SSL splitting: securely serving data from untrusted
caches

Chris Lesniewski-Laas and M. Frans Kaashoek
{ctl,kaashoek }@mit.edu

Laboratory for Computer Science
Massachusetts Institute of Technology

Abstract. A popular technique for reducing the bandwidth load on Web servers
is to serve the content from proxies. Typically these hosts are trusted by the clients
and server not to modify the data that they proxy. SSL splitting is a hew tech-
nigue for guaranteeing the integrity of data served from proxies without requir-
ing changes to Web clients. Instead of relaying an insecure HTTP connection, an
SSL splitting proxy simulates a normal Secure Sockets Layer (SSL) [13] connec-
tion with the client by merging authentication records from the server with data
records from a cache. This technique reduces the bandwidth load on the server,
while allowing an unmodified Web browser to verify that the data served from
proxies is endorsed by the originating server.

SSL splitting is implemented as a patch to the industry-standard OpenSSL library,
with which the server is linked. In experiments replaying two-temgess.log

traces taken from LCS Web sites over an ADSL link, SSL splitting reduces band-
width consumption of the server by between 25% and 90% depending on the

warmth of the cache and the redundancy of the trace. Uncached requests for-

warded through the proxy exhibit latencies within approximately 5% of those of
an unmodified SSL server.

Introduction

Caching Web proxies are a proven technique for reducing the load on centralized servers.
For example, an Internet user with a Web site behind an inexpensive DSL line might

ask a number of well-connected volunteers to act as mirrors or reverse proxies [3] to

provide higher aggregate throughput. In today’s practice, these proxies must be trusted
by both the client and the server to return the data to the client’'s queries, unmodified.
Previous content delivery systems that guarantee the integrity of the data served by
proxies require changes to the client software (e.g., to support SFSRO [14] or BitTor-
rent [7]), or use application-specific solutions (e.g., RPM with PGP signatures [33]).
The former have not seen wide application to the Web due to lack of any existing client
base. The latter are problematic due to PKI bootstrapping issues and due to the large

amount of manual intervention required for their proper use.

This research was partially supported by MIT Project Oxygen and the IRIS project
(http://project-iris.net/), funded by the National Science Foundation under Co-

operative Agreement No. ANI-0225660.

Our goal is to guarantee the integrity of data served by the proxy without requiring
changes to clients. Our approach is to exploit the existing, widely-deployed browser
support for the Secure Sockets Layer (SSL) protocol [13]. We modify the server end of
the SSL connection by splitting it (see Figure 1): the central server sends the SSL record
authenticators, and the proxy merges them with a stream of message payloads retrieved
from the proxy’s cache. The merged data stream that the proxy sends to the client is
indistinguishable from a normal SSL connection between the client and the server. We
call this technique of splitting the authenticator and data rec®8issplitting

Server !

MACs

Payloads

Proxy =

%SL Records
Client &

] Cache

Fig. 1. Data flow in SSL splitting.

SSL splitting cleanly separates the roles of the server and the proxy: the server, as
“author”, originates and signs the correct data, and the proxy, as “distribution channel”,
serves the data to clients. SSL splitting cannot provide confidentiality, since the proxy
must have access to the encryption keys shared between client and server to re-encrypt
the merged stream; thus, our technique is only useful for distributing public data. SSL
splitting also doesn’t reduce the CPU load on the server, since the server is still involved
in establishing the SSL connection, which requires a public-key operation on the server.
The primary advantage of SSL splitting is that it reduces the bandwidth load on the
server.

Our primary application for SSL splitting Barnraising a cooperative Web cache.
We anticipate that cooperative content delivery will be useful to bandwidth-hungry Web
sites with limited central resources, such as software distribution archives and media
artists’ home pages. Currently, such sites must be mirrored by people known and trusted
by the authors, since a malicious mirror can sabotage the content; Barnraising would
allow such sites to harness the resources of arbitrary hosts on the Internet, while still
guaranteeing the integrity of the data. Barnraising could also be used bycco-
operatives of small, independent Web sites, to distribute the impact of localized flash
crowds.

The contributions of this paper are: the design of the SSL splitting technique, in-
cluding the simple protocol between server and proxy to support SSL splitting; an im-
plementation of SSL splitting based on the freely available OpenSSL library; a new,
grassroots content-distribution systeBarnraising which applies SSL splitting to dis-
tribute bandwidth load; and experiments that show that SSL splitting has CPU costs
similar to SSL, but saves server bandwidth, and improves download times for large
files.

2 Goals

SSL splitting’s main goal is to guarantee that public data served by caching Web prox-
ies is endorsed by the originating server. Anybody with an inexpensive DSL line should
be able to author content and distribute it from his own Web server. To allow this lim-
ited connection to support a higher throughput, authors can leverage the resources of
well-connected volunteers acting as mirrors of the site’s content. However, since the
authors may not fully trust the volunteers, we must provide an end-to-end authenticity
and freshness guarantee: the content accepted by a client must be the latest version of
the content published by the author.

Our second goal is to provide data integrity with minimal changes to the existing in-
frastructure. More specifically, our goal is a solution that does not require any client-side
changes and minimal changes to a server. To satisfy this goal, we exploit the existing
support for SSL, by splitting the server end of the connection.

Confidentiality is not a goal. Lack of perfect confidentiality is an inevitable con-
sequence of caching, because any caching proxy must be able to tell when two clients
have downloaded the same file; this requirement violates ciphertext indistinguishability.

SSL splitting is primarily useful to popular sites serving large amounts of pub-
lic, cacheable data — for example, the Debian archéveeyceforge.net , popular
weblogs,electoral-vote.com , or art and multimedia sites. Presently, since they
use only plain HTTP, these sites can only redirect clients to trusted mirrors; adopt-
ing SSL splitting would allow them to offload bandwidth to untrusted hosts. We don’t
propose that the relatively few sites currently using SSL should adopt SSL splitting:
those sites typically serve non-public data which is dynamically generated, and hence
not cacheable. In summary, SSL splitting is not “caching for SSL”; it uses SSL as a
building block to enable caching by untrusted proxies.

SSL splitting does not provide all the benefits of traditional, insecure mirroring.
While it improves the bandwidth utilization of the central site, it incurs a CPU load
similar to a normal SSL server. In addition, it does not improve the redundancy of the
site, since the central server must be available in order to authenticate data. Redundant
central servers must be employed to ensure continued service in the face of server failure
or network partition.

3 Design of SSL splitting

The key idea behind SSL splitting is that a stream of SSL records is separable into a data
component and an authenticator component. As long as the record stream presented to

the client has the correct format, the two components can arrive at the proxy by different
means. In particular, a proxy can cache data components, avoiding the need for the
server to send the data in full for every client.

While SSL splitting does not require changes to the client software, it does require
a specialized proxy and modifications to the server software. The modified server and
proxy communicate using a new protocol that encapsulates the regular SSL protocol
message types and adds two message types of its own.

3.1 SSL overview

The Secure Sockets Layer protocol provides end-to-end mutual authentication and con-
fidentiality at the transport layer of stream-based protocols [13]. A typical SSL connec-
tion begins with a handshake phase, in which the server authenticates itself to the client
and shared keys are generated for the connection’s symmetric ciphers. The symmetric
keys generated for authentication are distinct from those generated for confidentiality,
and the keys generated for the server-to-client data stream are distinct from those gen-
erated from the client-to-server stream.

After completing the handshake, the server and client exchange data asynchronously
in both directions along the connection. The data is split into recor2ls diytes or less.
For each record, the sender computes a Message Authentication Code (MAC) using the
symmetric authentication keys; this enables the receiver to detect any modification of
the data in transit. SSL can provide confidentiality as well as integrity: records may
be encrypted using the shared symmetric encryption keys. Although SSL generates the
keys for both directions from the same “master secret” during the handshake phase, the
two directions are subsequently independent: the client or server’s outgoing cipher state
depends only on the previous records transmitted by that party.

3.2 Interposing a proxy

To access a site using SSL splitting, a Web browser must connect to a proxy using
HTTP over SSL/TLS (HTTPS [25]). The server may have redirected the client to the
proxy via any mechanism of its choice, or the proxy may have already been on the path
between the browser and the server.

The proxy relays the client's connection setup messages to the server, which in
turn authenticates itself to the client via the proxy. Once the SSL connection is set
up, the server starts sending application data: for each record, it sends the message
authentication code (MAC) along with a short unique identifier for the payload. (See
Figure 2.) Using the identifier, the proxy looks up the payload in its local cache, splices
this payload into the record in place of the identifier, and relays this reconstructed record
to the client. The client verifies the integrity of the received record stream, which is
indistinguishable from the stream that would have been sent by a normal SSL server.

SSL splitting is merely textual manipulation of the SSL wire protocol by the server
and the proxy. The client's SSL stack is unaware of the proxy’s involvement in serving
cached data, since the conversation with the proxy is identical at the wire level to a
conversation directly with the server.

SSL Records Zﬁ lm lm lm
MACs = K kK &

Payloads | | | | | | | |

Fig. 2. Decomposition of an SSL stream into authenticators and payloads. The striped box repre-
sents the SSL handshake, which is handled by the server. The shaded boxes represent authentica-
tors, while the white boxes represent payloads.

Because SSL is resistant to man-in-the-middle attacks, and the proxy is a man-in-
the-middle with respect to the SSL handshake, the SSL authentication keys are secret
from the proxy. Only the server and the client know these keys, which enable them
to generate and verify the authentication codes protecting the connection’s end-to-end
integrity and freshness.

3.3 Proxy-server protocol extensions

When a client initiates an HTTPS connection to an SSL-splitting proxy, the proxy im-
mediately connects to the server using the specialized proxy-server protocol. This pro-
tocol defines three message types. The first type of messadpatim is a regular SSL
record, passed transparently through the proxy from the client to the server, or vice
versa. The second type of messagiah is a compact representation of an SSL record:

it contains a MAC authenticator and a short unique identifier for the payload. The third
type of messagekey-exposecommunicates an encryption key from the server to the
proxy.

When the proxy receives SSL records from the client, it forwards them directly to
the server using theerbatimmessage. The server, however, may choose to compress
the data it sends by using tlstub message format. When the proxy receives such a
message from the server, it looks up the data block identified by the message in its local
cache. Itthen reconstructs a normal SSL record by splicing the MAC authenticator from
the stub record together with the payload from the cache, and forwards the resulting
valid SSL record to the client.

3.4 Dropping the encryption layer

A proxy can properly forwarégtubmessages only if it is able to encode the resulting
normal SSL records. If the client and server use SSL with its end-to-end encryption
layer enabled, however, the proxy cannot send validly encrypted messages. End-to-
end encryption inherently foils caching, because a proxy will not be able to determine
when the same data is downloaded by different clients. Therefore, to achieve bandwidth
compression, confidentiality—with respect to the proxy—must be abandoned.

The correct way to eliminate SSL's encryption layer is to negotiate, during the hand-
shake phase, an authentication-only cipher suite SU8S8sRSAWITHNULL SHA

this is usually done with a Web server configuration setting. When such a cipher suite is
in use, no confidentiality is provided for SSL records sent in either direction; only data
authentication is provided.

Unfortunately, this straightforward approach does not achieve full compatibility
with the existing installed client base, because current versions of many popular Web
browsers, such as Netscape and Internet Explorer, ship with authentication-only cipher
suites disabled. The SSL splitting protocol provides a work-around for this problem,
which can be enabled by the server administrator. If the option is enabled and a client
does not offer an authentication-only cipher suite, the server simply negotiates a normal
cipher suite with the client, and then intentionally exposes the server-to-client encryp-
tion key and initialization vector (1V) to the proxy using tkey-exposenessage.

SSL computes the encryption key, IV, and MAC key as independent pseudo-random
functions (PRF) of the master secret. Because SSL uses different PRFs for each key, re-
vealing the cipher key and IV to the proxy does not endanger the MAC key or any of the
client-to-server keys [26, p. 165]. Hendey-expos@reserves the data-authentication
property.

When thekey-exposéeature is turned on and an encrypted cipher suite is negoti-
ated, the client-to-server encryption keys are withheld from the proxy; thus, it would
be possible to develop an application in which the information sent by a client was
encrypted, while the content returned by the server was unencrypted and cacheable by
the proxy. However, unless the application is carefully designed, there is a danger of
leaking sensitive data in the server’s output, and so we do not recommend the use of
SSL splitting in this mode without very careful consideration of the risks.

If necessary, an application can restrict the set of hosts with access to the cleartext
to the client, the server, and the proxy, by encrypting the proxy-server connection. For
example, one could tunnel the proxy-server connection through a (normal) SSL connec-
tion. Of course, this feature would be useful only in applications where the proxy can
be trusted not to leak the cleartext, intentionally or not; as above, we do not recommend
this mode of operation.

3.5 Server-proxy signaling

SSL splitting does not mandate any particular cache coherency mechanism, but it does
affect the factors that make one mechanism better than another. In particular, caching
with SSL splitting is at the SSL record level rather than at the file level. In theory, a
single file could be split up into records in many different ways, and this would be a
problem for the caching mechanism; however, in practice, a particular SSL implemen-
tation will always split up a given data stream in the same way.

Deciding which records to encodeeerbatimrecords and which to encode stsib
records can be done in two ways. The server can remember which records are cached
on each proxy, and consult an internal table when deciding whether to send a record as
a stub. However, this has several disadvantages. It places a heavy burden on the server,
and does not scale well to large numbers of proxies. It does not give the proxies any
latitude in deciding which records to cache and which to drop, and proxies must notify
the server of any changes in their cached set. Finally, this method does not give a clear
way for the proxies to initialize their cache.

Our design for SSL splitting uses a simpler and more robust method. The server
does not maintain any state with respect to the proxies; it encodes recoreibatm
or stubwithout regard to the proxy. If the proxy receivestabthat is not in its local
cache, it triggers a cache miss handler, which uses a simple, HTTP-like protocol to
download the body of the record from the server. Thus, the proxies are self-managing
and may define their own cache replacement policies. This design requires the server to
maintain a local cache of recently-sent records, so that it will be able to serve cache miss
requests from proxies. Although a mechanism similar to TCP acknowledgements could
be used to limit the size of the server’s record cache, a simple approach that suffices
for most applications is to pin records in the cache until the associated connection is
terminated.

The cache-miss design permits the server to use an arbitrary policy to decide which
records to encode aguband hence to make available for caching; the most efficient
policy depends on the application. For HTTPS requests, an effective policy is to cache
all application-data records that do not contain HTTP headers, since the headers are
dynamic and hence not cacheable. Most of the records in the SSL handshake contain
dynamic elements and hence are not cacheable; however, the server’s certificates are
cacheable. Caching the server certificates has an effect similar to that of the “fast-track”
optimization described in [30], and results in an improvement in SSL handshake per-
formance. This caching is especially beneficial for requests of small files, where the
latency is dominated by the SSL connection time.

Since thestubidentifier is unique and is not reused, there is no need for a mecha-
nism to invalidate data in the cache. When the file referenced by an URL changes, the
server sends a different stream of identifiers to the proxy, which does not know anything
about the URL at all. In contrast, normal caching Web proxies [32] rely on invalidation
timeouts for a weak form of consistency.

4 Implementation

Our implementation of SSL splitting consists of a self-contained proxy module and a
patched version of the OpenSSL library, which supports SSL version 3 [13] and Trans-
port Layer Security (TLS) [9].

4.1 Server: modified OpenSSL

We chose to patch OpenSSL, rather than developing our own protocol implementation,
to simplify deployment. Any server that uses OpenSSL, such as the popular Web server
Apache, works seamlessly with the SSL splitting protocol. In addition, the generic
SSLizing proxy STunnel, linked with our version of OpenSSL, works as an SSL split-
ting server: using this, one can set up SSL splitting for servers that don’t natively un-
derstand SSL. This allows SSL splitting to be layered as an additional access method
on top of an existing network resource.

Our modified version of OpenSSL intercepts the record-encoding routine
do_ssl _write and analyzes outgoing SSL records to identify those that would bene-
fit from caching. Our current implementation tags non-header application-data records
and server certificate records, as described in Section 3.5.

Records that are tagged for caching are hashed to produce adglestpayload
ID, and the bodies of these records publishedto make them available to proxies that
do not have them cached. While publishing may take many application-specific forms,
our implementation simply writes these payloads into a cache directory on the server; a
separate daemon process serves this directory to proxies.

Records that are not tagged for caching uselitleeal payload “ID” encoding.
Whether or not the record is tagged for caching, the library encodes the record as a
stubmessage; this design choice simplifies the code.

Because the server may have to ship its encryption key and IV to the proxy, the
modified OpenSSL library contains additional states in the connection state machine
to mediate the sending of they-exposenessage. The server sends this message im-
mediately after anghange _cipher _spec record, since at this point the connection
adopts a new set of keys.

4.2 Proxy

The proxy is simple: it forks off two processes to forward every accepted connection. It
is primarily written in OO Perl5, with the performance-critical block cipher and CBC
mode implementation in C. The proxy includes a pluggable cache hierarchy: when a
cache lookup for a payload ID fails, it can poll outside sources, such as other proxies,
for the missing data. If all else fails, the server itself serves as an authority of last resort.
Only if none of these have the payload will the proxy fail the connection.

The proxy could also replacgerbatimmessages from the client to the server with
stubmessages to avoid sending the complete request to the server. Because the client’s
data consists primarily of HTTP GET requests, however, which are already short and
are not typically repeated, our current proxy doesn't do so. In the future, though, we
may explore a proxy that compresses HTTP headers gsifignessages.

4.3 Message formats

Figures 3 and 4 show the formatedrbatimandstubmessage in the same notation as
the SSL specification. The main difference betwgerbatimandstubis that instub

the payload is split into a compact encoding of the data and a MAC authenticator for
the data. Also, a stub record is never encrypted, since the proxy would have to decrypt
it anyway in order to manipulate its contents.

We have defined two types of encoding for the payload. l¥ael encoding is the
identity function; this encoding is useful for software design reasons, but is functionally
equivalent to arerbatimSSL record.

Thedigestencoding is a SHA-1 [11] digest of the payload contents. This encoding
provides effectively a unique identifier that depends only on the payload. This choice
is convenient for the server, and allows the proxy to store payloads from multiple inde-
pendent servers in a single cache without concern about namespace collisions.

There are many alternative ID encodings possible with the gitginmessage for-
mat; for example, a simple serial number would suffice. The serial number, however,
has only small advantages over a message digest. A serial number is guaranteed to be

enum {
ccs(0x14), alert(0x15), handshake(0x16), data(0x17)
} ContentType;

struct {
ContentType content_type; one byte long
uint8 ssl_version[2];
opaque encrypted_data_and_mac<0..2"14+2048>;

includes implicit 2-byte length field
} VerbatimMessage;

Fig. 3. Format of a verbatim SSL record.

enum {
s_ccs(0x94), s_alert(0x95), s_handshake(0x96), s_data(0x97)
} StubContentType;

enum { literal(1), digest(2), (2°16-1) } IDEncoding;

struct {

StubContentType content_type; = verbatim.content_type | 0x80
uint8 ssl_version[2];

uintl6 length; = 6 + length(id) + length(mac)
IDEncoding encoding;

opaque id<0..2714+2048>;

opaque mac<0..2"14+2048>;

} StubMessage;

Fig. 4. Format of a stub message.

unique, unlike a digest. On the other hand, generating serial numbers requires servers
to maintain additional state, and places an onus upon proxies to separate the caches
corresponding to multiple servers; both of these result in greater complexity than the
digestencoding.
Another alternative is to use as the encoding a compressed representation of the
payload. While this choice would result in significant savings for text-intensive sites,
it would not benefit image, sound, or video files at all, since most media formats are
already highly compressed. For this reason, we have not implemented this feature.
Thekey-exposenessage is used to transmit the server encryption key and IV to the
proxy (see Figure 5), if this feature is enabled. In our implementasiminrecords are
sent in the clear to the proxy, which encrypts them before sending them to the client.

5 Cooperative Web caching using SSL splitting

Using SSL splitting, we have developBdrnraising a cooperative Web caching system
consisting of a dynamic set of “volunteer” hosts. The purpose of this system is to im-
prove the throughput of bandwidth-limited Web servers by harnessing the resources of
geographically diverse proxies, without trusting those proxies to ensure that the correct
data is served.

enum { key_expose(0x58) } KeyExposeContentType;

struct {

KeyExposeContentType content_type;

uint8 ssl_version[2];

uint16 length; = 4 + length(key) + length(iv)
opaque key<0..2714+2048>;

opaque iv<0..2"14+2048>;

} KeyExposeMessage;

Fig. 5. Format of key-expose message.

5.1 Joining and leaving the proxy set

Volunteers join or leave the proxy set of a site by contactirgaker server, which
maintains the volunteer database and handles redirecting client requests to volunteers.

Volunteer hosts do not locally store any configuration information, such as the SSL
splitting server’s address and port number. These parameters are supplied by the broker
in response to the volunteejjgin request, which simply specifies an identifying URI
of the formbarnraising://broker.domain.org/some/site/name

This design enables a single broker to serve any number of Barnralsmg -enabled
Web sites, and permits users to volunteer for a particular site given only a short URI
for that site. Since configuration parameters are under the control of the broker, they
can be changed without manually reconfiguring all proxies, allowing sites to upgrade
transparently.

The broker represents a potential bottleneck for the system, and it could be swamped
by a large number of simultaneous join or leave requests. However, since the join/leave
protocol is lightweight, this is unlikely to be a performance issue under normal oper-
ating conditions. If the load incurred by requests is high compared to the actual SSL
splitting traffic, the broker can simply rate-limit them until the proxy set stabilizes at a
smaller size.

5.2 Redirection

Barnraising currently employs the DNS redirection method [17], but could be modified
to support other techniques, such as URL rewriting [16, 4]. Barnraising’s broker con-
trols amysql [23] database, from whichmydns [22] server processes DNS requests.

Consider a client resolving an URLttps://www.domain.org/foo/ ,
which it may have obtained from an external link or directly from a user. If
www.domain.org is using Barnraising, the DNS server fdomain.org is con-
trolled by the broker, which will resolve the name to the IP address of a volunteer
proxy.

We chose redirection using DNS because it maintains HTTPS reference integrity —
that is, it guarantees that hyperlinks in HTML Web pages dereference to the intended
destination pages. HTTPS compares the hostname specified littpse URL with
the certificate presented by the server. Therefore, when a client contacts a proxy via

Broker

0T

—

Fig. 6. Proxy set for a site using Barnraising.

a DNS name, the certificate presented to the client, by the server, via the proxy, must
match the domain name. When DNS redirection is used, the domain name will be of
the formwww.domain.org , and will match the domain name in the certificate.

5.3 Distributing the Web cache

The client will initiate an HTTPS connection to the proxy, which will forward that
request, using SSL splitting, to the server. Since frequently-accessed data will be served
out of the proxy’s cache, the central server’s bandwidth usage will be essentially limited
to the SSL handshake, MAC stream, and payload IDs.

To increase the set of cached payloads available to a proxy, while decreasing the
local storage requirements, proxies could share the cache among themselves. In this
design, volunteer nodes would join a wide-area Distributed Hash Table (DHT) [8] com-
prising all of the volunteers for a given Web site. When lookups in the local cache fail,
nodes could attempt to find another volunteer with the desired data item by looking for
the data in the DHT. If that fails too, the proxy would contact the central server.

Blocks in the DHT are named by the same cryptographic hash usesufolDs.

This decision allows correctly-operating volunteers to detect and discard any invalid
blocks that a malicious volunteer might have inserted in the DHT.

5.4 Deploying Barnraising

Barnraising is designed to be initially deployed as a transparent layer over an existing
Web site, and incrementally brought into the core of the Web server. Using STunnel

linked with our patched OpenSSL library, an SSL splitting server that proxies an ex-
isting HTTP server can be set up on the same or a different host; this choice allows
Barnraising to be tested without disrupting existing services. If the administrator later
decides to move the SSL splitting server into the core, he can use Apache linked with
SSL-splitting OpenSSL.

The broker requires a working installationrafysql andmydns; since it has more
dependencies than the server, administrators may prefer to use an existing third-party
broker while testing Barnraising. This choice brings the third party into the central trust
domain of the server; much like a traditional mirror, it is a role which can only be filled
by a reputable entity.

The utility of Barnraising will be limited by the volunteer proxies that join it. There-
fore, the proxy software has been designed to be simple to install and use, requiring only
a single URI to configure. Since volunteers will be able to download from each other,
they will have better performance than regular clients, giving users an incentive to in-
stall the software. In the long term, we hope to incorporate more efficient authentication
schemes, such as SFSRO [14], into the volunteer code, using the installed base of SSL
splitting software to bootstrap the more technically sophisticated systems.

6 Evaluation

This section presents microbenchmarks and trace-based experiments to test the effec-
tiveness and practicality of SSL splitting. The results of these experiments demonstrate
that SSL splitting decreases the bandwidth load on the server, and that the performance
with respect to uncached files is similar to vanilla SSL.

6.1 General experimental setup

For the experiments we used the Apache web server (version 1.3.23), linked with
mod.ssl (version 2.8.7), and OpenSSL (version 0.9.6), running under Linux 2.4.18 on a
500 MHz AMD KB6. This server’s network connection is a residential ADSL line with

a maximum upstream bandwidth of 160 kbps. The client was a custom asynchronous
HTTP/HTTPS load generator written in C using OpenSSL, running under FreeBSD 4.5
on a 1.2 GHz Athlon. The proxy, when used, ran under FreeBSD 4.5 on a 700 MHz
Pentium Ill. Both the client and the proxy were on a 100 Mbps LAN, with a 100 Mbps
uplink.

In all of the experiments, the server was bandwidth-limited, not CPU-limited. A typ-
ical modern PC can easily saturate a 100 mbps link with HTTPS traffic. The CPU load
of SSL splitting on a server is the same as that on a regular SSL server, which has been
characterized in detail by previous studies [6, 2]. Therefore, we focus on bandwidth and
latency.

6.2 Bandwidth savings for a single file

Since SSL splitting caches files at the record level, and a cached record costs a fixed
amount to transmit, we would expect the compression level to depend on the file size. A

1000

— HTTP o
--- HTTPS g AN
100+ Y
ENREEEE Cold cache e
--—- Warm cache /,/‘
10_5 /'/'

Bandwidth efficiency (throughput / bandwidth)

001 T T ALY | T TorrTTI o AR |
10B 100 B 1KB 10KB 100KB 1MB 10MR
File size (bvtes)

Fig. 7. Ratio of throughput achieved to bandwidth used, when retrieving a single file from the
server.

series of short microbenchmarks consisting of a single file download confirms that SSL
splitting is far more effective at caching large files than small files. Figure 7 shows the
bandwidth efficiency, calculated as the ratio of file throughput to bandwidth consump-
tion, of HTTP, HTTPS, uncached SSL splitting, and cached SSL splitting. (The dotted
line at 1 represents the theoretical performance of an ideal non-caching protocol with
zero overhead.)

Figure 8 shows this data as the “savings factor”, the ratio of bandwidth consumed by
SSL splitting (with a warm cache) to that consumed by HTTP or HTTPS to transmit the
same file. For 100-byte files, plain HTTP has about one-third the cost of SSL splitting,
since the bandwidth cost for small files is dominated by connection setup; on the other
hand, for one-megabyte files, SSL splitting has a bandwidth savings of 99.5% over
HTTP.

There are two artifacts evident in these graphs. They show a sharp curve upward at
the 3,000 byte point; the reason for this artifact is that Apache sends all of the HTTP
headers and file data in a single SSL record for files smaller than roughly 4,000 bytes,
but sends the HTTP headers in a separate record from the file data for larger files.
There is also a sharp performance drop between 3 megabytes and 10 megabytes: this is

1000+

—— Savingsover HTTP
--- Savingsover HTTPS

100-

10-

Savings factor

10B 100B 1KB 10KB 100KB 1MB 10ME
File size (bvtes)

Fig. 8. Bandwidth savings of SSL splitting over HTTP and HTTPS.

because, for files larger th@32 bytes, Apache sends the file data in records of 8,192
bytes, instead of the maximum record size of 16,384 bytes.

6.3 Bandwidth savings for trace-driven loads

The next set of experiments uses traces from two Web servers to evaluate SSL splitting
on realistic workloads.

Web trace files The Web traces were derived from several-moatitess.log

files taken from two departmental Web servensww.lcs.mit.edu and
amsterdam.lcs.mit.edu . To convert the access logs into replayable traces, all
non-GET, non-status-200 queries were filtered out, URLs were canonicalized, and ev-
ery (URL, size) pair was encoded as a unique URL. The server tree was then populated
with files containing random bytes.

Thewww.Ics trace, which is seven months long, contains 109 GB of downloads
from a server with 10.6 GB of files; tremsterdam trace, which is nine months long,
contains 270 GB of downloads from 77 GB of files. Analyzing randomly-chosen chunks
of various lengths fronwww.Ics showed that most repetition is long-term: a day’s
trace (typically about 100 MB of data transfer) has a repetition factor which varies

10 S—

T
1o
—— www.lcs (10 MB) ;o
(i
0.8 - - - www.lcs (full) i
Rl R amsterdam (10 MB) i
—-—-- amsterdam (full) e
K
I
0.6 H
b
[
1
v
0.4 .j';'
[P
]
[
P
0.2 i
= /7,:/
, =l o
et
0.0 = :

1B 10B 100B 1KB 10KB 100KB 1ME
Reguest download size (bvtes)

Fig. 9. CDF of request sizes www.Ilcs andamsterdam traces.

between 1.5 and 3, while a month is compressible by about a factor of 4, and the whole
trace is compressible by a factor of 10. This data suggests that having proxies keep
blocks around for a long time will pay off, and supports a design in which proxies are
organized into a DHT, since this allows them to store more unique blocks for a longer
period of time.

To keep running experiments manageable over an ADSL line, we selected a typical
daytime chunk representing approximately 10 MB of transfers from each trace. Figure 9
shows the distribution of request sizes in each trace chunk, along with the distribution
in the full traces. Thavww.lcs chunk represents 4.43 MB of files and 10.0 MB of
transfers, for an inherent compressibility factor of 2.26;dhesterdam chunk repre-
sents 8.46 MB of files and 11.6 MB of transfers, for an inherent compressibility factor
of 1.37.

None of our experiments placed any limits on the size of the proxy’s cache, since it
seems reasonable for a mirror host (or DHT) to store a full copy of a 10-70 GB Web
site. The effect of cache size and replacement policy on hit rate has been thoroughly
investigated elsewhere [18, 10, 1], and SSL splitting performance is determined by hit

rate, as shown below.

Measurements Ideally, SSL splitting’s bandwidth utilization should be close to the
inherent compressibility of the input trace. To test this, we played back the two 10 MB
trace chunks to a standard HTTP server, a standard HTTPS server, an SSL splitting
proxy with a cold cache, and an SSL splitting proxy with a warm cache; in each case,
we measured the total number of bytes sent on the server’'s network interface. The re-

=== 10 MB: measured
— 10 MB: simulated
@ Full; smulated

9,
QO:) Q’
D>
N vod
HTTP HTTPS Ided SSL splitting SSL splitting

coldcache coldcache warm cache

Fig. 10.Bandwidth usagensww.lcs trace.

sulting bandwidth usage ratios (measured in bytes of bandwidth used per bytes of file
throughput) are shown as the gray bars in Figures 10 and 11. (The other bars are ex-
plained later in this section.)

As expected, SSL splitting with a cold cache achieves a compression ratio of 2.04 on
www.lcs and 1.25 oramsterdam , with respect to HTTP; the compression is about
5% more with respect to HTTPS, very close to the inherent redundancy. If the cache
is warmed before running the trace, the compression ratio is approximately a factor of
11 for www.lcs and 10 foramsterdam . Analysis of the portions of the trace file
preceding thevww.lcs chunk indicate that if the previous two weeks had been cached
by the proxy, the cache would have been approximately 90% warmaifiséerdam
chunk is too close to the beginning of the trace to perform this analysis.

Simulations The 10 MB trace chunks used in our experiments span only a few hours
each; thus, they might not be representative of Web site traffic over long periods. In
addition, the short chunks do not contain as high a degree of repetition as the long
traces.

Since it is impractical to replay a several-month-long trace from a busy Web site
over an ADSL link, we turned to simulation to estimate the likely performance of SSL
splitting over long periods. Based on the data collected in the single-file microbench-
mark, we constructed a simple linear model of the performance of HTTP, HTTPS, and
SSL splitting in the uncached case: the bandwidth used is a fixed per-file cost plus a
marginal per-byte cost. The marginal cost is slightly greater than one because of packet
and record overhead.

We model the cost of SSL splitting (in the cached case) as a piecewise linear func-
tion: for files smaller than 4,000 bytes, the marginal cost is greater than one, but for
larger files, the marginal cost per byte is very small, approximately 1/250. The marginal
cost increases to about 1/120 for files larger t&nbytes.

1.5-_ === 10 MB: measured
I — 10 MB: simulated
SEF RS wa Full: smulated

10_ Q@Q‘?y
05— 0‘](/2) Qf}_?‘
' N ©
] SO
00- B o

HTTP HTTPS Ideal SSL splitting SSL splitting
coldcache coldcache warm cache

Fig. 11.Bandwidth usageamsterdam trace.

This simple performance model fits the microbenchmark results to within 5%. In
addition, to validate the model, we simulated each experiment with 10 MB trace chunks.
The simulated results, shown as the white bars in Figures 10 and 11, agree very closely
with the measured results.

The results of simulating the full traces, shown as the striped bars, demonstrates that
SSL splitting can take advantage of most of the available redundancy. For example, on
thewww.Ics trace, SSL splitting would have a bandwidth savings of 83% over HTTP;
an ideal protocol with zero overhead and perfect caching would save 90%.

6.4 Latency

When the proxy’s cache is cold, SSL splitting performs similar work to regular SSL;
thus, we expect their latency characteristics to be similar. However, repetition within the
trace confuses the analysis of latency factors, since cached files are faster to download
than uncached files. To address this issue, we filtered out repetitions frovathdcs

trace chunk, and using the resulting uncacheable trace, measured the start and end times
of each request. In order to avoid congestion effects, we performed requests one at a
time.

The resulting graph of latencies versus file size is shown in Figure 12. It shows three
clear lines, one for each of HTTP, HTTPS, and cold SSL splitting. Cold SSL splitting
is about 10% faster than HTTPS for small file sizes and about 10% slower than HTTPS
for large file sizes, but for the most part they are a close match: the majority of file
downloads had less than a 5% difference between the two latencies.

1e+03 E
— HTTP (fit)
--- HTTPS (fit)
le+02+
IR Cold cache (fit)
o HTTP
%) « HTTPS
< 1let01 + Coldcache =
8
3
g 1EH00 - e
_I
1le-02

10B 100B 1KB 10KB 100KB 1MB 10ME
File size (bvtes)

Fig. 12. Distribution of latencies vs. file sizes.

7 Discussion

7.1 Transparent proxying

Unlike typical Web caches [32], SSL splitting involves the main server in every client
request. This has the negative effect of increasing the load on the server. However, it
has the benefit that the server can maintain complete and up-to-date access logs without
the need for additional coordination between the server and the proxies.

7.2 The implications of key exposure

The implementation of SSL splitting provides the option to accept clients using a cipher-
suite with encryption, and to expose intentionally the encryption key to the proxy (see
Section 3.4). Since the only indication of security in most web browsers is a simple
on/off lock icon, there is a legitimate question of whether it is reasonable to mislead
clients about whether their communications with the server are encrypted and secure
against eavesdroppers. We expect that most applications of SSL splitting will not have
any Web forms, since it would be pointless to try to cache dynamic content. However,
a user browsing an URL beginning witittps: might reasonably believe that his
browsing pattern was not available to eavesdroppers; the only way to deal with this is

to notify the user in the text of the Web page. In any case, normal SSL provides no
guarantee that the server will keep its transmissions private; SSL splitting is merely
equivalent to an SSL server which sends a carbon copy of all transmissions to a proxy.

7.3 Alternative proxy design

In the current design of the SSL splitting protocol, the cache is a transparent forwarding
proxy operating at the level of SSL records. An alternative approach would be to oper-
ate at the IP layer, similar to SafeWeb’s Triangle Boy anticensorship service [29]. The
client would connect directly to the server, and the server would compress its outgoing
stream by converting outgoing IP packets containing SSL records to stub records sent to
the cache. The cache would then reconstitute the IP packets and send them to the client,
forging the server’s IP address and the TCP header. This approach would have the ben-
efit of reducing the number of round-trip packet flight times from four to three, and
would also permit the server to “stripe” a connection with a single client across multi-
ple caches. An additional benefit is that no DNS or HTTP redirection technique would
be necessary, since the client’s transmissions would be directly to the server. However,
operating at the IP layer instead of the SSL record layer is fraught with peril: operat-
ing system interfaces are nonstandard and unreliable, networks are likely to black-hole
forged packets, and TCP will not behave properly. Also, such an approach risks creat-
ing an “open relay” which could be used by malicious clients to hide the source of a
denial-of-service attack.

Triangle Boy does not suffer from these issues, because their volunteers need not
send forged raw packets — this is done only by the main server. Also, volunteers will
only forward packets to the SaveWeb server, which limits their utility to an attacker.

7.4 Feedback Loop

SSL splitting ensures that malicious proxies can't tamper with the data requested by
the client. However, in the Barnraising system as described, nothing prevents malicious
proxies from denying service to clients by accepting connections and refusing to reply,
or sending a bogus reply that the client will reject. The server will never know that the
client attempted to make a request.

There are a couple of ways to address this problem. The IP-level architecture sug-
gested in the previous section would be an improvement, since dropped packets would
just result in TCP retransmits. If the server rotated through proxies for each retransmit,
it would eventually reach a good one. However, forwarding at the packet level leaves
the connection open to undetectable sniping by a malicious proxy.

A more complete solution would incorporate feedback at the URL level. For exam-
ple, let's say that the DNS nantreisted.domain.org always resolves to the main
server, and the DNS nanmirror.domain.org resolves to a random Barnraising
proxy. The web site’s pages would contain links onlyrtested.domain.org , but
any request to that domain would result in an HTTP rediregtitoor.domain.org
This has the effect of ensuring that the client directly contacts the server for every re-
quest. If the server doesn’'timmediately see a corresponding connection from the proxy

forwarding the redirected request, then the server can deduce that this proxy is dead or
misbehaving.

8 Related work

Caching and replication in the Web is a subject of much study. Like content-distribution
networks [19] and peer-to-peer systems [24], the primary focus of Barnraising is coop-
eratively sharing the load of serving data. The main difference between Barnraising
and previous work is the use of SSL splitting, which allows Barnraising to serve data
securely through untrusted proxies to unmodified clients.

8.1 \Verifying integrity

The standard approach to providing integrity of data is signing the cryptographic hash
of the data with the server’s private key (or with the private key of the data’s owner).
When the client receives the data and its signature (perhaps through different channels),
it verifies the integrity of the data by verifying the signature. This solution is typically
bundled in the client of a specific application, which users must download to use the
application. RPM [33] and FreeNet [5] are among the many applications that use this
solution.

The system closest in spirit to Barnraising is read-only SFS [14]. SFSRO allows se-
cure distribution of software bundles through untrusted machines. It provides a generic
file system interface, allowing unmodified applications to use SFSRO to distribute data
securely. However, SFSRO requires that an SFS client runs on the client machine, which
restricts its deployment to SFS users. On the other hand, unlike SSL splitting, the SF-
SRO server has to serve only the root block to clients, and the computational require-
ments on the server, untrusted machines, and client are low.

The Secure HTTP (S-HTTP) [27] protocol contains built-in support for caching
proxies, in the form of the “320 SHTTP Not Modified” response code. Like SSL split-
ting, S-HTTP provides an end-to-end freshness and integrity guarantee, but it also pro-
vides limited support for confidentiality from the proxy. S-HTTP’s computational re-
quirements are similar to SSL, and like SFSRO, the deployment of this protocol is
limited.

Untrusted surrogates [12] allow storage-limited clients to cache data on nearby sur-
rogate machines. A server stores data on the surrogate on behalf of the client, and sends
the hash of the data to the client; hence, the client can verify the integrity of data when
retrieved from the surrogate.

8.2 HTTPS proxies

WASP is a proxy for HTTPS connections [21]. Like SSL splitting, it doesn’t require

client changes, and defines a separate protocol between proxy and server. Unlike SSL
splitting, WASP sends the SSL master secret to the proxy. Since SSL uses the master
secret to compute the session keys for both encryption and authentication, this solution

puts considerably more trust in the proxy than SSL splitting does. A malicious WASP
proxy can change the cached data without the client knowing it.

Proxy certificates [31] provides restricted impersonation within an X.509 public-
key infrastructure. A Web site could generate a proxy certificate and hand it to a proxy.
The client can then verify the proxy certificate to determine whether the proxy is trusted
by the web site to serve the data. Proxy certificates require client changes to process the
new X.509 certificate extensions fields, and like WASP, requires the proxy to be trusted
to act on behalf of the server.

8.3 Content distribution systems

Commercial content-distribution systems [19] own the machines they use for serving
data and therefore trust them. When a client contacts a server with HTTPS via a content-
distribution network, the client must trust the content-distribution network to authenti-
cate the server. If SSL splitting were used, the client itself could authenticate the server;
also, this would simplify the operation of the content-distribution system.

Most of the content distribution systems based on recently-developed, scalable
lookup primitives [28, 20, 8] protect the integrity of data by identifying the data by its
cryptographic hash, but the clients must run specialized software to participate in those
systems. Squirrel [15] doesn't require special client software, but it doesn't provide data
integrity.

BitTorrent [7], which also protects data using hashes, has seen broad adoption for
large media file distribution, which is a promising indication of the potential Barnraising
volunteer pool. It has not often been used to serve Web page content, though, since its
protocol isn't yet integrated into standard Web browsers.

In general, these content distrubution systems complement Barnraising by providing
it with good techniques for organizing the proxy set.

9 Summary

SSL splitting is a novel technique for safely distributing the network load on Web sites
to untrusted proxies without requiring modifications to client machines. However, be-
cause SSL splitting is effective only at reducing bandwidth consumption when the proxy
has access to the plaintext of the connection, it is not appropriate for applications that
require confidentiality with respect to the proxy. In addition, SSL splitting incurs a CPU
load on the central server due to public-key cryptography operations; it does not address
the issue of distributing this load.

The main benefits of SSL splitting are that it provides an end-to-end data-integrity
guarantee to unmodified clients, that it reduces the bandwidth consumed by the server,
and that it requires only a simple protocol between the server and the proxy. Exper-
iments with a modified OpenSSL library that supports SSL splitting show significant
bandwidth savings for files larger than 4,000 bytes: when the data of a file is cached on
the proxy, the server need only transmit the SSL handshake messages, HTTP header,
MAC stream, and payload IDs. Because of these advantages and the ease of deploy-
ment, we hope that SSL splitting will form a convenient transition path for content-
distribution systems to provide end-to-end data integrity.

10 Acknowledgements

We thank David Anderson, Russ Cox, Kevin Fu, Thomer Gil, Jacob Strauss, Richard
Tibbetts, the anonymous reviewers, the members of the MIT SIPB, and the members of
the PDOS group at MIT. Also, thanks to the denizens of TOE, Noah Meyerhans, and
thewww.Ics.mit.edu webmasters, for making our measurements possible.

More information on SSL splitting and Barnraising can be foundtp://
pdos.lcs.mit.edu/barnraising/

References

1. ABRAMS, M., STANDRIDGE, C. R., ABDULLA, G., WILLIAMS, S., AND FOX, E. A.
Caching proxies: Limitations and potentials. Rroceedings of the 4th International World-
Wide Web Conferend8oston, MA, Dec. 1995).

2. APOSTOLOPOULOS G., FERIS, V., AND SAHA, D. Transport layer security: How much
does it really cost? IRroceedings of INFOCON1999), IEEE Computer and Communica-
tions Societies.

3. BARISH, G.,AND OBRACZKA, K. World wide web caching: Trends and techniqu&EE
Communications Magazine Internet Technology SeNesy 2000).

4. CAIN, B., BARBIR, A., NAIR, R., AND SPATSCHECK O. Known CN request-routing
mechanisms. draft-ietf-cdi-known-request-routing-02.txt, Network Working Group, Novem-
ber 2002.

5. CLARKE, |., SANDBERG, O., WILEY, B., AND HONG, T. W. Freenet: A distributed
anonymous information storage and retrieval systemPriyc. ICSI Workshop on Design
Issues in Anonymity and Unobservabilifgerkeley, California, June 2000)http://
freenet.sourceforge.net

6. COARFA, C., DRUSCHEL, P., AND WALLACH, D. Performance analysis of TLS web

servers. IrProceedings of NDS&eb. 2002), M. Tripunitara, Ed., Internet Society.

. COHEN, B. BitTorrent http://www.bittorrent.com/

8. DABEK, F., KAASHOEK, M. F., KARGER, D., MORRIS, R., AND STOICA, |. Wide-area
cooperative storage with CFS. Rroc. 18th ACM Symposium on Operating Systems Princi-
ples (SOSP '01(Oct. 2001).

9. DIERKS, T., AND RESCORLA E. The TLS protocol version 1.1. draft-ietf-tls-rfc2246-bis-
04.txt, Network Working Group, April 2003.

10. Duska, B. M., MARwoOOD, D., AND FREELEY, M. J. The measured access characteris-
tics of World-Wide-Web client proxy caches. Rroceedings of the Usenix Symposium on
Internet Technologies and Systefivtonterey, CA, 1997).

11. FIPS 180-1. Secure Hash StandardU.S. Department of Commerce/N.I.S.T., National
Technical Information Service, Springfield, VA, April 1995.

12. AINN, J., SNNAMAHIDEE, S.,AND SATYANARAYANAN , M. Data staging on untrusted
surrogates. Tech. Rep. IRP-TR-02-2, Intel Research, May 2002.

13. FREIER, A. O., KARLTON, P.,AND KOCHER, P. C. The SSL protocol version 3.0. Internet
draft (draft-freier-ssl-version3-02.txt), Network Working Group, November 1996. Work in
progress.

14. FU, K., KAASHOEK, M. F., AND MAZIERES D. Fast and secure distributed read-only file
system.ACM Transactions on Computer SystemsR(February 2002), 1-24.

15. IYER, S., ROWSTRON A., AND DRUSCHEL, P. Squirrel: A decentralized, peer-to-peer web
cache. Ir21st ACM Symposium on Principles of Distributed Computing (PODC 2Q0B)
2002).

~

16.

17.

18.

19.

20.

21.

22.
23.
24,
25.
26.
27.

28.

29.

30.

31.

32.
33.

JANNOTTI, J., GFFORD, D. K., JOHNSON, K. L., KAASHOEK, M. F., AND O’'TOOLE,

Jr., J. W. Overcast: Reliable multicasting with an overlay network.Pfac. of the 4th
OSDI(Oct. 2002), pp. 197-212.

KARGER, D., LEIGHTON, T., LEWIN, D., AND SHERMAN, A. Web caching with consistent
hashing. InThe eighth Word Wide Web Confererf€eronto, Canada, May 1999).

KELLY, T., AND REEVES, D. Optimal Web cache sizing: Scalable methods for exact solu-
tions. InProceedings of the 5th International Web Caching and Content Delivery Workshop
(2000).

KRISHNAMURTHY, B., WILLS, C.,AND ZHANG, Y. On the use and performance of content
distribution networks. Tech. Rep. TD-52AMHL, ATT Research Labs, Aug. 2001.
KusiaTowicz, J., BINDEL, D., CHEN, Y., CZERWINSKI, S., EATON, P., GEELS, D.,
GUMMADI, R., RHEA, S., WEATHERSPOON H., WEIMER, W., WELLS, C.,AND ZHAO,

B. OceansStore: An architecture for global-scale persistent storageroteeedings of the
Ninth international Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 20(Bjston, MA, November 2000), pp. 190-201.
MoDADUGU, N., AND GOH, E.-J. The design and implementation of WASP: a wide-
area secure proxy. Tech. rep., Stanford, Oct. 20@p.//crypto.stanford.edu/
“eujin/papers/wasp.ps .

MoORE, D. MyDNS http://mydns.bboy.net/

My SQL AB. MySQL database serventtp://www.mysgl.com/

OrAM, A., Ed. Peer-to-peer: Harnessing the power of disruptive technolog@®Reilly,

Mar. 2001.

REsScORLA E. HTTP over TLS. RFC 2818, Network Working Group, May 2000.
REsSCORLA E. SSL and TLSAddison-Wesley, 2001.

RESCORLA, E.,AND SCHIFFMAN, A. The Secure HyperText Transfer Protocol. RFC 2660,
Network Working Group, 1999.

RowsTRON A., AND DRUSCHEL, P. Storage management and caching in PAST, a large-
scale, persistent peer-to-peer storage utility.Pfoc. 18th ACM Symposium on Operating
Systems Principles (SOSP 'qQct. 2001).

SAFEWEB. Triangle Boy Whitepaper http://web.archive.org/web/
20030417171335/http://mwww.safeweb.com/tboy _whitepaper.html

SHACHAM, H., AND BONEH, D. Fast-track session establishment for TLS.Phoceed-
ings of NDSSFeb. 2002), M. Tripunitara, Ed., Internet Society, pp. 195-206&p://
hovav.net/

TUCKE, S., ENGERT, D., FOSTER |., WELCH, V., THOMPSON M., PEARLMAN, L., AND
KESSELMAN, C. Internet x.509 public key infrastructure proxy certificate profile. Internet
draft (draft-ietf-pkix-proxy-03), Network Working Group, October 2002. Work in progress.
WESSELS D. Squid internet object cachéttp://squid.nlanr.net/Squid/

WWW.RPM.ORG. RPM software packaging toohttp://www.rpm.org/

