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Abstract

The ubiquitous SSH package has demonstrated the im-
portance of secure remote login and execution. As re-
mote execution tools grow in popularity, users require
new features and extensions, which are difficult to add
to existing systems. REX is a remote execution utility
with a novel architecture specifically designed for ex-
tensibility as well as security and transparent connection
persistence in the face of network complexities such as
NAT and dynamic IP addresses. To achieve extensibil-
ity, REX bases much of its functionality on a single new
abstraction—emulated file descriptor passing across ma-
chines. This abstraction is powerful enough for users to
extend REX’s functionality in many ways without chang-
ing the core software or protocol.

REX addresses security in two ways. First, the imple-
mentation internally leverages file descriptor passing to
split the server into several smaller programs, reducing
both privileged and remotely exploitable code. Second,
REX selectively delegates authority to processes running
on remote machines that need to access other resources.
The delegation mechanism lets users incrementally con-
struct trust policies for remote machines. Finally, REX
provides mechanisms for accessing servers without glob-
ally routable IP addresses, and for resuming sessions
when a TCP connection aborts or an endpoint’s IP ad-
dress changes. Measurements of the system demonstrate
that REX’s architecture does not come at the cost of per-
formance.

1 Introduction

Remote login and execution are network facilities that
many people need for their day-to-day computing. The
concept of remote login is simple: local input is fed to a
program on a remote machine, and the program’s output
is sent back to the local terminal. In practice, however,
modern remote login tools have become quite complex.

The popular SSH [38] program demonstrates that
users expect features such as TCP port and X Window
System forwarding, facilities for copying files back and
forth, cryptographic user authentication, integration with
network file systems, transfer of user credentials across
machines, pseudo-terminals, and more. Many of these
features require changes to the remote login protocol, for
which developers add new message types.

Moreover, many users want other features that are not
yet available: limitations on the amount of code subject
to remote exploits, convenient trust management poli-
cies, transparent access to servers behind network ad-
dress translation (NAT), and support for long-running
remote login sessions when the client and server both
change their IP addresses. The challenge in designing
and building a remote execution tool is to address this
diverse set of needs in a single, simple, extensible frame-
work.

This paper introduces a new remote login and exe-
cution utility called REX, which has three main goals:
extensibility, security, and transparent connection per-
sistence despite NAT and dynamic IP addresses. The
main contribution of REX is its architecture centered
aroundfile descriptor passing, both as an internal imple-
mentation technique and as an external interface highly
amenable to extensions.

Extensibility. REX’s approach to extensibility is for
the core system and protocol to provide the simplest pos-
sible interface on which external utilities can implement
advanced features like remote pseudo-terminal access,
port forwarding, and authentication delegation. This in-
terface consists principally of file descriptor passing: a
process on one machine can effectively transfer a file
descriptor to a process on another machine. In reality,
REX emulates this operation by receiving the descriptor
on one machine, passing a new socket to the recipient on
the other machine, and subsequently relaying data back
and forth between the descriptor and new socket over a
cryptographically protected TCP connection. REX does
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not care if a passed file descriptor is the master side
of a pseudo-terminal, a connection from an X-windows
client, a forwarded authentication agent connection, or
some as-yet-unanticipated future extension.

Security. REX was designed from the ground up to
minimize both the amount of code that runs with su-
peruser privileges and the amount of code that deals
directly with incoming network connections (which
presents the greatest risk of being remotely exploitable).
The REX server is split into two components: a small
trusted program,rexd, and a slightly larger, unprivileged,
per-user programproxy. Remote clients can communi-
cate only withrexd until they prove that they are acting
on behalf of an authorized user.Proxy, in turn, actually
implements almost the entirety of what one would con-
sider remote execution functionality. This separation of
functions and privileges is possible becauserexduses lo-
cal file descriptor passing to hand off incoming connec-
tions toproxy.

The latest versions of OpenSSH [21] have moved in a
similar direction by embracing privilege separation [24,
26]. The SSH protocol, however, was not designed to
facilitate such an architecture, and the complexity of the
implementation reflects this fact. For example, in one
step, SSH must extract the memory heap from a process
and essentially recreate it in another process’s address
space. Moreover, even the least privileged, “jailed,” SSH
processes still require the potentially dangerous ability to
sign with the server’s secret key.

A second security goal of REX is to provide precise
delegation of authority to processes running on remote
machines. Delegation of authority allows a remote pro-
cess to access and authenticate itself to remote resources.
However, a user might trust the remote machine less than
the local one. To address this problem, REX can prompt
users to authorize remote accesses on a case-by-case ba-
sis; by optionally instructing the agent to allow similar
accesses in the future, users can build trust policies in-
crementally.

Transparent Connection Persistence.REX provides
transparent connection persistence in the face of com-
plex network configurations. The prevalence of network
address translation (NAT) makes it hard to run globally
accessible servers on many machines, while dynamically
assigned IP addresses can disrupt long-running sessions.
REX lets users transparently connect to remote login
servers behind NAT boxes using either an externally ad-
dressable proxy server or DNS SRV records [12] (in con-
junction with static TCP port mapping). REX’s auto-
matic connection resumption allows clients and servers
to change IP addresses during the course of a connection.

We have built REX as part of the SFS [20] computing
environment. REX currently offers modules that han-
dle pseudo-terminal support, TCP port forwarding, X11

forwarding with cookie authentication, and Unix-domain
socket forwarding. REX adds only two small pieces of
privileged code to the system. One of these, the pseudo-
terminal daemon, is only 400 lines of code and never
touches an Internet socket; it is therefore unlikely to be
remotely exploitable. The other,rexd, is only 500 lines of
code (not counting general-purpose crypto and Remote
Procedure Call libraries). REX is in daily use, it runs on
Unix, and the source code is freely available.

The rest of the paper is structured as follows. Sec-
tion 2 describes REX’s architecture, and Sections 3, 4,
and 5 detail the main benefits of this architecture: ex-
tensibility, security, and transparency. Section 6 gives an
evaluation of the implementation in terms of code size
and performance. Finally we discuss related work, pri-
marily regarding remote execution, and conclude.

2 Architecture

REX is designed to work with the Self-certifying File
System (SFS), a secure, global network file system. SFS
provides REX’s user and server authentication facilities.
REX also shares SFS’s RPC compiler and library, which
promote security by offering a concisely-specifiable
communication interface between local and remote com-
ponents, and by parsing messages with mechanically-
generated code. Further, the use of local file descriptor
passing allows REX to be broken into small functional
units, minimizing the amount of privileged code.

The REX architecture offers extensibility through a
communication abstraction that connects remote code
(including arbitrary user programs) through the familiar
interface of file descriptors. These pieces of code are
calledmodules. REX groups file descriptors intochan-
nels, and channels intosessions. A sessioncorresponds
to all cryptographically protected communication over a
single TCP connection between a REX client and a par-
ticular server. For each pair of communicating modules,
there exists achannelwithin some session. Each channel
can contain an arbitrary number offile descriptorpairs,
over which modules may send data or more file descrip-
tors.

Sections 2.1 and 2.2 provide background on user au-
thentication and local and remote file descriptor passing.
Sections 2.3 and 2.4 describe how REX establishes new
sessions and how the channel abstraction is used to con-
nect modules. Finally, this section concludes with a dis-
cussion of connection caching.

2.1 User Authentication in SFS

The key SFS subsystem that REX leverages is the user
authentication infrastructure, which consists of two pro-
grams. The first is a per-user agent process,sfsagent,



which runs on the client machine. The agent stores a
user’s private key and signs authentication requests on
his behalf. The second program is an authentication
server,sfsauthd, which runs on the server machine. The
authentication server verifies the signatures on authen-
tication requests and then maps user public keys to lo-
cal Unix accounts based on a database of registered SFS
users.

2.2 File descriptor passing

File descriptors are numerical handles which name an
opened file, socket, device, or other file-like resource.
Most I/O in Unix is performed by reading from and
writing to file descriptors. Unix also provides a facility
for passing a file descriptor to another process through
the sendmsgandrecvmsgsystem calls on Unix-domain
sockets [23].

REX uses local file descriptor passing between dae-
mons, particularly on the server. This mechanism makes
it easy to split functionality at a connection endpoint be-
tween a privileged and unprivileged process, typically by
handing the connection from the privileged to the unpriv-
ileged process after some initialization phase. The use of
local file descriptor passing as it relates to security is dis-
cussed further in Section 4.

REX also introduces the emulation of file descrip-
tor passing between machines. This mechanism allows
many extensions such as port forwarding and pseudo-
terminal allocation to be implemented outside of the core
system, thereby increasing extensibility. The use of file
descriptor passing over the network is described in more
detail in Section 3.

2.3 Sessions

Figures 1 and 2 show how REX establishes a session be-
tween a client machine (left) and a server (right). Boxes
with a gray background are SFS programs that REX uses,
while boxes with a white background are part of REX.
Boxes with a filled upper-right corner are programs that
run with superuser privileges. (The SFS agent is half-
gray, half-white because even though it was part of the
original SFS architecture, we extended it to support REX
as described below.)

Setting up a REX session has two stages. In Stage I,
the client establishes a secure, authenticated connection
to the server. We call this initial connection the “master”
REX session. In Stage II, the client creates new REX
sessions, based on the master session, to run programs
on the server.

2.3.1 Stage I

The user invokes therex client1 in order to start a new
REX session. First,rexcontacts the user’s agent and asks
it to establish a session to the desired server (Figure 1,
Step 1). In Step 2, thesfsagentuses the server’s public
key to establish a secure connection to therexd process
running on the server.2

Mazières et al. [20] describe several mechanisms
through which the client can obtain the server’s key. By
default, REX, like SSH, maintains a cache of server pub-
lic keys that it has already seen. REX, however, avoids
possible man-in-the-middle attacks when contacting a
server for the first time by using the Secure Remote Pass-
word (SRP) protocol [35].

Next, the sfsagent authenticates its user torexd
(Step 3). The agent signs an authentication request,
which it passes to the server through the secure connec-
tion. Rexdpasses the authentication request to the au-
thentication server,sfsauthd, which verifies the signature
and identifies the user (maps the user’s public key to a
local account).

Once the user is authenticated,rexd, which runs with
superuser privileges, spawns a new process calledproxy,
which runs with the privileges of the local user identi-
fied above (Step 4).Rexduses file descriptor passing
to hand the secure connection toproxy, which processes
remote execution requests from the user (Step 5). The
sfsagentmaintains a connection toproxyin order to keep
this master REX session alive; once the agent closes its
connection toproxy (provided no other clients are still
connected),proxywill exit and rexdwill delete the mas-
ter session. The master REX session is the basis for sub-
sequent sessions between this user and server.

2.3.2 Stage II

To run a program on the server, therexclient notifies the
user’ssfsagentthat it wants to create a new session to
the given server (Figure 2, Step 1).Sfsagentlooks up the
corresponding master REX session and handsrexsession
keys for a new session to the sameproxy. Rexthen con-
nects torexd (Step 2).Rexdchecks thatrex indeed pos-
sesses appropriate keys, and if so hands the connection
off to proxy through file descriptor passing (Step 3). Fi-
nally, rexasksproxyto spawn a program, say/bin/ls ,
with a certain number of file descriptors (Step 4). Rex
then mediates the exchange of data between these file

1This paper will use REX (capital letters) to refer to the remote
execution facility as a whole andrex (italicized lowercase) to refer to
the client program that the user invokes to start a REX session.

2Since the SFS file server, authentication server, andrexdall listen
on the same TCP port, connection setup by default also goes through
ansfssd“meta-server.”Sfssddemultiplexes incoming connections and
hands them off to the appropriate daemon using file descriptor passing.



Figure 1: Setting up a REX session (Stage I)

Figure 2: Setting up a REX session (Stage II). Gray lines represent connections that were established during Stage I.

descriptors and a component on the client side with a
channel.

2.4 Channels

The REX channel abstraction allows a pair of modules
on different machines to communicate as if they were
running on the same machine, connected by one or more
Unix-domain sockets. When the client module writes
data to a file descriptor,rex encapsulates that data as an
RPC and sends it toproxy, which in turn unpacks the data
and writes it to the appropriate file descriptor. The server
module can then read the data on its corresponding file
descriptor.Proxysimilarly relays any data it reads back
to rex.

The client creates channels through an RPC that spec-
ifies the name of the server module to run, a set of
command line arguments and environment variables to
set, and the number file descriptors the spawned module
should inherit. (If fewer than three file descriptors are
specified, standard input, standard output, and possibly
standard error of the spawned process will be the same
socket.) Depending on the channel,rex can either redi-
rect I/O to a local module, or else relay data between the
channel file descriptors and its own standard input, out-
put, and error.

Channels are the mechanism through which REX em-
ulates file descriptor passing over the network. When a
module passes a file descriptor torex, rex notifiesproxy
through an RPC.Proxy then creates a new Unix-domain
socket pair, passes one end to the local module, and allo-

cates a new file descriptor number within the channel for
the other end. Conversely, when a module passes a file
descriptor toproxy, proxyallocates a new file descriptor
number for it within the appropriate channel and notifies
rex, which similarly passes one end of a new socket pair
to the local module. As Section 3 demonstrates in detail,
this emulated file descriptor passing is the foundation of
REX’s extensibility.

2.5 Connection caching

The REX protocol naturally lends itself toconnection
caching[6, 10]. Becauserex uses thesfsagentto estab-
lish a master session withrexd/proxy first, thesfsagent
can remember (maintain) that connection and use it to set
up subsequent REX sessions quickly. The initial REX
connection to a remote machine is set up using public-
key cryptography. Once this connection is established,
REX uses symmetric cryptography to secure communi-
cation over the untrusted network. Subsequent REX con-
nections to the same machine can bypass the public-key
step and immediately begin encrypting the connection
using symmetric cryptography.

For an interactive remote terminal session, the extra
time required for the public-key cryptography might go
unnoticed, but for batched remote execution that might
involve tens or even hundreds of logins, the delay is ob-
servable. Connection caching offers an added benefit; if
the user’s agent was forwarded, that forwarding can re-
main in place even after the user logs out, allowing him
to leave programs running that require use of the hissfs-



SessionKeySCi = HMAC-SHA-1(MasterSessionKeySC, i)
SessionKeyCSi = HMAC-SHA-1(MasterSessionKeyCS, i)

SessionIDi = SHA-1(SessionKeySCi ,SessionKeyCSi)
MasterSessionID = SessionID0

Figure 3: Sfsagent and rexd use the MasterSessionKeys and sequence number (i) to compute new SessionKeys.

agent. A utility sfskeylets the user list and manage open
connections.

Once the master session has been established, therex
client can create subsequent secure connections (ses-
sions) to the same server using the following protocol.
First, rex contacts thesfsagentand requests a new ses-
sion. The agent computes the values shown in Figure 3
based on theMasterSessionKeys (one for each direction)
that were established using public-key cryptography dur-
ing the initial connection. TheSessionKeys are the sym-
metric keys that therex client uses to encrypt its con-
nection toproxy. They are computed as the HMAC-
SHA-1 [7, 17] of a sequence numberi keyed by theMas-
terSessionKeys. The agent generates a unique sequence
number for each REX connection to prevent an adver-
sary from replaying old REX sessions. TheSessionIDis
a SHA-1 [7] hash of theSessionKeys, and theMasterSes-
sionID is theSessionIDwhere the sequence number is 0.

Once thesfsagentcomputes these values, it returns
them to therexclient. Rexmakes an insecure connection
to rexd and sends the sequence number, theMasterSes-
sionID, and theSessionID. Session IDs can safely be
sent over an unencrypted connection because adversaries
cannot derive session keys from them.Rexdlooks up the
appropriate cached connection based on theMasterSes-
sionID. Then, rexd computes theSessionKeys and the
SessionIDfor the new REX session (as in Figure 3) based
on the sequence number that it just received and theMas-
terSessionKeys that it knows from the initial connection
by thesfsagent. Rexdverifies that the newly computed
SessionIDmatches the one received from therex client.
If they match,rexdpasses the connection toproxyalong
with the newSessionKeys. Finally, rex andproxy both
begin securing (encryption and message authentication
code) the connection.

After rex and proxy establish a secure REX session,
therexclient can create a new REX channel as described
above.Proxy (and possibly alsorex) will spawn the ap-
propriate modules which can now communicate securely
over the network. Subsequent connections proceed in the
same way, allowing REX to rapidly execute processes on
the server.

3 Extensibility

One of the main design goals for REX is extensibility.
SSH has demonstrated that users want more features than
just the ability to execute programs on a remote ma-
chine. TTY support, X11 forwarding, port forwarding,
and agent forwarding, for example, are critical parts of
today’s remote execution tool. REX offers these fea-
tures and also provides users with an interface to add new
ones. REX’s extensibility stems primarily from a single
abstraction: the REX channel’s ability to emulate file de-
scriptor passing over the network. None of the features
described in this section required any changes to the REX
protocol.

3.1 TTY Support

REX provides pseudo-terminal support to interactive
login sessions using the channel abstraction and file de-
scriptor passing as follows. Therex client tellsproxy to
launch a module calledttyd, which takes as an argument
the name of the actual program that the user wants to
run. Typically, for remote login, the argument tottyd is
the user’s shell.

Ttyd runs with only the privileges of the user who
wants a TTY. The program has two tasks. First, it
obtains a TTY from a separate daemon running on the
server calledptyd. Ptyd runs with superuser privileges
and is responsible only for allocating new TTYs and
recording TTY usage in the systemutmp file. The two
processes,ttyd andptyd, communicate via RPC. When
ptyd receives a request for a TTY, it uses file descrip-
tor passing plus an RPC reply to return the master and
slave sides of the TTY. Ttyd connects toptyd with
suidconnect , SFS’s authenticated IPC mechanism
(described further in Section 3.4). This mechanism lets
ptyd securely track and record which users own which
TTYs.3 After receiving the TTY,ttyd keeps its connec-
tion open toptyd. Thus, whenttyd exits,ptyddetects the
event by an end-of-file.Ptyd then cleans up device own-

3Unlike traditional remote login daemons,ptyd, with its single
system-wide daemon architecture, could easily defend against TTY-
exhaustion attacks by malicious users. Currently, however, this feature
is not implemented.



ership andutmp entries for any TTYs belonging to the
terminatedttyd.

Oncettyd receives a newly allocated TTY, its second
task is to spawn the program given as its argument (e.g.,
the user’s shell). It spawns the process with the slave
side of the TTY as its standard file descriptors and con-
trolling terminal. Then,ttyd sends the file descriptor of
the TTY’s master side back to therexclient via the REX
channel. On the client machine,rexcopies data back and
forth between this copy of the TTY’s master file descrip-
tor and the local terminal (e.g., thexterm in which rex
was started).

Rexandttyd also implement terminal device behavior
that cannot be expressed through the Unix-domain socket
abstraction. For example, typically when a user resizes
anxterm, the application on the slave side of the pseudo-
terminal receives aSIGWINCHsignal and reads the new
window size with theioctl system call.

In REX, when a user resizes anxtermon the client ma-
chine, the program running on the remote machine needs
to be notified. Therex client catches theSIGWINCH
signal, reads the new terminal dimensions through an
ioctl, and sends the new window size over the channel
using file descriptor 0. Upon receiving the window resize
message,ttyd updates the server side pseudo-terminal
through anioctl.

3.2 Forwarding X11 Connections

REX also supports X11 connection forwarding using
channels and file descriptor passing.Rex tells proxy
to run a module calledlisten, which finds an available
X display on the server and listens for connections to
that display on a Unix-domain socket in the directory
/tmp/.X11-unix . Listen notifies therexclient of the
display it is listening on by writing the display number to
file descriptor 0.

Based on this remote display number,rexgenerates the
appropriateDISPLAY environment variable that needs
to be set in any X programs that are to be run. Next,rex
generates a new (fake)MIT-MAGIC-COOKIE-1 for X
authentication. It sets that cookie on the server by having
proxyrun thexauthprogram. When an X client connects
to the Unix-domain socket on the server, thelisten pro-
gram passes the accepted file descriptor over the channel
to rex, which connects it to the local X server (i.e., it
copies data between the received file descriptor and the
local X server’s file descriptor).Rexalso substitutes the
real cookie (belonging to the local X server) for the fake
one.

3.3 Forwarding Arbitrary Connections

REX has a generic channel interface that allows users
to connect two modules from therex client command-
line without adding any additional code.Rexcreates a
channel that connects the standard file descriptors of the
server module program to a user-specified client mod-
ule program. Unlike the channels described above, the
rex client itself does not act as the client module. This
generic mechanism allows REX users to easily build ex-
tensions such as TCP port forwarding and even SSH
agent forwarding.

TCP port forwarding. Port forwarding essentially
makes connections to a port on one machine appear to be
connections to a different port on another machine. For
example, a wireless network user concerned about eaves-
dropping might want to forward TCP port 8888 on his
laptop securely to port 3128 of a remote machine running
a web proxy. REX provides such functionality through
three short utility programs:listen, moduledand con-
nect. In this case, the appropriaterex client invocation
is: rex -m "listen 8888" "moduled connect
localhost:3128" host .

Rexspawns thelisten program, which waits for con-
nections to port 8888; upon receiving a connection,lis-
ten passes the accepted file descriptor over the channel.
Themoduledmodule on the server is a wrapper program
that reads a file descriptor from its standard input and
spawnsconnectwith the received file descriptor ascon-
nect’s standard input and output.Connectconnects to
port 3128 on the remote machine and copies data be-
tween its standard input/output and the port. A web
browser connecting to port 8888 on the client machine
will effectively be connected to the web proxy listening
on port 3128 of the server machine.

SSH agent forwarding.REX’s file descriptor passing
applies to Unix-domain sockets as well as TCP sockets.
One useful example is forwarding an SSH agent during
a remote login session. Therex client command syntax
is similar to the port forwarding example, but reversed:
rex -m "moduled connect $SSH_AUTH_SOCK"
"listen -u /tmp/ssh-agent-sock" host .4

Here, the “-u ” flag to the listen module tells it to
wait for connections on a Unix-domain socket called
ssh-agent-sock . Upon receiving a connection from
one of the SSH programs (e.g.,ssh , scp , orssh-add )
listenpasses the connection’s file descriptor to the client.
The moduled/connectcombination connects the passed
file descriptor to the Unix-domain socket named by
the environment variableSSH_AUTH_SOCK, which is
where the real SSH agent is listening. In the remote

4When possible,listen rejects Unix-domain connections from
other user IDs (through permission bits,getpeereid, or SO_PEERCRED

ioctls). As this doesn’t work for all operating systems, in practice we
hide forwarded agent sockets in protected subdirectories of/tmp/ .



login session on the server, the user also needs to set
SSH_AUTH_SOCKto be /tmp/ssh-agent-sock .
We have written a shell-script wrapper that hides these
details of setting up SSH agent forwarding.

3.4 Forwarding the SFS agent

When first starting up, thesfsagentprogram connects to
the local SFS daemon to register itself using authenti-
cated IPC. SFS’s mechanism for authenticated, intra-
machine IPC makes use of a 120-line setgid program,
suidconnect. Suidconnectconnects to a protected, named
Unix-domain socket, sends the user’s credentials to the
listening process, and then passes the connection back
to the invoking program.5 Thoughsuidconnectpredates
REX, REX’s file descriptor passing was sufficient to im-
plement SFS agent forwarding with no extra code on the
server. Simply runningsuidconnectin a REX channel
causes the necessary file descriptor to be passed back
over the network to the agent on a different machine.

Once thesfsagentis available on the remote machine,
the user can access it using RPC. All of the user’s con-
figuration is stored in one place; requests are always for-
warded back to the agent, so the user does not see differ-
ent behavior on different machines.

3.5 File system integration

One of the main motivations for building REX was
to provide a remote execution tool that was integrated
tightly with the SFS file system. When a user logs into
a remote machine, he should see the same file systems
as on the local machine. REX achieves this behavior
by forwarding thesfsagent, which maintains a per-user
view of the /sfs directory. Additionally, because the
agent handles all of the configurable aspects of a user’s
environment—server key management, user authentica-
tion, revocation—the remote login session acts the same
as the local one. SSH differs from this architecture in that
an SSH user’s environment might depend on the contents
of his .ssh directory, which might be different between
the local and remote machines.

4 Security

The REX architecture provides two main security bene-
fits. First, REX minimizes the code that a remote attacker
can exploit. Second, REX allows users to configure and
manage trust policies during a remote login session.

5getpeereid, when available, is used to double-checksuidconnect’s
claimed credentials.

4.1 Minimizing exploitable code

In recent years, remote exploits have become a major
concern for software developers. Buffer overruns and
other bugs have led to serious system security compro-
mises. REX attempts to mitigate this problem by min-
imizing the amount of remotely exploitable code. REX
also attempts to protect against local exploits by mini-
mizing the amount of code that runs with superuser priv-
ileges. REX offers protection against both types of ex-
ploits through the REX architecture’s use of local file
descriptor passing.

In REX, only rexd listens for and accepts connections
from remote clients.Rexdruns with superuser privileges
in order to authenticate the user (viasfsauthd) and then
spawnproxyas that user.Rexduses local file descriptor
passing to pass the client connection toproxy.

REX also tries to avoid local superuser exploits. For
example, the privilegedptyd daemon allocates pseudo-
terminals and passes them, using local file descriptor
passing, tottyd which runs with the privileges of a nor-
mal user. These privileged programs are small and per-
form only a single task, allowing easy auditing. Not
counting general-purpose RPC and crypto libraries from
SFS,rexd is about 500 lines of code andptyd is about
400 lines.

4.2 Managing trust policies

One particularly difficult issue with remote login is the
problem of accurately reflecting users’ trust in the var-
ious machines they log into. For example, a user may
use local machineA to log into remote machineB, and
then login from that session onB back toA. Many utili-
ties support credential forwarding to allow password-free
login from B back toA—but the user may not trust ma-
chine B as much as machineA. For this reason, other
systems often disable credential forwarding by default,
but the result of that is even worse. Users logging from
B back intoA will simply type their passwords. This is
both less convenient and less secure, as an untrusted ma-
chineB will now not only be able to log intoA, it will
learn the user’s password!

To address this dilemma, REX and thesfsagentsup-
port selective signing. Selective signing offers a conve-
nient way to build up trust policies incrementally without
sacrificing security. During remote login, REX remem-
bers the machines to which it has forwarded the agent. In
the remote login session, when the user invokesrexagain
and needs to authenticate to another server, hissfsagent
will run a user-specifiedconfirmation program. This pro-
gram, which could be a simple text message or a graph-
ical pop-up dialog box, displays the name of the ma-
chine originating the authentication request, the machine
to which the user is trying to authenticate, the service be-



ing requested (e.g., REX or file system) and the key with
which the agent is about to sign. The user’s agent knows
about all active REX sessions and forwarded agent con-
nections, so the remote machine cannot lie about its own
identity. Moreover, because signed authentication re-
quests contain the name and public key of the server be-
ing accessed, as well as the particular service, the agent
always knows exactly what it is authorizing.

With this information, the user can choose whether or
not to sign the request. Thus, users can decide case-
by-case whether to let their agents sign requests from
a particular machine, depending on the degree to which
they trust that machine. The modularity of the agent ar-
chitecture allows users to plug-in arbitrary confirmation
programs. Currently, SFS comes with a GUI program
(see Figure 4) that displays the current authentication re-
quest and the key with which the agent is about to sign
it. The user has five options: to reject the request; to ac-
cept (sign) it; to sign it and automatically sign all similar
requests in the future; to sign it and all similar requests
where the server being accessed is in the same DNS do-
main as the given server; and to sign it and all subsequent
requests from the same client, regardless of the server be-
ing accessed.

5 Transparency

Due to the limited size of the IPv4 address space, ma-
chines often do not have static, globally routable net-
work addresses. When an organization has more com-
puters than IP addresses, it must typically resort to Net-
work Address Translation, or NAT. With NAT, machines
have private [25] (not globally routable) IP addresses on
the local network, and a gateway re-writes the source ad-
dress of any outgoing packets to be globally routable.
The gateway then inverts this translation on any incom-
ing packets, so it can deliver them to the right port on the
appropriate local machine.

While NAT gateways let clients with private IP ad-
dresses connect normally to external machines, they have
no analogous way of transparently supporting incoming
connections to local servers. The reason is that most
servers listen on well-known TCP or UDP ports. If
the number of servers exceeds the number of globally
routable IP addresses available, multiple server machines
must share the same IP address, requiring some form of
application-specific demultiplexing.

A related problem is that of dropped TCP connections.
Sometimes the only globally-routable IP address avail-
able to a machine (or network of machines) is temporar-
ily assigned and periodically changes. Also, laptops usu-
ally need to change IP addresses when transported be-
tween buildings. If one end of a TCP connection changes
its IP address, the entire connection must be aborted.

NAT is another source of aborted TCP connections. Be-
cause NAT gateways must keep state for every active
TCP connection, they can prematurely terminate a TCP
connection when rebooted or when purging state entries
for other reasons. Some NAT implementations (notably
some cheap home routers optimized for web browsing)
aggressively terminate TCP connections after only a few
minutes of idle time.

Dropped TCP connections are particularly annoying
with traditional remote login tools, as they cause the
user’s entire session to be aborted. Sessions may abort at
inopportune times, when users are in the middle of edit-
ing files. Moreover all state associated with a dropped
session is typically lost, including GUI windows for-
warded from the remote machine.

Several design features allow REX to operate trans-
parently through NATs and without fixed IP addresses.
First, the SFS connection protocol allows servers to share
IP addresses and even TCP ports, so that clients can con-
nect transparently to arbitrarily many servers behind a
NAT gateway with a single globally-routable IP address.
Second, REX supports transparent resumption of aborted
TCP connections [28, 39], so that a session need not be
restarted after a change of IP address or NAT state flush.

5.1 Address and port sharing

The SFS framework, into which REX fits, provides two
solutions for configuring servers behind NATs. The first
approach, which we call address sharing, is to assign
each internal SFS server a unique TCP port number.
Most NAT gateways can be configured to have static
mappings of external port numbers to private addresses
and port numbers. For instance, TCP port 600 on the
external IP address might always be translated to TCP
port 4 of internal IP addressA, while external port 601 is
always mapped to port 4 on internal addressB.

Though SFS servers by default listen on TCP port 4,
a different port number can be specified with DNS
SRV [12] records. Each SRV record maps an SFS server
name and service to a server hostname (i.e., the name
of the globally-routable IP address), a port number, and
some priority information (so that multiple SRV records
can be used for load balancing). In this way, the NAT ad-
ministrator can configure an external TCP port for each
internal SFS machine, and publish port numbers through
DNS. External clients will then transparently connect to
the appropriate port of the external address.

A second approach, which we call port sharing, re-
quires only a single external TCP port number for all in-
ternal servers. All SFS protocols, including REX, begin
with a CONNECT RPC in which the client specifies the
desired self-certifying server name and service type (e.g.,
REX, file system, or authentication server). SFS’s “meta-



Figure 4: A GUI confirmation program

server” program,sfssd, can proxy TCP traffic to different
internal IP addresses based on the contents of the initial
CONNECT RPC. Port sharing withsfssdis similar to
using the HTTPHost header with an HTTP proxy.

One advantage of port sharing is thatsfssdcan be
configured to proxy certain services for a given internal
server but not others (e.g., exporting an SFS file server
but disallowing remote logins to it through REX). A
security-conscious gateway administrator therefore has
better control over what services are being made exter-
nally available. The disadvantage of port sharing is that
its user-level TCP proxying consumes more CPU time
and adds more latency than typical in-kernel NAT imple-
mentations.

A final issue with NATs is that, for efficiency rea-
sons, machines on the internal network should connect
to each other without going through the NAT gateway.
The best way to achieve this goal is to run a split DNS
server, which for the same hostname serves internal ad-
dresses to internal clients and external addresses to exter-
nal clients. BIND and several other popular DNS servers
support such functionality, but a number of users on the
SFS mailing list have complained of the complexity of
configuring DNS servers. Therefore, if split DNS is not
available, DNS records can be set to point to the ex-
ternal IP address and internal machines can use a file
/etc/sfs/sfs_hosts to override DNS with inter-
nal addresses. This file’s syntax is a superset of tradi-
tional /etc/hosts , extended to allow port numbers to
be specified.

5.2 Session resumption

When a TCP connection aborts, REX provides the ability
to resume the session over a new TCP connection. In or-
der not to increase the amount of trusted or remotely ex-
ploitable code, this functionality is implemented entirely
in proxy, with no changes required torexd. To resume an
aborted TCP connection, the client first attaches toproxy
throughrexd, using a new sequence number. It then is-
sues a RESUME RPC, supplying the sequence number
of the old session. This RPC causes theproxy to delete
the state of the current session and replace it with that of
the old session.

REX uses a bi-directional RPC protocol. Any input
to rex prompts it to send an RPC toproxy, and similarly
any program output toproxy results in an RPC torex.
For a resumable connection,rex andproxy each keep a
replay cache of recently transmitted RPCs replies. Re-
sumption then just consists of replaying all unanswered
RPCs. In order to determine when something can be
evicted from the replay cache, the RPC code conserva-
tively determines when the other side has received a re-
ply based on two factors: the size of the kernel’s TCP
send buffer and replies to RPCs in the other direction.

One issue introduced by session resumption is the po-
tential to leave stale proxies around ifrex processes are
terminated. REX employs several techniques to reduce
the incidence of stale proxies. First, eachrexclient main-
tains a connection to the user’s agent. If a resumablerex
process dies (for instance because the user terminates it
with the Unix “kill -9 ” command), the agent detects



this fact by an end-of-file, and informs the remote proxy
that the particular session can be garbage-collected.

Second, each agent has a unique identifier, based on
the user’s login name and the name of the machine it is
running on. The agent’s identity is supplied as a com-
mand line option toproxy(which, in particular, makes it
visible through the Unixps command). Wheneverproxy
is launched with a particular agent identity, it informs any
previousproxy running with the same identity though a
named Unix-domain socket in/tmp , and the previous
proxy then considers all sessions non-resumable. In the
event that the agent ungracefully exits (for example, the
client crashes and reboots), this mechanism causes the
old proxy to exit the next time the user logs into the same
server.

Session resumption works transparently even when
the server changes IP address, so long as the server pub-
lishes its current address through DNS (e.g., using some
sort of dynamic DNS scheme likedyndns.org ). How-
ever, there are some subtleties to making this work prop-
erly because of the fact that DNS can also be used for
load balancing—for instance, a hostname likedialup.
mit.edu might actually point to a pool of login servers.
In such cases, when a client changes IP address, it must
resume its REX session to the same dialup server. To
achieve this, REX revalidates all DNS information when
reconnecting, and chooses the same DNS records as for
the initial connection if still available. More precisely,
when the original connection used an SRV record, if the
particular hostname and port chosen the first time are
still available, reconnection uses them again. For a given
hostname, if the particular IP address initially used is still
available, reconnection again re-uses it.

We note that the level of indirection provided by
SRV records allows the location of an entire network of
servers behind a NAT gateway to be updated with the
change of a single DNS A (address) record. For exam-
ple, Figure 5 shows an example of SRV records for four
SFS servers in the static DNS domainmydomain.org ,
located behind a NAT gateway calledmynat.dyndns.
org . If the gateway’s external address changes, only
the DNS record ofmynat.dyndns.org needs to be
updated—themydomain.org domain can remain un-
changed.

6 Evaluation

First, this section quantifies REX’s extensible architec-
ture in terms of code size. Second, we compare the per-
formance of REX with the OpenSSH [21] implementa-
tion of SSH protocol version 2 [37]. The measurements
demonstrate that the extensibility gained from file de-
scriptor passing comes at little or no cost.

6.1 Code size

REX has a simple and extensible design. Its wire proto-
col specification is only 230 lines of Sun XDR code [29].
REX has two component programs that run with en-
hanced privileges.Rexdreceives incoming REX connec-
tions and adds only 500 lines of trusted code to the sys-
tem (not counting the general-purpose RPC and crypto li-
braries from the SFS toolkit [19]).Ptydallocates pseudo-
terminals to users that have successfully authenticated
and is about 400 lines of code.

Proxy runs with the privileges of the authenticated
users and is just over 1000 lines of code; therex client
is about 2,350 lines. Extensions to thesfsagentfor con-
nection caching constitute less than 900 lines of code.

Modules that extend REX’s functionality are also
small. Thelisten, moduled, andconnectmodules are ap-
proximately 250, 30, and 375 lines of code, respectively.
Ttyd is under 260 lines.

If REX were to gain a sizable user base, we could ex-
pect the code size to grow because of demands for fea-
tures and interoperability. The code growth, however,
would take place in untrusted components such asproxy
or in new external modules (likely also untrusted). Be-
cause of the extensibility, well-defined interfaces, and the
use of file descriptor passing, the trusted components can
remain small and manageable.

6.2 Performance

We measured the performance of REX and OpenSSH
3.8p1 [21] on two machines running Debian with a Linux
2.4 kernel. The client machine consisted of a 2 GHz Pen-
tium 4 with 512 MB of RAM. The server machine con-
sisted of a 1.1 GHz AMD Athlon with 768 MB of RAM.
A 100 Mbit, switched Ethernet with a 118µsec round-
trip time connected the client and server. Each machine
had a 100 Mbit Ethernet card.

We configured REX and SSH to use cryptographic
systems of similar performance. For authentication and
forward secrecy, SFS uses the Rabin-Williams cryp-
tosystem [33] with 1,024-bit keys. SSH uses RSA with
1,024-bit keys for authentication and Diffie-Hellman
with 768-bit ephemeral keys for forward secrecy. We
configured SSH and SFS to use the ARC4 [14] cipher for
confidentiality. For integrity, SFS uses a SHA-1-based
message authentication code while SSH uses HMAC-
SHA-1 [7, 17]. Our SSH server had the privilege sep-
aration feature [24] enabled.

6.2.1 Remote login

We compare the performance of establishing a remote
login using REX and SSH. We expect both SSH and
REX to perform similarly, except that REX should have



; SERVICE/NAME PRIO/WGHT PORT SERVER
_sfs._tcp.server-a.mydomain.org. SRV 0 1 600 mynat.dyndns.org.
_sfs._tcp.server-b.mydomain.org. SRV 0 1 601 mynat.dyndns.org.
_sfs._tcp.dialup.mydomain.org. SRV 0 1 602 mynat.dyndns.org.
_sfs._tcp.dialup.mydomain.org. SRV 0 1 603 mynat.dyndns.org.

Figure 5: An example of DNS SRV for four SFS servers on different TCP ports of mynat.dyndns.org . Such
configurations are useful when mynat.dyndns.org is a NAT gateway, forwarding different TCP ports to different
internal server machines. The priority and weight columns affect load balancing across duplicate records. The values
are meaningless for server-a and server-b , and for dialup result in uniform distribution of connections across
TCP ports 602 and 603 of mynat.dyndns.org .

a lower latency for subsequent logins because of connec-
tion caching.

Average Minimum
Protocol Latency Latency
SSH 121 msec 120 msec
REX (initial login) 51 msec 50 msec
REX (subsequent logins) 21 msec 20 msec

Table 1: Latency of SSH and REX logins

Table 1 reports the average and minimum latencies of
100 remote logins in wall clock time. In each experi-
ment, we log in, run/bin/true , and then immedi-
ately log out. The user’s home directory is on a local
file system. For both REX and SSH, we disable agent
forwarding, pseudo-tty allocation, and X forwarding.

The results demonstrate that an initial REX login is
slightly faster than an SSH login. In both cases, much of
the time is attributable to the computational cost of mod-
ular exponentiations. An initial REX connection requires
two concurrent 1,024-bit Rabin decryptions—one by the
client for forward secrecy, one by the server to authenti-
cate itself—followed by a 1,024-bit Rabin signature on
the client to authenticate the user. All three operations
use the Chinese Remainder Theorem to speed up modu-
lar exponentiation.

An SSH login performs a 768-bit Diffie-Hellman key
exchange—requiring two 768-bit modular exponentia-
tions by each party—followed by a 1,024-bit RSA sig-
nature for server authentication and a 1,024-bit RSA sig-
nature for user authentication. The Diffie-Hellman ex-
ponentiations cannot be Chinese Remaindered, and thus
are each more than 50% slower than a 1,024-bit Rabin
decryption. The RSA operations cost the same as Rabin
operations.

The cost of public key operations has no bearing on
subsequent logins to the same REX server, as connection
caching requires only symmetric cryptography. Were
SSH to implement connection caching, we would expect
performance similar to REX’s on subsequent logins.

6.2.2 Port forwarding throughput

Both SSH and REX can forward ports and X11 connec-
tions. To demonstrate that REX performs just as well
as SSH, we measure the throughput of a forwarded TCP
port with NetPipe [27]. NetPipe streams data using a va-
riety of block sizes to find peak throughput.

Protocol Throughput Latency
TCP 87.1 Mbit/sec 118µsec
SSH 86.2 Mbit/sec 294µsec
REX 86.0 Mbit/sec 394µsec

Table 2: Throughput and latency of TCP port forwarding

We first measure the throughput of an ordinary, inse-
cure TCP connection. Table 2 shows that the maximum
TCP throughput is 87.1 Mbit/sec. The round-trip latency
represents the time to send one byte of data from the
client to the server, and receive acknowledgment. Next,
we measure the throughput of a forwarded port over es-
tablished SSH and REX connections. Table 2 shows that
file descriptor passing in REX does not noticeably reduce
throughput.

We attribute the additional latency of ports forwarded
through REX to the fact that data must be propagated
through bothproxyandconnecton the server, incurring
an extra context switch in each direction. Ifrexandproxy
provided a way to “fuse” two file descriptors, we could
eliminate the inefficiency. Note, however, that over any-
thing but a local area network, actual propagation time
would dwarf the cost of these context switches.

7 Related Work

Several tools exist for secure remote login and execu-
tion. This section focuses primarily on those tools but
concludes with a discussion of agents and file descriptor
passing.



7.1 SSH

SSH [38] is the de-facto standard for secure remote exe-
cution and login. SSH is decentralized: one needs only
local superuser privileges to run the SSH server daemon,
and one does not need to obtain server certificates or oth-
erwise register with any sort of realm administrator in
order to connect to the SSH server. SSH also offers sev-
eral modes of user authentication. For example, it has
optional support for Kerberos [30], allowing password-
free login plus ticket and AFS [13] token forwarding.

SSH was the main inspiration for REX, as we needed
an SSH-like tool that could work with SFS. Though we
could have extended SSH for the task, we decided to
build REX from scratch for several reasons. First, we
believed a design based on file descriptor passing would
simplify implementation, improve security, and increase
extensibility. Leveraging SFS’s RPC compiler and li-
brary further reduced the amount of new code needed.
We also wished to take advantage of SFS’s infrastructure
for user and server authentication, particularly its use of
SRP to sidestep potential man-in-the-middle attacks. Fi-
nally, as commonly configured, SSH servers read files
in users’ home directories before authenticating them,
which is inconvenient when the home directories them-
selves reside on SFS.

Aside from file descriptor passing and integration with
SFS, REX offers several features not presently available
in SSH. REX’s connection caching improves connection
latency. Connection resumption and support for NATs al-
low REX to operate transparently over a wider variety of
network configurations. Selective signing improves se-
curity in mixed-trust environments and saves users from
typing their passwords unnecessarily. Conversely, SSH
provides features not present in REX, notably compati-
bility with other user-authentication standards.

We believe many of the ideas in REX are applicable
to SSH and other remote login tools, and hope that SSH
and REX can increasingly adopt each other’s features.
For example, as part of the privilege separation code in
OpenSSH [21], the OpenSSH server internally handles
pseudo-terminals with file descriptor passing. Though
file descriptor passing is part of the source code, it is not
part of the protocol. Generalizing the idea cleanly to pass
file descriptors for other purposes would require modifi-
cation to the SSH protocol, which we hope people will
consider in future revisions.

7.2 Kerberos

Kerberos [30] is a centralized authentication system
which includes remote login and execution utilities. It
provides a unified way of naming, authenticating, and
authorizing principals. Kerberos organizes users and ma-
chines into realms. Joining an existing realm (i.e., setting

up a server) requires permission from and coordination
with that realm’s trusted administrator. In part because
Kerberos is based on shared-secret cryptography, creat-
ing a new realm is not a simple task and requires admin-
istrative permission to interoperate with existing realms.

Kerberized remote login is based on this centralized
architecture, and therefore requires a trusted third party
for client-server authentication. REX and SFS both sup-
port third-party authentication, but do not require it, and
in practice they are often used without it. The AFS [13]
file system uses Kerberos for authentication, and Kerber-
ized remote login can authenticate users to the file system
before logging them in. REX provides similar support
for the SFS file system.

7.3 Globus

The Globus [8] Project provides a Grid metacomput-
ing infrastructure that supports remote execution and
job submission through a resource allocation manager
called GRAM [5] and access to global storage resources
through GASS [1]. Globus was designed to provide a
uniform interface to distributed, remote resources, so in-
dividual client users do not need to know the specific
mechanisms that local resource managers employ. By
default, GRAM and GASS provide simple output redi-
rection to a local terminal for programs running on a
remote machine. Tools built on top of Globus can of-
fer features such as pseudo-terminals, X11 forwarding
and TCP port forwarding [11]. These features, however,
seem to be built into the software and protocol whereas
REX provides the same extensibility and security (privi-
lege separation) through file descriptor passing.

The Grid Security Infrastructure (GSI) [3, 9] provides
security and authentication to Grid-based services. GSI
is based on X509 [36] public-key certificates and the
SSL/TLS protocols [6]. Recent extensions to GSI add
support for proxy certificates [32], which allow an entity
to delegate an arbitrary subset of its privileges. A new
GSI-enabled version of SSH can use these proxy certifi-
cates to provide limited delegation to applications run-
ning on the remote machine, similar to REX’s selective
signing mechanism.

7.4 Secure rlogin

Before SSH, researchers explored other options for se-
cure remote login [16, 31]. Kim et al. [16] implemented
a securerlogin environment using a security layer be-
neath TCP. The system defended against vulnerabilities
created by hostname-based authentication and source ad-
dress spoofing. Securerlogin used a modular approach
to provide a flexible security policy. Like REX, se-
cure rlogin used small, well-defined module interfaces.



REX uses a secure TCP-based RPC layer implemented
by SFS; securerlogin used a secure network layer be-
tween TCP and IP, similar to IPSec [15].

7.5 Agents

While REX is not the first remote execution tool to em-
ploy user agents, it makes far more extensive use of its
agent than other systems. The SSH agent, for example,
is capable of authenticating users to servers. For other
tasks such as server authentication, however, SSH relies
on configuration files (e.g.,known_hosts ) in users’
home directories. When users have different home di-
rectories on different machines, they see inconsistent be-
havior for the same command, depending on where it is
run. By contrast, encapsulating all state behind an RPC
agent interface allows a user’s configuration to be propa-
gated from machine to machine simply by forwarding an
RPC connection.

Another significant difference between the REX and
SSH agents is that the SSH agent returns authentication
requests that are not cryptographically bound to the iden-
tity of the server to which they are authorizing access. As
a result, a remote SSH client could lie to the local agent
about what server it is trying to log into. Concurrently
and indepently of REX, the SSH agent added support for
a simple confirmation dialog feature, but the SSH agent
is unable to build up any meaningful policies or even tell
the user exactly what is being authorized.

Recently, the security architecture for the Plan 9 sys-
tem has been redesigned [4]. The new Plan 9 architecture
has an agent,factotum, which is similar to the SSH and
SFS agents but is implemented as a file server.

The Taos operating system [18, 34] and the Echo
file system [2] also have notions of an authentication
agent. Unlike SFS, they both implement the agent as
an operating-system component rather than as a user-
controlled program.

7.6 File descriptor passing

An alternative to file descriptor passing is file name-
space passing, as is done in Plan 9 [22]. Plan 9’s CPU
command can replicate parts of the file namespace of
one machine on another. When combined with device
file systems like/dev/fd , this mechanism effectively
subsumes file descriptor passing. Moreover, because so
much of Plan 9’s functionality (including the window-
ing system) is implemented as a file system, CPU allows
most types of remote resource to be accessed transpar-
ently. Unfortunately, Unix device and file system seman-
tics are not amenable to such an approach, which is one
of the reasons tools like SSH have developed so many

different, ad hoc mechanisms for handling different types
of resources.

8 Conclusions

REX provides secure remote login and execution in the
tradition of SSH. REX offers a new architecture with
three main goals—extensibility, security, and transpar-
ent connection persistence in the absence of global rout-
ing. REX’s extensibility, based on emulated file descrip-
tor passing between machines, allows users to add new
functions to REX without changing the protocol. REX’s
security benefits are a limited amount of exploitable code
and a convenient mechanism for building trust policies.
Finally, REX provides transparent operation in today’s
complex network configurations, which include NAT and
dynamic IPs.

The current REX implementation demonstrates that
the REX architecture is viable. We hope that the new
ideas upon which REX is built will find wider applica-
bility in other systems. REX is available as part of the
SFS distribution (http://www.fs.net/ ).
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