
Proactive replication for data durability

Emil Sit, Andreas Haeberlen, Frank Dabek, Byung-Gon Chun, Hakim Weatherspoon
Robert Morris, M. Frans Kaashoek and John Kubiatowicz

ABSTRACT
Many wide-area storage systems replicate data for durability. A
common way of maintaining the replicas is to detect node failures
and respond by creating additional copies of objects that were stored
on failed nodes and hence suffered a loss of redundancy. Reactive
techniques can minimize total bytes sent since they only create
replicas as needed; however, they can create spikes in network use
after a failure. These spikes may overwhelm application traffic and
can make it difficult to provision bandwidth.

This paper explores a proactive approach that creates additional
copies not in response to failures, but periodically at a fixed low
rate. We introduce Tempo, a distributed hash table that allows
each user to specify a maximum maintenance bandwidth and uses
it to perform proactive replication. Results from a simulation study
suggest that Tempo can deliver high durability despite only using
several kilobytes per second of bandwidth, comparable to state-of-
the-art reactive systems.

1. INTRODUCTION
Most existing distributed hash tables monitor the avail-

ability of data and replace lost redundancy on other nodes
in reaction to failures [1, 4, 6, 8, 18]. The bandwidth needed
to support this reactive approach can be high and bursty:
each time a node fails permanently, the system must quickly
produce a new copy of all the objects that the node had
stored [2]. Quick replication is especially important if a
DHT is being used in storage intensive applications like
OceanStore/Pond [16], OverCite [21], or ePOST [11] where
data loss must be minimized. While reactive systems can be
tuned to provide durability at low total cost [4], the need to
repair quickly can cause dramatic spikes in bandwidth use
when responding to failures. In many settings, provisioning
for high peak usage can be expensive.

This paper examines the alternative of maintaining avail-
ability by proactively replicating objects before failures oc-
cur. In particular, we consider constantly creating additional
redundancy at low rate. This technique evens out burstiness
in maintenance traffic by shifting the time at which band-
width is used. Instead of responding to failures, a proactive
maintenance system operates constantly in the background,
increasing replication levels during idle periods. Operating
proactively in this manner results in a predictable bandwidth
load: node operators and network administrators need not
worry that a sudden burst of failures will lead to a corre-
sponding burst in bandwidth usage that might overwhelm
the network. Instead, any burstiness in network usage will

This research was supported by the National Science Founda-
tion under Cooperative Agreement No. ANI-0225660, http://
project-iris.net/. Emil Sit was supported in part by the
Cambridge-MIT Institute. Andreas Haeberlen was supported in
part by the Max Planck Society.

be driven by the application’s actual workload. The question
we seek to answer is whether this method can still prevent
data from being lost.

This paper proposes Tempo, a distributed hash table that
uses proactive maintenance. In contrast to systems that use
as much bandwidth as necessary to meet an availability spec-
ification (given explicitly [1] or in the form of a minimum
replication level [6]), each node in Tempo operates under a
bandwidth budget specified by the node operator. A budget
is attractive because easy for the user to configure: band-
width is a known, measurable and easily understood quan-
tity. The nodes cooperate and attempt to maximize durability
and availability within their individual budgets by constantly
creating new replicas, whether or not they are needed at the
moment. While systems that specify a number of replicas
respond to failures by varying the bandwidth usage in an
attempt to maintain that replication level, Tempo instead ef-
fectively adjusts the available replication level subject to its
bandwidth budget constraints. We show that in simulation
based on PlanetLab measurements over a 40 week period,
Tempo can maintain more than 99.8% of a 1TB workload
durably using as little as 512 bytes per second of bandwidth
on each node. With 2K per second per node, no objects were
lost: this amount of bandwidth is comparable to that used by
reactive systems but Tempo uses this much more evenly.

The rest of this paper is structured as follows: Section 2
provides an overview of the design considerations for a proac-
tive maintenance system. We discuss some aspects of how
Tempo would be implemented in Section 3 and evaluate it
via simulation in Section 4. Section 5 discusses related work
and we conclude in Section 6.

2. DESIGNING PROACTIVE REPLICATION
In such a distributed hash table, nodes cooperate over the

wide-area to store a single set of objects. The difficulty in
maintaining data is dealing with node failures: the durabil-
ity and availability of objects are determined by how well
the maintenance algorithm can keep up with failures that
permanently render data redundancy unavailable.

Certain aspects of the design of a replicated storage sys-
tem are common to both proactive and reactive maintenance
systems. For example, the method for assigning objects to
nodes affects the number of nodes that have a copy of each
object and thus can potentially participate in creating new
redundancy. The format of redundancy (e.g. erasure codes)
can also affect resiliency. These questions are discussed in
more detail in [4, 19, 25] among many others.

This section looks at the key question facing proactive
maintenance systems: when and how quickly should re-
dundancy be created? We argue that creating redundancy
constantly at a limited rate is a simple, flexible, and effective
approach to maintain data durably. Our goal in designing

Tempo is to maximize data availability and durability while
staying within a bandwidth budget. Given this approach, we
consider how to efficiently utilize this bandwidth and what
might happen as available storage capacity is consumed.

2.1 Using a bandwidth budget
The question faced by a proactive maintenance system is

which repair actions to take and when to initiate them. At
any given point in time, the system can take any given object
and make a new replica of it. Reactive systems create new
replicas after a failure: when the number of available copies
of an object drops below some threshold rL, repair is initiated.
When should proactive systems start and stop repair?

One approach for scheduling repairs would be to attempt
to predict node failures and increase the replication level of
objects that will have low redundancy following a predicted
failure. The effectiveness of this scheme would be directly
related to the accuracy of the predictor: a string of incorrect
predictions can lead to data loss.

A simpler option is to create redundancy as fast as possible
until either all disk capacity is exhausted or objects are repli-
cated on all nodes. This corresponds practically to setting
rL = ∞ in a reactive system, because such a system will then
act as if it was constantly lacking redundancy.

Network bandwidth, however, is not unlimited: while it
is typically priced for fixed capacity (e.g., a T1 offers up to
1.544Mbps), pricing agreements may place an upper limit on
the total volume transferred in a given period. For example,
experiments running on PlanetLab can use up to 10Mbps but
if more than 16GB is sent from a single node in a day, its link
is restricted to 1.5Mbps and the experimenters are notified.
In non-research environments, exceeding the cap may result
in additional charges.

In order to use bandwidth when available, but prevent
excess, each node ni in a proactive system should set an
outgoing bandwidth cap bi that appropriately limits the total
number of bytes sent per unit time. This parameter represents
the amount of bandwidth the node operator is willing to
dedicate to data maintenance.

2.2 Impact of budget size on durability
The durability of data in a replicated system can be thought

of as the percentage of objects that are not lost after the
system has been operating for some time. Constraining the
bandwidth available for maintenance will affect the durability
that is measured. If the budget is consistently used to create
new replicas, one might naturally expect that over time, the
number of replicas of all objects would grow without bounds
until all available disk capacity was consumed. However, as
the number of replicas grows, the number of replicas lost in
each node failure grows as well. Thus, if the system runs
long enough, it eventually reaches an equilibrium in which
the replica creation rate, i.e. the rate at which new copies
of objects are being created by the replication algorithm,
balances the replica loss rate, i.e. the rate at which copies of
objects are lost when nodes fail permanently.

To estimate the position of this equilibrium, we can model
the number of replicas of each object using a M/M/∞ birth-
death Markov chain. Assume that the system constantly uses
its entire budget to repair at rate µ and that it experiences an
average per-node failure rate of λ f . The object is in state ri
when i disks hold a replica of the object (regardless of whether
it is online). From a given state ri, there is a transition to state

ri+1 with probability µ when i > 0 corresponding to repair.
There is a transition to the next lower state ri−1 with rate iλ f
because each of the nodes holding an existing replica might
fail. An analysis of this birth-death process shows that the
expected state is θ = µ/λ f . In systems with high available
capacity, this value is likely to be larger than the minimum
number of replicas required to maintain availability.

We can estimate θ under different scenarios by examin-
ing values of µ and λ f . For example, based on historical
measurements of PlanetLab (as shown in Table 1), the aver-
age failure inter-arrival time for the entire test bed is 12.53
hours. Since we are interested in the per-disk failure interval
we multiply by the average number of nodes in the system
(408). Inverting gives an average per-disk failure rate of
λ f = 1/5112 ≈ 0.0002, failures per hour. The repair rate de-
pends on the node storage capacity and the network through-
put; the current PlanetLab network capacity is rate-limited
to 1.5 megabits per second (Mbps) and each experiment is
limited to 5 gigabytes per node. Since it takes approximately
10 hours to transfer 5GB (accounting for some protocol over-
head), the creation rate is approximately 1/10 disks per hour.
This results in an equilibrium point of θ ≈ 511, which is
greater than the average number of nodes present during the
measurement period. This means that if the total amount of
unique data in the system is less than 5GB, it is possible to
replicate each file to all nodes in PlanetLab at 1.5Mbps.

The selection of a correct bandwidth (and hence µ) is im-
portant to the ability of the system to prevent data loss. It
must be set high enough to keep pace with the average fail-
ure rate, but it need not be significantly higher. We show in
Section 4 that a maintenance budget of approximately than 2
kilobytes per second is sufficient on PlanetLab, correspond-
ing roughly to θ = 7.

This model is a somewhat unrealistic view of the mainte-
nance process: there can be an infinite number of replicas
and there is a transition from r0 (in which the object is lost)
to r1. However, it conveys the intuition of a how replicas are
made and suffices for the purposes of these estimates. A de-
tailed discussion of this and more complete models appears
in [5] and [14].

2.3 Budget utilization
Ideally, a node in a proactive maintenance system with

a bandwidth limit of b bps would send and receive exactly
b bytes every second. This would not only preclude any
bandwidth spikes, but also result in the highest number of
replicas per object, and thus potentially in the highest dura-
bility. However, engineering such a system is not trivial.

Whenever a node finishes downloading a new copy of
some object, it must decide which object to download next.
Intuitively, it makes sense to give preference to objects with
few existing copies, since these are the most likely to be
destroyed by future failures. However, the distribution of
these objects is not necessarily uniform. As a result, some
nodes may end up with significantly more concurrent uploads
than others. This has two undesirable effects: first, the
upload bandwidth of the other nodes is underutilized, so
bandwidth is wasted. Second, the uploads at each node have
to share the available bandwidth, so each individual upload
takes more time, which in turn increases the chance that more
upload requests will arrive before the original ones complete.
The result is a ‘slow’ node with a high number of very slow
uploads.

There are several ways to approach this problem. One
is to use a set of heuristics (e.g., a limit on the number of
concurrent uploads). This approach is conceptually simple,
but cannot guarantee perfect utilization. Another way is to
associate each node with a fixed set of other nodes from which
it can download objects, and to make the association pattern
symmetric. This scheme can utilize the entire bandwidth
limit, but restricts the set of objects each node can repair at a
given time. This approach is the one adopted by Tempo.

2.4 Managing disk capacity
One important concern of a proactive replication system

is running out of disk space. To avoid overflowing disks,
Tempo allows each node operator to locally bound the total
amount of local disk space it is allowed to use. However, if µ
is sufficiently high, eventually a proactive system will either
fill all available capacity or place a copy of each object on
every node.

This concern is not unique to proactive maintenance sys-
tems but proactive maintenance may cause the capacity limit
to be reached sooner than in the reactive case. There are two
general options for dealing with this situation: first, nodes
that are at capacity could reject new replica creation requests
until the application deletes some objects or additional lo-
cal resources are made available. The alternative would be
for each node to decide (perhaps in consultation with other
nodes holding replicas) which objects are sufficiently highly
replicated that it seems safe to delete its local copy.

Tempo attempts to skirt this problem by emulating the
behavior of reactive replication systems: nodes agree to place
a cap Rmax on the total number of replicas that can be made
of a given object. Tempo proactively produces replicas for
objects up until this limit and then ceases to worry about
any objects with more than that many replicas. The goal is
to have enough copies to preserve durability but allow the
system to reach its capacity limit due to too many objects
rather than Rmax copies of each object. The operators of a
network of Tempo nodes might choose Rmax such that they
agree it is unlikely for that many nodes to simultaneously
suffer disk failures.

3. IMPLEMENTING TEMPO
In this section, we discuss how to change an existing dis-

tributed hash table, DHash [6], to implement Tempo. For
simplicity, we consider only redundancy obtained through
replication though DHash supports erasure coded fragments.
DHash uses consistent hashing to assign maintenance re-
sponsibility of each immutable object to its successor based
on the cryptographic hash of the object itself (the content
hash). When an object is inserted into DHash, the insert-
ing node places rL replicas on the first rL successors of the
object’s key. The purpose of this redundancy is to protect
against data loss due to a burst of rL − 1 permanent failures
that occurs before the objects on those nodes can be repaired.
DHash uses a reactive repair system that repairs redundancy
when the number of replicas of an object is found to be below
rL; each node is responsible for maintaining the redundancy
level of the objects for which it is the successor. rL is chosen
to be less than the length of the successor list; in simulations.

Tempo also uses consistent hashing like DHash. Instead
of monitoring for failures, each Tempo node has a band-
width budget bi that it uses to make additional replicas. Pe-
riodically, each node considers the objects for which it is

responsible. Based on knowledge of where each object is
replicated, objects with the lowest level of redundancy are
chosen for replication on a random member of the successor
list that is missing the object; in the event that the successor
itself is missing the object, the object is downloaded locally.
Replicas are placed on successors until each node on the
successor list holds a replica. The level is redundancy is
discovered via DHash’s object synchronization mechanism
which periodically exchanges information about which ob-
jects are stored on which nodes: the successor of each key
maintains a database of this information on disk to avoid re-
peated exchanges of information. However, this is soft-state
that can be recreated if the successor changes.

To maintain an average sending rate of no higher than bi,
Tempo uses a token bucket, much like Accordion [10]. A
node is given a byte-credit periodically and spends that by
making replicas. In particularly, every ∆t seconds, the node’s
bavail is incremented by bi ·∆t; this accumulates until there is
sufficient available bandwidth to initiate a repair. Once the
repair is initiated, it actually proceeds at rate determined by
the DHash congestion control protocol. To help balance the
transfer workload, Tempo prefers downloading from its left
and right neighbor in the Chord ring and downloads from
each of them at half the bandwidth limit.

If all maintenance traffic were conducted in a special pro-
cess or over a dedicated TCP/UDP port, one could achieve
the same effect as the token bucket by using a traffic shaper
(e.g. Trickle [7]) to regulate maintenance traffic. This would
simplify the implementation further because it could sim-
ply create replicas all the time, without paying attention to
bandwidth. However, the implementation would still need
to balance the transfer workload to ensure that bandwidth
budget of all nodes is utilized.

Handling of full disks remains an issue in our current de-
sign of Tempo. If new writes are blocked, some objects may
eventually appear to be inaccessible due to the requirement
that objects be held on nodes within the successor list. This is
because growth in the system could move the original replica
set out of the successor list while the current successor nodes
are at capacity; without other book-keeping, this would give
the appearance of some objects being unavailable (though
they may still be durably stored). Though this is unlikely
to occur, it may increase the appeal of deleting redundancy.
A simple heuristic for this in successor placement would be
to delete those objects for which the node is no longer in
the successor list (and whose identifiers are furthest from the
node). Such objects are being actively maintained within
their current successor list, which suggests that it is safe to
delete them.

4. IS PROACTIVE WORTHWHILE?
For Tempo to be viable, it must achieve durability compa-

rable to state-of-the-art reactive systems while staying within
its bandwidth budget. We evaluated Tempo in simulation
against a trace of PlanetLab disk and transient failures. We
used an event-driven simulator designed to capture the basic
behavior of the different algorithms. Given a trace of node
transient and permanent failures and a corresponding set of
data objects, the simulator periodically records statistics such
as the total bytes sent in the system, the number of live nodes,
and the number of available objects.

 0

 200

 400

 600

 0 10 20 30 40 50

N
od

es
 o

nl
in

e

Time (Weeks)

Figure 1: Number of online PlanetLab nodes and distribution
of permanent failures.

Dates 24 Oct 2004 – 15 Sep 2005
Number of hosts 555
Number of transient failures 19127
Number of disk failures 628
Transient host downtime (s) 1232, 116451, 59427
Any failure interarrival (s) 162, 1481, 3898
Perm. failures interarrival (s) 832, 44990, 142336

(Median/Mean/90th percentile)

Table 1: CoMon+PLC trace characteristics

4.1 Trace characteristics
In order to evaluate the behavior of Tempo, we constructed

a trace that captures the relevant characteristics of PlanetLab
over the past year: the rates of disk and transient failures. The
trace is summarized in Table 1 and the number of available
nodes over time is shown is shown in Figure 1. The data for
this trace was obtained using CoMon data [12] and logs from
PlanetLab Central [13].

CoMon has archival records collected on average every 5
minutes that include the uptime as reported by the system
uptime counter on each node. We use resets of this sys-
tem uptime counter to detect reboots and estimate the time
when the node ceased being reachable based on the last time
CoMon was able to successfully contact the node; this allows
us to pinpoint failures without depending on the reachability
of the node from the CoMon monitoring site.

We define a disk failure to be any permanent loss of disk
contents, due to disk hardware failure or intentional or acci-
dental erasing of the disk. In order to identify disk failures,
the CoMon measurements were supplemented with event
logs from PlanetLab Central. Each time a PlanetLab node is
reinstalled (e.g., for an upgrade or after a disk is replaced fol-
lowing a failure), an event is logged. When we observe such
an event, the node is considered offline until it is assigned a
regular boot state.

The initial portion of the trace has an unusually high preva-
lence of permanent failures due to the deployment of Planet-
Lab V3. In the following experiments, we wait until the V3
rollout is essentially complete, insert 50,000 20MB objects
with random keys and run the system for the remaining 10
months.

4.2 Results
To calibrate Tempo, we consider the bandwidth usage

of Carbonite, a reactive algorithm for efficiently managing
replicas in distributed systems [4]. Carbonite’s main param-
eter is the repair threshold rL; once the number of available
replicas of an object falls below this threshold, it is repaired
by Carbonite. With the setting rL = 3, Carbonite uses on av-

erage approximately 1KBps of bandwidth per node, though
it is highly bursty. To compare Tempo against Carbonite, we
configured Tempo to initially insert 3 replicas as well, and
we varied the bandwidth budget from 512 bytes per second
to 4KB per second. In all cases, the length of the successor
list is 15.

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50

T
ot

al
 tr

af
fi

c
se

nt
 (T

B
)

Time (weeks)

Carbonite
Tempo (512B/s)
Tempo (1KB/s)
Tempo (2KB/s)
Tempo (4KB/s)

Figure 2: A comparison of cumulative bytes sent: the derivative
shows instantaneous system bandwidth usage.

Figure 2 shows the cumulative number of bytes sent by
Carbonite and Tempo. The derivative of each curve reveals
the aggregate bandwidth used by each system. In the latter
half of the trace, Carbonite uses almost no bandwidth, but
there are periods where Carbonite uses orders of magnitude
more aggregate bandwidth than Tempo. This can be seen
at approximately week 15 of the trace when many nodes
in PlanetLab underwent a rolling reboot—this resulted in a
sharp drop and rise in the number of active nodes. During
this period, Carbonite interpreted these transient failures as
requiring repair and about 170 nodes transferred a total of
nearly 2 terabytes of data over 2 days.

Figure 3 compares how the average bandwidth usage per
node develops over time. As expected, nodes in Tempo use
bandwidth very steadily, and with large budgets, the aver-
age bandwidth usage eventually declines as more and more
objects are replicated across an entire successor list. Car-
bonite shows phases of high activity alternating with phases
of almost no activity.

 0

 5000

 10000

 15000

 20000

 0 10 20 30 40 50

B
yt

es
/s

Carbonite

 0

 5000

 10000

 15000

 20000

 0 10 20 30 40 50

B
yt

es
/s

Time (weeks)

Tempo (512B/s)
Tempo (1KB/s)
Tempo (2KB/s)
Tempo (4KB/s)

Figure 3: Average bandwidth usage per node.

Constantly creating additional replicas can result in a higher
average number of replicas per object compared to simply re-
sponding to failures, as shown in Figure 4. However, Tempo

can be tuned to not use significantly more bytes than Car-
bonite.

 0

 5

 10

 15

 20

 0 10 20 30 40 50

A
vg

 re
pl

ic
as

 p
er

 o
bj

ec
t

Time (weeks)

Carbonite
Tempo (512B/s)
Tempo (1KB/s)
Tempo (2KB/s)
Tempo (4KB/s)

Figure 4: Average number of replicas per object.

Figure 5 shows the cumulative distribution of the number of
replicas per object at the end of the trace. Over the course of
the trace, even with only 512 bytes per second of replication
bandwidth, Tempo is able to provide 99.8% durability: only
78 objects were lost. With higher bandwidth usage, both
Tempo and Carbonite provide 100% durability over this trace.
Both Carbonite and Tempo sometimes create ‘extra’ copies
of an object because of transient failures. When the nodes
with the original copy returns, these copies are not deleted,
which is why the average number of replicas can be higher
than rL = 3 (for Carbonite) and higher than the successor list
size of 15 (for Tempo).

As seen in the average node bandwidth usage, replicating at
4KBps is enough to reach the point where copies of an object
are stored on every member of the successor list. When that
happens, Tempo stops replicating that object further. The
result of this is that doubling the budget available to Tempo
from 2KBps to 4KBps does not create twice as many replicas.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

Fr
ac

tio
n

of
 o

bj
ec

ts

Number of durable replicas

Carbonite
Tempo (512B/s)
Tempo (1KB/s)
Tempo (2KB/s)
Tempo (4KB/s)

Figure 5: CDF of the number of replicas per object at the end
of the experiment.

Tempo efficiently maintains replicas with successor list
placement, as opposed to random placement (as exemplified
by Total Recall [1]). While random placement improves
the repair parallelism as described in [4], it makes the task
of monitoring placement of objects more difficult: there is
the concern that O(N) monitoring traffic will become pro-
hibitively expensive. By using otherwise idle bandwidth,

Tempo allows for O(logN) monitoring traffic with succes-
sor list placement and provides comparable durability to a
random placement system.

5. RELATED WORK
Most prior distributed hash tables monitor the availability

of data and replace lost redundancy on other nodes in reac-
tion to failures [6,8,18]. Total Recall proactively does work
in bursts, creating up to a fixed number of additional erasure
coded fragments in order to minimize bandwidth use and
avoid responding to transient failures [1]. The goal of Total
Recall is to achieve a fixed availability based on introspec-
tion; in contrast to Tempo, Total Recall does not limit the
amount of bandwidth it uses.

In [4], we argue that creating replicas ahead of time is gen-
erally a disadvantage when the goal is to minimize bandwidth
usage. Replicas created before the number of available repli-
cas falls below the given threshold are either “extra” (would
not have been needed) or would have been created eventu-
ally anyway. Tempo’s goal is not to minimize total cost of
maintenance necessarily but to keep the on-going cost of pre-
dictable. The analysis and models shown in [4] are similar
to other contemporary work [14, 22].

Accordion [10] seeks to minimize routing latency subject
to a bandwidth budget for table maintenance. The design
of Accordion was driven by an analysis that showed that
bandwidth was best used to learn through lookups and hide
latency through parallel lookups. Tempo uses bandwidth to
place replicas in suitable locations, and tries to avoid using
bandwidth on exploration or dealing with failure.

Rhea et al observed that repairing routing tables in response
to failure can be vulnerable to positive feedback loops. For
example, a simple failure detector might measure network
reachability. A packet loss rate may lead to a perceived
failure and the corresponding increase in repair traffic could
induce congestion and loss on additional links. This con-
gestion could be interpreted as additional failures, leading to
unpredictable and destructive behavior [17]. Similar obser-
vations were made regarding responding to transient failures
in reactive replication systems [24].

Glacier [8] uses proactive repair, but with a different goal:
While Tempo maximizes availability and durability given a
bandwidth budget, Glacier maintains a durability goal under
a set of failure assumptions, minimizing the required band-
width. Once it reaches its target level of redundancy, it stops
making replicas. Glacier also uses a bandwidth cap to limit
the rate at which it generates repair traffic; this is to reduce
the risk of congestion collapse when a large fraction of the
replicas are destroyed in a large-scale correlated failure.

TCP Nice [23] is a modification to TCP’s congestion con-
trol protocol to optimize it for background transfers like
proactive replication: TCP Nice only transmits when there is
no competition for bandwidth (e.g. no queueing) on a given
path. Tempo could use TCP Nice for object replication.

Castro and Liskov presented a system that uses proactive
recovery in the context of a Byzantine fault tolerant sys-
tem [3]. In their system, a hardware watchdog periodically
rebooted each server and reloaded software from secure stor-
age regardless of whether a failure was detected. This helps
minimize the potential window of time where each node
could be faulty. This technique was extended to peer-to-peer
distributed systems by Rodrigues et al. [20].

Other proactive replication systems are focused on perfor-

mance. For example, Overcast [9] and Beehive [15] both
pre-position replicas of data close to where it will be used
before it is requested in order to minimize latency when a
request is actually received.

6. CONCLUSIONS
Replica maintenance is critical to maintaining durability in

wide area systems. We have proposed Tempo, a system that
performs maintenance proactively instead of responding to
failures. In contrast to systems that only create new replicas
after a failure, Tempo constantly creates new replicas while
operating within a user-specified bandwidth budget. This
ensures that each node’s bandwidth usage for maintenance is
predictable, leaving most bandwidth free for actual applica-
tion traffic. In simulations based on PlanetLab traces, Tempo
is able to provide the same level of durability as traditional
reactive systems using a comparable amount of bandwidth
and without significant fluctuations in bandwidth usage. This
result is encouraging enough that we plan to deploy and eval-
uate an implementation of Tempo on PlanetLab under real
application workloads.

Acknowledgments The authors would like to thank Vivek Pai
and Aaron Klingaman for their assistance in compiling the
data used for the PlanetLab traces. This paper was also signif-
icantly improved as a result of feedback from the anonymous
reviewers.

REFERENCES
[1] BHAGWAN, R., TATI, K., CHENG, Y.-C., SAVAGE, S.,

AND VOELKER, G. M. Total Recall: System support for
automated availability management. In Proc. of the 1st
Symposium on Networked Systems Design and
Implementation (Mar. 2004).

[2] BLAKE, C., AND RODRIGUES, R. High availability,
scalable storage, dynamic peer networks: Pick two. In Proc.
of the 9th HotOS (Lihue, HI, May 2003), pp. 1–6.

[3] CASTRO, M., AND LISKOV, B. Proactive recovery in a
byzantine-fault-tolerant system. In Proc. of the 4th
Symposium on Operating Systems Design and
Implementation (Oct. 2000).

[4] CHUN, B.-G., DABEK, F., HAEBERLEN, A., SIT, E.,
WEATHERSPOON, H., KAASHOEK, M. F., KUBIATOWICZ,
J., AND MORRIS, R. Efficient replica maintenance for
distributed storage systems. In Proc. of the 3rd Symposium
on Networked Systems Design and Implementation (San
Jose, CA, May 2006).

[5] DABEK, F. A Distributed Hash Table. PhD thesis,
Massachusetts Institute of Technology, 2005.

[6] DABEK, F., LI, J., SIT, E., ROBERTSON, J., KAASHOEK,
M. F., AND MORRIS, R. Designing a DHT for low latency
and high throughput. In Proc. of the 1st Symposium on
Networked Systems Design and Implementation (Mar. 2004).

[7] ERIKSEN, M. A. Trickle: A userland bandwidth shaper for
unix-like systems. In Proc. of the USENIX 2005 Annual
Technical Conference, FREENIX Track (Anaheim, CA, Apr.
2005).

[8] HAEBERLEN, A., MISLOVE, A., AND DRUSCHEL, P.
Glacier: Highly durable, decentralized storage despite
massive correlated failures. In Proc. of the 2nd Symposium
on Networked Systems Design and Implementation (May
2005).

[9] JANNOTTI, J., GIFFORD, D. K., JOHNSON, K. L.,
KAASHOEK, M. F., AND JAMES W. O’TOOLE, J. Overcast:
Reliable multicasting with an overlay network. In Proc. of
the 4th Symposium on Operating Systems Design and
Implementation (Oct. 2000).

[10] LI, J., STRIBLING, J., MORRIS, R., AND KAASHOEK,
M. F. Bandwidth-efficient management of DHT routing
tables. In Proc. of the 2nd Symposium on Networked Systems
Design and Implementation (May 2005).

[11] MISLOVE, A., POST, A., HAEBERLEN, A., AND
DRUSCHEL, P. Experiences in building and operating a
reliable peer-to-peer application. In Proc. of the 1st EuroSys
Conference (April 2006).

[12] PARK, K. S., AND PAI, V. CoMon: a mostly-scalable
monitoring system for PlanetLab. ACM SIGOPS Operating
Systems Review 40, 1 (Jan. 2006), 65–74.
http://comon.cs.princeton.edu/.

[13] PETERSON, L., ANDERSON, T., CULLER, D., AND
ROSCOE, T. A blueprint for introducing disruptive
technology into the Internet. In Proc. of the 1st HotNets
Workshop (Oct. 2002).
http://www.planet-lab.org.

[14] RAMABHADRAN, S., AND PASQUALE, J. Analysis of
long-running replicated systems. In Proc. of the 25th IEEE
Annual Conference on Computer Communications
(INFOCOM) (Barcelona, Spain, Apr. 2006).

[15] RAMASUBRAMANIAN, V., AND SIRER, E. G. Beehive:
O(1) lookup performance for power-law query distributions
in peer-to-peer overlays. In Proc. of the 1st Symposium on
Networked Systems Design and Implementation (Mar. 2004).

[16] RHEA, S., EATON, P., GEELS, D., SPOON, H. W., ZHAO,
B., AND KUBIATOWICZ, J. Pond: the OceanStore prototype.
In Proc. of the 2nd USENIX Conference on File and Storage
Technologies (FAST) (Apr. 2003).

[17] RHEA, S., GEELS, D., ROSCOE, T., AND KUBIATOWICZ,
J. Handling churn in a DHT. In Proc. of the 2004 Usenix
Annual Technical Conference (June 2004).

[18] RHEA, S., GODFREY, B., KARP, B., KUBIATOWICZ, J.,
RATNASAMY, S., SHENKER, S., STOICA, I., AND YU, H.
OpenDHT: A public DHT service and its uses. In Proc. of
the 2005 ACM SIGCOMM (Philadelphia, PA, Aug. 2005).

[19] RODRIGUES, R., AND LISKOV, B. High availability in
DHTs: Erasure coding vs. replication. In Proc. of the 4th
International Workshop on Peer-to-Peer Systems (Feb. 2005).

[20] RODRIGUES, R., LISKOV, B., AND SHRIRA, L. The design
of a robust peer-to-peer system. In Proc. of the 10th ACM
SIGOPS European Workshop (St. Emilion, France, Sept.
2002).

[21] STRIBLING, J., COUNCILL, I. G., LI, J., RANS
KAASHOEK, M. F., KARGER, D. R., MORRIS, R., AND
SHENKER, S. OverCite: A cooperative digital research
library. In Proc. of the 4th International Workshop on
Peer-to-Peer Systems (Feb. 2005).

[22] TATI, K., AND VOELKER, G. M. On object maintenance in
peer-to-peer systems. In Proc. of the 5th International
Workshop on Peer-to-Peer Systems (Feb. 2006).

[23] VENKATARAMANI, A., KOKKU, R., AND DAHLIN, M.
TCP Nice: a mechanism for background transfers. In Proc.
of the 5th Symposium on Operating Systems Design and
Implementation (Dec. 2002).

[24] WEATHERSPOON, H., CHUN, B.-G., SO, C. W., AND
KUBIATOWICZ, J. Long-term data maintenance in wide-area
storage systems: A quantitative approach. Tech. Rep.
UCB//CSD-05-1404, U. C. Berkeley, July 2005.

[25] WEATHERSPOON, H., AND KUBIATOWICZ, J. D. Erasure
coding vs. replication: A quantitative comparison. In Proc. of
the 1st International Workshop on Peer-to-Peer Systems
(Mar. 2002).

