
Graduate Admissions at MIT & Comparison-based

Rank Aggregation: A Case Study
by

Katherine Carbognin Szeto
B.Sc. EECS, Massachusetts Institute of Technology, 2012

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2013
@ Massachusetts Institute of Technology 2013. All rights reserved.

A uthor..
Department of Electrical fngineering and Computer Science

May 24, 2013

Certified by...
Dr. Devavrat Shah

Jamieson Associate Professor of Electrical Engineering, Laboratory
for Information and Decision Systems

Thesis Supervisor

C ertified by
Dr. Gregory Wornell

Sumitomo Prdfessor of Electrical Engineering, Research Laboratory of
Electronics

Thesis Supervisor

Certified by.
/ Dr. Frans Kaashoek

Charles Piper Professor of Computer Science, Computer Science and
Artficial Intelligence Laboratory

Thesis Supervisor
Accepted by....

Prof. Dennis M. Freeman
Chairman, Masters of Engineering Thesis Committee

Admission to MIT & Comparison-based

Rank Aggregation: A Case Study

by

Katherine C. Szeto

Submitted to the Department of Electrical Engineering and Computer Science

May 24, 2013

In Partial Fulfillment of the Requirements for the Degree of Master of
Engineering in Electrical Engineering and Computer Science

ABSTRACT

Admission to the Graduate program in EECS at MIT is done via an all-
electronic system. Applicants submit materials through a web interface and faculty
"reviewers" read the applications and make notes via a different interface. Among
other comments, reviewers provide a numerical score between 1 and 4 to each appli-
cation. Admissions decisions are reached via a lengthy process involving discussion
among faculty, which is often guided by the numerical scores of the applications.
Past data show the scores of the applicants still under consideration during the
final stages of the process are almost all 4's. Because of this uniformity, the scores
do not provide much resolution into the differences in quality of the applications,
and are therefore not as helpful as they could be in guiding admissions decisions.

In this work, we present the use of an additional scoring system that is based on
pairwise comparisons between applicants made by faculty reviewers. We present
the design we created for this scheme and the code written to implement it, and
analyze the data we obtained when the code went live during the 2012-2013 ad-
missions cycle.

2

Contents

1 Introduction 5

2 Background 6
2.1 Application-specific Project Motivation 8
2.2 Philosophical Project Motivation and Related Work 8
2.3 Relevant Background on User Experience of Pre-Existing System 10

3 Design 11
3.1 Definitions and Overview . 12
3.2 Pairwise Comparison Information: Collection & Processing (PCICP)

M odule . 14
3.2.1 Explicit PWC Collection & Processing Sub-Module 16
3.2.2 Explicit PWC Storage Sub-Module 19
3.2.3 Implicit PWC Information Processing Sub-Module 21

3.3 Ranking Module . 21

3.3.1 A lgorithm . 22
3.3.2 Storage of Ranks . 24
3.3.3 Overall Flow . 25

4 Implementation 26
4.1 Technologies Used. 26
4.2 M odels . 26
4.3 A lgorithm . 27

4.3.1 Data Structures . 27
4.3.2 Stationary Distribution Computation 28

5 Evaluation 30
5.1 Synthesized Example . 30
5.2 R eal D ata . 34

6 Future Work 41

7 Conclusion 42

3

8 Acknowledgements 43

4

1 Introduction

In many scenarios (like graduate school admissions), it is necessary to form a

rank, or ordering, of a collection of items (in our case, applicants). However, it is

necessary to do so based on the opinions of multiple people (i.e., the admissions

committee). Say each member has formed a rank of the applicants according to

his expertise. How, then, do you combine these ranks into a single rank that

represents the group's collective opinion so that the committee can decide whom

to admit'? This illustration of collective decision-making is a specific application

of rank aggregation, the problem of taking many individual ranks and using them

to produce a single, global rank.

Rank aggregation is an old problem - indeed, we will be citing the work of

Condorcet from 1785. Nevertheless, despite its age, it remains a relevant and

challenging problem today. It is a relevant problem because of its wide range of

modern applications. These applications include, but are not restricted to: elec-

tion systems, recommendation systems such as Netflix, admissions systems (which,

of course, is the central focus of this work), paper rating tools for conference

management software like HotCRP [Kohler: 2007], and even gaming systems like

Microsoft's TrueSkill@. It is a challenging problem because there are both fun-

damental philosophical difficulties (arising from social choice theory results) and

computational difficulties (arising from the fact that most modern applications

require working with large datasets).
For this thesis project, we took a novel rank aggregation algorithm and ap-

plied it in the context of graduate admissions at MIT in the Electrical Engineering

and Computer Science (EECS) department. In particular, we augmented the pre-

existing online system so that it takes individual preferences about applicants from

professors and aggregates these preferences into a global rank by using compar-

ative, or ordinal, information. Our vision in doing so was threefold. First, we

wanted to see how such a new algorithm (as yet unimplemented in a real system)
would fair in practice. Second, we wanted to provide another example of a success-

ful ordinal-information based ranking system. As will be described in the following

sections, most ranking systems in use today use cardinal ranking - although there

are some exceptions like HotCRP [Kohler: 2007]. Nevertheless, many (including

myself and my research group) believe that ordinal information leads to better

5

ranks. Lastly, and most importantly, we wanted to improve the graduate admis-

sions system by providing additional functionality that hopefully streamlines the

decision-making process for admissions committee members at MIT.

We begin by providing the reader with the necessary background regarding

admissions at MIT, as well as the background for understanding the philosophical

motivations for the project described above. Next, we present the design for the

modules we added to the system, followed by a description of relevant implementa-

tion detail. We conclude by evaluating the results we obtained when our additions

to the system went live during the January 2013 admissions decision process and

by discussing directions for future work.

2 Background

Each year, MIT's Graduate Program in Electrical Engineering and Computer Sci-

ence receives upwards of 2,000 applications. The admissions process is managed

through an all-electronic system called gradapply that was developed by professors

Frans Kaashoek and Robert Morris of MIT, starting in the summer of 2009. In

this section, we discuss how this electronic system works and what issues therein

motivated my thesis project.

EECS applicants must specify a particular subarea to which they are applying,

such as Artificial Intelligence, Theoretical Computer Science, or Circuits, to name

a few. Once the submission deadline passes, the chairs of said areas perform a

preliminary scan of the applications, or folders, in their area. They then assign

each folder to a handful of reviewers whom they believe are particularly qualified to

read that application. This assignment is done electronically through an interface

provided by the website.

On average, each folder is assigned somewhere between two and five reviewers.

Reviewers are typically faculty on the admissions committee, but can also include

other specialists that were given accounts on the website by an area chair. It is

the reviewer's job to carefully read each folder to which he is assigned in order to

assess the applicant's potential fit at MIT. The reviewers keep notes about each

application like:

* Which classes could the applicant TA?

6

9 Who would be potential advisors for the applicant?

" Does the applicant have work experience?

* Does the applicant have teaching experience?

" Does the applicant have research experience?

" Please write a short review of the application.

Importantly, for the purposes of this work, reviewers also provide each appli-

cation with a numerical score of 1, 2, 3, or 4. Later, we will introduce these scores

as having to do with "implicit pairwise information," but for now, we will refer

to them as 1,2,3,4-scores. Higher numbers are better than lower numbers. In

particular, in EECS, these numbers are interpreted as:

* 1: Reject (bottom%80)

* 2: Possible accept (top %20)

* 3: Likely accept (top %10)

* 4: Must accept (top %5)

An issue we will bring up again later is that these scores are quite coarse-grained.

Toward the end of the review period, the admissions faculty gather together in

person to jointly decide whom to admit. Typically, the CS and EE faculty have

separate meetings. Given the limited positions available and the large number of

highly qualified applicants, this becomes the most difficult stage of the admissions

process.

Through a UI provided by the website, it is possible to display a table of all

the students still under consideration at this final stage in the admissions process.

Each row contains information like the student's name and school, but also shows

the 1,2,3,4-score he received by each reviewer. If you click on the student's name,
which is a hyperlink, you can read the reviews each reviewer gave the student. This

table is implemented in such a way that you can sort the students in it according

to some function of the 1,2,3,4-scores they received, say the average 1,2,3,4-score.

After lengthy debate, which is usually guided in part by the information in the

table described above, the faculty collectively decide whom to admit.

7

2.1 Application-specific Project Motivation

Past data reveals that students who score l's or 2's are almost certainly rejected.

Usually, only students with 4's and occasionally 3's are considered for admission.

This breakdown reveals that the 1,2,3,4-scores are useful for dividing students into

coarse "buckets" at the beginning of the process, but that they do no provide much

information during the final stages of the admissions process - applicants left in

the running at that point almost all have 4's. In other words, these scores provide

no resolution into the differences in the quality of the applications during the final

stages of the admissions process.

A central goal of this project, therefore, is to provide a way for faculty members

to enter in more fine-grained pereferences for students "at the top", and then

aggregate these preferences into a single, more informative ranking of students.

It is worth underscoring that the aim of generating such a rank is not to help

automate admissions decisions. Rather, it is our hope that this more informative

scoring system will serve as a springboard for discussion for the faculty members

during their final-stage admissions meetings, and help guide conversation in a

productive way.

2.2 Philosophical Project Motivation and Related Work

In this section, we discuss very briefly why rank aggregation is an inherently dif-

ficult (and interesting) problem. We also mention related work, and point the

curious reader towards additional sources.

Recall that the goal of rank aggregation is to take the preferences of individu-

als within a community and somehow merge them into a single rank that reflects

what the group as a whole believes. To make this less abstract imagine a group of

people in which each member has a preference over ice cream flavors (i.e. person A

believes chocolate is better than vanilla is better than strawberry etc.) and we are

concerned with combining these individual beliefs into a single rank representative

of the group's belief. One natural approach is to look at a majority vote. You

could ask each person whether he likes chocolate better or vanilla. If more people

think chocolate is better, chocolate should appear above vanilla in the global rank.

Repeat this procedure for all pairs of flavors. However, no such solution is guaran-

teed to exist as there can be cycles. The reader can verify this himself by thinking

8

about a group of three people in which one individual likes chocolate more than

vanilla more than strawberry, one likes vanilla more than strawberry more than

chocolate, and the third likes strawberry more than chocolate more than vanilla.

This phenomenon was first articulated by Condorcet in 1785 and is often referred

to as Condorcet's paradox [Condorcet: 1785].

It turns out that problems with rank aggregation go far beyond Condorcet's

paradox. In the late 20th century, economist Kenneth Arrow proved that there is

no way to aggregate individual ranks such that the resulting global rank simula-

teously satisfies a set of properties, which are desireable of global ranks [Arrow: 1963].

Such properties include "non-dictatorship" and "Pareto efficiency". His findings

led to the birth of social choice theory.

As the above discussion illustrates, rank aggregation is an inherently hard

problem. It is not obvious if such a thing as a "correct" aggregate rank exists in

the first place, but even if we define a correct aggregate rank as having a certain

set of "nice" properties, Arrow proved that this is impossible.

In spite of these difficulties, we have witnessed an outpouring of new approaches

to this problem in recent years (many of them statistical in nature), probably on

account of the immense commercial value such algorithms have (as mentioned ear-

lier, they are the heart and soul of most recommendation systems). Many of these

algorithms, however, do not interest us since they rely on cardinal information. As

alluded to briefly in the introduction, many ranking algorithms ask users to give

each item a numerical score, then sort the items according to some function of the

score (e.g., the five stars scale for restaurants). For a myriad of reasons, we believe

that it is far better to present two options to a user and simply ask which one he

likes better (this is ordinal, or comparative information) as opposed to asking him

to give all the items a numerical score (this is cardinal information). The idea is

that a user's ordinal beliefs are much more stable than numerical beliefs and that

in many contexts, getting numerical information is not even possible. Imagine a

consumer facing a wall of products and picking shampoo X over shampoo Y; we

can derive no cardinal information from this, but we can infer ordinal information

in the sense that the user prefers X to Y. Thus, ordinal information is much more

ubiquitous. For a more in-depth discussion on why we have restricted our atten-

tion to rank aggregation algorithms that rely on comparative information, see the

introduction of [Ammar, Shah: 2012].

9

One of the more recent rank aggregation algorithms that satisfies our constraint

of working with ordinal information is Negahban's [Negahban, Oh, Shah: 2012]. It

is this algorithm that we used in gradapply because it is simple and outperforms

other contenders like Braverman and Mossel's [Braverman, Mossel: 2008] and Am-

mar's [Ammar, Shah: 2012], which also rely on user-supplied comparisons.

Armed with this abridged overview, readers can hopefully better understand

our vision. By using Negahban's algorithm, we are providing the community

with one more successful example of a ranking system that relies on comparative

information. By implementing his algorithm in a real system, we are getting a sense

of how it performs in practice. By applying it in the context of graduate admissions

at MIT, we are providing an automated way to aggregate the individual preferences

of professors over students (which we know is fundamentally challenging), and

therefore are adding value to the admissions process.

2.3 Relevant Background on User Experience of Pre-Existing

System

We conclude this introductory section by providing some additional background

information on the gradapply system, which will help the reader bettter understand

the changes we made to the system (to know what has changed, one must have a

reference point).
As was briefly alluded to before, the user experience for the typical reviewer

(i.e., not an area chair, who is also responsible for administrative duties like as-

signing folders within his area to suitable faculty reviewers) is centered around

the folder-table, which, as the name suggests, is just an html table that contains

folders. When the reviewer first logs in, he is told that if he wants to review the

applications to which he has been assigned, he should go to the "Your Folders"

page. The "Your Folders" page contains a table where each row corresponds to a

folder and is populated by information about that folder like name, gender, col-

lege etc. To make a review (i.e., give the folder a 1,2,3,4-score and enter in other

comments), users must click on the name of the candidate in the folder table,
which doubles as a hyperlink to the review form. There is a search bar above the

folder-table that allows the user to submit queries on folders, the results of which

will be displayed in the table. For instance, if you would like to see a list of all

10

the students who were admitted in the current application cycle, you could enter

in the query: 'tag:mit-admit & year:2010'. In fact, the "Your Folders" page is

simply this same table with the search bar pre-populated with the query: "reader:

your-usernamelhere".

The folder-table has useful features such as the fact that it is sortable. By

sortable, we mean that if you click on any of the header names, it will sort the

rows in the table according to the element in that header-column. For instance,

if you click on "Name: Last, First", the rows in the table will get sorted by last

name from A-Z. If you click on that header again, the rows will be sorted by last

name, but this time in the opposite order, from Z-A.

The folder-table is also customizeable by area chairs. An area chair can control

which columns (from a fixed set of hard-coded choices) appear or do not appear

in the table. One of the options, for instance, is to add a column that displays

the average of a candidate's 1,2,3,4-scores. So, for instance, if candidate X was

assigned readers A and B who gave him a 3 and 4 respectively, then 3.5 would

show up in the new column in the row corresponding to candidate X. Then, if

any given reviewer would like to get a sense of how a set of students compare to

one another, he can submit a query for the set of students, then sort the students

in the table by clicking on the column header corresponding to the average score.

We took advantage of this fact in the design of our system, as will be explained

later.

3 Design

In this section, we present the design for our additions to gradapply. We break

the discussion into two sections, one centered around the input and the other cen-

tered around the output. We interleave discussion of the user interface throughout.

However, for clarity, we begin by defining several terms, which will be used fre-

quently.

3.1 Definitions and Overview

A crucial point about Negahban's algorithm is that it relies on "pairwise compar-

isons". A pairwise comparison is a comparison involving two applicants, say A

11

and B, where the outcome of the comparison is of the type

1. A is preferred to B (in which case we will say "A beat B" or A > B)

2. B is preferred to A (in which case we will say "B beat A" or B > A)

3. A and B are preferred equally (in which case we will say "A and B are tied"

or A = B).

The algorithm will be explained in greater detail in Section 3.3.1.

As mentioned previously, faculty submit 1,2,3,4-scores for each student to

whom they are assigned. If a certain professor gives student X a 4 and stu-

dent Y a 3, this can be interpreted as the professor implicitly making the pairwise

comparison, X > Y. We will therefore refer to this type of pairwise comparison

information as "implicit pairwise comparison information," or "implicit PWC's",

for short. Since this data comes for free (in the sense that the existing system

manages input and storage of the data already, and that faculty are already ac-

customed to providing it), it made sense to use this type of pairwise comparison

information as fodder for my ranking module. That said, the premise of this work

is that the 1,2,3,4-scores do not provide sufficient resolution into the varying qual-

ity of applications (since usually all the people of interest get 4's, so the most you

can say is A = B), so using only this type of PWC information is not enough.

To augment this information, we decided to allow faculty to explicitly give

pairwise comparisons by submitting partial orderings of the students to whom

they were assigned. A "partial ordering" is merely an extension of a pairwise

comparison. It allows more than two people to be compared at a time, but does not

allow for ties. For instance, using the notation introduced above, a partial ordering

of students A, B, C, and D is : D > B > A > C and the pairwise comparisons

encoded by this partial ordering are: D > B, D > A, D > C, B > A, B > C, and

A > C. We will refer to the pairwise comparisons encoded by partial orderings

as "explicit pairwise comparisons" or "explicit PWC's". Note that introducing

partial orderings clearly addresses the resolution problem; imagine A, B, C, and

D all received scores of 4 - in this case, reviewers can create partial orderings like

D > B > A > C to differentiate among the previously equal candidates.

A reviewer "expresses an opinion" on a particular student if he makes a pair-

wise comparison (explicit or implicit) involving that student. A "personal rank"

12

corresponding to reviewer X is an ordering (from best to worst) of all students

about whom reviewer X has expressed an opinion. A "global rank" for the EECS

department is an ordering (from best to worst) of all students about whom some

reviewer in EECS has expressed an opinion.

Now that we have developed such vocabulary, we can talk in greater depth

about the design of the pieces we added to gradapply.

To accomplish the goals outlined in the previous section, we added the following

functionality to gradapply:

1. ability for reviewers to submit partial orderings (and thereby explicit pairwise

comparison information) involving applications from the current admissions

cycle

2. computation and display of a "personal rank" for each reviewer based on

both implicit and explicit pairwise comparison information

3. computation and display of a" global rank" based on both implicit and ex-

plicit pairwise comparison information

Figure 1 helps explain at a high level what the main components of our sys-

tem are and how information flows through them. The "Pairwise Comparison

Information: Collection & Processing" Module takes in explicit PWC information

in the form of partial orderings, and implicit PWC information in the form of

1,2,3,4 scores and converts them into actual pairwise comparisons (it also handles

persistence of some of this information, which will be explained in more detail in

Section 3.2.2). The "Ranking Module" takes in pairwise comparisons and outputs

both personal and global ranks.

We will discuss both modules in greater detail in the ensuing sections, explain-

ing design choices made along the way.

3.2 Pairwise Comparison Information: Collection & Pro-

cessing (PCICP) Module

Figure 2 allows us to see inside the PCICP Module. Explicit PWC information

in the form of partial orderings must be collected from reviewers through some

interface. Furthermore, processing on the partial orderings is needed to extract the

13

Pairwise Comparison
Information:

Collection & Processing

Figure 1: Schematic of the abstract components added to
information flows through them.

gradapply and how

Explicit PWC
information Expllcit PWC PWCs

... .Collection & Explicit PWC WsProa
I Processing Storage SI

impllcitPWCPWCs Rank'n ranks

information Implicit P WC Module

Information PWCS

Processing.

Pairwise Comparison Information: Collection & Processling

Figure 2: Schematic revealing how the PCICP Module works.

Explicit PWC
information

Implicit PWC
informationb

Personal
& global

14

PWC-S Ranki ng
Module

PWCs from them. These two actions are the responsibility of the "Explicit PWC

Collection & Processing" sub-module, shown in Figure 2. Next, these explicit

PWCs must be persisted somehow. If the explicit PWCs were passed directly into

the ranking module without being persisted first, this information would be lost

forever; even if the resulting rank was saved, there would be no way to infer from

that rank what PWCs gave rise to it. The "Explicit PWC Storage" sub-module

in Figure 2 handles this.

The lower branch of the PCICP module handles implicit pairwise comparison

information. Recall that the existing system already handles 1,2,3,4 scores - that

is, it already provides a way for reviewers to input these 1,2,3,4-scores and persists

them. Therefore, to obtain 1,2,3,4-scores from reviewers, we need only query the

database (these scores are stored in a table called Reviewvl). The 1,2,3,4-scores,

like the partial orderings, must be processed in order to obtain the underlying

pairwise comparisons. This is the responsibility of the "Implicit PWC Informa-

tion Processing" sub-module in Figure 2. Once the implicit PWCs have been

derived from the 1,2,3,4-scores, an important question arises: should these PWCs

be persisted, like the explicit PWCs are persisted?

We decided they should not be persisted. The pros of persisting the implicit

PWCs is that it saves us from doing repetitive work. If a personal rank for reviewer

X is asked for, we get process reviewer X's 1,2,3,4-scores once and then save the

resulting PWCs in the database. The next time, say a global rank is requested

(which of course will include reviewer X's opinions), we do not need to re-compute

reviewer X's implicit PWCs from his 1,2,3,4-scores. Instead, we can simply query

a database for them. However, there is a rather large downside of persisting the

PWCs, namely: data consistency. The information stored in the 1,2,3,4-score table

and the information that would be stored in the implicit PWC table are linked.

Every time reviewer X adds a 1,2,3,4-score for a student, removes a 1,2,3,4-score

for a student, or changes a 1,2,3,4-score, the PWCs in the implicit PWC table

would need to be updated accordingly. While it is possible to keep these two

tables roughly in sync, it is difficult to do it well, and leaves the system prone

to the normal problems of synchronicity when data replication is involved. Given

that the computation required to process the 1,2,3,4-scores and produce implicit

PWCs is not very heavy, we decided that the cost of computing these "live" each

time a rank is computed was well worth avoiding the headaches and dangers of

15

liir EECS Graduate Admistions Search Result
Main menu.

The number of folders assigned to you: 4. The number of folders reviewed by you: 4.

This page lists the folders matching the query In the "Search" box. You can visit the individual folders by clicking on the applicant's
name. You can sort the folders by clicking on the column on which you went to sort. You can search for other folders by modifying
the query, using a recent query, or visiting the help page. You can save a query In your personal query list by clicking on "save
query'. The Personal Ordering" and "Global Ordering" columns are explained h=r3.

Query menu: Search: s ..er. * .sts. . . ,
Q h&, Save aury BtudnLyiw Reader y!w Cmmittee-membe iae Chair e

Number of results: 4 (787.224 ms).
Reaulftfame: LAst, FIrHtt4/frtvttres Readers AreaColege Name core Personal Orderlngdlfobal Ordering a

Personal queries 1 F12726416. A M 1 6 TCS Caltech 150.6
Rewet queries: . proFessor2 TSCatc10.161

2 E2491ohJl D .1 3 protmari AT Harvard 2O3.6

4 4-31611218 F 1 3 At MIT 372 427.9
"d'r ~professor2

3 IF63bafda, C F 1 3 AT Stanford 275.6 260.3

Download all as: CSV spreadsheet ZIP (PDF oer auoikcation) I ZIP (folder per apnication)

Figure 3: Screenshot showing a user (whose cursor is represented by the arrow
head) dragging the separator bar upwards in the folder-table.

data inconsistency. This explains the asymmetry between the upper and lower

branches of the PCICP module.

The next three sections discuss each of the three PCICP sub-modules in greater

detail.

3.2.1 Explicit PWC Collection & Processing Sub-Module

As described above, this sub-module has two responsibilities: collection of explicit

PWCs via partial orderings and processing of explicit PWCs.

To collect partial orderings, we decided to use the folder table. In particular,
we made this table "draggable" - that is to say, users can reorder the rows of the

table by clicking on and dragging various rows to new locations in the table. We

also added a submit button and a "separator bar", which itself is a draggable row

that starts off as the first row in the table. Figure 3 shows the separator being

dragged upwards in the folder table.

To submit partial orderings, users populate the folder-table with applicants via

some query (typically "reader: your-usernamelhere", which is the query used when

16

users navigate to the "Your Folders" page). They then drag the subset of students

(rows) whom they want to rank above the separator bar, then order those students

as they see fit (again, by dragging the rows around). When they are satisfied with

the ordering, they press the submit button. To be clear, only the ordering of rows

above the separator bar gets looked at by the system. There are a few natural

questions to ask here:

(a) Why use the folder-table as the main interface? This severely limits the

possible input-gathering mechanisms.

(b) Why use a separator bar?

(c) Why dragging?

(d) Since what you really want are PWCs and not partial orderings, why don't

you just directly collect pairwise comparisons?

The answer to (a) is two-fold. The first reason is that, as explained in Sec-

tion 2.3, the folder table is the center of activity for most reviewers. Reviewers

are used to interacting with the folder table, and would be more likely to adopt

a new tool if it involved something they already know (as opposed to having to

learn a new structure). The second is that the folder-table is implemented in a

very secure and robust way. It also has nice features like being easily extensible

and sorttable. It made sense to leverage this powerful and safe structure instead

of re-inventing the proverbial wheel.

Our reasoning for (b) was as follows. Without a separator bar, reviewers would

have to order every folder (row) in the table. The average use case corresponds to

the "Your Folders" page, where the table is populated with the folders to whom

the reviewer has been assigned. In many cases, this number is greater than 100,
and we felt that having to rank all 100 people at once would be an eye-crossing

experience. The separator bar allows reviewers to rank any subset of students at

a time (of size greater than or equal to two and higher). It should be noted here,
however, that we plan to omit the separator bar in future versions of gradapply

since its behavior was confusing to some users.

The answer to (c) involves aesthetic choice. We found that dragging seemed

to be the most natural way of ordering a collection of items (and was far superior

17

to other schemes we tried out). This choice was inspired in large part by the UI

design of HotCRP [Kohler: 2007], mentioned in the introduction.

As for (d), we did contemplate an alternative design that did not involve partial

orderings, and only pairwise comparisons. It involved selecting two folders from

the table, and then selecting the winner. The problem with this design (and others

similar to it) is that to make a single comparison, you need to perform at least 3

actions (selecting the two folders and designating the outcome). A single partial

ordering involving n students, automatically encodes (') PWCs. To give the

system the same number of PWCs, the alternative designs would require reviewers

to perform 3*(') actions. Therefore, the partial ordering scheme seemed like a

much more efficient way of having faculty submit PWCs.

Now that we have discussed partial ordering collection, we can discuss the par-

tial ordering processing. The goal of the processing is to take the partial orderings

submitted by users, derive the explicit PWCs encoded therein, and send those to

the Explicit PWC Storage Sub-Module (described in next section) for persistence.

We have already seen that A > B > C > D encode A > B, A > C, A > D,
B > C, B > D, C > D. As this example demonstrates, the processing is simple,

but there is one catch.

Users can submit as many partial orderings as they want. In most cases,

reviewers use this to submit PWCs involving a new subset of applicants, however

in some cases, they might submit partial orderings involving a subset of students

whom they have already ordered. My system handles this by only storing the

most recent PWC for each distinct pair of applicants for each reviewer (i.e. there

is at most one explicit PWC per reviewer per folder-pair). For example, take the

scenario in Table 1:

First, reviewer X submits a partial ordering involving A, B, C and D. This is

his first partial ordering submitted, so all derived PWCs are saved. Next, reviewer

X submits an ordering involving D and E. This is a PWC involving a new pair of

students, so it just gets added to all the other PWCs. The third partial ordering

is the interesting one because it involves C, B, and E. We see that C compared to

B is an old comparison, but that C vs E and B vs E are new comparisons. This

means that C > B overrides the old PWC involving B and C, namely B > C,
and that C > E and B > E also get saved.

Lastly, it has been implicit in this discussion that we store PWCs, as opposed

18

Table 1: An example of sequential partial ordering submissions

Partial Ordering Submitted Derived PWCs Total Saved PWCs
A> B>C A > B, A > C, A > D, A > B, A > C, A > D,

B > C, B > D, C > D B > C, B > D, C > D
D>E D > E A > B, A > C, A > D,

B > C, B > D, C> D,
D > E

C > B > E C > B, C > E, B > E A>B,A> CA> D,
C> B, B> D, C> D,
D > E, C > E, B > E

This table shows how the system behaves when multiple partial orderings are
submitted sequentially. The first row corresponds to the first submission, the

second row to the second submission, and the third row to the third submission.
The i'th row of the "Total Saved PWC's" column shows the total pairwise

comparisons that the system remembers after the ith submission.

to the partial orderings from which they were derived. This was a logical choice

because PWCs are the natural building blocks or atomic units for our system.

Partial orderings are just a "vehicle for submission," but at the end of the day,
what the system cares about are the pairwise comparisons. Said differently, with

the PWCs, we know everything we need - it is knowledge at the most granular level.

Furthermore, there are more concrete reasons like space and computation savings:

instead of storing multiple orderings (corresponding to multiple submissions) per

reviewer, you save only the most recent PWC per pair for each reviewer and you

only do the computation once (before saving) rather than every time you need to

generate a ranking. In fact, in an earlier prototype, we implemented a schema

that stored partial orderings. When we changed this to store PWCs as opposed

to partial orderings, the code simplified by a factor of at least two.

3.2.2 Explicit PWC Storage Sub-Module

The obvious choice regarding persistence of explicit PWCs is to use a database.

This begets the question of which schema to use. We developed a schema that

matches one's intuitive idea of a pairwise comparison. A pairwise comparison is

19

comprised of the two individuals being compared, the reviewer who is comparing

them, and the judgement made by the reviewer (i.e. who won?). Because of the

way the UI works, the system only receives strict orderings of students, so no

ties are possible in explicit pairwise comparisons. As a result, we decided to have

folderid-lower and folderid-upper be two columns that together store the identities

of the two applicants being compared. An additional column, username, stores

the identity of the reviewer who made the comparison. Lastly, the "lower" and

"upper" tags implicitly store the result of the outcome. That is, the applicant who

won is stored in the folderid-upper column and the applicant who lost is stored in

the folderid-lower column.

Let N be the number of students who submitted applications in the current

admissions cycle. Since there are (N) distinct pairs of students, there are O(N 2)
pairs. Let K be the number of reviewers involved in the admissions process this

year. The system is designed so that any reviewer can give explicit pairwise com-

parison information about any subset of students (including those to whom they

were not assigned), so in principle, each of the K reviewers can make a judgment

on each of the 0(N 2) pairs. As described in Section 3.2.1, the system only re-

members the most recent judgment made by a reviewer concerning a particular

pair. This means that for each set consisting of one reviewer and two students,

there can be at most one row in the table. Combining these observations together

gives that the number of rows in the table is O(KN 2). This number can be high

considering N and K were around 3000 and 300 respectively, this year. However,

this bound is extremely conservative since in reality, faculty generally only enter in

pairwise comparisons for the students to whom they have been assigned. A better

(though still high) estimate would be given by:

1. Approximate number of reviewers: - 300

2. Average number of students per reviewer: ~ 100

3. Approximate number of pairwise comparisons per reviewer: (2) = 4950

4. Approximate total number of pairwise comparisons: 1.5 x 106.

This number is still an overestimate because, based on the data collected this

year, some faculty only entered in scores for a small subset of their assigned stu-

dents (usually the top portion that are still under consideration). Regardless,

20

1.5 x 106 is a reasonable number for PostgreSQL (the database used by gradapply)

on an average server.

As this is the first time we use numbers to justify our design, we make an

important clarification here. The statistics mentioned in this section and in fol-

lowing sections assume that both the EE and CS deparments are using the system.

However, for reasons discussed later, the implementation was used by the CS de-

parment only. This means that we cannot completely validate our design decisions

since we do not know if our additions would be fully functional when used across

the entire department (we can only make this claim within the CS department).

3.2.3 Implicit PWC Information Processing Sub-Module

This module is called whenever a personal or global rank needs to be (re)computed.

If it is a personal rank for reviewer X, the module gets all 1,2,3,4-scores that re-

viewer X made, then infers all possible implicit PWCs from this, and outputs a list

of tuples that contain these PWCs. If it is a global rank, the same procedure is fol-

lowed except all 1,2,3,4-scores made by reviewers this year are used. The tuples are

of the form (folderid-lower, folderid-upper, istie, username), where folderidilower,

folderid.upper and username have the same meaning they did as in Section 3.2.2

for the explicit pairwise comparisons. The main difference here is that in implicit

pairwise comparisons, ties are allowed (since two students can both have the same

1,2,3,4-score). The istie boolean takes care of this - it takes on a value of true if

folderid-lower and folderid-upper had the same 1,2,3,4-score (thereby making the

-lower and -upper tags meaningless). For instance, if we query the database and

find that reviewer X gave A a 4, B a 4, and C a 2 (where A, B, and C are folder

ids), the module would output the following list of tuples:

[(A, B, True, X), (C, A, False, X), (C, B, False, X)].

We have avoided code and pseudocode here so that readers can focus on the high

level functionality. The implementation section contains further detail.

3.3 Ranking Module

The ranking module takes in pairwise comparisons and uses Negahban's algorithm

to output a ranking of the applicants based on the (incomplete and perhaps contra-

dictory) information in those comparisons. The same algorithm is used to generate

21

both personal rankings and the global ranking. What differentiates these rankings

therefore is just what you give the algorithm as input.

The personal rank is generated by running Negahban's algorithm on all ex-

plicit and implicit pairwise comparisons made by that reviewer during the current

admissions cycle. This means a personal rank can be interpreted as an ordering

of all the applicants on which the reviewer has expressed an opinion this year,

and which was generated using only opinions from that reviewer. The output is a

real number associated with each applicant involved, which is interpreted as the

score of that applicant. The final ordering is determined by sorting the applicants

according to their scores, from highest to lowest (i.e., higher scores are better).

There is at most one "personal rank" associated with each reviewer.

A global rank is an ordering of all the applicants who applied this year which

were judged by at least one reviewer (i.e. they were involved in at least one pairwise

comparison by at least one reviewer this year). There is only one "global rank"

for all of EECS. The global rank is generated in the same way as the personal

rank. All explicit and implicit pairwise comparisons made by all reviewers this

year are fed into Negahban's algorithm, which produces a score for each student.

The final ordering is again determined by sorting the applicants according to their

score from highest to lowest.

For both the personal rank and global rank, once the final scores of the appli-

cants have been computed, we simply display that number in new columns entitled

Personal Ordering and Global Ordering. Then, because the folder-table is sortable,
users can get the actual rank by clicking on the Personal/Global ordering header,

which will then sort the rows according to the personal/global score.

In this section, we focus first on the algorithm, then on storage of the ranks,
and finally on the user experience.

3.3.1 Algorithm

The algorithm uses a random walk approach to ranking. The input is a directed

graph G = (V, E). Nodes represent applicants and there is an edge (i, j) E E if

and only if applicant i has been compared to applicant j. The algorithm can be

viewed as consisting of two parts: 1) constructing a probability transition matrix

P over the graph, and 2) computing the corresponding stationary distribution

22

7r. The stationary distribution will associate a real number with each node i

(representing the steady-state probability of being in state i). It is this number

that is interpreted as the score of applicant i and the number according to which

we sort the applicants to produce the final ordering.

We now give the algorithm in full. Let Ni>j denote the number of times that

applicant i defeated applicant j. In the case of a tie, let Ni> == Njyi =. As

stated before, an edge (i, j) E E if and only if Ni>3 + Nj>i > 0. Define:

'i >'y+1 if (i, j) E E
QiJ Ni>i+Ngi>i+2

0 otherwise.

Since Ni>j + Nj>y is just the total number of times i and j were compared, Qij
can be interpreted loosely as the fraction of times that j won when compared to i.

Let C = maxi Eo Qij. Viewing Qij as a matrix, C is the maximum of the

sums of each row (with the diagonal terms excluded from the sums). We are now

ready to generate the transition matrix over our graph:

f 6 ifi 7 4j
Pi =2 ..C

f1 - E Pi if =j.

We see that Pij is essentially Qij scaled to form a valid probability matrix. Dividing

each row by 2 -C ensures that no row has a sum greater than one and setting the

diagonal elements to 1 - EZ, Pij ensures each row sums to exactly one.

Now that we have computed a transition matrix for our graph, we need only

compute its stationary distribution. By construction, our Markov chain is aperi-

odic. Unfortunately, when applied to gradapply, it is quite possible that the graph

will be composed of several disconnected (but irreducible) components. This means

that the stationary distribution might depend on the starting state (how we handle

this is described in Section 4.3.2). Let pt(i) = P(Xt = i) be the distribution of

the random walk at time t, with po = [po(i)] E RIO denoting an arbitrary starting

distribution on over the n states. We have that, for all t > 0,

so we can approximate the steady state distribution of our Markov Chain by

performing sufficiently many iterations of equation 1. Intuitively, the edge from i

23

to j is roughly proportional to the fraction of times j beat i. Using 7rj, the longterm

frequency of being in state j, is therefore a natural measure of j's "goodness" since

this number will be high if j beat other applicants with high longterm frequencies

(i.e. other good candidates) or if it won against many applicants.

We conclude this section by mentioning that, when run on data generated

by the Bradley-Terry-Luce model, Negahban's algorithm performs, as well as the

Maximum Likelihood estimator for that model. We direct the curious reader to

Negahban's paper [Negahban, Oh, Shah: 2012] for further information.

3.3.2 Storage of Ranks

We decided to store the personal and global ranks computed by Negahban's algo-

rithm in the database. While this was by no means mandatory, since the server

can always pass back the results to the browser when computation is finished, it

seemed logical to make the system more "static". Since the personal ranks and

global rank do not change frequently after their initial computation, it made sense

to load potentially stale data from a database rather than perform the compu-

tation every time reviewers navigated to their "folders" page (this would pose a

heavy load on the server).

Given the decision to persist the output of various calls to the algorithm, we

now discuss the schema. Recall that Negahban's algorithm produces a score for

each applicant and that there are two types of orderings: personal and global.

Therefore, an ordering is fully specified by identifying which applicants are in

the rank, associating a score with each applicant, and indicating whether it is a

personal or global rank (of course, if it is a personal rank, then we must also specify

whose ordering it is). To achieve this, we have a folderid column to denote the

applicant, a finalscore column to denote the score that our rank module output

for said person, and a username column to denote whether this applicant/score

datum is part of a global or personal rank. If it is a personal ordering, the username

fields gets assigned the username of the reviewer to whom the ordering belongs.

Otherwise, it is a global ordering, so the username field is assigned the string,
"global".

Every time the ranking algorithm is run, it produces a new rank, which is stored

in the table described above. However, the table only keeps the most recent rank,

24

so there is at most one rank per reviewer. As an aside, it makes sense to keep only

the most recent rank; the rank algorithm is recomputed whenever there is new

information to be had, so a user should only be interested in the most recent rank,
which reflects the most up-to-date information. To analyze the schema, we again

let K and N be the number of reviewers and number of people who submitted

applications in the current admissions cycle, respectively. Since there is at most

one rank per reviewer, there are 0 (K + 1) = 0(K) ranks per admissions cycle

(the plus one is for the separate global rank). Each rank can involve at most N

students, thereby contributing O(N) rows per rank to the table. Thus, during any

given admissions cycle, there can be O(KN) rows in the table. Using N ~ 3000

and K ~ 300, which is representative of this year's data, we get approximately

900, 000 rows, which is more than manageable for PostgreSQL on an average server.

3.3.3 Overall Flow

In this section we clarify when ranks get recomputed. As alluded to briefly in

Section 3.3.2, the personal and global scores are loaded with information from

the database whenever one navigates to the folder page. The personal rank gets

recomputed for a given professor whenever that professor submits new partial

orderings. It does not get recomputed when the professor changes, or adds new

1,2,3,4-scores. This entails that users may find themselves looking at slightly stale

personal orderings. To rectify this situation, we decided to have the button for

partial ordering submissions double as a "refresh button". If a user does not drag

the separator bar down or move any rows, clicking this button will cause the

personal rank to be recomputed and re-displayed. This gives concerned users a

way of ensuring they are looking at the most up-to-date version of their personal

ordering.

The global rank is a different entity. Given that its computation is heavy, and

that its purpose only comes into play once or twice at the end of the admissions

process (when final admissions decisions must be made), it made sense for the

computation to be triggered by a human only when needed. As such, we made the

global rank computable only by area chairs (letting any reviewer trigger it at any

time would put the server at risk). The expected use case is that an area chair

would run the computation the night before he convenes a meeting with other

25

professors to finalize admissions decisions.

The design choices made above were governed by the goal of making the "sys-

tem" as static as possible subject to the constraint that users still receive accept-

ably accurate data. Keeping in line with this goal, future editions of gradapply will

not compute personal ordering scores as described. Rather, the personal ordering

will simply reflect the order in which the user has dragged his students (this in-

formation will still get written to the database in the form of explicit PWCs, but

the algorithm will no longer have to run on said information to give the UI an

ordering).

4 Implementation

The goal of this section is not to go over every detail of the code we wrote. Rather,

it is intended to provide the reader with certain facts which may interest him and

provide greater detail when such detail is necessary or elucidating.

4.1 Technologies Used

The gradapply system was developed primarily by Professors Frans Kaashoek

and Robert Morris of MIT. It uses Apache as the webserver, PostgresSQL for

the database, and Django 1.3 and Python 2.7 as the web framework. Other

technologies like jQuery UI were also used to make the folder table draggable

("//code.jquery.com/ui/1. 10.0/jquery-ui.js").

4.2 Models

We added two models to the system: Pairwise Comparison and Aggregate Ordervi,

which correspond to the two tables discussed in Sections 3.2.2 and 3.3.2. The

former is the one that stores explicit pairwise information from all reviewers and

the latter stores the personal ranks of each reviewer, as well as the global rank.

Pairwise Comparison is a simple Django model that contains three fields, which

map to the columns introduced earlier. The code below shows that folderidilower

and folderid-upper are both foreign keys to the Folder table, which was a pre-

existing table used to store folders. This was done to help maintain data consis-

26

tency and gain efficiency. The related-name argument is necessary so that Django

can resolve the backward relation since there are two foreign keys within the same

table.

class PairwiseComparison(models.Model):

folderid-lower = models.ForeignKey(Folder, db-column='folderidjlower',

related-name = 'folder-lower')

folderidupper = models.ForeignKey(Folder, db.column='folderid-upper',

relatedname = 'folder-upper')

username = tf()

Similarly, Aggregate Ordervi is a simple Django model whose three fields map

to the columns introduced earlier.

class AggregateOrdervl(models.Model):

folderid = models.ForeignKey(Folder, db.column='folderid')

finalscore = models.FloatFieldo

username = tf()

We see from the code that the folderid field is a foreign key to the Folder table and

finalscore is a float representing the score that our rank module output for said

person. If it is a personal ordering, the username fields gets assigned the username

of the reviewer to whom the ordering belongs. Otherwise, it is a global ordering,

so the username field is assigned the string, "global".

4.3 Algorithm

Recall from Section 3.3.1 that the algorithm is simply a random walk over a graph.

To implement this, it is necessary to represent the graph in some way, compute the

appropriate weightings, then compute the corresponding stationary distribution.

4.3.1 Data Structures

To represent the graph, we used a matrix since it is an easy data structure to

work with and a fairly efficient one. In particular, we defined a two dimensional

n x n matrix, Ni>j, such that each index i = 1, ..., n represents an applicant, and

where the i,jth entry represents the number of times that applicant i won when

27

it was compared to applicant j. We maintained a mapping from applicants to

their column numbers by using a dictionary whose keys were the folder ids of

the students involved in the rank and whose values were integers representing the

column index of the given applicant. Note that if [N]ij and [N]ji are both 0, this

implies that applicants i and j have never been compared.

To populate the matrix for professor X's personal rank, we followed the pro-

cedure below:

" determine which applicants received a 1,2,3,4 score or were involved in a

PWC (or both) by professor X. Assume there are n such students.

* create an n x n matrix of zeros and create a dictionary that maps folder ids

to column indices of the matrix.

" iterate over all pairwise comparisons made by professor X. For each one, let

k be the index of the winner and m be the index of the loser (ties cannot

happen). Set [N]k,m = [N]k,m - 1.

" get all 1,2,3,4 scores made by professor X and infer the PWCs implied by

these scores. Iterate through these implicit PWCs. If k is the index of the

winner and m is the index of the loser, increment the [N]k,m by 1. If they

are tied increment [N]k,m and [N]m,k by 0.5 each.

If we are performing a global rank as opposed to a personal rank, you repeat

the above procedure for each active reviewer this year, but instead of starting with

a matrix of zeros each time, you pass on the matrix from the previous iteration so

the same matrix gets updated once per reviewer.

Note, that once populated, the Ni>j matrix contains all the information we

need in order to find the probability transition matrix. We can use the matrix

Ni>j to get a new matrix, Qjj, whose ijth entry represents the fraction of times i

won when compared to j, and then derive the transition matrix by following the

procedure from Section 3.3.1.

4.3.2 Stationary Distribution Computation

There are several ways to compute a stationary distribution given a transition

matrix Pij. We opted for starting with a uniform stationary distribution, then

28

computing p[T1 p[P for a "sufficiently large" number of iterations. What we

did in detail is the following:

* start with a uniform distribution over all applicants involved (po = uniform)

t = 1

* while True:
pT =

lp±g = pf P

compute the f1 norm of the difference between pt+l and pt

if the difference is less than _ 1g or t exceeds some threshold:

return pt+i

Pt=Pt+i

t=t+1

Essentially, when the estimates of the stationary distribution from successive it-

erations start differing by a sufficiently small amount, we take that as a good

approximation to the true limit and return that vector. We used 10n as a thresh-

old because n loge n is less than 10n when n = 3000 (again, the exact number

of applicants this year was 2970). We needed to make sure that this "timeout"

variable was high enough such that even the worst graphs would have time to con-

verge. An example of an ill-behaved graph is a ring graph, which is known to have

a mixing time of 0(n). Furthermore, the log n factor is needed to get a small error

in chi-square distance [Shah: 2009]. In practice, we found this heuristic worked

well; the loop was always exited due to the termination condition being met and

not because it timed out (i.e. that the stationary distribution"converged" within

our worst-case expectations).
The reader may wonder why we chose to compute the stationary distribution

by starting with a uniform distribution over the states, then repeatedly performing
pTg = ptP. The reason is because in this application, it is quite possible that our

comparison graph is comprised of several disconnected components. Recall that an

edge exists between nodes i and j if and only if i and j have been compared by at

least one reviewer. Now imagine we pick a candidate i from the Circuits subarea

and a candidate j from Theoretical Computer Science. It is quite likely that no

29

reviewer would have submitted a partial ordering involving these two candidates,

or given them both 1,2,3,4-scores. Extrapolating from this example, it is easy

to imagine the comparison graph consisting of several disconnected components

where each component roughly corresponds to a research area. In this case, there

does not exist a unique stationary distribution because the stationary distribution

will very much depend on what state the chain started in - every node not in the

component containing the start state will have a steady state probability of 0, and

will also therefore have a global score of 0. Starting with a stationary distribution

skirts this issue by assigning probability mass to each component of the graph

according to the component's size and, subsequently, no students will end up with

a global score of 0.

5 Evaluation

In this section, we argue that the features we implemented worked and added value.

Unfortunately, this is not a straightforward task; as our discussion in Section 2.2

revealed, it is not clear that there is any correct aggregate rank against which

we can check our output. Another way of saying this is that there is no "ground

truth" (except, perhaps, the list of students who were admitted, which is data I

lack), so we cannot measure how far we are from that. To get around this, we

take two approaches. First, we try to show, using a synthesized example, that

our ranking module produces results consistent with our expectations. Second,
we turn to real data we collected and show that the ranks generated from such

data pass a series of "sanity checks". Third, we look more closely at the ranks

generated from the real data and try to argue that the results make sense and

are helpful (this is harder than with the synthesized example because the sample

space is much larger).

5.1 Synthesized Example

Imagine there are four Students, A, B, C, and D, and two professors, professori

and professor2. For simplicity, assume that all four applicants are assigned to

each professor for review. Furthermore, imagine we know professori submitted

the partial ordering A > C > B > D and professor2 submitted the partial

30

Table 2: 1,2,3,4-scores given to Students A, B, C, and D by each Reviewer

Reviewer Score for A Score for B Score for C Score for D
professori 4 3 4 1
professor2 4 4 4 2

This table shows the 1,2,3,4-scores that professori and professor2 gave their
students in our "Synthesized Example".

Table 3: N matrix for professori

A B C D
A - 2 1.5 2
B 0 - 0 2
C .5 2 - 2
D 0 0 0 -

This table shows the N matrix for professori for our synthesized example. Each
row and column is labelled with a student name. The cell whose row is A and

whose column is B, for example, gives the number of times professori thought A
won against B.

ordering C > A > B > D in conjunction with the 1,2,3,4-scores shown in Table

2:

Based on this information, we see that professori thinks A and C are the best,

followed by B, then D. Further more, professori's partial ordering reveals that

he thinks A is better than C. As for professor2, she also thinks A and C are the

best, but thinks C is better than A. We therefore expect the aggregate ordering

to rank A and C as the top two, followed by B and D.

The N matrix (recall from Section 4.3.1 that the i, jth entry of this matrix

represents the number of times i won when it was compared to j) for professori

is as shown in Table 3. The N matrix for professor2 is as shown in Table 4.

The resulting stationary distribution for the global rank (determined by sum-

ming the two N matrices, normalizing it appropriately, and computing the station-

ary distribution from a uniform starting distribution) is given by [7rA, 7B, 7rc, 7rD] =

31

Table 4: N matrix for professor2

A B C D
A - 1.5 .5 2
B .5 - .5 2
C 1.5 1.5 - 2
D 0 0 0 -

This table shows the N matrix for professor2 for our synthesized example. Each
row and column is labelled with a student name. The cell whose row is A and

whose column is B, for example, gives the number of times professor2 thought A
won against B.

Table 5: 1,2,3,4-scores given to Students A, B, C, and D by professorS

Reviewer Score for A Score for B Score for C Score for D
professorO 4 2 4 3

This table shows the 1,2,3,4-scores that professor3 gave his students in our
"Synthesized Example".

[.3752, .1782, .3752, .071]. In other words, A and C are tied with a score of 375.2,
B follows with a score of 178.2, and D comes in last place with 71.4 (where we

scaled the probabilities by a factor of 1, 000 to get the score).
Note that A and C receive the same score, which makes sense because they

were both given 4's, and because professori liked A more than C but professor2

liked C more than A. Because of the symmetry, there is no reason why one should

be ranked above the other. The rest of the scores are consistent with what we

expect: B is third to last and D is last (since he lost to everyone else).

Now, imagine we add an additional reviewer, professor3, who submitted the

partial ordering, A > C > D > B and the 1,2,3,4-scores in Table 5.

As a result of professorS's submissions, the N matrix changes to 6 and the re-

sulting steady state distribution is now given by [IrA, 7
rB, 7C, 7TD] = [.4261, .1211, .3779, .075].

A gets a higher score than C, which is good because now two professors rank

A > C and only one ranks C > A. Furthermore, D is still the worst candidate,

32

Search: e 'tw
a12 Save 9rZ Student v! ader x-w Comm-Mee-Member vi Chair vie

Number of results: 4 (627,318 ms).

Ftesit Na* MLjFrvakra Radar- Area 6cwt ftreonal Global Orderinq
Pivot mo* *rdwin A

4 F127641.A 6 :4. Prf2 TCS Calt&:h 4,0 406.9 375.2

praoasowi. vrof*ssWr!
3 If63bafda. C F 2 3 Profsorl:[4.01 professor2: Al Stanford 4.0 319.3 375.2

profasaorl: professar2:

2 4431A0WM F 2 3 "ssorl [3.0} professor2: A1 MIT 35 16&,0 1781
profogsVr1: profeaioi2:

I E79b496o8. F 2 3 Prafo 1[.0] pofessor2: Al V 1.5 1059 71.4

profesori: profesaor2 (

Download all ast CSV 80readShede I ZIP (PDF oer aoolicationl I ZIP (folder oer aeollcation1

Figure 4: This figure shows the folder-table seen by professori after both profes-

sorl and professor2 have submitted their opinions of their students and after the
global rank has been computed.

Table 6: Global N matrix after professor3's submissions

A B C D
A - 5.5 3.5 6
B .5 - .5 4
C 2.5 5.5 - 6
D 0 2 0 -

This table shows the global N matrix after all three professors have submitted
their opinions. The columns and rows are again labelled by student names. The
cell indexed by row A and column B denotes the number of times A won when it

was compared to B (acounting for all the professors' opinions).

33

Search:*...... :
ftla Save ourM Studeit Aew Rderv ew Committee-member vie Chair

Number of resmlts: 4 (664.545 ms).
Res"It N M/F v*Lttr leadaer Area ars o f obaMWea Rome ofdorlng Ordefng

4 11272641. A M 1 6 TC$ caltvch 4,0 4069 424,1

peofasrt profosmas:

3 I3badaC F ; 3 costis;[4,D proescr 1: (4.0) Al Stanford 4.0 319,3 377.9

professorl proftspor2: costla

2 41.25. P 3 3 Al MIT 3,0 161.0 121A
proe#arSt. pafesst2. esabs

I E b49608. D F 3 3 costis13.01 professorl:[1.0] Al Harvard 2,0 105.9 75.0

proftswori: profasor2: costla:

Download all as: CSV spreadsheet I ZIP IODF oer applicationi I ZIP folder oer apofication)

Figure 5: This figure shows the folder-table professori would see after professor3
submitted his opinions and the global rank was re-computed.

but we see his score moved up from 71.4 to 75.0 (which is good because professor3

ranked D > B - i.e. before, B was consistently ranked over D, but now there is

at least one dissenting vote). Figure 5 summarizes this information.

This example illustrates that our ranking module performs rank aggregation

reasonably. While there is no "ground truth" per say, the algorithm combined

professori and professor2's personal ranks in an intuitively pleasing way. Fur-

thermore, after adding professor3's preferences, the rank changed in all the ways

in which we expected it to. There are numerous other small examples that we

coded as part of a suite of unit tests, and the results thus obtained, adhered simi-

larly to common-sense expectations.

5.2 Real Data

Now we transition to looking at the actual data collected from the January 2013

trial. As mentioned before, since we cannot argue directly that the global rank is

"correct", we first perform several sanity checks, then argue why this feature was

a useful addition to the system.

On January 24, the night before several of the CS faculty were to gather and

finalize admissions decisions, the new scoring system we implemented went live.

CS professors attending the meeting were asked to submit partial orderings by late

34

that evening. Seventeen reviewers fulfilled this request and submitted orderings.

Due to a bug that has since been fixed, the new scoring system was taken down

soon after (before the EE faculty could enter their partial orderings), and a global

rank was never displayed to the faculty. Because our code was live for a very short

time period and only seventeen users got to interact with it, we received little to

no user feedback, and will therefore not address feedback in this section.

We did, however, receive an anonymized copy of the database (taken after the

CS faculty submitted their partial orderings). Because we had access to their

partial orderings, we were able to compute personal ranks and the global rank,

locally on my computer. It is these results, which we analyze in this section. Note

that all figures show the folder table populated by the query, (reader:professor112 1

reader:professor153 1 reader:professor177 1 reader:professor4). We chose these four

professors because they were among the seventeen professors who submitted partial

orderings and they all happened to have a lot of assigned applicants in common,

due to their shared research interests of operating systems, storage systems, and

security analysis. We also removed the Personal Ordering column from many of the

figures for ease of readability since it is primarily the global rank which concerns

us.

The first sanity check we perform is to see that the scores our ranking module

produces are roughly in line with the 1,2,3,4-scores submitted by faculty. In other

words, we expect our algorithm to rank people who got a lot of 4's highly, people

who got a lot of 3s less highly, and so on. Figure 6 shows a segment of the

folder table, where the rows in the table have been sorted according to the global

score. We see that, scanning from top to bottom, the 4s are located mainly at the

top, followed by the 3s. The picture was truncated for brevity, but the full rank

continues this pattern.

The second sanity check we perform is to take a few select professors and

check that their personal ranks never vary too much from the global scores. Of

course, they cannot match up perfectly, but if any professor's preferences differed

drastically from the global scores, that would indicate that the aggregation is not

working well since it did not seem to take into account that professor's views.

Figures 7, 8, and 9 juxtapose three professors' personal ranks with the global

rank. The personal ranks are all sorted according to personal score. You can see

the differences because the global numbers will sometimes be out of order. In other

35

temult ftamez treLastf kome. Mj0ftvsLtrs

222 7 M7715mff4

221 3309 149ae. m330869aia

Z20 4A088fisc. M

19AF27ac331 -M
29Af27ac331'M

Ale4 m
217 M

217 31 2b'M

F300l2l6a m214 M218 I3I80'M

217 1 4 M

213 63d58c162. M6Gd58cI62
212 Wa 147 M

Z11 81b Ar$S
Ac5655&0d

10cbLA1879210 10cbae7 m

Global
Are* Collge Name ClgCtySormOderksg

2 3 mteswr:[J proflarS3;4.] pofsSu A Rarvrd University USA

3 4 professor112;[4.01 professorl53:[4.0 SYA Yale University USAprofessorI77:[4,0]j professor233:[]

3 " roegaorn12-[4.0) profemorI,53:(4,01 9YA Univ Illinois Urbana- USA
prol!sWo233:[(I OWssor4:[J4.01 Chornpolo
professor14:[4.0 protessorl s:f

3 3 profesmor173:[professor183;[] SYA Williams College USA
professor94:[4.0] protessor4:4.01
profeOmrl2:[4*0J profw133:{4401

A 3 'W$3:[40D] prOfl2903[3.O0 SYA ULiv CalIf Berkeley USA
proeso233:[l

2 3 professor5:[] proessr153:[4.0] SYA Seoul National KORprofessor173:[protessor4[4.0] University

' 3 ProfeSXr$3;[4.01 Pr*(05Wr70:[1 SYA Unfu Marylund ColIge USA
prafegsor4:.[4.0'1 ProlesWo57:[3.01 PkC
professor112:[4.01 profeesorl53:44.0]

4 3 professor177:3.01 professor233:[] SYA Dartmouth College USA
professor48:[3.01

2 4 mtasor :[iprofessor.44k6) SYA MIT USA

3 3 professor112:[3.0] professor153:[3.0] SYA Univ Texas Austin USAprofessor233:[] professor4:[4.]

3 professorI33:.0 proessor177:[3.01 SYA ohms Hopkins USA
p orbflteiS.03[3YA UniverSity
professor112:[4.0] professorIS3:[3,0] Banaras Hindu 1144 3 professor233:[] professor4:[4.0) professor75: SYA Univety
[4.0]
profesorJ12[.0J prcfessorl$3:[4.0]

4 3 pr :s [4.0J professor233:] SYA Univ Of Pensylvanls USA

Figure 6: This figure shows the top portion of the folder table when populated
by the query, (reader:professor 112 1 reader:professor153 I reader:professor177
reader:professor4).

36

87AO

86.2

4,0

4.0

4,0

4.0 83.4

318 813

4.0 79.9

317 76.6

3.5 69.8

3.5

3.3

3.0

49.5

68.7

66.0

3.8 67.5

3.5 66.6

i

R LUut. M/# retfr t

42 33MU M 4 VZ'~~ 11,40 Pr$W-4". A YOIe kkaraity USA

4~ ~3 sre~sdS44]ptwsw2013,01SYA USA

40 M4 3 m(4 SYAUSA

wsw~Orl244.O1 profewor2330~ i'u

39 N 3 prfsw2.331f ptoteiC4,4.01 SYAIN

30 t N ftCW23[O3!4jh V Ub8ao USA

37 M 3 P o1 3.0t~m4t5
1

3.SYA "'vT~i USA

36 M4~ 3 Vpruta 14J4.0) iJ r34 SYA UM f USA

o3ssrl24.0 Mro4eewl94 43.0]
35TIM2 Polyt",rvc USA

pituwlt243.03 ~ 5 3
'~'

01
$ ttute ~$I~ _

34 N 3 p ~ ro*ow J4 V WyA t S
POewrI1243.01 prdawoiS3:(3.01

33 f~0. 4 63 ProfeSW15(2OJ PtoftSW71Th3.01 TC Meroa St USA
prfeso'194J3.0] pt~egw233:11 COP

32 N 5 ptoftso0rI834]J prdSsor35J Al Vandetblik UntvUSA

4,0 50,0

318 48,2

3,5 44,1)

30 41.0

4.0

3.3

315

43.0

862

81.13

69.7

3.0 It 9 53.7

3.6 31,6 63. t

is 31.2

I
56.1

S9,8 3i
Figure 7: This figure shows the folder-table as viewed by professori 12 when sorted
by professor112's personal ordering scores. The red brackets show places in which
the global scores increase when scanned from top to bottom (denoting places where
professor112's opinion differs from the global one).

words, if you start reading at the top and move down, whenever the scores in the

global ordering column jump up (instead of going down monotinically), there is a

difference. We have highlighted those cases with red brackets for ease of viewing.

We see that there are (necessarily) jumps in these samples, but that on average it

is not excessive, which is consistent with our intuitive notion of aggregating diverse

preferences.

Hopefully, the synthesized example from Section 5.1 and the above sanity

checks on the real data convincingly demonstrate that the algorithm is working.

We now transition to focusing on how these ranks improve upon the earlier sys-

tem. Looking back to Figure 6, we see that our ranking module has provided new

information. The first four candidates in the global rank - students '7715ff74f',
'3309869aa', '4a0886f6c' and 'Af27ac331' - all have an average 1,2,3,4-score of 4.0,
which is shown in the column entitled "Score". Prior to my additions, gradapply

could not have ordered these students in any meaningful way, except for perhaps

37

--------- ---------------------------
Anbat~age~e~gaMabole

A~oa C~1.q* ?4~#~

professa#'112:[4,0) prdteoodS3
4 J4,01 oesS'17:40) $YA Yate Unvority USA

- rfnr2.334[

A [40*iu 2331 PM(O"V41SVA USA
(4,01 MV40

p Iar112 44.0j prdeo 133:

3 (4,0)UO2 SYA UnN C*f BOrkeley USA

{1.1
t~orl15r3 4O3 proeaaP1233

[t 4Oj _11.3,01 SYA ottO nth Cv*ge USA

Pr*esw233;0 profetor

3,01

[30)

2 3 r40 eaeol?3:FO1ftW,4 5YA u;

23 SYA Hatwv8d LUivrty USA

prafeama1l2:{40} orNasarS3:
(3.0* prottasor175 42.0)

A 3 pofesO-177:f30) rdofAW194:TCS Metrolta St Cl USA
03,01 profef-r23341

4,0 20,6 86,2

4.0 20,2 (0?

3.9 19,9 81.3

5 9,6 6918

35 19.4 6.6

17 194 78.6

4,0 194 79-9

4,0 19.4 670

2.6 151 56,1

Figure 8: This figure shows the folder-table as viewed by professor153 when sorted
by professorl53's personal ordering scores. The red brackets show places in which
the global scores increase when scanned from top to bottom (denoting places where
professori53's opinion differs from the global one).

38

Nofon M

94 M

93 M

92 M4

91 M

90 M

9N

88 M

7 M

a?

Nam*% "OK"os

23psof4 r15,4] edsor153;4.O5 SYA USAprdssw4:f 4,0} vsheity

2rfs14[4.0] otofgsaor1:[4.0] ni

p 2 ;3.Upro4 oI4 :4] SYA -rtwa. USA

3 profe0a 13:{3 O pr o1S3.[2.0] 5A USA

2 4 pr-*sA5330 potesor4;[4.01 YA MIT USA

3 $ p*6ttt5S]pr6f4666r15:[4.61 UYA SO" * x*fU
p r7[Or4:w4,01 UtWrShy

pofeOr112:[4 01 ooA83,0]
4 3 prOfessor233:;t)p "deo*rd:4,01 S SA IND

pr4o4esr5 {4.0]
3 pmfwi5{ SprdessrI$3.01 SYA CRO

2 3 pr(o r53;30]ppofmor4:[4.01 SYA MIT USA
S3 fs153;[,0] pme 177:2.O Comel

profesar4[4,A USA.rs~
pro0,ssmr14.(3,0] protcssor15.[]

6 3 pVof*"WI53:2'01 ptae"s'W I73[] SYA U"verlty 0 [prodeSos:4.0] psfa6or33:4.0) MOratuwP
ptdemw4:30] pre1ot4i:([0]

3 4 pSYrmues353;(3-0] IVA USA

S] I 'E* . YA 2'W o INDpfofe9or4:[3.0 pftrosso 75:j3.0] M mbw

4.0 33,0 67.0

4.0 30.8 83,4

4.0 29.6 837

13 328.4
3 J 27J9

4.0 27,Z

3.8 26.6

3.5 24.6

3.5 24.1

2. 23.3

3.2 21.9

3,?1 21.

2.4 to,$

68,7

69

67.5

J
I

634

46.3

Figure 9: This figure shows the folder-table as viewed by professor4 when sorted
by professor4 's personal ordering scores. The red brackets show places in which
the global scores increase when scanned from top to bottom (denoting places where
professor4's opinion differs from the global one).

39

77371X * I

70 AW31 $

69 4iem81<. M

'6 6wdMaw. M

72 *4162

WORAW

64 M

63 M

62 M61 A

6 M M0

1 M
QWW"gg

putting '7715ff74f' below the other three, since that applicant received only two

4's as opposed to three. After my additions, the system now has a way of im-

posing ordering among sets of candidates with the same average 1,2,3,4-scores -

namely, the global score. Does the extra layer of ordering make sense in this

case? Figure 8 shows professor153's students ordered according to his prefer-

ences (his personal scores). We see that he ranked '3309869aa' above '4a0886f6c'

(20.6 > 20.2). Similarly, Figure 7, which shows professor1l2's students sorted

by personal score, shows that '3309869aa3' was again ranked above '4a0886f6c'

(50.0 > 43.0). Professor112 and professor153 are the only two reviewers who re-

viewed both '3309869aa3' and '4a0886f6c', so we suspend further observations and

conclude that it makes sense that '3309869aa' is above '4a0886f6c' in the global

rank, with scores of 86.2 and 83.7, respectively. A more thorough examination of

the full version of the table from Figure 6 shows that the extra ordering imposed

among students with equivalent average 1,2,3,4-score by and large makes sense.

We conclude this section by noting one more thing: the global scores not only

help us see that '3309869aa' is "better" than '4a0886f6c' (even though they both

have an average 1,2,3,4-score of 4), but they also show us how large this difference

is. Looking back again to Figure 6, we see that '7715ff74f' and '3309869aa' are quite

close (with scores of 87.0 and 86.2, resepctively), while '09b2fe37c' and 'f300c8Oce'

were judged to be quite far apart (with scores of 78.6 and 69.8, respectively).

The above discussion reveals that ordinal ranking can be helpful in differen-

tiating highly-ranked students. We have yet to collect data on whether ordinal

ranking helps EECS faculty make bestter decisions faster, but are hopeful that it

can and look forward to collecting more data in future admissions cycles.

6 Future Work

There are two main areas which we believe deserve special attention as this project

moves forward: user experience and performance optimization. Regarding the

former, we have already begun discussion of improvements and plan to have them

implemented before the current academic term ends. These changes include getting

rid of the "separator" bar, which some people found confusing and, potentially,

changing the semantics of the Personal Ordering.

Regarding performance optimization, we believe the implementation of the

40

ranking module merits investigation. On average, when run locally on my laptop,

computation of the global rank takes between ten and twenty minutes. While this

is definitely within the acceptable performance range given our expected user sce-

nario (of the global rank being computed by a chair the night before an admissions

meeting), we anticipate there are ways to speed it up. For example, using a dif-

ferent data structure in place of the N-matrix or implementing the matrix using a

library different from numpy might help improve efficiency. However, while these

"micro-optimizations" are beneficial in the immediate context of gradapply, they

will be insufficient if we broaden our amibitions. By this cryptic statement, we

mean that such optimizations would be useless when the data starts to become

really large. The gradapply system has only about 6GB of information total, but

in many systems where rank aggregation is used, the amount of data is so big that

it cannot fit in memory all at once. Changing our ranking module to handle "big

data" probably necessitates more fundamental changes like changing it so that it

can be easily parallelized or changing it to work incrementally as data is added.

Christina Lee (PhD candidate in EE) is already making headway in this direction

under the supervision of Professors Shah and Ozdaglar. She is investigating an

alternative method for computing the stationary distribution of a Markov chain by

running multiple random walks and getting an empirical estimate of the expected

return time, which of course is the inverse of the steady-state probability. This ap-

proach is easily parallelizable because the random walks can be run simultaneously

on different computers. To read more about her work, see her Master's thesis, Local

Computation of Network Centrality [Lee, Shah, Ozdaglar: 2013]. I am excited to

see her work evolve and hope that it is eventually applied in systems like gradapply

(or even to gradapply itself).

An application of this research which is of particular interest to me is how

grading is performed in online education systems. Imagine a scenario where there

are millions of students enrolled in a class with only ten teaching assistants. Imag-

ine further, that the assignment is an essay, which of course is difficult to grade

in an automated way. One approach to make grading this enormous amount of

essays possible is to "crowdsource" the grading. Each student could be tasked

with reading a few pairs of essays and picking which one they thought was better

for each pair. These act as our PWCs, from which a global rank could be inferred.

The teaching assistants could then randomly sample a few students assignments,

41

grade them carefully, then use these grades to infer the grades of other students

nearby in the rank. While this example is overly simplified and error prone (in

present form), I think the general idea is promising, and leads to even more in-

teresting questions (e.g. can we reconstruct the global ranking reliably even when

the grades reported by students are very noisy? etc.).

7 Conclusion

To summarize, our contributions are the following:

1. enhanced gradapply by giving reviewers the ability to input partial orderings

via a drag-and-drop user interface;

2. enhanced gradapply by implementing a ranking module that produces a per-

sonal ordering for each reviewer and a department-wide global rank;

3. provided the ranking community with another successful example of a rank-

ing system, which relies on ordinal information as opposed to cardinal infor-

mation;

4. provided some insight into the usability and scalability of Negahban's algo-

rithm by implementing it in a real-world system;

5. proposed potential synergies between this application and Lee's alternative

algorithm for computing stationary distributions;

6. proposed future work in the area of online education.

Our code will be fully integrated into gradapply by Professors Kaashoek and Shah

over the summer of 2013, and will hopefully help streamline admissions decisions

starting in the 2013-2014 application cycle and onwards.

8 Acknowledgements

I would first and foremost like to thank my thesis advisors, Professors Kaashoek,
Shah, and Wornell, for coming up the idea for this project, finding the funding,
and trusting me to take the lead on the project. Thank you, Devavrat, for taking

42

me under your wing during 6.UAP my senior year and letting me stay on with you

for my MEng. It has been a wonderful, eye-opening experience to be a part of your

group, and to participate in the exciting area of rank aggregation. Thank you for

explaining Sahand's algorithm to me with patience, no matter how many times I

asked for clarification, for all the Skype and telephone calls, and for agreeing to

take over leadership of the project when I leave. Thank you, Greg, for your role

in the project formulation, for helping me understand how graduate admissions in

EECS works, for lending me an ear whenever I wanted to discuss my "life-plans"

with you and subsequently offering sage advice, and for inspiring me in 6.437!

And thank you, Frans, for adopting me (without any external prompting) as an

additional advisee, when you already had so much on your plate. Getting to work

with you in a one-on-one setting was a once in a lifetime experience for me - I got

to witness firsthand how you think about large scale system design, got detailed

feedback from you on my code, and learned to hold myself to higher standards.

You encouraged me to think for myself and I will always be grateful for it.

Many other professors deserve my thanks, including my academic advisor, Pro-

fessor Tsitsiklis, for constant guidance and support, and to Professors Adalsteins-

son and Winston for lending me their time and advice as I began the search for a

research topic.
I would be remiss if I didn't thank my officemates/LIDS cohorts: Ammar

Ammar, Kuang Xu, Christina Lee, Luis Voloch, and Sahand Negahban. Ammar,
thank you for getting me started in a good direction, Sahand, for letting me use

your algorithm, Christina, for the thought-provoking discussion (I wish we had

started earlier!), Luis for the company on numerous "bridge loops", and Kuang

for the friendship, the idea of applying this approach to ranking in online education,
and for encouraging me after I decided to apply to the PhD program at MIT.

Lastly, my eternal gratitude goes to Albert Wang (S.B. '12, Computer Science),
without whom this project never would have been completed. Albert, I don't know

what I did to deserve a friend like you. Thank you.

References

[Kohler: 2007] Available: http://www.read.seas.harvard.edu/ kohler/hotcrp/.

[Condorcet: 1785] Condorcet, M. Essai sur l'application de l'analyse a la proba-

bilite des decisions rendues a la pluralite des voix. l'Imprimerie Royale, 1785.

[Arrow: 1963] Arrow, K. Social Choice and Individual Values. Yale University

Press, 1963.

43

[Ammar, Shah: 2012] Ammar, A. and Shah, D. (2012). Efficient Rank Aggrega-

tion Using Partial Data. Submitted to the 2012 Sigmetrics Conference.

[Braverman, Mossel: 2008] Braverman, M. and Mossel, E. Noisy sorting without

resampling. In Proceedings of the nineteenth annual ACM-SIAM symposium

on Discrete algorithms, SODA '08, pages 268-276. Society for Industrial and

Applied Mathematics, 2008.

[Negahban, Oh, Shah: 2012] Negahban, S., Oh, S., Shah, D. Iterative Ranking

from Pair-wise Comparisons http://arxiv.org/pdf/1209.1688v1.pdf.

[Shah: 2009] Shah, D. Gossip Algorithms. Foundations and Trends in Networking,

Vol. 3, No. 1 (2008) 1-125.

[Lee, Shah, Ozdaglar: 2013] Lee, C., Shah, D., and Ozdaglar, A. Local Compu-

tation of Network Centrality. To be submitted to the MIT Department of

EECS in partial fulfillment of the requirements for the degree of Master of

Electrical Engineering, June 2013.

44

