17thACM Symposiunon OperatingSystemaPrinciples(SOSP99)

PublishedasOpemating System&Keview 34(5):124-139Dec. 1999

Separating key management from file system security

David Mazieres, Michael Kaminsky, M. Frans Kaashoek, and Emmett Witchel
MIT Laboratory for Computer Science
dm@lcs.mit.edu, kaminsky@Ics.mit.edu, kaashoek@Ics.mit.edu, witchel@Ics.mit.edu

Abstract

No secue networkfile systermhasever grownto spantheln-
ternet. Existingsystemsll lack adequatekey management
for securityat a global scale Giventhe diversity of the In-
ternet, any particular metanisma file systememploysto
manae keyswill fail to supportmanytypesof use

We proposesepaating key managgementfrom file system
security lettingtheworld shaie a singleglobalfile systermo
matterhowindividualsmanaye keys. We presentSFS,a se-
cure file systenthat avoidsinternal key manajement.While
other file systemsieedkey manajementto map file names
to encryptionkeys, SFSfile nameseffectivelycontainpublic
keys, makingthemself-certifying pathnames Key manaje-
mentin SFSoccurs outsideof the file system,n whateser
procedue uses chooseto genematefile names.

Self-certifyingpathname$reeSFSclientsfromanynotion
of administativerealm,makinginter-realmfile sharingtriv-
ial. They let uses authenticateserves through a number
of differenttechniques.Thefile namespaceoublesasa key
certificationnamespacesothat peoplecanrealizemanykey
mangementschemesausing only standad file utilities. Fi-
nally, with self-certifyingpathnamespeoplecan bootstiap
onekey managjemenimedanismusinganother Thesegorop-
erties male SFSmore versatile than any file systemwith
built-in key management.

1

This paperpresentsSFS,a securenetwork file systemde-
signedto spanthe Internet. SFSpreventsmary vulnerabil-
ities causedby today’s insecurenetwork file systemproto-

Intr oduction

This researchwas partially supportedby a National ScienceFoundation
(NSF) Young Investigator Award and the DefenseAdvanced Research
ProjectsAgeng (DARPA) andRomeLaboratoryunderagreemenhumber
F30602-97-2-0288.

Permissionto make digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthe full citationon thefirst page.To copy otherwisefo
republishto poston senersor to redistritute to lists requiresprior specific
permissiorand/ora fee.

SOSP-1712/199%iawahIsland,SC
© 1999ACM 1-58113-140-2/99/0012 . $5.00

124

cols. It makesfile sharingacrossadministratve realmstriv-
ial, letting usersaccesdiles from arywhereand sharefiles
with anyone. Most importantly SFSsupportsa more di-
verserangeof usesthan ary other securefile system. It
can meetthe needsof software vendors,unclassifiedmili-
tary networks,andevenstudentsunningfile senersin their
dormrooms.In all casesSFSstrivesto avoid cumbersome
securityprocedureshatcouldhinderdeployment.

Few peopleusesecurenetwork file systemgoday despite
thefactthatattaclerscaneasilytampemwith network traffic.
For years,researcherbave known how to designandbuild
file systemghatwork over untrustedhetworks (for instance
Echol4]). If suchafile systemcouldgrow to spantheInter-
net, it would let peopleaccessandsharefiles securelywith
aryonearywhere.Unfortunately no existing file systemhas
realizedthis goal.

The problemlies in the fact that, at the scaleof the In-
ternet,securityeasilybecomesa managemenandusability
nightmare Specifically thereexistsno satishctorymeansof
managingencryptionkeys in sucha large and diversenet-
work. Thewrongkey managemerpolicy harmssecurityor
severelyincornveniencegpeople. Yet, on a global scale dif-
ferentpeoplehave vastly differentsecurityneeds.No single
approacho key managemertanpossiblysatisfyeveryuser

Mostsecuresystemdimit theirusefulnes$y settlingfor a
particularapproacho key managementConsiderhow few
peoplerun secureweb seners comparedo ordinary ones.
Establishinga secureweb sener with SSL involvessignif-
icant time, compleity, and cost. Similarly, in the domain
of remotelogin protocols,anyonewho hasusedboth Ker-
berog29] andthedecentralizedsh[34] packagénowshow
poorlytheKerberosecuritymodelfits settingsn whichuser
accountsarenot centrallymanagedUnfortunately mostse-
curefile systemscometightly coupledwith a key manage-
mentsystemhatcloselyresembleitherKerberosor SSL.

SFStakesa new approachto file systemsecurity: it re-
moveskey managementrom the file systementirely SFS
introducesself-certifyingpathnames-file nameshateffec-
tively containtheappropriateemotesener’'spublickey. Be-
causeself-certifyingpathnameslreadyspecifypublic keys,
SFSneedso separat&key managementachineryto com-
municatesecurelywith file seners. Thus, while otherfile
systemsave specificpoliciesfor assignindile namego en-

cryptionkeys, SFSskey managemeryolicy resultsfromthe
choiceusersmalke of which file namego accessn the first
place.

SFSfurther decouplesuser authenticationfrom the file
systemthrougha modulararchitecture. Externalprograms
authenticatauserswith protocolsopaqueto the file system
softwareitself. Theseprogramscommunicatewith the file
systemsoftwarethroughwell-definedRPCinterfaces.Thus,
programmersan easily replacethemwithout touchingthe
coreof thefile system.

Pushingkey managemenbut of the file systemlets ar-
bitrary key managemenpolicies coexist on the samefile
system,which in turn makes SFSusefulin a wide range
of file sharing situations. This paperwill describenu-
merouskey managementechniquesbuilt on top of SFS.
Two in particular—certification authoritiesand passverd
authentication—botHill important needs. Neither could
have beenimplementedhad the other beenwired into the
file system.

Without mandatingary particularapproachto key man-
agement SFSitself also providesa greatkey management
infrastructure Symboliclinks assigrhuman-readableames
to self-certifyingpathnamesThus,SFS5 globalnamespace
functionsasa key certificationnamespaceOnecanrealize
mary key managemengchemesisingonly simplefile utili-
ties. Moreover, peoplecan bootstrapone key management
mechanismwith another In practice,we have found the
ability to combinevariouskey managemenschemegyuite
powerful.

We implementedSFSfocusingon threemajor goals: se-
curity, extensibility, and portability. We achieved portabil-
ity by runningin userspaceand speakingan existing net-
work file systemprotocol (NFS [23]) to the local machine.
As aresult,the SFSclient and sener softwarerun on most
UNIX platforms. We sacrificedperformancdor portability
in our implementation.Nonethelessgvenfrom userspace,
SFSperformscomparablyto NFS version3 on application
benchmarksSeveralof theauthorshave their homedirecto-
rieson SFSandperformall theirwork onit.

2 Design

SFS5 designhasa numberof key ideas. SFSnamesfiles
with self-certifying pathnameghat allow it to authenticate
seners without performing key management. Through a
modularimplementation SFSalso pushesuserauthentica-
tion out of the file system.SFSitself functionsasa corve-
nientkey managemeninfrastructure makingit easyto im-
plementandcombinevariouskey managemennechanisms.
Finally, SFSseparatekey revocationfrom key distribution,
preventingflexibility in key managemerfrom hinderingre-
covery from compromisedkeys. This sectiondetailsthe de-
signof SFS.

125

2.1 Goals

SFSsgoalof spanninghelnternetfacedwo challengesse-
curity andthe diversity of the Internet. Attackerscaneasily
tamperwith network traffic, making strongsecurityneces-
sarybeforepeoplecantrusttheirfiles to aglobalfile system.
At the sametime, SFSmust satisfy a wide rangeof Inter-

netuserswith differentsecurityneedslt is not sufficient for

SFSto scaleto mary machinedn theory—it mustalsosat-
isfy thespecificneedsf diverseusersonthelnternettoday

In short, SFSneedsthreepropertiesto achieve its goals: a

globalfile systemimage,security andversatility.

2.1.1 Global file systemimage

SFS§ goalof asingleglobalfile systemrequiregthatit look
the samefrom every client machinein the world. It must
not matterwhich client a personusesto accessher files—
a global file systemshould behare the sameeverywhere.
Moreover, no incentive shouldexist for sitesto subvert the
global imageby creatingan “alternate” SFS (for instance,
out of theneedto have a differentsetof senersvisible).

To meetthis goal, we strippedthe SFSclient software of
ary notionof administratve realm. SFSclientshave no site-
specificconfigurationoptions.Senersgrantaccesdo users,
notto clients.Userscanhave account®nmultiple, indepen-
dentlyadministeredseners. SFS5 globalfile systemimage
thenallows simultaneousccesgo all the senersfrom ary
client.

2.1.2 Security

SFSsplits overall securityinto two pieces: file systemse-
curity and key manayement SFSproperprovidesonly file
systemsecurity Informally, this propertymeanghatattack-
erscannotreador modify thefile systemwithout permission,
andprogramgyetthe correctcontentsof whatever files they
askfor. We definethe term more preciselyby enumerating
theassumptionandguaranteethat SFSmales.
SFSassumeshatuserstrustthe clientsthey use—forin-
stanceclientsmustactuallyrunthereal SFSsoftwareto get
its benefits.For mostfile systemsusersmustalsotrustthe
sener to storeand return file datacorrectly (though pub-
lic, read-onlyfile systemscanresideon untrustedseners).
To get practical cryptography SFS additionally assumes
computationallyboundedadwersariesand a few standard
compleity-theoretichardnessonjectures Finally, SFSas-
sumesthat malicious partiesentirely control the network.
Attackers caninterceptpackets, tamperwith them,andin-
jectnew pacletsontothe network.
UndertheseassumptionsSFSensureghat attaclerscan
donoworsethandelaythefile system$operatiornor conceal
the existenceof senersuntil reliable network communica-
tion is reestablishedSFScryptographicallyenforcesall file

accesscontrol. Userscannotread, modify, delete,or oth-

erwisetamperwith files without possessingn appropriate
secretkey, unlessanorymousaccesss explicitly permitted.
SFSalsocryptographicallyguaranteethatresultsof file sys-
tem operationscomefrom the appropriatesener or private
key owner. Clientsandread-writesenersalwayscommuni-
cateover alow-level securechannethatguaranteesecrey,

dataintegrity, freshnesgincluding replay prevention),and
forward secreyg (secreg of previously recordedencrypted
transmissiongn the faceof a subsequentompromise).The

encryptionkeys for thesechannelscannotbe shortenedo

insecurdengthswithout breakingcompatibility.

File systemsecurityin itself doesnot usually satisfy a
users overall securityneeds.Key managemerletsthe user
harnessfile systemsecurity to meet higherlevel security
goals. The right key managemenmechanisnmdependson
thedetailsof ausers higherlevel goals.A usermaywantto
accesafile senerauthenticatedby virtue of a pre-arranged
secrepassword, or elsethefile systenof awell-knowncom-
pary, or eventhe catalogof ary reputablemerchansellinga
particularproduct.No key managemennechanisnsatisfies
all needs.Thus, SFStakesthe approactof satisfyingmary
key managemenmechanismsit provides powerful primi-
tivesfrom which userscaneasilybuild a wide rangeof key
managemennechanisms.

2.1.3 Versatility

SFSshouldsupportasbroada rangeof usesas possible—
from passwerd-authenticatedccesso one’s personafilesto
browsing well-known seners. In all cases SFSmustavoid
unnecessarparriersto deployment. In particular anyone
with an Internetaddressor domainnameshouldbe ableto
createanew file senerwithoutconsultingor registeringwith
ary authority

SFSachievesversatilitywith threepropertiesanegalitar
ian namespacea powerful setof primitiveswith which to
implementkey managementand modularity ThoughSFS
givesevery file the samenameon every client, no one con-
trols the global namespacegveryonehasthe right to adda
new senerto thisnamespace.

SFSssecureglobalnamespacalsofacilitatesa broadar-
ray of key managemergchemesOnecanimplementmary
scheme®y simply creatingandservingfiles over SFS.SFS
alsoletsusersemploy arbitraryalgorithmsduring file name
resolutionto look up andcertify public keys. Differentusers
canemploy differenttechniquego certify the samesener;
SFSletsthemsafelysharethefile cache.

Finally, SFShasa modularimplementation. The client
andsener areeachbrokeninto a numberof programsthat
communicatéhroughwell-definedinterfaces.Thisarchitec-
ture makesit easyto replaceindividual partsof the system
andto add new ones—includingnew file systemanduser
authenticatiomprotocols.Several piecesof clientfunctional-

126

ity, includinguserauthenticationpccurin unprivilegedpro-

cessesinderthe controlof individual users.Userstherefore
have amaximalamountof configurationcontroloverthefile

system,which helpseliminatethe needfor clientsto know

aboutadministratve realms.

2.2 Self-certifying pathnames

As adirectconsequencef its designgoals,SFSmustcryp-
tographicallyguaranteghe contentsof remotefiles without
relying on externalinformation. SFScannotuselocal con-
figurationfiles to help provide this guaranteeas suchfiles
would violate the globalfile systemimage. SFScannotre-
quireaglobalauthorityto coordinatesecurityeither assuch
anauthoritywould severelylimit versatility Individualusers
might supply clientswith securityinformation, but this ap-
proachwould make sharinga file cachevery difficult be-
tweenmutually distrustfulusers.

Without external information, SFSmust obtain file data
securelygiven only a file name. SFSthereforeintroduces
self-certifyingpathnames-file namesthat inherentlyspec-
ify all informationnecessaryo communicatesecurelywith
remotefile seners,namelya network addressanda public
key.

Every SFSfile systemis accessiblaindera pathnameof
the form /sfs/Location: HostID. Location tells an SFS
clientwhereto look for thefile systems sener, while HostID
tellsthe client how to certify a securechanneto thatsener.
Location can be eithera DNS hostnameor an IP address.
To achieve securecommunicationevery SFSsener hasa
public key. HostID is a cryptographichashof thatkey and
thesener’sLocation HostIDslet clientsasksenersfor their
publickeys andverify theauthenticityof thereply. Knowing
thepublic key of asenerletsa clientcommunicatesecurely
with it.

SFS calculatesHostID with SHA-1 [8], a collision-
resistanhashfunction:

HostID = SHA-1 (“HostInfo”, Location PublicKey,
“HostInfo”, Location PublicKey)

SHA-1 hasa 20-byteoutput,muchshorterthanpublic keys.
Nonethelessfinding ary two inputs of SHA-1 that pro-
ducethe sameoutputis believed to be computationallyin-
tractablet Thus,no computationallyboundedattacler can
producetwo public keys with the sameHostID; HostID ef-
fectively specifiesa unique,verifiablepublic key. Giventhis
schemethepathnamef an SFSfile systementirely suffices
to communicatesecurelywith its sener.

Figurel shavstheformatof anactualself-certifyingpath-
name.All remotefiles in SFSlie underthe directory/sfs.

1SFSactuallyduplicatesheinputto SHA-1. Any collision of thedupli-
cateinput SHA-1 is alsoa collision of SHA-1. Thus,duplicatingSHA-1's
input certainlydoesnot harmsecurity;it could concevably helpsecurityin
theeventthatsimpleSHA-1 falls to cryptanalysis.

Location

HostID (specifiegpublic key)

pathonremotesener

/sfs/sfs.lcs.mit.edu: vefvsvbwd4hz9isc3rb2x648ish742hy / pub/links/sfscvs

Figure 1: A self-certifying pathname

Within that directory SFS mountsremotefile systemson
self-certifyingpathnamesf theform LocationHostID. SFS
encodeghe 20-byteHostID in base32, using 32 digits and
lower-caseletters. (To avoid confusion,the encodingomits
thecharactersl” [lower-casel], “1” [one],“0” and“o”.

SFSclientsneednotknow aboutfile systemdbeforeusers
accesghem. When a userreferences non-&istent self-
certifyingpathnamen /sfs, aclientattemptgo contactthe
machinenamedby Location If that machineexists, runs
SFS,andcanprove possessionf a privatekey correspond-
ing to HostID, thentheclient transparentlyreatesherefer
encedpathnamendmountsthe remotefile systenthere.

Self-certifying pathnames combine with automatic
mounting to guaranteeeveryone the right to create file
systems.Given an Internetaddressor domainnameto use
asa Location anyonecangeneratea public key, determine
the correspondingHostID, run the SFS sener software,
andimmediatelyreferencethat sener by its self-certifying
pathnamenary clientin theworld.

Key managemenpolicy in SFSresultsfrom the names
of the files usersdecideto access.Oneusercanretrieve a
self-certifyingpathnamaevith his passverd. Anothercanget
the samepathfrom a certificationauthority A third might
obtainthepathfrom anuntrustedsource but wantcautiously
to perusehefile systemanyway. SFSdoesnt carewhy users
believe this pathnameor evenwhatlevel of confidencehey
placein thefiles. SFSjustdeliverscryptographidile system
securityto whateverfile systemthe usersactuallyname.

2.3 The /sfs directory

The SFSclient breakssereralimportantpiecesof function-
ality out of thefile systeminto unprivilegeduseragentpro-
cesses.Every useron an SFSclient runs an unprivileged
agentprogramof his choice,which communicatesvith the
file systemusingRPC. The agenthandlesauthenticatiorof
the userto remoteseners, preventsthe userfrom accessing
revoked HostIDs, and controlsthe users view of the /sfs
directory Userscanreplacetheir agentsat will. To access
a sener runninga new userauthenticatiorprotocol, for in-
stancea usercansimply run the new agenton anold client
with no specialprivileges.

The SFSclient mapsevery file systemoperationto a par
ticular agentbasedon the local credentialsof the process

127

makingthe reques The client maintainsa different/sfs
directory for eachagent, and tracks which self-certifying
pathnamesave beenreferencedn which /sfs directory
In directorylistingsof /sfs, theclient hidespathnameshat
have never beenaccessedindera particularagent. Thus,
a naive userwho searchedor HostIDs with command-line
filenamecompletioncannotbe tricked by anotheruserinto
accessinghewrongHostID.

SFSagentshave the ability to createsymbolic links in
/sfs visible only to their own processes.Theselinks can
map human-readabl@amesto self-certifying pathnames.
Whenauseraccesseafile notof theform LocationHostID
in /sfs, theclient softwarenotifiesthe appropriateagentof
theevent. Theagentcanthencreatea symboliclink on-the-
fly soasto redirectthe usersaccess.

2.4 Sewer key management

Mostuserswill neverwantto manipulateraw self-certifying

pathnames.Thus, one mustaskif SFSactuallysolvesary

problemdor theaverageuser orif in practicet simply shifts

theproblemdo adifferentpartof thesystem We addresshe

guestionby describingnumerouausefulsener key manage-
menttechniquesuilt on SFS.In every case ordinaryusers
neednot concernthemseleswith raw HostIDs.

Manual key distrib ution. Manualkey distributionis eas-
ily accomplishednh SFSusingsymboliclinks. If theadmin-
istratorsof a sitewantto install somesener’s public key on
the local hard disk of every client, they can simply create
a symboliclink to the appropriateself-certifyingpathname.
Forexample giventhesenersfs.lcs.mit.edu,clientma-
chinesmightall containthelink: /1cs — /sfs/sfs.lcs.
mit.edu:vefvsvbwd4hz9isc3rb2x648ish742hy. Users
in thatenvironmentwould simply referto filesas/1cs/....
The passwerd file might list a users home directory as
/lcs/users/dm.

Secuklinks. A symboliclink on oneSFSfile systemcan
point to the self-certifying pathnameof anothey forming a
securelink. In the previous example,the path /1cs/pub/
links/sfscvs designatethefile /pub/links/sfscvson
the sener sfs.1lcs.mit.edu. Thatfile, in turn, might be
a symboliclink pointingto the self-certifying pathnameof

2Typically eachuserhasoneagent,andrequestsrom all of the users
processegetmappedo thatagent.Userscanrun multiple agentshowever.
Additionally, anssuutility allows a userto mapoperationgerformedin a
particularsuperusershellto herown agent.

senersfscvs.lcs.mit.edu. Usersfollowing securdinks
neednot know anything aboutHostIDs.

Secure bookmarks. Whenrun in an SFSfile system,
the Unix pwd commandeturnsthe full self-certifyingpath-
name of the currentworking directory From this path-
name, one can easily extract the Location and HostID of
the sener one is currently accessing. We have a 10-line
shell script calledbookmarkthat createsa link Location—
/sfs/LocationHostID in a users ~/sfs-bookmarks di-
rectory With shellsthat supportthe cdpathvariable,users
canaddthis sfs-bookmarks directoryto their cdpatts. By
simply typing “cd Locatior?, they cansubsequentlyeturn
securelyto ary file systenmthey have bookmarled.

Certification authorities. SFS certification authorities
arenothingmorethanordinaryfile systemservingsymbolic
links. For example,if Verisignactedas an SFScertifica-
tion authority clientadministratorsvould lik ely createsym-
bolic links from their local disksto Verisign’s file system:
/verisign — /sfs/sfs.verisign.com:r6ui9gwucpkz
85uvb95cq9hdhpfbz4dpe. This file systemwould in turn
containsymboliclinks to otherSFSfile systemssothat, for
instance,/verisign/sfs.mit.edu might pointto /sfs/
sfs.mit.edu:bzccbhder7cuc86kf6qswyxbyuemnw69.

Unlike traditional certificationauthorities,SFScertifica-
tion authoritiesgetqueriedinteractively. This simplifiescer
tificaterevocation,but alsoplaceshighintegrity, availability,
andperformanceneedson the seners. To meettheseneeds,
we implementeda dialect of the SFS protocol that allows
senersto provethecontentof public,read-onlyfile systems
usingprecomputedligital signaturesThis dialectmakesthe
amountof cryptographiccomputationrequiredfrom read-
only seners proportionalto the file systems size andrate
of changeratherthanto the numberof clientsconnectinglt
alsofreesread-onlysenersfromtheneedo keepary on-line
copiesof their private keys, which in turn allows read-only
file systemgo bereplicatedon untrustednachines.

Password authentication. SFSlets peopleretrieve self-
certifying pathnamessecurelyfrom remote seners using
their passverds. Unfortunately usersoften choosepoor
passwerds. Thus, ary passwerd-basedauthenticationof
seners must prevent attaclers from learning information
they canuseto mountanoff-line password-guessingttack®

Two programs,sfsley and authsery usethe SRP proto-
col[33] to let peoplesecurelydownloadself-certifyingpath-
namesusing passvords. SRP permitsa client and sener
sharingaweaksecreto negotiatea strongsessiorkey with-
outexposingtheweaksecreto off-line guessingattacks.To
useSRR an SFSuserfirst computesa one-way function of

30f course anattacler canalwaysmountan on-line attackby connect-
ing to a sener andattemptingto “authenticate”a self-certifyingpathname
with aguessegassverd. We make suchon-lineattacksvery slow, howvever.
Moreover, anattacler who guesse4,000passverdswill generatel,000log
messagesn the sener. Thus,on-line passvord guessingattemptscanbe
detectecandstopped.

his passverd and storesit with the authservdaemonrun-
ning on his file sener. sfsley thenusesthe passverd asin-
put to SRPto establisha securechannelto the authserv It
downloadsthefile sener’s self-certifyingpathnameverthis
channelandhasthe users agentcreatea link to the pathin
the /sfs directory

In theparticularuserauthenticatioimnfrastructureve built
(seeSection2.5), eachuserhashis own public keys with
which to authenticatdimself. A userscanadditionallyreg-
ister an encryptedcopiesof his private keys with authserv
andretrieve thatcopy alongwith the sener’s self-certifying
pathnameThepassverd thatencryptgheprivatekey is typ-
ically alsothepassverd usedin SRP—asafedesignbecause
thesener never seesary passwrd-equvalentdata.

Supposea user from MIT travels to a researchlabora-
tory andwishesto accesdiles backat MIT. The userruns
thecommand'sfskey add dm@sfs.lcs.mit.edu”. The
commandprompts him for a single passverd. He types
it, and the commandcompletessuccessfully The users
agenthencreateg symboliclink /sfs/sfs.1lcs.mit.edu
— /sfs/sfs.lcs.mit.edu:vefvsvbwd4hz9isc3rb2x6
48ish742hy. The usertypes“cd /sfs/sfs.lcs.mit.
edu”. Transparentlyheis authenticatedo sfs.lcs.mit.
edu using a private key that sfsley just downloadedin en-
cryptedform over an SRP-ng@otiatedsecurechannel. The
usernow hassecureaccesdo his files backat MIT. The
processinvolves no systemadministratorsno certification
authorities,andno needfor this userto have to think about
arything like public keys or self-certifyingpathnames.

Forwarding pointers. SFSneverreliesonlong-liveden-
cryptionkeysfor secreg, only for authenticationln particu-
lar, anattaclerwho compromisesfile senerandobtainsits
privatekey canbeginimpersonatinghesener, but hecannot
decryptpreviously recordednetwork transmissions.Thus,
oneneednot changea file sener’s public key preemptvely
for fearof futuredisclosure.

Nevertheless,seners may needto changetheir self-
certifying pathnamegfor instanceif they changedomain
names). To easethe transitionif the key for the old path
still exists, SFScansene two copiesof the samefile system
underdifferentself-certifyingpathnamesAlternatively, one
canreplacethe root directory of the old file systemwith a
single symboliclink or forwarding pointerto the new self-
certifying pathname.

Of coursejf aself-certifyingpathnamechangeis precip-
itated by disclosureof the old private key, an attacler can
sene roguedatato usersinsteadof the correctforwarding
pointer As discussedn Section2.6, a differentmechanism
is neededo revoke the pathname®f compromisedorivate
keys.

Certification paths. A user can give his agent a
list of directories containing symbolic links, for exam-
ple ~/sfs-bookmarks, /verisign, /verisign/yahoo.
When the useraccesses non-self-certifyingpathnamein

/sts, theagentmapsthe nameby looking in eachdirectory
of the certificationpathin sequencelf it finds a symbolic
link of the samenameasthe file accessedit redirectsthe
userto the destinationof this symboliclink by creatinga
symboliclink on-the-flyin /sfs.

Existing public key infrastructur es. On-the-fly sym-
bolic link creationin /sfs canbe usedto exploit existing
public key infrastructures. For example, one might want
to useSSL [10Q] certificatesto authenticateSFSseners, as
SSLs certification model suits somepurposeswell. One
canin factbuild anagentthatgenerateself-certifyingpath-
namedrom SSL certificates.The agentmight interceptev-
ery requestfor a file nameof the form /sfs/hostname.
ssl. It would contacthostname’s securevebsener, down-
load and checkthe sener’s certificate,and constructfrom
thecertificatea self-certifyingpathnameo which to redirect
theuser

2.5 Userauthentication

While self-certifying pathnamesolve the problem of au-
thenticatingfile senersto users SFSmustalsoauthenticate
usersto seners. As with sener authenticationno single
meanf userauthenticatiorbestsuitsall needs.SFSthere-
fore separatesiserauthenticatiorfrom thefile system.Ex-
ternal software authenticatesisersthrough protocolsof its
own choosing.

On the client side, agentshandle user authentication.
When a userfirst accessesin SFSfile system,the client
delaysthe accessand notifies his agentof the event. The
agentcanthenauthenticatéhe userto the remotesener be-
fore thefile acceszompletesOnthe senerside,a separate
programtheauthenticatiorsener or “authserer,” performs
userauthentication.The file sener andauthserer commu-
nicatewith RPC.

The agentand authserer passmessageso each other
throughSFSusinga (possiblymulti-round)protocolopaque
to thefile systemsoftware. If the authserer rejectsan au-
thenticationrequestthe agentcantry againusingdifferent
credentialsor a differentprotocol. Thus,one canadd nev
userauthenticatiorprotocolsto SFSwithout modifying the
actualfile systemsoftware. Moreover, a single agentcan
supportseveralprotocolsby simply trying themeachin suc-
cessiorto ary givensener.

If a userdoesnot have an accounton a file sener, the
agentwill after somenumberof failed attemptsdeclineto
authenticatehe user At thatpoint, the userwill accesghe
file systemwith anorymouspermissionsDependingon the
sener’sconfigurationthis maypermitaccesso certainparts
of thefile system.

129

2.5.1 sfsagent and authserv

This sectiondescribeshe userauthenticatiorsystenwe de-
signedandbuilt for SFSusingtheframawork justdescribed.
Oursystemconsistf anagentprogramcalledsfsagentand
anauthserer, authserv

Oneof the greatadvantageof self-certifyingpathnames
is the easewith which they let anyone establisha new file
sener. If usershad to think about authenticatingthem-
selvesseparatelyto every new file sener, however, the bur-
denof userauthenticationvould discouragehecreationnew
seners. Thus,our goalwasto make userauthenticatioras
transparenaspossibleto usersof SFS.

All usershave one or more public keys in our system.
sfsayent runswith the correspondingrivatekeys. Whena
client asksan agentto authenticatets user the agentdig-
itally signsan authenticatiorrequest. The requestpasses
throughthe client to sener, which hasauthserwalidateit.
authservmaintainsa databasenappingpublic keys to user
credentials. Whenit receivesa valid requestfrom the file
sener, authserveplieswith asetof Unix credentials—aiser
ID andlist of grouplDs.

sfsaent currentlyjust keepsa users privatekey in mem-
ory. However, we ervisagea variety of more sophisticated
agents. The agentneednot have direct knowledgeof ary
privatekeys. To protectprivatekeys from compromisefor
instancepnecouldsplitthembetweeranagentandatrusted
authserer usingproactie security An attacler would need
to compromiseboththe agentandauthserer to steala split
secretkey. Alternatively, the agentmight simply communi-
catethrougha serialportwith a PDA thatknowsthekey.

Proxy agentscould forward authenticationrequeststo
other SFSagents. We hopeto build a remotelogin utility
similar to ssh[34] thatactsasa proxy SFSagent.Thatway,
userscanautomaticallyaccessheir files whenloggingin to
aremotemachine.Authenticatiorrequestsontainthe self-
certifying pathnamef the seneraccessetly theuser They
alsocontainafield reseredfor thepathof processeandma-
chinesthroughwhich the requestarrive at the agent. Thus,
an SFSagentcankeepa full audittrail of every privatekey
operationit performs.

2.5.2 Userkey management

authservtranslatesauthenticatiorrequestsnto credentials.
It doessoby consultingoneor moredatabasemappingpub-
lic keysto users.BecauseSFSis a securdfile systemsome
databasesanresideon remotefile senersandbe accessed
throughSFSitself. Thus,for example,asener canimporta
centrally-maintainedist of usersover SFSwhile alsokeep-
ing a few guestaccountsn alocal databaseauthservauto-
maticallykeepdocal copiesof remotedatabasest cancon-
tinueto functionnormallywhenit temporarilycannotreach
the senersfor thosedatabases.

Eachof authservs public key databasess configuredas
eitherread-onlyor writable. authservhandlesa numberof
managementasksfor usersin writable databasesit allows
themto connectover the network with sfsley and change
their public keys, for example.It alsoletsthemregisterSRP
dataandencryptedcopiesof their privatekeys for passverd
authenticationasdescribedn Section2.4. To easegheadop-
tion of SFS,authservcanoptionally let userswho actually
log in to a file sener registerinitial public keys by typing
their Unix passvords.

A sener can mounta passverd guessingattackagainst
a userif it knows her SRP dataor encryptedprivate key.
SFS makes such guessingattacksexpensie, however, by
transformingpassverdswith theeksblavfishalgorithm[19].
Eksblonfish takes a cost parameterthat one can increase
ascomputergyet faster Thus, even ashardwareimproves,
guessingattacksshouldcontinueto take almosta full sec-
ond of CPU time peraccountandcandidatgpassverd tried.
Of course the client-sidesfskey programmustinvestcorre-
spondinglymuch computationeachtime it invokes SRPor
decryptsa users privatekey.

Veryfew senersactuallyneedaccesso ausersencrypted
privatekey or SRPdata, however. authservmaintainstwo
versionsof every writable databasea public oneanda pri-
vateone. The public databaseontainspublic keys andcre-
dentials,but no information with which an attacler could
verify a guessedprassvord. A sener can safely export a
public databaseo the world on an SFSfile system. Other
authserg canmake read-onlyuseof it. Thus,for instance,
a centralsener can easily maintainthe keys of all usersin
a departmentand export its public databasdo separately-
administeredile senerswithout trustingthem.

2.6 Revocation

When a sener’s private key is compromisedjts old self-
certifying pathnamemay lead usersto a fake sener run by
a malicious attacler. SFSthereforeprovidestwo mecha-
nismsto prevent usersfrom accessingbad self-certifying
pathnameskey revocationandHostID blocking. Key revo-
cationhappen®nly by permissiorof afile sener’'sowner. It
automaticallyappliesto asmary usersaspossible.HostID
blocking, on the otherhand,originatesfrom a sourceother
than a file system$ owner, and can concevably happen
againstthe owner’s will. Individual users’agentsmustde-
cidewhetheror notto honorblockedHostIDs.

In keepingwith its generabphilosophy SFSseparatekey
revocationfrom key distribution. Thus, a singlerevocation
mechanisntanrevoke aHostlD thathasbeendistributednu-
meroudifferentways. SFSdefinesa messagéormatcalled
akey revocationcertificate constructedsfollows:

{“PathRevoke”, Location K, NULL } zr

Revocationcertificatesareself-authenticatingThey con-

130

taina public key, K, andmustbe signedby the correspond-
ing privatekey, K —!. “PathReroke” is a constant.Location
correspondgo the Locationin the revoked self-certifying
pathname. NULL simply distinguishesrevocation certifi-
catesfrom similarly formatedforwardingpointers. A revo-
cation certificatealways overrulesa forwarding pointer for
thesameHostID.

When the SFS client software seesa revocation certifi-
cate,it blocksfurther accessy arny userto the HostID de-
terminedby the certificates Locationand K. Clientsobtain
revocationcertificatesin two ways: from senersandfrom
agents. When SFSfirst connectso a sener, it announces
the Locationand HostID of thefile systemit wishesto ac-
cess. The sener canrespondwith a revocationcertificate.
Thisis notareliablemeansof distributing revocationcertifi-
catesbut it may help getthe word out fastabouta revoked
pathname.Alternatively, when a userfirst accesses self-
certifying pathnamethe client askshis agentto checkif the
pathhasbeenrevoked. At that point the agentcanrespond
with arevocationcertificate.

Revocation certificates might be used as follows.
Verisigndecidego maintaina directorycalled/verisign/
revocations. In that directory reside files named by
HostID, whereeachfile containsa revocationcertificatefor
the correspondindgHostID. Whenever a useraccessea new
file systemhis agentcheckstherevocationdirectoryto look
for arevocationcertificate.If oneexists,theagentreturnsit
to theclient software.

Becauserevocation certificatesare self-authenticating,
certificationauthoritiesneednot checktheidentity of people
submittingthem. Thus,evensomeonavithout permissiorto
obtain ordinary public key certificatesfrom Verisign could
still submitrevocationcertificates.

Of course, people who dislike Verisign are free to
look elsavherefor revocationcertificates. Given the self-
authenticatingnhatureof revocationcertificates however, an
“all of the above” approachto retrieving them can work
well—even userswho distrustVerisignand would not sub-
mit a revocationcertificateto them canstill checkVerisign
for otherpeoplesrevocations.

Sometimesnagentmaydecidea pathnaméiasgonebad
evenwithout finding a signedrevocationcertificate.For ex-
ample,evenif afile systems ownerhasnot revokedthefile
systems key, anagentmayfind thata certificationauthority
in someexternalpublic key infrastructurehasrevokedarel-
evantcertificate.To accommodatsuchsituationsthe agent
canrequestHostID blocking from the client. This prevents
the agents owner from accessinghe self-certifying path-
namein questionput doesnot affectary otherusers.

Both revoked and blocked self-certifying pathnamede-
come symbolic links to the non-eistent file :REVOKED: .
Thus, while accessinga revoked path resultsin a file not
found error, userswho investigatefurther can easily notice
thatthe pathnaménasactuallybeenrevoked.

Agent <— Kernel
[Agent Authserver
User Program AgeNt =——1 prtocol] [Authserver NFS 3
[Syst 3 Protocol] Server
ystem . _____ S
NFS 3 + leases, =l ,
Cal] | Client Master L / > Server Master !
Kernel | | MACed, Encrypted ! { !
| Read-Write Client | TCP Connection | Read-Write Server !
Cliont 1 . B sFsserver INFS 3]
Client ' Read-Only Client : [SFS read-only protocol] 1= ---------=m---- - ,
| | - = Server Master ;
T—; NES Mounter ! TCP Connection ‘ { !
INFS3) b ‘ . _ = Read-Only Server |
SFS Client SFS Server

Figure 2: The SFS system components

3 Implementation

Figure2 shows the programsthatcomprisethe SFSsystem.
At the mostbasiclevel, SFSconsistsof clientsandseners
joinedby TCP connections.

For portability, the SFSclient software behaeslike an
NFS version 3 [6] sener. This lets it communicatewith
the operatingsystemthrough ordinary networking system
calls. Whenusersaccessefiles underSFS the kernelsends
NFSRPCsto theclientsoftware. The clientmanipulateshe
RPCsandforwardsthemovera securechanneko theappro-
priate SFSsener. Thesener modifiesrequestslightly and
tagsthemwith appropriatecredentials. Finally, the sener
actsasan NFS client, passingthe requesto an NFS sener
onthesamemachine Theresponsdollowsthe samepathin
reverse.

3.1 Cryptographic protocols

This sectiondescribegheprotocolsby which SFSclientsset
up securechennelgo senersand usersauthenticatehem-
selesto seners. We usequotedvaluesto representon-
stants. K¢, Kg, and Ky designateublic keys (belonging
to a client, sener, anduser respectiely). K ! designates
the privatekey correspondingo publickey K. Subscriptk’
representsmessagencryptedwith key K, while subscript
K1 signifiesamessagsignedoy K 1.

3.1.1 Keynegotiation

Whenthe SFSclientsoftwareseesa particularself-certifying
pathnameor the first time, it mustestablisha securechan-
nelto theappropriatesener. Theclient startsby connecting
(insecurely)to the machinenamedby the Locationin the
pathnamelt requestshe sener’s public key, K¢ (Figure3,

step2), and checksthat the key in fact matchesthe path-
names HostID. If the key matcheghe pathnamethe client

knowsit hasobtainedthe correctpublic key.

131

Oncetheclientknowsthesener’'skey, it negotiatesshared
sessiorkeys usingaprotocolsimilarto Taos[32]. To ensure
forwardsecrey, the clientemploys a short-lived public key,
K¢ (Figure3, step3), which it sendgo the sener over the
insecurenetwork. The client then picks two randomkey-
halves,kc1 andkes; similarly, the senerpicksrandomkey-
halves ks; andkgs. The two encryptand exchangetheir
key-halvesasshownnin Figure3.

i o Location, HostI D
;:9 Ks
|

. Ko, {kct, k
Client O Ko (ki koot = Server
@ {ks1 ksatre 1

Figure 3: The SFS key negotiation protocol

Theclientandsener simultaneoushdecrypteachother’s
key halves, overlappingcomputationto minimize lateng.
Finally, they computewo sharedsessiorkeys—onefor each
direction—adollows:

kes = SHA-1("KCS”, K, ks1, K¢, ko)
ksc = SHA-1("KSC”,Ks, ks, K¢, kca)

The client andsener usethesesessiorkeys to encryptand
guarantedhe integrity of all subsequentommunicationin
thesession.

Thiskey negotiationprotocolassuresheclientthatnoone
elsecanknow kcs and kg without also possessing‘(gl.
Thus,it givestheclientasecurechanneto thedesiredsener.
Thesener, in contrastknows nothingaboutthe client. SFS
seners do not carewhich clients they talk to, only which
usersareon thoseclients. In particular the client’'s tempo-
rary key, K¢, is anorymousandhasno bearingon access
control or userauthentication.Clientsdiscardandregener
ate K¢ atregularintervals(every hourby default).

3.1.2 Userauthentication

ThecurrentSFSagentandauthsererrely on public keysfor
userauthentication.Every userhasa public key and gives
his agentaccesdo thatkey. Every authsererhasa mapping
from public keysto credentialsWhena useraccessea new
file system the client software constructsan authentication
requestfor the agentto sign. The client passeghe signed
requesto thesener, which askstheauthsererto validateit.

SFS definesan Authinfo structureto identify sessions
uniquely:

SessionID =
Authinfo =

SHA-1(“SessionInfo’ ksc, kcs)
{“AuthInfo”, “FS”, Location
HostID, SessionID

The client softwarealsokeepsa counterfor eachsessiorto
assigna uniquesequenc@umberto every authenticatiome-
quest.

Whena useraccesseas file systemfor the first time, the
clientinitiatesthe userauthenticatiomprocesdy sendingan
Authinfo structureand sequence&iumberto the users agent
(seeFigure4). Theagentreturnsan AuthMsgby hashingthe
Authinfostructureto a20-byteAuthlD, concatenatinghese-
guencenumber signingtheresult,andappendinghe users
public key:

AuthlID = SHA-1(Authinfo)
SignedAithReq = {“SignedAuthReq;AuthID, SeqNg
AuthMsg = Ky, {SignedAthRegq ;-1

The client treatsthis authenticatiormessageas opaque
data.It addsanothercopy of thesequencaumberandsends
the datato the file sener, which in turn forwardsit to the
authserer. The authserer verifiesthe signatureon the re-
guestand checksthat the signedsequenceaumbermatches
theonechoserby theclient. If therequesis valid, theauth-
sener mapsthe agents public key to a setof local creden-
tials. It returnsthe credentialsto the sener alongwith the
AuthID andsequenc@&umberof the signedmessage.

The sener checksthat the AuthlD matchesthe session
and that the sequencenumberhas not appearedeforein
the samesessiorf. If everythingsucceedshesenerassigns
anauthenticatiomumberto the credentialsandreturnsthe
numberto theclient. Theclient tagsall subsequerfile sys-
temrequestdrom the userwith thatauthenticatiomumber
If, onthe otherhand,authenticatiorfails andthe agentopts
notto try again,the clienttagsall file systemrequestdrom
the userwith authenticatiomumberzero,resened by SFS
for anorymousaccess.

Sequencaumbersarenotrequiredfor thesecurityof user
authentication. As the entire user authenticationprotocol

4The sener acceptut-of-ordersequenc@umberswithin areasonable
window to accommodatéhe possibility of multiple agentson the clientre-
turningout of order

132

Authserver

SeqNo, @ AuthMsg
Credentials N N\
SFS Server
AuthNo @
SeqgNo,
_____________ eAutthg
___SFSClient
Authinfo, @ AuthMsg
SeqNo o

Agent

Figure 4: The SFS user authentication protocol

happensver a securechannel,all authenticatiormessages
receved by the sener musthave beenfreshly generatedy
the client. Sequencewnumbersprevent one agentfrom us-
ing the signedauthenticatiomequesbf anotheragenton the
sameclient. Thisfreesthefile systensoftwarefrom theneed
to keepsignedauthenticatiomequestsecret—arudentde-
signchoicegivenhow mary layersof softwarethe requests
musttravel through.

3.1.3 Cryptography

SFSmakesthreecomputationahardnesassumptionslt as-
sumesthe ARC4 [13] streamcipher (allegedly the sameas
Rivests unpublishedrC4)is a pseudo-randorgeneratarlt
assumegactoringis hard. Finally, it assumeghat SHA-1
behaeslike arandomoracle[1].

SFSusesa pseudaandomgeneratoin its algorithmsand
protocols. We choseDSS$s pseudo-randongenerator9],
both becausét is basedon SHA-1 and becausdt cannot
be run backwardsin the event that its stategets compro-
mised.To seedhegeneratorSFSasynchronouslyeadsdata
from various external programs(e.g., ps, netstat), from
/dev/randon (if available),from arandom_seed file saved
by the previous execution, and from a nanoseconqwhen
possible)timer to capturethe entropy of processschedul-
ing. Programsthat requireusersto entera passphrasadd
both the keys typed and inter-keystroke timers as an addi-
tional sourceof randomnessAll of the above sourcesare
run througha SHA-1-basedchashfunction[1] to producea
512-bit seed. Becausethe external programsrun in paral-
lel and SFSreadsfrom themasynchronouslySFScan effi-

ciently seedthe generatofrom all sourcesverytime a pro-
gramstartsexecution.

SFS usesthe Rabin public key cryptosystem[31] for
encryption and signing. The implementationis secure
againstadaptve chosen-ciphertd [2] andadaptve chosen-
messag§3] attacks.(Encryptionis actuallyplaintext-aware,
anevenstrongerproperty) Rabinassume®nly thatfactor
ing is hard, making SFSs implementatiomo lesssecurein
the randomoracle model than cryptosystemsasedon the
betterknown RSA problem. Like low-exponentRSA, en-
cryptionandsignaturererificationareparticularlyfastin Ra-
bin because¢hey do notrequiremodularexponentiation.

SFS usesa SHA-1-basedmessageauthenticationcode
(MAC) to guaranteheintegrity of all file systemtraffic be-
tweenclientsandread-writeseners,andencryptsthis trafic
with ARC4. Both the encryptionand MAC have slightly
non-standardmplementations.The ARC4 implementation
uses20-bytekeys by spinningthe ARC4 key scheduleonce
for each128 bits of key data. SFSkeepsthe ARC4 stream
runningfor the durationof a sessionlt re-keys the SHA-1-
basedMAC for eachmessageising32 bytesof datapulled
from the ARC4 stream(andnot usedfor the purpose®f en-
cryption). The MAC is computednthelengthandplaintext
contentsof eachRPC message.The length, messageand
MAC all getencrypted.

SFS§ stream cipher is identical to ARC4 after the
key scheduleand consequenthhasidentical performance.
SFS5MAC s slowerthanalternatvessuchasMD5 HMAC.
Both are artifacts of the implementationand could be
swappedout for more popularalgorithmswithout affecting
themainclaimsof the paper

3.2 Modularity and extensibility

Figure 2 revealsthat a numberof programscomprisethe
SFSsystem All programommunicatevith SunRPC[27].
Thus, the exact bytes exchangedbetweenprogramsare
clearly and unambiguouslydescribedn the XDR protocol
descriptionanguagd28]. We alsouseXDR to defineSFSs
cryptographicprotocols. Any datathat SFShashessigns,
or public-key encryptsis definedasan XDR datastructure;
SFScomputesthe hashor public key function on the raw,
marshaledytes.We useour own RPCcompiler, specialized
for C++,alongwith anew, asynchronoufPClibrary.

BreakingSFSinto several programshelpsthe reliability,
security and extensibility of the implementation.Our RPC
library canpretty-printRPCtraffic for dehugging,makingit
easyto understana@ny problemsby tracingexactly how pro-
cessesnteract. We useSFSfor our day-to-daycomputing,
but have neverrun acrossabugin the systemthattook more
thanadayto trackdown.

Within a machine,the various SFS processesommuni-
cateover UNIX-domain soclets. To authenticatgrocesses
to eachother, SFSreliesontwo specialpropertiesof UNIX-

133

domain soclets. First, one can control who connectsto
themby settingaccesgpermissionson directories. Second,
onecan passfile descriptorsbetweenprocessesver Unix-
domainsoclets. Several SFSdaemondistenfor connections
on socletsin a protecteddirectory, /var/sfs/sockets. A
100-line setgidprogram,suidconnecgtconnectso a soclet
in this directory, identifiesthe currentuserto the listening
daemonandpasseshe connectedile descriptorbackto the
invoking processbefore exiting. The agentprogramcon-
nectsto the client masterthroughthis mechanismandthus
needso specialprivileges;userscanreplaceit at will.

SFSs modularity facilitatesthe developmentof new file
systemprotocols. On the client side, a client masterpro-
cess,sfscd communicateswith agents,handlesrevocation
and forwarding pointers,and actsas an “automounter”for
remotefile systems. It never actually handlesrequestdor
files on remoteseners, however. Instead,it connectsto a
sener, verifiesthe public key, andpasseshe connectedile
descriptorto a subordinatelaemonselectedy thetypeand
versionof the sener. On the sener side, a sener master
sfssd acceptsall incoming connectiongrom clients. sfssd
passegachnew connectiongo a subordinatesener based
ontheversionof theclient, the serviceit requestgcurrently
filesener or authserer), the self-certifying pathnamet re-
guestsanda currentlyunused‘extensions’string.

A configurationfile controlshow client and sener mas-
tershandoff connections.Thus,onecanaddnew file sys-
tem protocolsto SFSwithout changingary of the existing
software. Old and new versionsof the sameprotocolscan
run alongsidesachother, evenwhenthe correspondingub-
sidiarydaemonsave no specialsupportor backwardscom-
patibility. As anexampleof SFS5 protocolextensibility, we
implementeda protocol for public, read-onlyfile systems
that provesthe contentsof file systemswith digital signa-
tures. As describedn Section2.4, read-onlysenerswork
well asSFScertificationauthorities.Implementingheread-
only client and sener requiredno changedo existing SFS
code;only configuratiorfiles hadto be changed.

3.3 NFSdetails

The SFSimplementatiorwashbuilt with portability asagoal.
Currently the systemrunson OpenBSD FreeBSD Solaris,
Linux (with anNFS3 kernelpatch),andDigital Unix. Using
NFSbothto interfacewith the operatingsystemontheclient
andto accessiles onthesenermakesportability to systems
with NFS 3 supportrelatively painless.

The SFSread-writeprotocol, while virtually identicalto
NFS3, addsenhancedttributeandaccesgachingto reduce
the numberof NFS GETATTR and ACCESS RPCssentover
thewire. We changedhe NFS protocolin two waysto ex-
tendthe lifetime of cacheentries. First, every file attribute
structurereturnedby the sener hasatimeoutfield or lease.
Second the sener cancall backto the client to invalidate

entriesbeforethe leaseexpires. The sener doesnot wait
for invalidationsto be acknavledged;consisteng doesnot
needto be perfect,just betterthanNFS 3 on which SFSis
implemented.

The NFS protocol usesnumeric user and group IDs to
specifytheownerandgroupof afile. Thesenumberdaveno
meaningoutsideof thelocaladministratverealm. A smallC
library, libsfs, allows programdo queryfile seners(through
theclient) for mappingsof numericlDs to andfrom human-
readablenamesWe adoptthecorventionthatuserandgroup
namesprefixedwith “%" arerelative to theremotefile sener.
WhenboththelD andnameof a useror grouparethesame
ontheclientandsener(e.g.,SFSrunningonaLAN), libsfs
detectghis situationandomitsthe percentsign.

Using NFS hassecurityimplications. The SFSread-write
sener requiresan NFS sener. Runningan NFS sener can
in itself createa securityhole. NFSidentifiesfiles by sener
chosenppaqudile handleqtypically 32-bytedong). These
file handlesmustremainsecret;an attacler who learnsthe
file handleof evena singledirectorycanaccessary part of
thefile systemasary user SFSseners,in contrastmake
their file handlespublicly available to anorymousclients.
SFSthereforegeneratests file handlesby addingredun-
dang to NFS handlesand encryptingthemin CBC mode
with a 20-byteBlowfish [26] key. Unfortunately someop-
erating systemsuse such poor randomnumbergenerators
that NFS file handlescan potentially be guessedutright,
whetheror notonerunsSFS.

Onecanavoid NFS's inherentvulnerabilitieswith paclet
filtering software. Several good, free paclet filters exist
and, betweenthem, supportmost commonoperatingsys-
tems. Siteswith firewalls canalsolet SFSthroughthe fire-
wall without fearing suchproblems,so long asthe firewall
blocks NFS and portmap (which relaysRPC calls) traffic.
Many versionsof Unix have a programcalled fsirand that
randomizesNFSfile handlesfsirand maydo a betterjob of
choosingfile handlesthana factoryinstall of the operating
system.

Anotherseriousssueis that SFSeffectively relaysNFS 3
calls and repliesto the kernel. During the courseof de-
veloping SFS,we found and fixed a numberof client and
sener NFS bugsin Linux, OpenBSD,and FreeBSD. In
mary casesperfectlyvalid NFSmessagesausedhekernel
to overrunbuffersor useuninitializedmemory An attacler
couldexploit suchweaknessethroughSFSto crashor break
into a machinerunning SFS. We think the low quality of
most NFS implementationgonstitutesthe biggestsecurity
threatto SFS.

The SFSclientcreatesa separatenountpointfor eachre-
mote file system. This lets differentsubordinatedaemons
sene differentfile systemswith eachsubordinatedaemon
exchangingNFStraffic directly with thekernel. Usingmul-
tiple mount points also preventsone slow sener from af-
fectingthe performanceof otherseners. It ensureghatthe

134

device andinodenumberfieldsin afile’s attribute structure
uniquelyidentify the file, asmary file utilities expect. Fi-

nally, by assigningeachfile systemits own device number
this schemepreventsa malicious sener from tricking the
pwd commandnto printing anincorrectpath.

All NFSmountingin theclientis performedby a separate
NFSmounterprogramcallednfsmounter The NFSmounter
is the only partof the client softwareto run asroot. It con-
siderstherestof the systemuntrustedsoftware. If the other
clientprocessesver crashtheNFSmountertakesovertheir
soclets, actslike an NFS sener, and senes enoughof the
defunctfile systemgo unmountthemall. The NFS mounter
malesit difficult to lock up an SFSclient—esrenwhende-
velopingbuggydaemongor new dialectsof the protocol.

4 Performance

In designing SFS we ranked security extensibility, and
portability over performance. Our performancegoal was
modest: to make applicationperformanceon SFScompa-
rable to that on NFS, a widely usednetwork file system.
This sectionpresentsesultsthatshav thatSFSdoesslightly
worsethanNFS3 overUDP andbetterthanNFS3 over TCP.

4.1 Experimental setup

We measured file system performance between two
550MHz Pentiumllls runningFreeBSD3.3. Theclientand
sener were connectedby 100 Mbit/sec switchedEthernet.
Eachmachinehad a 100 Mbit SMC EtherPaover Ethernet
card,256 Mbytesof memory andanIBM 18ES9 Gigabyte
SCSldisk. We reportthe averageof multiple runsof each
experiment.

To evaluate SFS5 performancewe ran experimentson
the local file system,NFS 3 over UDP, and NFS 3 over
TCP. SFSclientsandsenerscommunicatevith TCR, mak-
ing NFS 3 over TCP the ideal comparisorto isolate SFS5
inherentperformancecharacteristics. However, we believe
FreeBSDs TCPimplementatiorof NFS maybe suboptimal
(in partbecauseave experienceda kernelpanicwhile writing
a largefile). We thereforemostly considerthe comparison
betweenSFSandNFS 3 over UDP. SFSusesUDP for NFS
traffic to the local operatingsystemandso is unafectedby
bugsin FreeBSDS TCPNFS.

4.2 SFSbaseperformance

Three principal factorsmake SFS5 performancedifferent
from NFS’s. First, SFS hasa userlevel implementation
while NFS runsin the kernel. This hurts both file system
throughputandthe lateng of file systemoperations. Sec-
ond, SFSencryptsand MACs network traffic, reducingfile

systemthroughput.Finally, SFShasbetterattribute andac-
cesscachingthan NFS, which reduceghe numberof RPC
callsthatactuallyneedto go overthe network.

Latengy | Throughput
File System (usec)| (Mbyte/sec)
NFS3 (UDP) 200 9.3
NFS3(TCP) 220 7.6
SFS 790 4.1
SFSw/o encryption 770 7.1

Figure 5: Micro-benchmarks for basic operations.

To characterizéheimpactof a userlevel implementation
andencryptiononlateng, we measuredhecostof afile sys-
tem operationthat alwaysrequiresa remoteRPC but never
requiresadisk access—annauthorizedchownsystenmcall.
The resultsare shawvn in the Lateng column of Figure 5.
SFSis 4 timesslower thanboth TCP andUDP NFS. Only
20 psecof the 590 psecdifferencecanbe attributedto soft-
wareencryption;the restis the costof SFS5 userlevel im-
plementation.

To determinethe cost of software encryption,we mea-
suredthe speedof streamingdatafrom the sener without
goingto disk. We sequentiallyreada sparse,1,000Mbyte
file. Theresultsareshavn in the Throughputcolumnof Fig-
ure5. SFSpays3 Mbyte/secfor its userlevel implementa-
tion anda further2.2 Mbyte/sedor encryption.

Although SFSpaysa substantiatostfor its userlevel im-
plementatiorand software encryptionin thesebenchmarks,
severalfactorsmitigatetheeffectson applicationworkloads.
First, multiple outstandingequestanoverlapthelateng of
NFSRPCs.Secondfew applicationseverreador write data
atratesapproachingFSs maximumthroughput Disk seeks
pushthroughputelon 1 Mbyte/secon anything but sequen-
tial accessesThus,the real effect of SFSs encryptionon
performanceds to increaseCPU utilization ratherthan cap
file systemthroughput.Finally SFS5 enhancedaachingim-
proves performanceby reducingthe numberof RPCsthan
needto travel overthe network.

4.3 End-to-end performance

We evaluateSFS5 applicationperformancewith the Mod-
ified Andrev Benchmark(MAB) [18]. The first phaseof
MAB createsa few directories. The secondstressegiata
movementand metadataupdatesasa numberof smallfiles
are copied. The third phasecollectsthe file attributesfor a
large setof files. The fourth phasesearcheshe files for a
stringwhich doesnotappearandthefinal phaseunsacom-
pile. AlthoughMAB is alight workloadfor todaysfile sys-
temsi,it is still relevant,aswe aremoreinterestedn protocol
performancahandisk performance.

Figure 6 shows the executiontime of eachMAB phase
andthetotal. As expectedthelocalfile systemoutperforms
network file systemson mostphasesthe local file system
performsno network communicatioranddoesnotflushdata

135

mm | ocal

= NFS 3 (UDP)

94 ©OINFS3(TCP)

23 SFS —

Executiom Time (s)
(6]
1

1=

1 mW iz WV I
direatories copy attributes search compile

Figure 6: Wall clock execution time (in seconds) for the dif-

ferent phases of the modified Andrew benchmark, run on dif-

ferent file systems. Local is FreeBSD's local FFS file system
on the server.

total

System | Time (seconds)
Local 140
NFS3 (UDP) 178
NFS3(TCP) 207
SFS 197

Figure 7: Compiling the GENERIC FreeBSD 3.3 kernel.

to disk onfile closes.Thelocalfile systemis slightly slower
on the compile phasebecausdhe client and sener have a
largercombinedcachethanthe seneralone.

Consideringhetotal time for the networkedfile systems
SFSis only 11%(0.6seconds§loverthanNFS 3 over UDP.
SFSperformsreasonablipecausaf its moreaggressie at-
tributeandaccesgaching.Withoutenhancedaching MAB
takes a total of 6.6 secondsf.7 secondsslower than with
cachingandl.3secondsloverthanNFS 3 over UDP.

We attribute mostof SFSs slovdown on MAB to its user
level implementation. We disabledencryptionin SFSand
obsenedonly an0.2 secondperformanceémprovement.

To evaluatehow SFS performson a larger application
benchmarkwe compiledthe GENERIC FreeBSD3.3 kel
nel. Theresultsareshavn in Figure7. SFSperforms16%
worse(29 secondsjhanNFS 3 over UDP and5% better(10
secondsjhanNFS 3 over TCP. Disablingsoftwareencryp-
tionin SFSspedup the compileby only 3 secondor 1.5%.

4.4 Sprite LFS microbenchmarks

The smallfile testof the Sprite LFS microbenchmark§22]

createsreads,and unlinks 1,0001 Kbyte files. The large
file testwritesalarge (40,000Kbyte) file sequentiallyreads
from it sequentially then writes it randomly readsit ran-

25+
7 = [ocal
== NFS 3 (UDP)

20 = NFS 3 (TCP)
| == SFS

154

104

Execution Time (s)

.)
read

create unlink

Figure 8: Wall clock execution time for the different phases
of the Sprite LFS small file benchmark, run over different file
systems. The benchmark creates, reads, and unlinks 1,000
1 Kbyte files. Local is FreeBSD's local FFS file system on the
server.

domly, andfinally readsit sequentially Datais flushedto
disk attheendof eachwrite phase.

Thesmallfile benchmarloperate®n smallfiles, doesnot
achieve high disk throughputbon FreeBSDs FFSfile system,
andthereforemostly stressesSFS5 lateng. On the create
phase SFSperformsaboutthesameasNFS3 overUDP (see
Figure8). SFSsattributecachingmalkesupfor its greatella-
teng in this phasewithout attribute cachingSFSperforms
1 secondworsethanNFS 3. On the readphase,SFSis 3
timesslowerthanNFS 3 over UDP. Here SFSsuffersfrom
its increasedateng. Theunlink phasds almostcompletely
dominatedy synchronousvritesto thedisk. TheRPCover-
headis smallcomparedo disk accesseandthereforeall file
systemshave roughlythe sameperformance.

The large file benchmarkstresseshroughputand shavs
theimpactof both SFS5 userlevel implementatiorandsoft-
ware encryption. On the sequentialwrite phase,SFSis
4.4 secondq44%) slower than NFS 3 over UDP. On the
sequentiateadphaseit is 5.1 second$145%)slower. With-
outencryption,SFSis only 1.7 secondslower (17%)on se-
guentialwritesand 1.1 secondsslower (31%) on sequential
reads.

4.5 Summary

The experimentsdemonstrate¢hat SFSs userlevel imple-
mentation and software encryption carry a performance
price. Nonetheless,SFS can achiere acceptableperfor
manceon applicationworkloads,in partbecausef its better
cachingthanNFS 3. We expectSFS5 performancegenalty
to declineashardwareimproves. The relative performance
differenceof SFSandNFS 3 on MAB shrunkby a factor
of two when we moved from 200 MHz PentiumProsto
550MHz Pentiumllls. We expectthis trendto continue.

136

65
60]

mm Local
55 == NFS 3 (UDP)
| = NFS 3 (TCP)
50 = SFS

45
40
35
30
25
20
15

e

seqwrite seqrread randwvrite

Execution Time (s)

AL

rand read seqrread

Figure 9: Wall clock execution time for the different phases
of the Sprite LFS large file benchmarks, run over different file
systems. The benchmark creates a 40,000 Kbyte file and
reads and writes 8 Kbyte chunks. Local is FreeBSD’s local
FFS file system on the server.

5 Relatedwork

SFSis thefirst file systemo separaté&ey managemerfrom

file systemsecurity No otherfile systemhasself-certifying

pathnamesr letsthefile namespacdoubleasa key certifi-

cationnamespacesFSis alsothefirst file systemto support
bothpasswerd authenticatiorof senersandcertificationau-

thorities. In this section,we relateSFSto otherfile systems
andothersecurenetwork software.

5.1 File systems

AFS[12, 24,25 is probablythe mostsuccessfulvide-area
file systemto date.We discussAFS in detail,followed by a
brief summaryof otherfile systems.

AFS. Like SFS, AFS mountsall remotefile systems
under a single directory /afs. AFS doesnot provide a
single global file systemimage, however; client machines
have a fixed list of available seners (called CellServDB
that only a privileged administratorcan update. AFS uses
Kerberog29] sharedsecretdo protectnetwork traffic, and
thuscannotguaranteehe integrity of datafrom file systems
on which usersdo not have accounts.ThoughAFS canbe
compiledto encryptnetwork communicationgo senerson
which usershave accountsthe commercialbinary distribu-
tionsin widespreadisedo not offer ary secreg. DFS[14]
is a secondgeneratiorfile systembasedon AFS, in which
a centrallymaintaineddatabaseleterminesll availablefile
systems.

To malke the benefitsof self-certifying pathnamesnore
concrete considerthe following securityconundrumposed
by AFS. AFS usespasswerd authenticatioio guarante¢he

integrity of remotefiles® Whena userlogs into an AFS
clientmachine sheusesherpasswerd andthe Kerberogro-
tocol to obtaina sessiorkey sharedby the file sener. She
thengivesthis key to the AFS clientsoftware. Whentheuser
subsequenthaccessesFS files, the client usesthe shared
key bothto authenticat@utgoingrequestgo thefile sener
andto verify the authenticityof replies.

Becausehe AFS userknows hersessiorkey (anecessary
consequencef obtainingit with her passwerd), sheknows
everythingsheneedsto forge arbitrary repliesfrom the file
sener. In particular if theuseris malicious,shecanpollute
the client’s disk cache,buffer cache,and namecachewith
roguedatafor partsof the file systemsheshouldnot have
permissiorto modify.

Whentwo or moreuserdog into thesameAFS client, this
posesasecurityproblem.Eithertheuseranustall trusteach
other, or they musttrustthenetwork, or theoperatingsystem
mustmaintainseparatdile systemcachedor all users—an
expensve requirementhat, to the bestof our knowledge,
no one hasactually implemented. In fairnessto AFS, its
creatorglesignedhe systemfor useon single-usemorksta-
tions. Nonethelessn practicepeopleoftensetup multi-user
AFS clientsasdial-in seners, exposingthemselesto this
vulnerability.

Self-certifyingpathnamegreventthe sameproblemfrom
occurring in SFS. Two userscan both retrieve a self-
certifying pathnameusing their passwverds. If they endup
with the samepath, they can safely sharethe cache;they
areaskingfor a sener with the samepublic key. Sincenei-
ther userknows the correspondingprivate key, neithercan
forge message$rom the sener. If, on the otherhand,the
usersdisagreeover the file sener’s public key (for instance
becauseneuserwantsto causetrouble),the two will also
disagreeontheHostID. They will endup accessinglifferent
files with differentnameswhich thefile systemwill conse-
guentlycacheseparately

Other file systems. The Echo distributed file system
[4, 5, 16, 17] usesTaoss authenticationinfrastructureto
achieve secureglobal file accesawvithout globaltrust of the
authenticatiomoot. Clientsneednot go throughthe authen-
tication root to access/olumeswith a commonancestoiin
thenamespachierarchy However, thetrusthierarchyhasa
centralrootimplementedvith DNS (andpresumablyequir
ing the cooperatiorof root nameseners). Echocanshort-
circuit the trust hierarchywith a mechanisntalled“secure
cross-links. It alsohasconsistenandinconsistenversions
of thefile systenprotocol,muchasSFSuseshothread-write
andread-onlyfile protocols.

The Truffles service[20] is an extensionof the Ficusfile
system[11] to operatesecurelyacrossthe Internet. Truf-
flesprovidesfine-grainedaccessontrolwith theinteresting

5Actually, AFS usesaninsecuremessagauthenticatioralgorithm—an
encryptedCRC checksumwith a known polynomial. This problemis not
fundamentalhowever.

137

propertythata usercanexportfiles to arny otheruserin the
world, without the needto involve administrators Unfortu-
nately theinterfacefor suchfile sharingis somevhatclunky,
involving the exchangeof E-mail messagesignedanden-
cryptedwith PEM. Truffles alsorelies on centralized,hi-
erarchicalkertificationauthoritiesnaminguserswith X.500
distinguishechamesandrequiring X.509 certificatedor ev-
ery userandevery sener.

WebFS[30] implementsa network file systemon top of
the HTTP protocol. Specifically WebFSusesthe HTTP
protocol to transferdatabetweenuserlevel HTTP seners
andanin-kernelclient file systemimplementation.WebFS
thereforeallowsthecontentof existing URLsto beaccessed
throughthe file system. It alsoattemptsto provide authen-
ticationandsecuritythrougha protocollayeredover HTTP;
authenticatiorrequiresa hierarchyof certificationauthori-
ties.

5.2 Internet network security

SSL. SSL [10] is the most-widely deployed protocol for
securecommunicationbetweenweb browsersand seners.
Senerauthentications basedn SSL certificates—digitally
signedstatementghat a particularpublic key belongsto a
particularinternetdomainname.To runasecurevebsener,
a site mustpurchasea certificatefrom a widely trustedcer
tification authority—forexample,Verisign.Whenabrowser
connectdo the sener, the sener sendshackthis certificate.
Thebrowserknows Verisign's public key andusesit to vali-
datethe certificate.If the certificatechecksout, the browser
knowsit hasthewebsener'srealpublickey. It useghiskey
to setup a securechannel.

Onecanimaginea distributedfile systemconsistingof a
modified versionof SFSor NFS 3 running over SSL. We
rejectecthis designbecauseésSLs approacho key manage-
mentis inappropriatdor mostfile seners.Unclassifiednil-
itary networks, for instance shouldnot trustcivilian certifi-
cationauthorities.Studentsettingup file senersshouldnot
needthe cooperatiorof university officials with the author
ity to apply for certificates. Settingup a securefile sener
shouldbeassimpleanddecentralizeé processassettingup
anordinary insecurevebsener.

We decidedto purchasea certificatefrom Verisignto set
up a secureweb sener. We werewilling to pay Verisigns
$350feeto conductthe experiment.To avoid involving uni-
versity administratorswe decidednot to apply for a certifi-
catein themit.edu domain. Instead,we purchased do-
main of our own. This domaindid not belongto a corpo-
ration, so Verisignrequiredus to apply for a DBA (“Doing
BusinessAs”) licenseat City Hall. To geta DBA we hadto
pay $20 and show a driver’s license,but City Hall neither
verified our business addressnor performedary on-line
checksto seeif the namewasalreadyin use. Our business
wasnot listed in the telephonedirectory, so Verisigncould

not call to performan employmentcheckon the personre-
guestingthe certificate. Insteadthis personhadto fax them
a notarizedstatementestifying that he wasinvolvedin the
business.Oneweekand$440later, we receved a Verisign
certificatefor asinglesener.

While Verisign’s certificationproceduremay seemcum-
bersomethe securityof a certificateis only asgoodasthe
checksperformedby the issuingauthority When a client
trustsmultiple certificationauthorities SSL providesonly as
muchsecurityasthewealestone. Thus,SSL forcesatrade-
off betweersecurityandeaseof settingup seners. SFSim-
posesno suchtrade-of; it lets high- and low-gradecertifi-
cation schemesxist side-by-side. A usercan accesssen-
sitive senersthrough/verisign without losing the ability
to browsesitesunder /bargain-cert. More importantly
however, whenusershave passverdson seners,SRPgives
themsecureaccessvithout everinvolving a certificationau-
thority.

Of course,asdescribedn Section2.4, SFSagentscould
actuallyexploit the existing SSL public key infrastructureto
authenticat&SFSseners.

IPsec.IPsec[15] is astandardor encryptingandauthen-
ticating Internetnetwork traffic betweerhostsor gatevays.
IPsecspecifiegpaclket formatsfor encrypteddata,but leaves
the particularsof key managemenbpen-ended. Unfortu-
nately no globalkey managemenproposalhasyet reached
eventhelevel of deploymentof SSL certificates.Moreover,
IPsecis gearedtowardssecuritybetweenmachinesor net-
works, andill-suited to applicationslike SFSin which un-
trustedusersparticipatein key managemenand sign mes-
sagesryptographicallypoundto sessiorkeys.

SPKI/SDSI. SPKI/SDSI[7, 21] is akey distribution sys-
tem thatis similar in spirit to SFS5 egalitariannamespace
andthatcouldbeimplementeantop of SFS.In SPKI/SDSI,
principalsarepublic keys, andevery principal actsasa cer
tification authority for its own namespace SFSeffectively
treatsfile systemsaspublic keys; however, becausdile sys-
temsinherentlyrepresen namespaceSFShasno needfor
specialcertificationmachinery—symbolidinks do the job.
SDSI specifiesa few specialroots, suchas Verisign!!,
which designatethe samepublic key in every namespace.
SFScanachiere a similar resultby conventionif clientsall
install symboliclinks to certificationauthoritiesn theirlocal
rootdirectories.

6 Summary

SFSrequiresnoinformationotherthanaself-certifyingpath-
nameto connectsecurelyto aremotefile sener. As aresult,
SFSprovidesa secureglobalfile systemwithout mandating
ary particularkey-managemerpolicy. Othersecurdile sys-
temsall rely on specificpoliciesto assignfile namego en-
cryptionkeys. SFS,in contrastjetsusersperformkey man-
agemenby generatindile namesin thispapemwe described

138

mary usefulkey managementechniquedor SFSthatcould
not have coexistedinsideafile system.

Becausét hasasecureglobalnamespaceFSitself con-
stitutesavery effectivekey managemerinfrastructure Pub-
lic keys namefiles aspartof self-certifyingpathnamesand
files namepublic keys with symbolic links. Each step of
the file nameresolutionprocesscaninvoke a differentkey
managemeniechanism. The ability to combinemultiple
mechanismsesultsin functionality thatno oneof themcan
provide alone.

We think that cumbersomeecurityproceduredave pre-
ventedprevioussecurdile systemdrom gainingwidespread
use. We hope SFSwill let mary peopleenjoy securefile
sharingwithout an unnecessaradministratve burden. To
facilitateits deployment,we have madeSFSfree software.

Acknowledgments

We would like to thankChuckBlake andKevin Fu for their
contritutionsto the SFSsoftware. We alsothank Chuckfor
his emegeng assistancaith hardware,andKevin for get-
ting us a Verisign certificateand exploring the process.We
thank RobertMorris for his help in analyzingvariousper
formanceartifactsof NFS. We are gratefulto our shepherd
David Black for the mary suggestionenthe designandthe
presentatiorof SFS.Butler Lampson,David Presotto,Ron
Rivest,andthe membersof PDOSprovidedinsightful com-
mentson this paper

References

[1] Mihir BellareandPhillip Rogavay. Randonmoraclesareprac-
tical: A paradigmfor designingefficient protocols. In Pro-
ceeding®ftheFirstACM Confeenceon ComputerandCom-
municationsSecurity page$2-73,Fairfax, VA, 1993.

[2] Mihir Bellare and Phillip Rogavay. Optimal asymmetric
encryption—hwv to encryptwith RSA. In A. De Santis,edi-
tor, Advancesn Cryptolagy—Euocrypt1994 volume950 of
Lectue Notesin ComputerSciencepages92—-111.Springer
Verlag,1995.

[3] Mihir BellareandPhillip Rogavay. Theexactsecurityof dig-
ital signatures—hw to signwith RSAandRabin.In U. Mau-
rer, editor, Advancesn Cryptolagy—Eupcrypt1996 volume
10700f Lectue Notesin ComputerSciencepages399-416.
SpringefVerlag,1996.

[4] Andrew D. Birrell, Andy Hisgen, Chuck Jerian, Timothy
Mann, and GarretSwart. The Echodistributedfile system.
TechnicalReport111,Digital Systemd&ResearctCenter Palo
Alto, CA, Septembefl993.

[5] Andrew D. Birrell, Butler W. Lampson,RogerM. Needham,
and Michael D. Schroeder A global authenticatiorservice
withoutglobaltrust. In Proceeding®fthe 1986|EEE Sympo-
siumon Securityand Privacy, pages223-230,0Oakland,CA,
1986.

(6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

B. CallaghanB. Pawlowski, andP. StaubachNFSversion3
protocolspecification.RFC 1831, Network Working Group,
Junel995.

Carl M. Ellison, Bill Frantz, Butler Lampson,Ron Rivest,
Brian M. Thomas, and Tatu Ylonen. SPKI certifi-
cate documentation. Work in progress, from http://
www.clark.net/pub/cme/html/spki.html.

FIPS 180-1. Secue Hash Standad. U.S. Departmentof
Commerce/N.l.S.T National Technicallnformation Service,
Springfield,VA, April 1995.

FIPS186. Digital Signatue Standad. U.S.Departmenbf
Commerce/N.1.S.TNational TechnicallnformationService,
Springfield,VA, 1994.

Alan O. Freier Philip Karlton, andPaul C. Kocher The SSL
protocolversion3.0. Internetdraft (draft-freierssl-version3-
02.txt), Network Working Group, November1996. Work in
progress.

JohnS.HeidemanrandGeraldJ. Popek File systemdevelop-
mentwith stackabldayers. ACM Transactionson Computer
Systemsl2(1):58—89Februaryl994.

John H. Howard, Michael L. Kazar Sherri G. Menees,
David A. Nichols, M. SatyanarayananRobert N. Side-
botham,and Michael J. West. Scaleand performancen a
distributedfile system.ACM Transactionon ComputerSys-
tems 6(1):51-81 February1988.

Kalle Kaukonenand Rodng Thayer A streamcipheren-
cryptionalgorithm“arcfour”. Internetdraft (draft-kaulonen-
cipherarcfour03), Network Working Group, July 1999.
Work in progress.

Michael L. Kazar Bruce W. Leverett, Owen T. Anderson,
VasilisApostolidesBeth A. Bottos,SaileshChutani,CraigF.
Everhart,W. Anthory Mason, Shu-TsuiTu, and Edward R.
Zayas. DEcorumfile systemarchitecturabvervien. In Pro-
ceedingofthe Summel990USENIX pagesl51-163 Ana-
heim,CA, 1990.USENIX.

S.KentandR. Atkinson. Securityarchitecturdor theinternet
protocol. RFC 2401, Network Working Group, November
1998.

Butler Lampson,Martin Abadi, Michael Burrows, and Ed-
ward P. Wobber Authenticationin distributedsystems:The-
ory and practice. ACM Transactionson ComputerSystems
10(4):265-3101992.

Timothy Mann, Andrew D. Birrell, Andy Hisgen,ChuckJe-
rian,andGarretSwart. A coherendistributedfile cachewith

directorywrite-behind. ACM Transactionon ComputerSys-
tems 12(2):123-164May 1994.

JohnK. Ousterhout. Why arent operatingsystemsgetting
fasterasfastashardware? In SummetUSENIX'90, pages
247-256 Anaheim,CA, Junel990.

Niels Provos and David Mazieres. A future-adaptable
passwerd scheme. In Proceedingsof the 1999 USENIX,
Freenix tradk (the on-line version) Monterg, CA, June
1999.USENIX. from http://www.usenix.org/events/
usenix99/provos.html.

139

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

(34]

PeterReiher Jr. ThomasPage, GeraldJ. Popek,Jef Cook,
and StephenCrocler. Truffles — a secureservice for
widespreadile sharing. In Proceedingof the PSRGWork-
shopon NetworkandDistributedSystenSecurity pagesl01—
119,SanDiego, CA, 1993.

Ronald L. Rivest and Butler Lampson. SDSI—a simple
distributed securityinfrastructure. Working documentfrom
http://theory.lcs.mit.edu/"cis/sdsi.html.

M. Rosenblumand J. Ousterhout. The designand imple-
mentationof a log-structuredile system. In Proceedingof
the 13th ACM Symposiunon Opeifating System#rinciples
pagesl—15,Pacific Grove, CA, Octoberl991.ACM.

Russel Sandbeg, David Goldbeg, Steve Kleiman, Dan
Walsh, and Bob Lyon. Designand implementationof the
Sunnetwork filesystem.In Proceeding®f the Summer1985
USENIX pagesl19-130Portland,OR, 1985.USENIX.

M. Satyanarayananntegratingsecurityin alarge distributed
system.ACM Transactionon ComputerSystems7(3):247—
280,1989.

M. Satyanarayanargcalablesecureandhighly availablefile
accessn adistributedworkstationervironment. IEEE Com-
puter, pages9-21,May 1990.

Bruce Schneier Descriptionof a new variable-lengthkey,

64-bit block cipher(blowfish). In Fast Softwae Encryption,
Cambridg SecurityWorkshopProceedingspages191-204.
SpringefVerlag,December1993.

R. Srinivasan.RPC:Remoteprocedurecall protocolspecifi-
cationversion2. RFC1831,Network Working Group,August
1995.

R. Srinivasan. XDR: Externaldatarepresentatiorstandard.
RFC1832,Network Working Group,August1995.

J.G. SteinerB. C. NeumanandJ.l. Schiller Kerberos:An
authenticatiorservicefor opennetwork systemsln Proceed-
ingsof theWinter 1988USENIX pagesl91-202Dallas, TX,
Februaryl988.USENIX.

Amin Vahdat. Openmting SystenBervicesor Wide-AraAp-
plications PhD thesis, Departmentof ComputerScience,
University of California,Berkeley, Decemberd998.

HughC. Williams. A modificationof theRSA public-key en-
cryption procedure.lEEE Transactionson Information The-
ory, IT-26(6):726—729November1980.

EdwardP. Wobber Martin Abadi, MichaelBurrows, andBut-
ler Lampson. Authenticationin the Taosoperatingsystem.
ACM Transaction®n ComputerSystemsl2(1):3—-32,1994.

ThomasWu. The secureremotepasswerd protocol. In Pro-
ceeding®fthe1998InternetSocietyNetworkandDistributed
SystenBSecuritySymposiumpages97-111,SanDiego, CA,
March1998.

Tatu YlIdnen. SSH- securdogin connectionver the Inter-
net. In Proceeding®f the 6th USENIXSecuritySymposium
pages37-42,SanJoseCA, July 1996.

