways of exposing dynamic code generation to the programmer, discussed
its efficient implementation, and presented a number of applications of dynamic code.

8.1.1 Language

Dynamic compilation can be expressed via a library interface or via language extensions. A library
can be eagsier to implement, but a language approach has many other advantages: better performance,
better error checking, and greater expressiveness.

Language interfaces to dynamic compilation can be imperative, in which the user explicitly
manipulates dynamic code objects, or declarative, in which the user writes annotations that specify
run-time constants and specialization policies. The declarative approach, which has been adopted
by systems such as Tempo and DyC, has two main benefits. First, it provides greater ease of use in
the common case of simple specialization. Second, it enables the static compiler to deduce more of
the structure of the dynamic code, and therefore to create better dynamic code at lower overhead.

This thesis has described ‘C, currently the only high-level imperative language for dynamic
compilation. Relative to the declarative style, the imperative style used by ‘C complicates static
analysis of dynamic code and therefore requires more work at dynamic compile time. However, it
allows greater flexibility and control than most annotation-based systems. It can be used not only
to improve performance, but also as a software development tool, to simplify the implementation
of programs that involve compilation. In the end, however, the choice of imperative or declarative
style is probably a matter of individual taste.

Programming effectively in ‘C requires some experience because one must think, in part, at a
“meta” level, writing code that specifies the construction of more code. This thesis described several
potential extensions to make ‘C more user-friendly. However, most of these extensions have some
drawbacks: the simple and minimal ‘C interface, which in many ways reflects the bare-bones feel of
C itself, may well wear best.

8.1.2 Implementation

A dynamic compiler must strike a balance between the overhead of dynamic compilation and the
quality of the resulting code. Dynamic compilation overhead can be reduced by moving as much work
as possible to static compile time. However, because of its programming model based on dynamic
code composition, ‘C somewhat limits static analysis. As a result, this thesis presented several
algorithms that improve code quality at a fraction of the overhead of traditional optimizations.
Linear scan register allocation, for instance, is a global register allocation algorithm that usually
produces good code at several times the speed of graph coloring on realistic benchmarks. Fast

113

peephole optimizations and statically staged optimizations are other examples of ways to improve
code quality without excessively slowing down compilation.

The thesis also described tcc, a portable implementation of ‘C. tcc supports efficient dynamic
code generation, and provides two run-time systems in order to accommodate the tradeoff between
dynamic compilation overhead and quality of generated code. The VCODE run-time system gener-
ates code in one pass, at an overhead of approximately 100 cycles per instruction; ICODE uses an
intermediate representation to optimize code more carefully, and therefore generates one instruction
in approximately 600 cycles. In most of the benchmarks in this thesis, the overhead of dynamic code
generation is recovered in under 100 uses of the dynamic code; sometimes it can be recovered within
one run.

The implementation of tcc has provided useful lessons. First, one must carefully weigh the benefit
of an optimization against its overhead. Most “classical” compiler optimizations, such as common
subexpression elimination, simply provide too little bang for the buck to be of use in a dynamic
context. Allowing the user to choose the level of dynamic optimization—as done in tcc with the two
different back ends, ICODE and VCODE—can improve the effectiveness of dynamic compilation
across a wide range of applications. Second, “best effort” is usually good enough. Modern static
compilers use elaborate graph coloring and register coalescing heuristics to make register allocation
as good as possible. Section 5.2, by contrast, describes a simple algorithm that allocates registers in
a single sweep of the intermediate form. It is not close to optimal, but it is fast and good enough
for most uses. The same philosophy applies to the one-pass data flow analyses in Chapter 6. Lesson
three is a reminder that, unfortunately, there is often more to an algorithm than its big-O properties.
The fast data flow analyses are linear in the number of basic blocks and several times faster than
their traditional analogs, but they are still impractical for lightweight dynamic compilation due to
the high overhead of initializing data structures. Finally, lesson four is that ad-hoc solutions can
work well. For instance, as described in Chapter 7, peephole optimizations can be used effectively
to locally improve code.

8.1.3 Applications

A technique like dynamic code generation is only useful if it provides real performance or software
development benefits for some classes of applications. Chapter 3 defined a space of dynamic code
generation optimizations and populated it with several examples. We also explored the use of dy-
namic compilation in specific areas such as numerical methods and computer graphics. ‘C can be
used to improve the performance of many programs, from networking routines to math libraries to
sorting algorithms. ‘C improves the performance of some benchmarks in this thesis by almost an
order of magnitude over traditional C code; speedups by a factor of two to four are not uncom-
mon. In addition to performance, an explicit interface to dynamic compilation can also provide
useful programming functionality. For instance, ‘C simplifies the creation of programs that involve
compilation or interpretation, such as database query languages and compiling interpreters.

8.2 Future Work

This thesis only scratches the surface of dynamic compilation. Much remains to be done in the area.

8.2.1 Code Generation Issues

The most direct and incremental additions to this thesis are further mechanisms for expressing
dynamic code and new algorithms for efficient code generation. Some of the ‘C extensions described
in Chapter 2 could be implemented and evaluated in terms of utility and effectiveness. Fast data
flow analyses could be studied further; it may be possible to simplify them even more and to decrease
their setup cost by coarsening data flow information and by limiting analyses to only certain areas
of code. The two-pass register allocation algorithm is quite promising: it should be implemented
and evaluated. The same two-pass strategy might be employed to perform other fast analyses across

114

cspecs, similarly to region- or structure-based analyses in traditional compilers. All these techniques
are likely to further improve dynamic code quality and generation speed.

8.2.2 Architectural Interactions

Another area to explore is the interaction between dynamic code generation and computer archi-
tecture. For instance, dynamic compilation performance improved significantly in passing from an
old MicroSPARC to the UltraSPARC used for the measurements in this thesis, primarily thanks to
the newer processor’s deeper write buffers. On the older processor, VCODE often generated code
quickly enough to saturate the write buffers, slowing dynamic compilation down to memory speeds.
As another example, unified instruction and data caches can improve dynamic compilation perfor-
mance because they do not require flushing the instruction cache after dynamic code generation.
Larger caches might also encourage more aggressive dynamic loop unrolling and inlining. A detailed
study of the effect of various architectural features on dynamic compilation might provide insights
that would improve overall system performance.

Similarly, it may be useful to explore the interaction of dynamic compilation and parallelism.
Berlin and Surati [6] argue that specialization of high-level code such as Scheme can expose vast
amounts of fine-grained parallelism. Such parallelism should become increasingly important as ar-
chitectures evolve towards greater instruction-issue widths and deeper pipelines. Dynamic special-
ization should be more practical and easily applicable than off-line, static specialization. Dynamic
code generation could therefore play an important role in extracting fine-grained parallelism from
applications.

8.2.3 Automatic Dynamic Compilation

A third, and rather more ambitious, research direction is automatic dynamic code generation. All
current systems employ annotations or imperative constructs to direct dynamic compilation. Most
of these constructs simply give the compiler information about run-time invariants. It should be
possible to detect run-time invariants automatically by profiling the traditional static program and
keeping track of values.

Automatic dynamic compilation has important potential applications. For instance, it could be
used to identify frequently used call paths in complex API layers and then trigger dynamic inlining,.
Such optimization is already possible with ‘C or with a powerful declarative system like DyC, but it
would require rewriting the libraries that implement the APIs. Ideally, an automatic profiling and
optimization system would only require that the libraries be recompiled—no source code changes
would be necessary.

Such an approach is not guaranteed to work: it may fail to discover many opportunities for
dynamic compilation, and the overhead of value profiling may well be prohibitive. Furthermore,
at best, automatic detection of invariants would provide only the performance benefits of dynamic
compilation, without the useful programming functionality of an imperative dynamic code interface.
However, if it worked even for a small set of application domains, it would certainly make dynamic
code generation a more widespread compiler optimization than it is today.

8.3 Final Considerations

The most important question about dynamic code generation, and one that cannot be answered by
research alone, is whether it is useful enough to be adopted in a widespread manner. As a compiler
optimization, it is not as applicable as many traditional methods, but when it is applicable, it is quite
effective. As a programming technique, its domain is limited to systems that involve compilation or
interpretation, but again, in those areas it can provide substantial benefits. On balance, therefore,
it deserves attention.

Unfortunately, it is not equally clear what makes a good implementation. Certainly, to break onto
the wider programming scene, any implementation would have to be based on an already popular
optimizing C compiler, such as GNU or Microsoft C. Most people are understandably reluctant to

115

leave a full-featured and well-integrated compiler like gcc for a less effective experimental one, even
if the latter provides a new feature such as dynamic code generation. In retrospect, the decision to
use lcc simplified some aspects of development, but it made it more difficult to create efficient code
and probably limited the potential user base.

The programming interface to dynamic compilation is the second major factor in its acceptance.
A declarative interface would be simpler than ‘C’s imperative interface, but it would lose the expres-
siveness that makes ‘C useful for writing compiler-like programs. Again, the choice is a matter of
taste; a real implementation in a popular compiler might actually provide both. A fully automatic
dynamic code generation system based on value profiling, like the one proposed in the previous
section, would require no user intervention, and could therefore be treated as just another compiler
optimization. If it worked—a big if—it would be the best way to make the performance benefits of
dynamic code widely available. In the meantime, a combined imperative and declarative implemen-
tation based on a widely used compiler like gcc is probably the best way to make this technology
available.

116

Appendix A

A Dynamic Compilation Cookbook

Dynamic compilation finds its most natural and straightforward application in the writing of com-
piling interpreters and other systems, such as database query languages, in which it is beneficial
to remove a layer of interpretation. In these problem domains, a language like ‘C improves both
performance and ease of programming relative to a completely static language such as C or Java.
However, dynamic compilation can be useful in many other areas, including numerical methods, tra-
ditional algorithms, and computer graphics. Whereas Chapter 3 provided a broad overview of the
applicability of dynamic compilation, this section contains a more in-depth “cookbook” description
of how ‘C can be used to solve problems in each of these three areas.

A.1 Numerical Methods

The Newton’s method code in Section 3.1.3 illustrates the potential of dynamic compilation in
numerical code. Here we consider a few other representative examples. In most cases, the examples
are adapted from Press et al. [59].

A.1.1 Matrix Operations

As hinted in Chapter 3, matrix and vector code provides many opportunities for dynamic code
generation. Such code often involves a large number of operations on values which change relatively
infrequently. Furthermore, matrices may have run-time constant characteristics (for instance, size)
that can be used by a dynamic compiler to improve performance.

Sparse matrix multiplication

Sparse matrices are generally represented with an indexing scheme that uses two arrays. One array
stores the actual data values; the other stores integers that establish a mapping between positions
in the first array and positions in the actual dense matrix. Operations on this representation require
accessing both arrays, generally in tight loops. For example, Press et al. [59] present a routine for
multiplying a sparse matrix by a vector to its right. This routine is one of several that use a similar
programming style. The C code for it, below, multiplies a matrix in row-indexed sparse storage ar-
rays sa (that contains values) and ija (that contains indices) by a vector x[1..n], giving a vector b[1..n].

void sprsax (float sa[], unsigned ija[], float x[], float b[], unsigned n) {
unsigned i, k;
if (ija[1] '= n+2) error("Matrix and vector size mismatch.");
for i=1;i<=n;i++) {
b[i] = sa[i]*x[i];
for (k = jja[i]; k <= ija[i+1]—1; k++) b[i] += sa[k] * x[ija[K]];

117

Assuming that the sparse matrix is used several times, we can use ‘C to create more optimized
code, in which the references to the two sparse storage arrays are eliminated, and the tight, dou-
bly nested loop above is unrolled. The ‘C routine below dynamically generates code specialized to
multiplying a run-time constant matrix (originally denoted by the row-index sparse storage arrays
sa and ija) by an arbitrary vector px[1..n], giving a vector pb[1..n].

typedef void (*ftype)(float *, float *, int);
ftype sprsax(float sa[], unsigned long ija[], unsigned long n) {
float *vspec px = param(float *, 0), *vspec pb = param(float *, 1);
int vspec pn = param(int, 2); void cspec c; int i, k;
if (ija[1] '= n+2) error("Matrix and vector size mismatch.");
c = '{if (pn != $n) error("Bad vector size."); };
for i=1;i <=n;i++) {
c = *{ @c; pb[$i] = $sa[i]*px[$i]; }:
for (k = ija[i]; k <= ija[i+1]-1; k++) ¢ = *{ @c; pb[$ija[k]] += $sa[k]*px[$i]; };
}

return compile(c, void);

}

The size of the code generated by this routine is proportional to the number of elements in the
sparse matrix. If the matrix is sufficiently large or sufficiently dense, the dynamic code may actually
be slower than equivalent static code due to poor cache behavior. As explained in Chapter 3,
dynamic code size often depends on the data that is being processed. This fact should be taken into
account when considering many of the examples below.

Matrix factorization

One important matrix factorization technique is Cholesky decomposition. This method can be used
to solve linear equations about twice as quickly as alternative techniques [59]. Although it places
some special requirements on its inputs, these requirements are satisfied frequently enough in practice
to make it useful. Like in the sparse matrix routines above, solving linear equations by Cholesky
decomposition involves tight loops and array accesses. The ‘C routine below takes advantage of the
fact that often one wants to find a solution to the system of equations denoted by A -x = B for
several different right-hand sides B. It produces optimized code specialized for A, in which loops
are unrolled and array indices are run-time constants. In the code, a is the Cholesky factorization of
the positive-definite symmetric matrix A and p contains its diagonal elements. The dynamic code
can be called multiple times with different values of b and stores the result in the passed-in array x.
typedef void (*ft)(float *, float *);
ft mkcholsl (float **a, int n, float p[]) {
float *vspec pb = param(float *, 0), *vspec px = param(float *, 1), vspec sum = local(float);
void cspec ¢ = ‘{}; int i, k;
for (i=0; i <= n; i++) {
¢ = *{ ©c; sum = pb[$i]; };
for (k = i—1; k >= 1; k——) ¢ = { @c; sum —= a[$i][$k]*px[$k]; };
c = *{ Oc; px[$i] = sum/p[$i]; };
}
for i=n;i>=1;i——){
c = *{ Qc; sum = px[$i]; };
for (k = i+1; k <= n; k++) ¢ = '{ @c; sum —= a[$k][$i]*px[$k]; };
c = *{ @c; px[$i] = sum/p[$i]; };
}
return f = compile(c, void);

}

Note that the values of the run-time invariant a and p arrays are not actually treated as run-time
constants because they contain floating point data. Since floating point values cannot be encoded

118

as immediates, denoting them as run-time constants would provide no benefit. Nonetheless, even
loop unrolling alone can be beneficial. For instance, the toy loop

for (i=1; i <= k; i++4) { t +=d[i}; t /= d[i]; }

requires only three instructions per iteration when unrolled on an Intel x86. When not unrolled,
each iteration requires six: the extra three instructions are the loop counter increment, termination
test, and branch. Of course, excessive unrolling can cause cache problems, but the dynamically
generated code is effective for relatively small matrices.

Another popular matrix factorization technique is QR decomposition. Like Cholesky decompo-
sition, QR decomposition involves routines with tight loops that iterate over a matrix, so it also is
amenable to the optimizations discussed above.

A.1.2 Numerical Integration

Numerical integration can benefit significantly from dynamic inlining. Consider, for instance, inte-
gration by the trapezoidal rule. The coarsest refinement approximates

b
/ f(@)dz ~ (b - a) * (f(a) + F(B))/2.

The second refinement adds the value of f at (a+ b)/2 to the average, the next refinement adds the
values at the 1/4 and 3/4 points, and so forth. At each stage, the approximation is more accurate.
The following routine, adapted from Press et al. [59], computes the nth refinement of the trapezoidal

rule for f; f(z)d=:

typedef float (*floatfunc)(float);
float trapzd (floatfunc f, float a, float b, int n) {
float x,sum,del; static float s; static int it; int j;
if (n==1){it =1, returns = (b—a)/2 * (f(a) + f(b)); }
else {
del = (b—a) / it; x = a + del/2;
for (sum = 0.0, j = 1; j <= it; j++, x += del) sum += f(x);
s = (s + (b—a)*sum/it) / 2; it *= 2;
return s;

}

Each invocation of this code with sequentially increasing values of n (n > 1) improves the accu-
racy of the approximation by adding 2"~ internal points [59]. The code is usually called repeatedly
to achieve the desired level of accuracy. The function pointed to by f, which may be unknown at
compile time, is therefore used several (272, for n > 1) times within the code, and the code itself is
called many times. We can improve the code’s performance in the same way as the Newton’s method
routine in Section 3.1.1, by replacing the function pointer with a cspec and creating a specialized
routine in which the function is dynamically inlined:

typedef float (*trapzfunc)();
typedef float cspec (*dfloatfunc)(float vspec);
trapzfunc mktrapz (dfloatfunc f) {
float vspec a = param(float, 0), b = param(float, 1);
int vspec n = param(int, 2);
void cspec ¢ = *{
float x,sum,del; static float s; static int it; int j;
if (n==1){it=1; returns = (b—a)/2 * (f(a) + f(b)); }
else {
del = (b—a) / it; x = a + del/2;
for (sum = 0.0, j = 1; j <= it; j++, x += del) sum += f(x);

119

s = (s + (b—a)*sum/it) / 2; it *= 2;
return s;
}
}
return compile(c, float);

}

This use of ‘C does not degrade readability: the code inside the backquote expression is identical
to the body of the original static function. Additional performance benefits could be obtained by
dynamically unrolling the loop, but such a change would complicate the code. The dfloatfunc in the
code is a ‘C function that returns a float cspec corresponding to the function we need to integrate.
For instance, for f(z) = z*:

float cspec f(float vspec x) { return ‘(x*x); }

Similar benefits can be obtained with other integration techniques, such as Gaussian quadratures.
Multidimensional integration provides further opportunities for optimization: since it uses one-
dimensional integration routines like the one above as building blocks, it can potentially benefit
from multiple levels of dynamic inlining.

A.1.3 Monte Carlo Integration

The Monte Carlo method is a well-known and widely used technique for numerically integrating
functions over complicated multidimensional volumes that are difficult to sample randomly—for
instance, when the limits of integration cannot easily be written in closed form. The idea is to
enclose the complicated volume within a simpler volume that is easy to sample randomly. We then
pick random points within this simpler volume, and estimate the complicated volume as the simple
volume multiplied by the fraction of random points that fall within the complicated volume.

Consider the following code fragment, which uses the Monte Carlo method to compute fab f(z)dz
for some f such that 0 < y; < f(z) < y, for z € [a, b]:

sum = 0;
for (j =0;j < N; j++) { /* Loop for some number of iterations */
x = randinterval(a,b); /* Pick a random number in [a,b] */
y = randinterval(yl,y2); /* Pick a random number in [yl,y2] */
if (y < f(x)) sum++; /* If we hit inside f, increment the count */

a = (b—a)*(y2—y1);
intf = a*sum/N; /* integral(f) is area of [a,b]x[y1,y2] times fraction of samples in f */

Thanks to the constraints that we chose for f, this code is straightforward. However, depending
on the volume being integrated, the test that determines whether a random point falls within the
region of interest (y < f(x), in this case) can be arbitrarily complicated. The whole code, in fact,
depends on the function that is being integrated and its dimensionality.

In general, one writes such a Monte Carlo routine from scratch for every function of interest.
With ‘C, one can imagine writing a generic “Monte Carlo builder” function that takes cspecs cor-
responding to the function being integrated and its bounds, as well as other information about the
dimensionality of the problem and other parameters, and dynamically constructs a function opti-
mized for that problem. This solution enables Monte Carlo integration that is both efficient and
interactive (dynamically modifiable).

In addition to the simple Monte Carlo technique, there exist more advanced methods, such as
vegas and miser [59], that converge more rapidly. These routines are generic—they take a function
pointer that denotes the function of interest. Like some routines described earlier, they may also
benefit from dynamic optimizations such as inlining and loop unrolling.

120

A.1.4 Evaluation of Functions

Certain mathematical functions can be evaluated more efficiently with dynamic compilation. We
discuss just a few examples.

Polynomials

Consider a polynomial with integer coefficients. If we are given the task of repeatedly evaluating
such a polynomial at different points, we may want to write a routine like this:

typedef float (*polyfunc)();

polyfunc mkpoly (int ¢[], int nc) { /* Coefficients; c[0] is constant term */
float vspec x = param(float, 0); /* Evaluate the poly at point x */
float cspec y = ‘(float)$c[nc];
int i;
for (i = nc=1; i >=0; i—=) y = ‘(y*x+8c[i]);
return compile(‘{ return y; }, float);

}

This code dynamically builds up an expression of the form (((c[4]*x+c[3])*x+c[2])*x+c[1])*x+c[0].
It avoids the loop overhead normally associated with polynomial evaluation; furthermore, since the
coefficients are integers, it may be able to reduce some of the multiplications in strength. If the
polynomial is evaluated several times, the overhead of code generation is easily recouped.

Similar optimizations can be applied to more complex routines that simultaneously evaluate mul-
tiple derivatives of polynomials or that perform multiplication or division of polynomials. Rational
functions—the quotients of two polynomials—can also be optimized in this way.

Numerical derivatives

Dynamic inlining can be useful for computing numerical derivatives. For instance, Ridder’s method
for computing derivatives of a function by polynomial extrapolation [59] requires the function to be
invoked several times within a loop—inlining offers obvious advantages. The algorithm may also
benefit from dynamic loop unrolling and constant folding.

Root finding

The Newton’s method code in Section 3.1.1 is one example of root-finding code that benefits from
dynamic compilation. Most other popular methods—bracketing, bisection, the secant method, and
others—can be optimized analogously thanks to dynamic inlining and, in some cases, loop unrolling.

Ordinary differential equations

Likewise, the Runge-Kutta method and other routines for solving initial value problems for ODEs
are amenable to specialization and inlining of user-supplied functions.

A.1.5 Fast Fourier Transform

The fast Fourier transform (FFT), ubiquitous in signal processing, can be made a little faster by
dynamically specializing it to the size of its input data set. For instance, the first part of the
algorithm is a relatively tight loop that performs bit reversal and whose behavior depends only on

121

the size—not the values—of the input:

for i=1i<ni+=2){
if (j > i) { swap(data[j], data[i]); swap(data[j+1], data[i+1]); }

m = n>>1;
while (m >=2&& j>m){j—=mm>>=1;}
j+=m;
}
This code can be rewritten in ‘C:
c="{hL

for i=1i<ni+=2){
if (j >1i)c="{ Qc; swap(data[$j], data[$i]); swap(data[$j+1], data[$i+1]); }:

m = n>>1;
while (m>=2&& j>m) {j—=mm>>=1;}
JH=m

}

where c is a cspec that accumulates a straight-line sequence of swap routines that implement optimal
bit reversal reordering for this input size. If the code will be used several times with inputs of the
same size, the specialized code will be significantly faster than the general loop. These benefits may
be even greater for multidimensional FFTs, in which the loop structure is more complicated.

The second part of the algorithm contains bigger nested loops that are less amenable to unrolling,
but it may still benefit from dynamic optimizations for small inputs.

A.1.6 Statistics

One important code example from statistics is the Kolmogorov-Smirnov test, which can be used to
determine whether two unbinned distributions, each a function of a single independent variable, are
different. Like much of the integration and root-finding code, this routine uses a function pointer in
a tight loop and makes frequent calls to math routines to compute maximum and absolute values.
These calls could be inlined dynamically to increase performance. Again, similar optimizations apply
to higher-dimensional versions of the algorithm.

Other statistics routines, such as linear least squares code, can also benefit from dynamic loop
unrolling and other optimizations based on input size.

A.1.7 Arbitrary Precision Arithmetic

Dynamic compilation can also provide efficient support for arbitrary precision arithmetic. For in-
stance, Press et al. [59] present a math library in which values are stored in unsigned character
strings that are interpreted as base 256 numbers. Values are stored with most-significant digits first
(earlier in the array). Carries are handled by using a variable of short type to store intermediate
values. Here is a simple addition routine:

#define LO(x) ((unsigned char) ((x) & 0xff))

#tdefine HI(x) ((unsigned char) ((x) >> 8 & 0xff))

void mpadd(unsigned char *w, unsigned char *u, unsigned char *v, int n) {
/¥ w = u+v; u and v have length n; w has length n+1 */
int j; unsigned short t = 0;
for j=nmj>=1;j——) { t = uf]] + v[i] + HI(t); w[j+1] = LO(t); }
w([1l] = HI(t);

}

Although code like this can handle inputs of arbitrary length, the values may frequently fall
within a relatively small range. In this case, one can use ‘C to dynamically generate code specialized
to a particular input length, removing loops and making array offsets constant. The code could

122

be recompiled when the lengths of inputs change, or one could generate several functions, each
specialized to a different input length. These optimizations should be at least as useful for more
complicated operations, such as multiplication of two arbitrary-length multiple precision values.

Furthermore, if one of the operands is to be employed many times, it may be beneficial to
dynamically specialize the relevant operations with respect to that operand. In the simple addition
example, it might then be possible to optimize away some of the addition and carry operations. Such
specialization effectively transforms the multiple precision vector into an executable data structure
that knows how to apply itself to other data—a philosophy almost reminiscent of Smalltalk and
other object-oriented systems.

A.2 Non-Numerical Algorithms

Dynamic code generation can improve the performance of many traditional algorithms. The special-
ized hash table and the executable binary search tree described in Section 3.1.1 are two examples.
This section describes some others.

A.2.1 Sorting Algorithms
Mergesort

Mergesort is an important sorting algorithm. Like quicksort, it has “optimal” O(n logn) asymptotic
performance. Unlike quicksort, however, it is stable, and it insensitive to the initial order of the
input—by contrast, quicksort is quadratic in the worst case. Furthermore, if implemented cleverly,
mergesort’s inner loop is shorter than quicksort’s, and it is executed on average 38% fewer times [64].
Consider the mergesort code below, which uses an auxiliary array b:

void mergesort (int a[], int I, int r) {

int i, j, k, m;

if (r>1){
m = (r+1)/2; mergesort(a, |, m); mergesort(a, m+1, r);
for (i = m+1;i > I, i——) b[i—1] = a[i—1];

for (j = m; j < r; j++) blr+m—j] = a[j+1];
for (k = I; k <= r; k+4) a[k] = b[i] < b[j] ? b[i++] : b[j—;

}

This code from Sedgewick [64] is quite efficient. It avoids the use of sentinels in the sorting
loop (the third for loop) by copying the second half of the subarray (the part sorted by the second
recursive call) back-to-back to the first, but in reverse order (in the second for loop). In this way,
the largest elements of each array are adjacent, and each array acts as a sentinel for the other in the
sorting loop. However, the code is still not as fast as it could be: it copies data from a to b every
time (using the first two for loops), which amounts to logn copies of the entire array.

We can remove all but one of these copies by alternately merging from a into b and from b
into a. Alternating the merge destination while avoiding loop sentinels unfortunately requires four
mutually recursive routines, shown below. ainc and adec merge the sorted subarrays into a, just like
the code above; binc and bdec merge into b. ainc and binc leave their output in increasing order;
adec and bdec leave their output in decreasing order. For instance, ainc avoids the copy for loops
in the code above by calling binc to sort the first half of the interval into ascending order and bdec
to sort the second half into descending order. Producing output in descending order without using
sentinels requires inverting the test in the sorting loop (b[i] > b][j] rather than b[i] < b[j] in adec)
while sorting the first half of the interval in decreasing order and the second half in increasing order.
The top-level mergesort routine simply copies a into the auxiliary array b once, so that lower levels
of the recursion will access correct values, and then calls ainc, which sorts a into ascending order.
Here is the optimized code:

123

void mergesort (int a[], int I, int r) {
int i;
for (i = I; i <=r; i++) b[i] = a[i];
ainc(a, b, I, r);

void ainc (int a[], int b[], int I, int r) {
int i, j, k, m;
if (r <=1) return;
m = (r+1)/2; binc(a, b, I, m); bdec(a, b, m+1, r);
for i=k=1j=r k <=r; k++) a[k] = b[i] < b[j] ? b[i++] : b[j—1;

void adec (int a[], int b[], int I, int r) {
int i, j, k, m;
if (r <=1) return;
m = (r+1)/2; bdec(a, b, I, m); binc(a, b, m+1, r);
for (i=k=1j=r k <=r; k++) alk] = b[i] > b[j] ? b[i++] : b[j——];

void binc (int a[], int b[], int I, int r) {
int i, j, k, m;
if (r <=1) return;
m = (r+l)/2; ainc(a, b, I, m); adec(a, b, m+1, r);
for i=k=17]=rk<=r; k++) blk] = a[i] < a[j] ? a[i++] : a[j——1];

void bdec (int a[], int b[], int I, int r) {

int i, j, k, m;

if (r <=1) return;

m = (r+l)/2; adec(a, b, I, m); ainc(a, b, m+1, r);

for (i=k =1,j=r k <=r; k++) blk] = a[i] > a[j] ? a[i++] : a[j——];
}

Of course, this code is still not perfect. Although it performs no sentinel checks or redundant
copies, it contains several mutually recursive calls and tight loops. One could avoid the recursive
calls by implementing an iterative version of the algorithm, but that would still leave a good deal of
loop overhead. Furthermore, the iterative implementation is far less natural and intuitive than the
recursive one.

One frequently needs to sort several different arrays that all have the same length. In that case,
‘C can help us write a specialized mergesort routine that, in the limit, performs no calls and no loops.
The insight necessary to write this code is that mergesort—unlike, for instance, quicksort—performs
the same set of comparisons no matter what the input data. Only the size of the input array matters.
Given this insight, we can write the code below. The code closely mirrors the optimized recursive
implementation discussed above, but rather than sorting an array, it returns a specification for dy-
namic code that sorts an array of a given size. The top-level routine, mk_mergesort, dynamically
compiles this cspec and returns the function pointer to the caller:

int *vspec a, *vspec b, vspec i, vspec j;
void (*mk_mergesort(int len))() {
a = param(int *, 0); b = local(int[len]); i = local(int); j = local(int);
return compile(‘{ int k; for (k = 0; k < $len; k++) b[i] = a[i]; @mainc(0, len); }, void);

}
void cspec mainc (int I, int r) {

int m = (r+l)/2;

if (r <=1) return ‘{};

return ‘{ int k; @mbinc(l, m); @mbdec(m+1, r); i = $I; j = $r;

for (k = $I; k <= $r; k++) { a[$k] = b[i] < b[j] ? b[i++] : b[[—]; } };

}
void cspec madec (int I, int r) {

int m = (r+1)/2;

124

if (r <=1) return '{};
return ‘{ int k; @mbdec(a, b, |, m); @mbinc(m+1, r); i = $I; j = $r;
for (k = $I; k <= $r; k++) { a[$k] = b[i] > b[j] ? b[i++] : b[j—]; } };

}
void cspec mainc (int I, int r) {
int m = (r+1)/2;
if (r <=1) return ‘{};
return ‘{ int k; @mainc(l, m); @madec(m+1, r); i = $I; j = $r;
for (k = $I; k <= $r; k++) { b[$k] = a[i] < a[j] ? a[i++] : a[j—1]; } };
}
void cspec mbdec (int I, int r) {
int m = (r+1)/2;
if (r <=1) return ‘{};
return ‘{ int k; @madec(l, m); @mainc(m+1, r); i = $I; j = $r;
for (k = $I; k <= $r; k++) { b[$k] = a[i] > a[j] ? a[i++] : a[j—1]; } };
}

The generated code is excellent: it contains no calls or loops, and performs only the minimal set
of pointer increments and element compare-and-swap operations needed to mergesort an array of
the given length.

Counting sort

Counting sort is an algorithm that can be used to sort in linear time when the input is known
to be N integers between 0 and M — 1 (or, more generally, N records whose keys are such inte-
gers). Below is a standard C implementation of counting sort, once again taken from Sedgewick [64]:

=

=0;j < M; j++) count[j] = 0;

= 1; i <= N; i++) count[a[i]]++;

=1;j < M; j++) count[j] += count[j—1];
= N; i >= 1; i——) b[count[a[i]]-—] = a]i]
=1;i <= N; i++) a[i] = bJ[i];

f—

=

T
Q9
N

=

Since the loop bodies are very small, loop overhead is a large fraction of the total run-time cost.
For instance, the first loop consists of a store, an increment, a comparison, and a branch: half of
these instructions could be removed by complete unrolling. The overhead could also be reduced by
partial unrolling at static compile time, but often we know at run-time the size of the data we will
be processing, so it may be useful to completely optimize the code for that case. ‘C makes this
optimization straightforward:

return *{
int i, j;
for (j = 0;j < $M; j++) count[j] = 0;
for (i = 1; i <= $N; i++) count[a[i]]++;
for (j = 1; j < $M; j++) count[j] += count[j—1];
for (i = $N; i >= 1; i——) b[count[a[i]]——] = a]il;
for (i=1; i <= $N; i++) a[i] = bli];

h

This code returns a cspec that corresponds to code specialized to perform a counting sort on an
input of length N with integers between 0 and M — 1. The contents of the backquote expression
is identical to the original code, with the exception that the loop bounds are marked as run-time
constants. At run-time the loops can be completely unrolled based on the values of the loop bounds.
The dynamic code will have no loop overhead and no index increments; it will consist of the minimal
sequence of loads and stores and use constant array offsets.

125

A.2.2 Graph Algorithms
Shortest Paths

Dynamic loop unrolling can also be useful for certain graph algorithms. Consider the Bellman-Ford
single-source shortest path algorithm: its main loop repeatedly relaxes each edge in the graph, and
successively finds all shortest paths of at most one hop, then at most two hops, and so forth, up to
the maximum diameter of the graph [15]:

for (i = 0; i < num_vertices—1; i++)
for (j = 0; j < num_edges; j++)

if (dist[destination[j]] > (d0 = dist[source[j]] + wt[j]))
dist[destination[j]] = d0;

If one wanted to perform multiple relaxations using the same graph topology but different edge
weights, then dynamic code generation could be used to remove loop overhead and eliminate the
reads from the destination and source arrays that specify edge endpoints.

Depth-First Search

‘C can also decrease the data structure lookups required for other types of graph traversals. The
specialized binary search code in Section 3.1.1 exemplifies specialization in the case of a simple
and regular acyclic graph, a binary search tree. Another example is a generic “executable graph”
specialized to performing depth-first search. Depth-first search is usually implemented recursively;
at each node, the algorithm loops through all the node’s neighbors that have not been visited yet,
recursing on each one in turn. If we will be performing several searches on the same graph, we can
replace the graph data structure by an array of function pointers, each pointing to a dynamically
generated function that is specialized to one of the nodes in the original graph. Each function makes
a hard-wired sequence of calls to functions that correspond to its node’s neighbors, without having
to look into any data structure or perform any loop. Implementing this code would be somewhat
more difficult than standard depth-first search, but the potential performance benefit may justify it
in some situations.

A.2.3 String and Pattern Matching

String searching and pattern matching easily lend themselves to dynamic optimization. In many
such algorithms, the string or pattern to be matched can be viewed as a state machine that processes
the input. Dynamic code generation allows us to “compile away” these state machines and create
code that is specialized to a particular search pattern.

Consider for example the following implementation of the popular and efficient Knuth-Morris-
Pratt string search algorithm, adapted from Sedgewick [64]:

void initnext (char *p) {
int i, j, M = strlen(p);
next[0] = —1;
for i=0,j=—1;i < M; i++, j++, next[i] = (p[i] == p[j]) ? next[] : j)
while (j >= 0 && p[i] '= p[j]) j = next[j];
}
int kmps (char *p, char *a) {
int i, j, M = strlen(p);
initnext(p);
for i=10,j=0;j < M;i++, j++)
while (j >= 0 && a[i] != p[j]) j = next[j];
return i—8;

126

The actual sort is performed by the kmps routine. To avoid a test for end of input at every loop
iteration, the code assumes that a copy of the search pattern is stored as a sentinel at the end of the
input text.

The initnext function is called by kmps to initialize the next array, which determines how far kmps
should back up in the search string when it detects a mismatch. The next array allows kmps to move
through the input monotonically from left to right, possibly backing up in the search string but
never in the input text. For instance, consider searching for “10100” in the input “1010100”: when
the algorithm detects a mismatch at the fifth input character, it does not back up four characters
in the input. Rather, it backs up to the third character in the search string, since the first two
characters in the search string match the last two characters that were matched prior to the final
mismatch. If we append the following code to initnext,

for (i=0; i < M; i++)
printf("s%d: if (a[i] != '%c") goto s%c; i++:"n", i, p[i], "m0123456789" [next[i]+1]);

and then add a little boilerplate, we obtain the following optimized function:

int kmps_10100 (char *a) { /* Match *“10100” in string a */
inti = -1,

sm: i++;

s0: if (a[i] '= '1") goto sm; i++;

sl: if (a[i] = '0") goto sO; i++;

s2: if (a[i] = '1") goto sm; i++;

s3: if (a[i] = '0") goto sO; i++;

s4: if (a[i] = '0") goto s2; i++;

sb: return i—5;

}

It should now be clear that next simply encodes the finite state automaton for matching the given
input pattern! Although the specialized code is much more efficient than the general kmps routine,
it is impractical to statically create all the specialized routines that may be needed. Fortunately, ‘C
allows us to create such specialized code dynamically. The mk_kmps function below returns a cspec
for a function that is patterned after the kmps_10100 example above but searches for the arbitrary
run-time determined input string p. For clarity, the code expects the next array to have already
been computed by initnext, but it is not difficult to merge initnext and mk_kmps into one routine.

void cspec mk_kmps (char *p, int *next) {
int i, M = strlen(p);
int vspec iv = local(int); char * vspec av = param(char *, 0);
void cspec code, cspec *labels = (void cspec *)malloc((M+1) * sizeof(void cspec));
for (i = 0; i < M+1; i++) labels[i] = label();
code = ‘{ iv = —1; @labels[0]; iv++ };
for i=0;i< M; i++)
code = ‘{ @code; @labels[i+1]; if (av[iv] != $p[i]) jump labels[next[i]+1]; iv++; };
return ‘{ Q@code; return iv—8; };

A.2.4 Circuit Simulation

Similarly, dynamic compilation might be used to remove interpretation overhead in some kinds
of circuit simulation. Traditional static simulations must either rely on truth tables and other
data structures that describe the circuit structure, or statically compile the circuit descriptions to
optimized code. One can use ‘C to implement a simulator that has the flexibility and interactive
quality of the first solution without sacrificing the performance of the second solution. For instance, a
data structure that described a user-specified series of combinational elements would be dynamically

127

compiled to straight-line code that directly used hardware instructions (and, or, and so forth) to
implement the circuit without any data structure overhead.

A.2.5 Compression

Some compression algorithms can also be made more efficient by using dynamic code generation
to strip away a layer of interpretation. Consider, for example, the following simplified Huffman
encoding routine. The code is adapted from Press et al. [59]; for clarity, error and bounds checking
have been omitted.

int hufenc (unsigned ch, unsigned char *out, unsigned nb, huff *code) {
int |, n; unsigned nc;
for (n = code—>ncod[ch]—-1; n >= 0; n——, ++nb)
if (code—>icod[ch] & (1<<n)) {
nc = (nb >> 3); | = nb & 7; (*out)[nc] |= (1<<I);
}

return nb;

}

The routine encodes the single character ch according to the Huffman code in the data structure
code, and writes the output into the out array starting at bit position nb. The function loops
through the bits of the character’s Huffman code (denoted by code->icod|ch]), and places them into
the appropriate bit position (nb) in the output. Even without a detailed understanding of Huffman
coding, it is easy to see that the sequence of actions performed by this routine is specified completely
by the encoding data structure.

Since the function must be called repeatedly to encode consecutive characters in a message, any
inefficiencies can have substantial impact. One solution is to use ‘C to dynamically generate several
pieces of code, each specialized to encode one character; we can then stitch these pieces together
to create an optimized encoding function that never needs to interpret the encoding data structure.
Consider the code below:

void cspec mk_hufenc (unsigned ch, unsigned char *vspec out, unsigned vspec nb, huff *code,
int vspec I, unsigned vspec nc) {
int n, nbi = 0;
void cspec ¢ = ‘{};
for (n = hc—>ncod[ch]—1; n >= 0; n—-)
if (hc—>icod[ch] & (1<<n)) {
if (nbi) ¢ = *{ @c; nb += $nbi; };
¢ =" @c nc=nb>>3;1=nb&7; (*out)[nc] |= (1<<I); };
nbi = 1;
} else nbi++;
}

return c;

}

This ‘C function takes in a character (ch) and a Huffman code (code), and specifications (vspecs)
for an output vector, a bit index, and a couple of temporaries. It specifies the optimal straight-line
code necessary to store the bits corresponding to the Huffman encoding of ch at some run-time
determined bit-offset in the output vector. The variable nbi accumulates consecutive bit counter
increments, minimizing the number of such increments performed by the dynamic code. Similarly,
conditionals and lookups in the code data structure are performed only at dynamic compile time.
This routine can be invoked on every character in the input alphabet before doing any compression,
and the returned cspecs can be combined into a large jump table indexed by input character. The
resulting code will have only one large loop (over the characters that must be encoded) and no
function calls—just an indirect jump to straight-line code to encode each character.

128

A.3 Computer Graphics

Computer graphics offers many applications for dynamic code generation. For instance, Draves [21]
describes how to improve the performance of a lightweight interactive graphics system via dynamic
compilation. The exponentiation example in Section 3.1.1 is derived from his code. Similarly, the
customized copy code in Section 3.1.2 is inspired by the high performance graphics bitBlt work [55].
This section touches on just a few other examples.

A.3.1 Clipping

All line clipping algorithms, such as the Cohen-Sutherland algorithm and the Lian-Barsky algo-
rithm [27] repeatedly use the endpoints of the clipping rectangle in their computation. If a particular
clipping rectangle is used frequently, we can hardwire its endpoints into the algorithm and obtain
advantages similar to those of the specialized hash function in Section 3.1.1. The same optimiza-
tion can be performed when these algorithms are extended to 3 dimensions. Similarly, we can use
dynamic compilation to optimize clipping polygons against polygons: if one polygon is repeatedly
used as a clipping mask, the Weiler algorithm [27] can be specialized to eliminate the overhead
of traversing the data structure representing that polygon. This trick is similar to the vector dot
product example in Section 3.1.1.

A.3.2 Shading

An analogous optimization can be performed with shading algorithms. Consider the Phong model,
where the amount of light specularly reflected is written as

I= Iakaod + fattIp[kdOd(N . f’) + kS(R ’ V)n]

04 and kg describe the object’s diffuse color, I, and k, describe ambient light conditions, I,
describes point light intensity, and N, L, R, V denote the orientation of the object, the direction
of the light source, the direction of reflection, and the orientation of the viewer, respectively. This
formula, as well as others like it, has many terms, but not all of them may change rapidly. A
language like ‘C can be used to dynamically partially evaluate the expression with respect to terms
that change infrequently, and to do this repeatedly as those terms slowly change.

A.3.3 Scan Conversion of Conics

Scan-conversion of conic sections offers another opportunity for low-level optimization based on
dynamic partial evaluation. A general conic can be described as the solution to an equation of the
form

Az? + Bxy 4+ Cy*> + Dz + Ey+ F = 0.

The algorithm to efficiently plot such a curve is complicated and uses the six coefficients re-
peatedly. Special cases for circles or ellipses whose axes are aligned with the axes of the plane are
simpler, but still use several integer parameters repeatedly. If some of these parameters remain
constant across several uses—for instance, if one is drawing many similar circles at different points
in the plane—then dynamic specialization to those run-time constant parameters can be an effective
optimization.

A.3.4 Geometric Modeling

Geometric models of an object consist of data structures that describe the object’s shape and
connectivity [27]. Models are complex and often hierarchical; for instance a robot may consist
of a body and limbs, and limbs may themselves be built out of segments and joints. The three-
dimensional “world” coordinates contained in the model are projected onto the two-dimensional

129

screen coordinates to reflect the position and orientation of the object and the viewer. These matrix-
based transformations can be expensive: a viewing engine takes in the geometric model and position
information, and outputs a two-dimensional representation. It should be possible to improve on this
process by expressing the geometric model as an executable data structure. The viewing engine
could take a code specification that describes the model and compile it to code that takes position
information and outputs a two-dimensional representation. This process is simply dynamic partial
evaluation of the traditional viewing engine with respect to a geometric model. It removes the
overhead of accessing complex data structures, and provides the opportunity for strength reduction,
loop unrolling, and other optimizations based on the values in the model. Since most objects are
likely to be long-lived (at least on the order of a few seconds), the overhead of dynamic compilation
should be easily recouped.

A.3.5 Image Transformation

One important geometric transformation is scaling; a standard image expansion algorithm is the
Weiman algorithm. Given a scaling factor p/q, where p and ¢ are coprime integers, the Weiman
algorithm uses a bit vector of length p called the Rothstein code to decide how to evenly distribute
g pixels into p columns [27]. The Rothstein code does not change throughout a particular scaling
(although it may be cyclically permuted to improve the destination image quality), and it is ref-
erenced for every column in the image. Dynamically generating a specialized scaling routine for a
particular Rothstein code may therefore be quite profitable.

Dynamic compilation is also useful for improving the performance of image filtering algorithms—
for instance, convolution-based algorithms such as blurring, edge-detection, and anti-aliasing. The
values of the convolution masks are constant throughout the filtering operation. Furthermore, for all
but an outer strip along the border of the image, boundary checking is unnecessary. A dynamically
generated convolution routine in which the values of the convolution mask are hardwired into the
code and boundary checks are eliminated is significantly faster than general-purpose code. Even for
relatively small images, the cost of code generation can be recouped with just one filtering opera-
tion. Section 4.5.1 describes our experiences with filter specialization in the xv image manipulation
package.

130

Bibliography

[1]

[2]

[10]

[11]

[13]

A.V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools. Addison-
Wesley, Reading, MA, 1986.

S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and A. W. Lim. An overview of the SUIF
compiler for scalable parallel machines. In Proceedings of the 6th Workshop on Languages and
Compilers for Parallel Computing, Portland, OR, August 1993.

L. O. Andersen. Program Analysis and Specialization for the C' Programming Language. PhD
thesis, DIKU, University of Copenhagen, May 1994.

J. Auslander, M. Philipose, C. Chambers, S. Eggers, and B. Bershad. Fast, effective dynamic
compilation. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 149-159. ACM, May 1996.

L. A. Belady. A study of replacement algorithms for a virtual storage computer. IBM Systems
Journal, 5(2):78-101, 1966.

A. A. Berlin and R. J. Surati. Partial evaluation for scientific computing: The supercomputer
toolkit experience. In Proceedings of the Workshop on Partial Evaluation and Semantics-Based
Program Manipulation, Orlando, FL, June 1994. ACM.

B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiuczynski, D. Becker, S. Eggers, and
C. Chambers. Extensibility, safety and performance in the SPIN operating system. In Proceed-
ings of the 15th Symposium on Operating Systems Principles, pages 267-284, Copper Mountain,
CO, December 1995. ACM.

A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM Transactions on
Computer Systems, 2(1):39-59, February 1984.

D.S. Blickstein, P.W. Craig, C.S. Davidson, R.N. Faiman, K.D. Glossop, R.P. Grove, S.0O.
Hobbs, and W.B. Noyce. The GEM optimizing compiler system. Digital Equipment Corporation
Technical Journal, 4(4):121-135, 1992.

P. Briggs and T. Harvey. Multiplication by integer constants, 1994.
http://softlib.rice.edu/MSCP.

G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and P. W. Markstein.
Register allocation via coloring. Comput. Lang., 6:47-57, 1981.

C. Chambers and D. Ungar. Customization: Optimizing compiler technology for SELF, a
dynamically-typed object-oriented programming language. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementation, pages 146-160, Port-
land, OR, June 1989. ACM.

D. D. Clark and D. L. Tennenhouse. Architectural considerations for a new generation of
protocols. In Proceedings of the ACM SIGCOMM Symposium on Communications Architectures
and Protocols, pages 200-208, Philadelphia, PA, September 1990. ACM.

131

[14]

[18]

[19]

[20]

C. Consel and F. Noel. A general approach for run-time specialization and its application to
C. In Proceedings of the ACM Symposium on Principles of Programming Languages, pages
145-156, St. Petersburg, FL, January 1996. ACM.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press,
Cambridge, MA, 1990.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An efficient method of
computing static single assignment form. In Proceedings of the ACM Symposium on Principles
of Programming Languages, pages 25-35, Austin, TX, January 1989. ACM.

J. W. Davidson and C. W. Fraser. The design and application of a retargetable peephole
optimizer. ACM Transactions on Programming Languages and Systems, 2(2):191-202, April
1980.

J. W. Davidson and C. W. Fraser. Code selection through object code optimization. ACM
Transactions on Programming Languages and Systems, 6(4):505-526, October 1984.

J. W. Davidson and C. W. Fraser. Automatic inference and fast interpretation of peephole
optimization rules. Software Practice & Ezxperience, 17(11):801-812, November 1987.

P. Deutsch and A. M. Schiffman. Efficient implementation of the Smalltalk-80 system. In
Proceedings of the ACM Symposium on Principles of Programming Languages, pages 297-302,
Salt Lake City, UT, January 1984. ACM.

S. Draves. Lightweight languages for interactive graphics. Tech. Rep. CMU-CS-95-148, Carnegie
Mellon University, 1995.

D. R. Engler. VCODE: A retargetable, extensible, very fast dynamic code generation system.
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, pages 160-170, Philadelphia, PA, May 1996. ACM.

D. R. Engler, W. C. Hsieh, and M. F. Kaashoek. ‘C: A language for high-level, efficient,
and machine-independent dynamic code generation. In Proceedings of the ACM Symposium on
Principles of Programming Languages, pages 131-144, St. Petersburg, FL, January 1995. ACM.

D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr. Exokernel: An operating system architec-
ture for application-specific resource management. In Proceedings of the 15th Symposium on
Operating Systems Principles, pages 251-266, Copper Mountain, CO, December 1995. ACM.

D. R. Engler and T.A. Proebsting. DCG: An efficient, retargetable dynamic code generation
system. In Proceedings of the International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 263-272, San Jose, CA, October 1994. ACM.

U. Erlingsson, M. Krishnamoorthy, and T. V. Raman. Efficient multiway radix search trees.
Information Processing Letters, 60:115-120, 1996.

J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics: Principles and
Practice. Addison-Wesley, Reading, MA, 2nd edition, 1990.

G. E. Forsythe. Computer Methods for Mathematical Computations. Prentice-Hall, Englewood
Cliffs, NJ, 1977.

C. W. Fraser. copt, 1980. ftp://ftp.cs.princeton.edu/pub/lcc/contrib/copt.shar.

C. W. Fraser and D. R. Hanson. A code generation interface for ANSI C. Technical Report
CS-TR-270-90, Department of Computer Science, Princeton University, 1990.

C. W. Fraser and D. R. Hanson. A Retargetable C Compiler: Design and Implementation.
Benjamin/Cummings, Redwood City, CA, 1995.

132

[32]

[33]

[34]

C. W. Fraser, R. R. Henry, and T. A. Proebsting. BURG — fast optimal instruction selection
and tree parsing. SIGPLAN Notices, 27(4):68-76, April 1992.

C. W. Fraser and A. L. Wendt. Integrating code generation and optimization. In Proceedings
of the ACM SIGPLAN Symposium on Compiler Construction, pages 242-248, Palo Alto, CA,
June 1986. ACM.

C. W. Fraser and A. L. Wendt. Automatic generation of fast optimizing code generators. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 79-84, Atlanta, GA, June 1988. ACM.

R. A. Freiburghouse. Register allocation via usage counts. Communications of the ACM,
17(11):638-642, November 1974.

L. George and A. Appel. Iterated register coalescing. ACM Transactions on Programming
Languages and Systems, 18(3):300-324, May 1996.

J. Gosling, B. Joy, and G. Steele. The Java Language Specification. The Java Series. Addison-
Wesley, Reading, MA, 1996.

B. Grant, M. Mock, M. Philipose, C. Chambers, and S. J. Eggers. An evaluation of staged run-
time optimizations in DyC. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, Atlanta, GA, May 1999. ACM.

B. Grant, M. Philipose, M. Mock, C. Chambers, and S. J. Eggers. Annotation-directed run-
time specialization in C. In Symposium on Partial Evaeluation and Semantics-Based Program
Manipulation, pages 163-178, Amsterdam, The Netherlands, June 1997. ACM.

S. P. Harbison and G. L. Steele, Jr. C, A Reference Manual. Prentice Hall, Englewood Cliffs,
NJ, 4th edition, 1995.

U. Holzle and D. Ungar. Optimizing dynamically-dispatched calls with run-time type feed-
back. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 326-335, Orlando, FL, June 1994. ACM.

W.-C. Hsu, C. N. Fischer, and J. R. Goodman. On the minimization of loads and stores
in local register allocation. IEEE Transactions on Software Engineering, 15(10):1252-1260,
October 1989.

N. D. Jones, C. K. Gomarde, and P. Sestoft. Partial Evaluation and Automatic Program
Generation. Prentice Hall, New York, NY, 1993.

R. Kelsey, W. Clinger, J. Rees (editors), et al. Revised® Report on the Algorithmic Language
Scheme. MIT Project on Mathematics and Computation, February 1998.

D. Keppel. A portable interface for on-the-fly instruction space modification. In Proceedings of
the International Conference on Architectural Support for Programming Languages and Oper-
ating Systems, pages 86-95, Santa Clara, CA, April 1991. ACM.

D. Keppel, S. J. Eggers, and R. R. Henry. A case for runtime code generation. Technical Report
91-11-04, University of Washington, 1991.

D. Keppel, S. J. Eggers, and R. R. Henry. Evaluating runtime-compiled value-specific optimiza-
tions. Technical Report 93-11-02, Department of Computer Science and Engineering, University
of Washington, 1993.

T. B. Knoblock and E. Ruf. Data specialization. In Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pages 215-225, Philadelphia,
PA, May 1996. ACM.

133

[49]

[50]

[51]

[64]
[65]

[66]

[67]

J. Larus and E. Schnarr. EEL: Machine independent executable editing. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implementation, pages
291-300, La Jolla, CA, June 1995. ACM.

M. Leone and R. K. Dybvig. Dynamo: A staged compiler architecture for dynamic program
optimization. Technical Report 490, Indiana University Computer Science Department, 1997.

M. Leone and P. Lee. Optimizing ML with run-time code generation. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages 137-148,
Philadelphia, PA, May 1996. ACM.

W. M. McKeeman. Peephole optimization. Communications of the ACM, 8(7):443-444, July
1965.

R. Motwani, K. V. Palem, V. Sarkar, and S. Reyen. Combining register allocation and instruc-
tion scheduling. Technical Report 698, Courant Institute, New York University, July 1995.

J. K. Qusterhout. Tecl and the Tk Toolkit. Addison-Wesley Professional Computing Series.
Addison-Wesley, Reading, MA, 1994.

R. Pike, B. N. Locanthi, and J. F. Reiser. Hardware/software trade-offs for bitmap graphics on
the Blit. Software Practice & Experience, 15(2):131-151, February 1985.

M. Poletto, D. R. Engler, and M. F. Kaashoek. tcc: A system for fast, flexible, and high-level
dynamic code generation. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 109-121, Las Vegas, NV, June 1997. ACM.

M. Poletto, W. C. Hsieh, D. R. Engler, and M. F. Kaashoek. ‘C and tcc: A language and
compiler for dynamic code generation. ACM Transactions on Programming Languages and
Systems, 1999. (To appear).

M. Poletto and V. Sarkar. Linear scan register allocation. ACM Transactions on Programming
Languages and Systems, 1999. (To appear).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C.
Cambridge University Press, Cambridge, UK, 2nd edition, 1992.

T. A. Proebsting, G. Townsend, P. Bridges, J. H. Hartman, T. Newsham, and S. A. Watterson.
Toba: Java for applications. Technical report, University of Arizona, 1997.

C. Pu, T. Autry, A. Black, C. Consel, C. Cowan, J. Inouye, L. Kethana, J. Walpole, and
K. Zhang. Optimistic incremental specialization: streamlining a commerical operating system.
In Proceedings of the 15th Symposium on Operating Systems Principles, Copper Mountain, CO,
December 1995. ACM.

C. Pu, H. Massalin, and J. Ioannidis. The Synthesis kernel. Comput. Syst., 1(1):11-32, 1988.

T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, B. Bershad, H. Levy, , and J. B. Chen.
Etch, an instrumentation and optimization tool for win32 programs. In Proceedings of the
USENIX Windows NT Workshop, August 1997.

R. Sedgewick. Algorithms in C++. Addison-Wesley, Reading, MA, 1992.

R. Sethi and J. D. Ullman. The generation of optimal code for arithmetic expressions. Journal
of the ACM, 17(4):715-728, 1970.

M. Smith. Extending SUIF for machine-dependent optimizations. In Proceedings of the First
SUIF Compiler Workshop, pages 14-25, Stanford, CA, January 1996.

SPARC International, Englewood Cliffs, NJ. SPARC Architecture Manual Version 9, 1994.

134

[68]

A. Srivastava and A. Eustace. Atom: A system for building customized program analysis
tools. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 196-205, Orlando, FL, June 1994. ACM.

R. Stallman. Using and porting GCC, 1990.
G. L. Steele, Jr. Common LISP. Digital Press, Burlington, MA, 2nd edition, 1990.

A. S. Tanenbaum, H. van Staveren, and J. W. Stevenson. Using peephole optimization on
intermediate code. ACM Transactions on Programming Languages and Systems, 4(1):21-36,
January 1982.

C. A. Thekkath and H. M. Levy. Limits to low-latency communication on high-speed networks.
ACM Transactions on Computer Systems, 11(2):179-203, May 1993.

O. Traub, G. Holloway, and M. D. Smith. Quality and speed in linear-scan register alloca-
tion. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, Montreal, Canada, June 1998. ACM.

J. E. Veenstra and R. J. Fowler. MINT: A front end for efficient simulation of shared-memory
multiprocessors. In Proceedings of the 2nd International Workshop on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS), Durham, NC, 1994.
ACM.

L. Wall, T. Christiansen, and R. L. Schwartz. Programming Perl. O’Reilly, Sebastopol, CA,
October 1996.

A. Wendt. Fast code generation using automatically-generated decision trees. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implementation, pages
9-15, White Plains, NY, June 1990. ACM.

E. Witchel and M. Rosenblum. Embra: Fast and flexible machine simulation. In Proceedings of
ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pages
68-79, Philadelphia, PA, May 1996. ACM.

X. Zhang, Z. Wang, N. Gloy, J. B. Chen, and M. D. Smith. System support for automatic pro-
filing and optimization. In Proceedings of the 16th Symposium on Operating Systems Principles,
St. Malo, France, November 1997. ACM.

135

