In Proceedings of the 2004 USENIX Annual Technical Conference (USENIX'04)
Pages 199-212, Boston, Massachusetts, June 2004

REX: Secure, Extensible Remote Execution

Michael Kaminsky, Eric Peterson, Daniel B. Giffin,
Kevin Fu, David Maziéres, M. Frans Kaashoek

MIT Computer Science and Artificial Intelligence Laboratory,
NYU Department of Computer Science

kaminsky@csail.mit.edu , ericp@csail.mit.edu , dbg@cs.nyu.edu
fubob@csail.mit.edu , dm@cs.nyu.edu , kaashoek@csail.mit.edu
Abstract The popular SSH [38] program demonstrates that

. . users expect features such as TCP port and X Window
The ubiquitous SSH package.has demonstr'ated the 'MSystem forwarding, facilities for copying files back and
portance of Ssecure remote !ogln and _executlon. As "orth, cryptographic user authentication, integration with
mote execution tools grow in popularity, Users requirenqy ok file systems, transfer of user credentials across
new features and extensions, which are difficult to add,,,-hines pseudo-terminals, and more. Many of these
to existing systems. REX is a remote execution utility oy res require changes to the remote login protocol, for
with a novel architecture specifically designed for ex-, i developers add new message types.

tens!bnlty as_well as security and transparent connection Moreover, many users want other features that are not
persistence in the face of network complexities such as ilable: limitati h f cod bi
NAT and dynamic IP addresses. To achieve exten:sibil-yet avarable. |m|tat|ons on_t e amount of code su Jec_t
ity, REX bases much of its functi;)nalit on a single new to remote exploits, convenient trust management poli-
a)é’straction—emulated file descriptor gssin acrgss ma—Cies’ transparent access to servers behind network ad-

; ; oo plorp 9 dress translation (NAT), and support for long-running
chines This abstraction is powerful enough for users to

, : o ' remote login sessions when the client and server both
extend REX'’s functionality in many ways without chang- : . -
. change their IP addresses. The challenge in designing
ing the core software or protocol.

Lo . . and building a remote execution tool is to address this
REX.add.resses security in tW.O ways. F|rst, the 'r.nple'diverse set of needs in a single, simple, extensible frame-
mentation internally leverages file descriptor passing tq/vork.
split the server into several smaller programs, reducing This paper introduces a new remote login and exe-
both privileged and remotely exploitable code. Second,Cution utility called REX, which has three main goals:
REX selectively delegates authority to processes runnin%xtensibility security ar11 d transparent connection pe.r-
on remote machines that need to access other resources?stence de,spite NA'I,' and dynamic IP addresses. The
The delegation mechanism lets users incrementally Cor]r_nain contribution of REX is its architecture centéred
struct trust policies for remote machines. Finally, REX aroundile descriptor passingooth as an internal imple-
provides mechanisms for accessing servers Withomglo%entation technique and as an external interface highly
ally routable IP addresses, and for resuming sessions :
when a TCP connection aborts or an endpoint’s IP adgmenable to extensions.

dress changes. Measurements of the system demonstrate=Xtensibility. REX's approach to extensibility is for
that REXs architecture does not come at the cost of pert1€ Core system and protocol to provide the simplest pos-
formance sible interface on which external utilities can implement

advanced features like remote pseudo-terminal access,

port forwarding, and authentication delegation. This in-
1 Introduction terface consists principally of file descriptor passing: a

process on one machine can effectively transfer a file
Remote login and execution are network facilities thatdescriptor to a process on another machine. In reality,
many people need for their day-to-day computing. TheREX emulates this operation by receiving the descriptor
concept of remote login is simple: local input is fed to a on one machine, passing a new socket to the recipient on
program on a remote machine, and the program’s outpuhe other machine, and subsequently relaying data back
is sent back to the local terminal. In practice, however,and forth between the descriptor and new socket over a
modern remote login tools have become quite complex.cryptographically protected TCP connection. REX does

mailto:kaminsky@csail.mit.edu
mailto:ericp@csail.mit.edu
mailto:dbg@cs.nyu.edu
mailto:fubob@csail.mit.edu
mailto:dm@cs.nyu.edu
mailto:kaashoek@csail.mit.edu

not care if a passed file descriptor is the master sidéorwarding with cookie authentication, and Unix-domain
of a pseudo-terminal, a connection from an X-windowssocket forwarding. REX adds only two small pieces of
client, a forwarded authentication agent connection, oprivileged code to the system. One of these, the pseudo-
some as-yet-unanticipated future extension. terminal daemon, is only 400 lines of code and never
Security. REX was designed from the ground up to touches an Internet socket; it is therefore unlikely to be
minimize both the amount of code that runs with su-remotely exploitable. The otheexd, is only 500 lines of
peruser privileges and the amount of code that dealsode (not counting general-purpose crypto and Remote
directly with incoming network connections (which Procedure Call libraries). REX is in daily use, it runs on
presents the greatest risk of being remotely exploitable)Unix, and the source code is freely available.
The REX server is split into two components: a small The rest of the paper is structured as follows. Sec-
trusted progranrexd, and a slightly larger, unprivileged, tion 2 describes REX’s architecture, and Sections 3, 4,
per-user programproxy. Remote clients can communi- and 5 detail the main benefits of this architecture: ex-
cate only withrexd until they prove that they are acting tensibility, security, and transparency. Section 6 gives an
on behalf of an authorized usd®roxy, in turn, actually evaluation of the implementation in terms of code size
implements almost the entirety of what one would con-and performance. Finally we discuss related work, pri-
sider remote execution functionality. This separation ofmarily regarding remote execution, and conclude.
functions and privileges is possible becatesel uses lo-
cal file descriptor passing to hand off incoming connec-
tions toproxy.

_The latest versions of OpenSSH [21] have moved in &rex is designed to work with the Self-certifying File
similar direction by embracing privilege separat!on [24, System (SFS), a secure, global network file system. SFS
26]. The SSH protocol, however, was not designed tq,.,\ides REX’s user and server authentication facilities.
facilitate such an architecture, and the complexity of therex 5150 shares SFS's RPC compiler and library, which
implementation reflects this fact. For example, in ON€promote security by offering a concisely-specifiable
step, SSH must extract the memory heap from a procesg;mmunication interface between local and remote com-
and essentially recreate it in another process’s addre??onents and by parsing messages with mechanically-
space. Moreover, even the least privileged, “jailed,” SSHyenerated code. Further, the use of local file descriptor
processes still require the potentially dangerous ability topassing allows REX to be broken into small functional
sign with the server's secretkey. _ _ units, minimizing the amount of privileged code.

A second security goal of REX is to provide precise The REX architecture offers extensibility through a
delegation of authority to processes running on remot@ommunication abstraction that connects remote code
machines. Delegation of authority allows a remote pro-(including arbitrary user programs) through the familiar
cess to access and authenticate itself to remote resourcgsierface of file descriptors. These pieces of code are
However, a user might trust the remote machine less thapajled modules REX groups file descriptors intchan-
the local one. To address this problem, REX can promphels and channels inteessionsA sessiorcorresponds
users to authorize remote accesses on a case-by-case Riy|| cryptographically protected communication over a
sis; by optionally instructing the agent to allow similar single TCP connection between a REX client and a par-
crementally. _ _ _ there exists @hannelwithin some session. Each channel

Transparent Connection PersistenceREX provides can contain an arbitrary number file descriptorpairs,
transparent connection persistence in the face of compyer which modules may send data or more file descrip-
plex network configurations. The prevalence of networkigrs.
address translation (NAT) makes it hard to run globally Sections 2.1 and 2.2 provide background on user au-
accessible servers on many machines, while dynamicallyhentication and local and remote file descriptor passing.
assigned IP addresses can disrupt long-running sessionsections 2.3 and 2.4 describe how REX establishes new
REX lets users transparently connect to remote loginsessions and how the channel abstraction is used to con-

servers behind NAT boxes using either an externally adnect modules. Finally, this section concludes with a dis-
dressable proxy server or DNS SRV records [12] (in con-cussion of connection caching.

junction with static TCP port mapping). REX’s auto-
matic connection resumpnc_)n allows clients and SEIVers, 1 ser Authentication in SES
to change IP addresses during the course of a connection.

We have built REX as part of the SFS [20] computing The key SFS subsystem that REX leverages is the user
environment. REX currently offers modules that han-authentication infrastructure, which consists of two pro-
dle pseudo-terminal support, TCP port forwarding, X11grams. The first is a per-user agent processagent

2 Architecture

which runs on the client machine. The agent stores 2.3.1 Stage |
user’s private key and signs authentication requests on

his behalf. The second program is an authenticatior] "€ USer invokes theex client! in order to start a new

server,sfsauthdwhich runs on the server machine. The REX session. Firstexcontacts the user's agent and asks

authentication server verifies the signatures on authert {0 €stablish a session to the desired server (Figure 1,

tication requests and then maps user public keys to lo>t€P 1)- In Step 2, thefsagenuses the server's public

cal Unix accounts based on a database of registered SF§Y 10 establish a secure connection to fiwed process
USers. running on the server.

Maziéres et al. [20] describe several mechanisms

through which the client can obtain the server’s key. By

))) default, REX, like SSH, maintains a cache of server pub-

2.2 File descriptor passing lic keys that it has already seen. REX, however, avoids
possible man-in-the-middle attacks when contacting a

File descriptors are numerical handles which name aieyer for the first time by using the Secure Remote Pass-
opened file, socket, device, or other file-like resourceyord (SRP) protocol [35].

Most 1/ in Unix is performed by reading from and njoy¢ the sfsagentauthenticates its user teexd

writing to file descriptors. Unix also provides a facility (Step 3). The agent signs an authentication request,

for passing a file descriptor to another process thr‘?“%\/hich it passes to the server through the secure connec-
the sendmsgndrecvmsgsystem calls on Unix-domain 4, - Rexdpasses the authentication request to the au-

sockets [23]. thentication servesfsauthdwhich verifies the signature
REX uses local file descriptor passing between daeand identifies the user (maps the user’s public key to a
mons, particularly on the server. This mechanism makegocal account).
it easy to split functionality at a connection endpoint be- Once the user is authenticateexd, which runs with
tween a privileged and unprivileged process, typically bysuperuser privileges, spawns a new process cptexy,
handing the connection from the privileged to the unpriv-which runs with the privileges of the local user identi-
ileged process after some initialization phase. The use Gfed above (Step 4).Rexduses file descriptor passing
|Oca| f||e deSCFiptor paSSing as |t relates to SeCUrity iS diS‘tO hand the secure Connectioan))(y’ which processes
cussed further in Section 4. remote execution requests from the user (Step 5). The
REX also introduces the emulation of file descrip- sfsagentmaintains a connection fwroxyin order to keep
tor passing between machines. This mechanism allowthis master REX session alive; once the agent closes its
many extensions such as port forwarding and pseudosonnection toproxy (provided no other clients are still
terminal allocation to be implemented outside of the coreconnected)proxywill exit and rexd will delete the mas-
system, thereby increasing extensibility. The use of fileter session. The master REX session is the basis for sub-
descriptor passing over the network is described in moresequent sessions between this user and server.
detail in Section 3.

2.3.2 Stagell

2.3 Sessions To run a program on the server, tfex client notifies the
user'ssfsagentthat it wants to create a new session to

Figures 1 and 2 show how REX establishes a session bdh€ given server (Figure 2, Step Bisagentooks up the
tween a client machine (left) and a server (right). Boxescorresponding master REX session and haexisession

with a gray background are SFS programs that REX use@Ys for a new session to the saprexy. Rexthen con-
while boxes with a white background are part of REX. Nects torexd (Step 2).Rexdchecks thatex indeed pos-
Boxes with a filled upper-right corner are programs thatS€Sses appropriate keys, and if so hands the connection
run with superuser privileges. (The SFS agent is halfOff to proxythrough file descriptor passing (Step 3). Fi-
gray, half-white because even though it was part of th"ally, rexasksproxyto spawn a program, sdyin/ls

original SFS architecture, we extended it to support REXWith & certain number of file descriptors (Step 4). Rex
as described below.) then mediates the exchange of data between these file

Set_ting up a REX session has two stz_iges. In Stage_ [, 1This paper will use REX (capital letters) to refer to the remote
the client establishes a secure, authenticated connectie@fecution facility as a whole amex (italicized lowercase) to refer to
to the server. We call this initial connection the “master” the client program that the user invokes to start a REX session.

REX session. In Stage Il, the client creates new REX Since the SFS file server, al_Jthentlcatlon server,rardall listen
on the same TCP port, connection setup by default also goes through

sessions, based on the master session, to run progrargisstssd'meta-server.”Stssademultiplexes incoming connections and
on the server. hands them off to the appropriate daemon using file descriptor passing.

o

[user authentication] A |
[T o
{0) ® \
o

Figure 1: Setting up a REX session (Stage 1)

I sfsagent

RO ©) ®

I rex

[F)
L

Figure 2: Setting up a REX session (Stage Il). Gray lines represent connections that were established during Stage I.

descriptors and a component on the client side with acates a new file descriptor number within the channel for
channel the other end. Conversely, when a module passes a file
descriptor taproxy, proxy allocates a new file descriptor
24 Channels numbe_r for @t vyithin the appropriate channel and notifieg
rex, which similarly passes one end of a new socket pair
The REX channel abstraction allows a pair of modulesto the local module. As Section 3 demonstrates in detail,
on different machines to communicate as if they werethis emulated file descriptor passing is the foundation of
running on the same machine, connected by one or morBEX's extensibility.
Unix-domain sockets. When the client module writes
data to a file de§criptorex e_nca_psulates that data as an 2.5 Connection caching
RPC and sends it foroxy, which in turn unpacks the data
and writes it to the appropriate file descriptor. The serveiThe REX protocol naturally lends itself toonnection
module can then read the data on its corresponding fileaching[6, 10]. Becauseex uses thesfsagento estab-
descriptor.Proxy similarly relays any data it reads back lish a master session witlexd/proxy first, the sfsagent
to rex. can remember (maintain) that connection and use it to set
The client creates channels through an RPC that speap subsequent REX sessions quickly. The initial REX
ifies the name of the server module to run, a set ofconnection to a remote machine is set up using public-
command line arguments and environment variables td&ey cryptography. Once this connection is established,
set, and the number file descriptors the spawned modulBEX uses symmetric cryptography to secure communi-
should inherit. (If fewer than three file descriptors arecation over the untrusted network. Subsequent REX con-
specified, standard input, standard output, and possiblgections to the same machine can bypass the public-key
standard error of the spawned process will be the samstep and immediately begin encrypting the connection
socket.) Depending on the channey can either redi- using symmetric cryptography.
rect I/O to a local module, or else relay data between the For an interactive remote terminal session, the extra
channel file descriptors and its own standard input, outtime required for the public-key cryptography might go
put, and error. unnoticed, but for batched remote execution that might
Channels are the mechanism through which REX eminvolve tens or even hundreds of logins, the delay is ob-
ulates file descriptor passing over the network. When a&ervable. Connection caching offers an added benefit; if
module passes a file descriptorre, rex notifiesproxy the user’'s agent was forwarded, that forwarding can re-
through an RPCProxythen creates a new Unix-domain main in place even after the user logs out, allowing him
socket pair, passes one end to the local module, and allde leave programs running that require use of thesfgs

SessionKeySC = HMAC-SHA-1(MasterSessionKeySiQ

SessionKeyGS = HMAC-SHA-1(MasterSessionKeyCi$

Sessionlp = SHA-1(SessionKeySCSessionKeyGH
MasterSessionlD = Sessionllg

Figure 3: Sfsagent and rexd use the MasterSessionKeys and sequence number (i) to compute new SessionKeys.

agent A utility sfskeylets the user list and manage open3 Extensibility
connections.
One of the main design goals for REX is extensibility.

Once the master session has been establishedthe SSH has demonstrated that users want more features than
client can create subsequent secure connections (sejgst the ability to execute programs on a remote ma-
SiOﬂS) to the same server USing the fO”OWing prOtOCOI.Chine_ TTY Support, X11 forwarding, port forwarding,
First, rex contacts thesfsagentand requests a new ses- and agent forwarding, for example, are critical parts of
sion. The agent computes the values shown in Figure §day’s remote execution tool. REX offers these fea-
based on thifasterSessionKsy(one for each direction) tyres and also provides users with an interface to add new
that were established using public-key cryptography durpnes. REX’s extensibility stems primarily from a single
ing the initial connection. Th8essionKeyare the sym- apstraction: the REX channel’s ability to emulate file de-
metric keys that theex client uses to encrypt its con- scriptor passing over the network. None of the features

nection toproxy. They are computed as the HMAC- described in this section required any changes to the REX
SHA-1[7, 17] of a sequence numbeeeyed by theMas- protocol.

terSessionKeyy The agent generates a unique sequence
number for each REX connection to prevent an adver-
sary from replaying old REX sessions. T8essioniDs ~ 3-1 TTY Support

a SHA-1[7] hash of th&essionKey, and thMasterSes- pey provides pseudo-terminal support to interactive
sionIDis theSessionlDvhere the sequence number is 0. ,4in sessions using the channel abstraction and file de-

scriptor passing as follows. Thex client tellsproxy to
launch a module callettyd, which takes as an argument
the name of the actual program that the user wants to
run. Typically, for remote login, the argumentttyd is

gge user’s shell.

Ttyd runs with only the privileges of the user who
wants a TTY. The program has two tasks. First, it
obtains a TTY from a separate daemon running on the
gserver callecbtyd Ptyd runs with superuser privileges
and is responsible only for allocating new TTYs and
recording TTY usage in the systemmp file. The two
processestyd andptyd, communicate via RPC. When
ptyd receives a request for a TTY, it uses file descrip-
tor passing plus an RPC reply to return the master and

Once thesfsagentcomputes these values, it returns
them to theex client. Rexmakes an insecure connection
to rexd and sends the sequence number,MasterSes-
sionID, and theSessionID Session IDs can safely be
sent over an unencrypted connection because adversari
cannot derive session keys from theRexdlooks up the
appropriate cached connection based onMiasterSes-
sionID. Then,rexd computes theSessionKey and the
SessionlOor the new REX session (as in Figure 3) base
on the sequence number that it just received ani/ie
terSessionKeythat it knows from the initial connection
by the sfsagent Rexdverifies that the newly computed
SessionlDmatches the one received from tiex client.

If they match rexd passes the connectionpooxy along X !
with the newSessionKes; Finally, rex and proxy both slave sides of the TTY. Ttyd connects toptyd with

begin securing (encryption and message authenticatiopU/dconnect , SFS’s authenticated IPC mechanism
code) the connection. (described further in Section 3.4). This mechanism lets

ptyd securely track and record which users own which
After rex and proxy establish a secure REX session, TTYs.2 After receiving the TTY(tyd keeps its connec-
therexclient can create a new REX channel as describedion open toptyd Thus, wherityd exits, ptyd detects the
above.Proxy (and possibly alsoex) will spawn the ap- event by an end-of-filePtydthen cleans up device own-
propriate modules which can now communicate securely

over the network. Subsequent connections proceed in the _JUniike traditional remote login daemonglyd with its single
system-wide daemon architecture, could easily defend against TTY-

same way, allowing REX to rapidly execute processes Oldyhaustion attacks by malicious users. Currently, however, this feature
the server. is not implemented.

ership ancdutmp entries for any TTYs belonging to the 3.3 Forwarding Arbitrary Connections

terminatedtyd. . .
y REX has a generic channel interface that allows users

Oncettyd receives a newly allocated TTY, its second to connect two modules from thex client command-
task is to spawn the program given as its argument (€.gline without adding any additional codéRexcreates a
the user’s shell). It spawns the process with the slavghannel that connects the standard file descriptors of the
side of the TTY as its standard file descriptors and conserver module program to a user-specified client mod-

trolling terminal. Thenftyd sends the file descriptor of yle program. Unlike the channels described above, the
the TTY’s master side back to thex client via the REX rex client itself does not act as the client module. This

channel. On the client machinex copies data back and - generic mechanism allows REX users to easily build ex-
forth between this copy of the TTY’s master file descrip- tensions such as TCP port forwarding and even SSH
tor and the local terminal (e.g., theermin whichrex agent forwarding.

was started). TCP port forwarding. Port forwarding essentially

Rexandttyd also implement terminal device behavior Makes connections to a port on one machine appear to be
that cannot be expressed through the Unix-domain sock&onnections to a different port on another machine. For
abstraction. For example, typically when a user resize§Xample, a wireless network user concerned about eaves-
anxterm the application on the slave side of the pseudo-dropping might want to forward TCP port 8888 on his

terminal receives 8IGWINCHsignal and reads the new laptop securely to port 3128 of a remote machine running

three short utility programslisten, moduledand con-

In REX, when a user resizes atermon the clientma- ¢t | this case, the appropriatex client invocation

chine, the program running on the remote machine needs. oy _m "listen 8888" "moduled connect
to be notified. Therex client catches th&SIGWINCH |1-41host:3128" host

signal, reads the new terminal dimensions through an Rexspawns thdisten program, which waits for con-
ioctl, and sends the new window size over the Channehections to port 8888; upon rec,eiving a connectiis

using file descriptor 0. Upon receiving the window reSizeten passes the accepted file descriptor over the channel.
messageftyd updates the server side pseudo-terminalre moduledmodule on the server is a wrapper program
through arioctl. that reads a file descriptor from its standard input and
spawnsconnectwith the received file descriptor &sn-
nects standard input and outputConnectconnects to
port 3128 on the remote machine and copies data be-
3.2 Forwarding X11 Connections tween its standard input/output and the port. A web
browser connecting to port 8888 on the client machine
REX also supports X11 connection forwarding usingwiII effectively be connected to t_he web proxy listening
channels and file descriptor passindrex tells proxy on port 3128 of the Server machl_ne. . .
SSH agent forwarding. REX's file descriptor passing

to run a module calledisten, which finds an available lies to Unix-d) ket Il as TCP ket
X display on the server and listens for connections to@PPIES 10 LINix-comain SOCKets as wew as SOCKES.

that display on a Unix-domain socket in the directoryOne useﬂ:l e.xample. s foTr\r/'\I/ardiIr_]g an SSH a%ent during
/tmp/.X11-unix . Listen notifies theexclient of the 2 "€MOte login session. Thex client command syntax

displav it is listenina on by writing the display number to is similar to the port forwarding example, but reversed:
filepdeicriptor 0. g Y g Pay rex -m "moduled connect $SSH_AUTH_SOCK"

"listen -u /tmp/ssh-agent-sock" host A

Based on this remote display numhrexgeneratesthe Here, the “u” flag to the listen module tells it to
appropriateDISPLAY environment variable that needs waijt for connections on a Unix-domain socket called
to be setin any X programs that are to be run. Next, ssh-agent-sock . Upon receiving a connection from
generates a new (fak®)IT-MAGIC-COOKIE-1 for X one of the SSH programs (e.gsh , scp , orssh-add)
authentication. It sets that cookie on the server by havingistenpasses the connection’s file descriptor to the client.
proxyrun thexauthprogram. When an X client connects The moduled/connectombination connects the passed
to the Unix-domain socket on the server, tistenpro- file descriptor to the Unix-domain socket named by
gram passes the accepted file descriptor over the channgle environment variabl&SH_AUTH_SOGHKwhich is

to rex, which connects it to the local X server (i.e., it where the real SSH agent is |istening_ In the remote
copies data between the received file descriptor and the
When possiblelisten rejects Unix-domain connections from

local X server’s file descriptor)Rexalso substitutes the S ;

. . other user IDs (through permission bigitpeereigdor SO_PEERCRED
real cookie (belonging to the local X server) for the fake ioctls). As this doesn’t work for all operating systems, in practice we
one. hide forwarded agent sockets in protected subdirectoriéspf .

login session on the server, the user also needs to sétl Minimizing exploitable code
SSH_AUTH_SOCHKo be /tmp/ssh-agent-sock .
We have written a shell-script wrapper that hides thes
details of setting up SSH agent forwarding.

én recent years, remote exploits have become a major
concern for software developers. Buffer overruns and
other bugs have led to serious system security compro-
mises. REX attempts to mitigate this problem by min-
3.4 Forwarding the SFS agent imizing the amount of remotely exploitable code. REX
also attempts to protect against local exploits by mini-
When first starting up, thefsagenprogram connects to mizing the amount of code that runs with superuser priv-
the local SFS daemon to register itself using authentiileges. REX offers protection against both types of ex-
cated IPC. SFS’s mechanism for authenticated, intraploits through the REX architecture’s use of local file
machine IPC makes use of a 120-line setgid program¢lescriptor passing.
suidconnectSuidconneatonnects to a protected, named In REX, onlyrexdlistens for and accepts connections
Unix-domain socket, sends the user’s credentials to th&fom remote clientsRexdruns with superuser privileges
listening process, and then passes the connection badk order to authenticate the user (wtsauthdl and then
to the invoking program. Thoughsuidconnecpredates ~ spawnproxy as that userRexduses local file descriptor
REX, REX’s file descriptor passing was sufficient to im- passing to pass the client connectiomptoxy.
plement SFS agent forwarding with no extra code on the REX also tries to avoid local superuser exploits. For
server. Simply runninguidconnecin a REX channel example, the privilegegtyd daemon allocates pseudo-
causes the necessary file descriptor to be passed batg&minals and passes them, using local file descriptor
over the network to the agent on a different machine. passing, tdtyd which runs with the privileges of a nor-
Once thesfsagents available on the remote machine, Mmal user. These privileged programs are small and per-
the user can access it using RPC. All of the user’s conform only a single task, allowing easy auditing. Not
figuration is stored in one place; requests are always forcounting general-purpose RPC and crypto libraries from
warded back to the agent, so the user does not see diffeBFS,rexd is about 500 lines of code amtyd is about
ent behavior on different machines. 400 lines.

_ _) 4.2 Managing trust policies
3.5 File system integration) -)
One particularly difficult issue with remote login is the

One of the main motivations for building REX was problem of accurately reflecting users’ trust in the var-

to provide a remote execution tool that was integratedous machines they log into. For example, a user may

tightly with the SFS file system. When a user logs intouse local machiné to log into remote machinB, and

a remote machine, he should see the same file systentisen login from that session dhback toA. Many utili-

as on the local machine. REX achieves this behavioties support credential forwarding to allow password-free

by forwarding thesfsagentwhich maintains a per-user login from B back toA—but the user may not trust ma-

view of the/sfs directory. Additionally, because the chineB as much as machin&. For this reason, other

agent handles all of the configurable aspects of a user'systems often disable credential forwarding by default,

environment—server key management, user authenticdut the result of that is even worse. Users logging from

tion, revocation—the remote login session acts the samB back intoA will simply type their passwords. This is

as the local one. SSH differs from this architecture in thatooth less convenient and less secure, as an untrusted ma-

an SSH user’s environment might depend on the contentshine B will now not only be able to log intd\, it will

of his.ssh directory, which might be different between learn the user’s password!

the local and remote machines. To address this dilemma, REX and teisagenisup-
port selective signing. Selective signing offers a conve-
nient way to build up trust policies incrementally without

4 Security sacrificing security. During remote login, REX remem-
bers the machines to which it has forwarded the agent. In

The REX architecture provides two main security bene-the remote login session, when the user invakesagain
fits. First, REX minimizes the code that a remote attacke@Nd needs to authenticate to another serversfssgent
can exploit. Second, REX allows users to configure andVill run a user-specifiedonfirmation programThis pro-

manage trust policies during a remote login session. ~ gram, which could be a simple text message or a graph-
ical pop-up dialog box, displays the name of the ma-

Sgetpeereigwhen available, is used to double-chetkidconnecs chine_originating t_he a_Uthemication reqUESta the machine
claimed credentials. to which the user is trying to authenticate, the service be-

ing requested (e.g., REX or file system) and the key withNAT is another source of aborted TCP connections. Be-
which the agent is about to sign. The user’s agent knowsause NAT gateways must keep state for every active
about all active REX sessions and forwarded agent conTCP connection, they can prematurely terminate a TCP
nections, so the remote machine cannot lie about its owgonnection when rebooted or when purging state entries
identity. Moreover, because signed authentication refor other reasons. Some NAT implementations (notably
guests contain the name and public key of the server besome cheap home routers optimized for web browsing)
ing accessed, as well as the particular service, the ageafgressively terminate TCP connections after only a few
always knows exactly what it is authorizing. minutes of idle time.

With this information, the user can choose whether or Dropped TCP connections are particularly annoying
not to sign the request. Thus, users can decide casevith traditional remote login tools, as they cause the
by-case whether to let their agents sign requests fronuser’s entire session to be aborted. Sessions may abort at
a particular machine, depending on the degree to whiclnopportune times, when users are in the middle of edit-
they trust that machine. The modularity of the agent aring files. Moreover all state associated with a dropped
chitecture allows users to plug-in arbitrary confirmationsession is typically lost, including GUI windows for-
programs. Currently, SFS comes with a GUI programwarded from the remote machine.

(see Figure 4) that displays the current authentication re- Several design features allow REX to operate trans-
quest and the key with which the agent is about to sigrparently through NATs and without fixed IP addresses.
it. The user has five options: to reject the request; to acFirst, the SFS connection protocol allows servers to share
cept (sign) it; to sign it and automatically sign all similar |P addresses and even TCP ports, so that clients can con-
requests in the future; to sign it and all similar requestsnect transparently to arbitrarily many servers behind a
where the server being accessed is in the same DNS d®&AT gateway with a single globally-routable IP address.
main as the given server; and to sign it and all subsequer8econd, REX supports transparent resumption of aborted
requests from the same client, regardless of the server baCP connections [28, 39], so that a session need not be
ing accessed. restarted after a change of IP address or NAT state flush.

5 Transparency 5.1 Address and port sharing

Due to the limited size of the IPv4 address space, maThe SFS framework, into which REX fits, provides two
chines often do not have static, globally routable net-solutions for configuring servers behind NATs. The first
work addresses. When an organization has more conpproach, which we call address sharing, is to assign
puters than IP addresses, it must typically resort to Neteach internal SFS server a unique TCP port number.
work Address Translation, or NAT. With NAT, machines Most NAT gateways can be configured to have static
have private [25] (not globally routable) IP addresses ormappings of external port numbers to private addresses
the local network, and a gateway re-writes the source adand port numbers. For instance, TCP port 600 on the
dress of any outgoing packets to be globally routableexternal IP address might always be translated to TCP
The gateway then inverts this translation on any incom-{ort 4 of internal IP address, while external port 601 is
ing packets, so it can deliver them to the right port on thealways mapped to port 4 on internal addrBss
appropriate local machine. Though SFS servers by default listen on TCP port 4,
While NAT gateways let clients with private IP ad- a different port number can be specified with DNS
dresses connect normally to external machines, they hav8RV [12] records. Each SRV record maps an SFS server
no analogous way of transparently supporting incomingname and service to a server hostname (i.e., the name
connections to local servers. The reason is that mostf the globally-routable IP address), a port number, and
servers listen on well-known TCP or UDP ports. If some priority information (so that multiple SRV records
the number of servers exceeds the number of globallyan be used for load balancing). In this way, the NAT ad-
routable IP addresses available, multiple server machineginistrator can configure an external TCP port for each
must share the same IP address, requiring some form dfiternal SFS machine, and publish port numbers through
application-specific demultiplexing. DNS. External clients will then transparently connect to
A related problem is that of dropped TCP connectionsthe appropriate port of the external address.
Sometimes the only globally-routable IP address avail- A second approach, which we call port sharing, re-
able to a machine (or network of machines) is temporarqguires only a single external TCP port number for all in-
ily assigned and periodically changes. Also, laptops usuternal servers. All SFS protocols, including REX, begin
ally need to change IP addresses when transported be+th a CONNECT RPC in which the client specifies the
tween buildings. If one end of a TCP connection changeslesired self-certifying server name and service type (e.g.,
its IP address, the entire connection must be abortedREX, file system, or authentication server). SFS’s “meta-

*kkkk SFS Authentication Request *kkkk

REQUEST FROM: bard.lcs.mit.edu

TO ACCESS: amsterdam.lcs.mit.edu
WITH SERVICE: SFS File System

USING KEY: kaminsky@pdos.lcs.mit.edu

Cptions
® Reject the authentication reguest
Accept the authentication request

Accept and allow future authentication requests
from bard.lcs.mit.edu
to amsterdam.lcs mit.edu

Accept and allow future authentication requests
from bard.lcs.mit.edu
to any host matching *.lcs.mit.edu

Accept and allow all future authentication requests
from bard.lcs.mit.edu
to any host

Figure 4: A GUI confirmation program

server” programsfssd can proxy TCP traffic to different 5.2 Session resumption

internal IP addresses based on the contents of the initial
CONNECT RPC. Port sharing witsfssdis similar to ~ WhenaTCP connection aborts, REX provides the ability
using the HTTRHost header with an HTTP proxy. to resume the session over a new TCP connection. In or-

o der not to increase the amount of trusted or remotely ex-
One advantage of port sharing is thefssdcan be pioitaple code, this functionality is implemented entirely
configured to proxy certain services for a given internal;, proxy, with no changes required texd To resume an
server but not others (e.g., exporting an SFS file servegyorted TCP connection, the client first attachesrtxy
but disallowing remote logins to it through REX). A" throughrexd, using a new sequence number. It then is-
security-conscious gateway administrator therefore hag,es 3 RESUME RPC, supplying the sequence number
better control over what services are being made exters the old session. This RPC causes phexy to delete

nally available. The disadvantage of port sharing is thaghe state of the current session and replace it with that of
its user-level TCP proxying consumes more CPU timeie o1d session.

and adds more latency than typical in-kernel NAT imple-

) REX uses a bi-directional RPC protocol. Any input
mentations.

to rex prompts it to send an RPC fwoxy, and similarly

A final issue with NATs is that, for efficiency rea- any program output t@roxy results in an RPC toex
sons, machines on the internal network should connedtor a resumable connectiorgx and proxy each keep a
to each other without going through the NAT gateway.replay cache of recently transmitted RPCs replies. Re-
The best way to achieve this goal is to run a split DNSsumption then just consists of replaying all unanswered
server, which for the same hostname serves internal adRPCs. In order to determine when something can be
dresses to internal clients and external addresses to extevicted from the replay cache, the RPC code conserva-
nal clients. BIND and several other popular DNS serverdively determines when the other side has received a re-
support such functionality, but a number of users on theply based on two factors: the size of the kernel's TCP
SFS mailing list have complained of the complexity of send buffer and replies to RPCs in the other direction.
configuring DNS servers. Therefore, if split DNS is not One issue introduced by session resumption is the po-
available, DNS records can be set to point to the ex{ential to leave stale proxies aroundé processes are
ternal IP address and internal machines can use a filerminated. REX employs several techniques to reduce
letc/sfs/sfs_hosts to override DNS with inter- the incidence of stale proxies. First, eaekclient main-
nal addresses. This file's syntax is a superset of traditains a connection to the user’s agent. If a resumaxe
tional/etc/hosts , extended to allow port numbers to process dies (for instance because the user terminates it
be specified. with the Unix “kill -9 " command), the agent detects

this fact by an end-of-file, and informs the remote proxy6.1 Code size

that the particular session can be garbage-collected.
P g g REX has a simple and extensible design. Its wire proto-

Second, each agent has a unique identifier, based Tl specification is only 230 lines of Sun XDR code [29].

the user’s login name and the name of the machine it i EX has two component programs that run with en-
running on. The agents |d(_ant|ty IS su.pplled as a com- - nced privilegesRexdreceives incoming REX connec-
mand line option tgroxy (which, in particular, makes it .. . i
visible through the Unixs command). Whenevarox tions and adds only 500 lines of trusted code to the sys
. g » 10). WWNENEVRITOXY o (not counting the general-purpose RPC and crypto li-
is launched with a particular agent identity, it informs any braries from the SFS toolkit [19]Ptydallocates pseudo-

previousproxy funning with the same identity thOL.'gh 2 terminals to users that have successfully authenticated
named Unix-domain socket ittmp , and the previous . .
and is about 400 lines of code.

proxy then considers all sessions non-resumable. In the . - .
: Proxy runs with the privileges of the authenticated
event that the agent ungracefully exits (for example, the L ; i .
: . . users and is just over 1000 lines of code; tbeclient
client crashes and reboots), this mechanism causes the i .
: : ; iS about 2,350 lines. Extensions to tsisagenfor con-
old proxy to exit the next time the user logs into the same~ " " . . .
server nection caching constitute less than 900 lines of code.
S " . K | h Modules that extend REX's functionality are also
th ession rﬁsumptll?an \(/jvgr S tranfparent :/h even WNeI - all. Thelisten, moduled andconnectmodules are ap-
e Server changes I address, so jong as the Server p ‘oximately 250, 30, and 375 lines of code, respectively.
lishes its current address through DNS (e.g., using som : :
.) tydis under 260 lines.
sort of dynamic DNS scheme likdkyndns.org). How-

: : : If REX were to gain a sizable user base, we could ex-
ever, there are some subtleties to making this work prop-

v b f the fact that DNS Iso b qf Fect the code size to grow because of demands for fea-
erly because ot the fact tha can aiso be used 10§ a5 angd interoperability. The code growth, however,
load balancing—for instance, a hostname tii@up.

it ed iaht actuall ntt | of logi would take place in untrusted components suchragy
mit.edu mightactually pointto a pool otiogin SEIVers. iy ey external modules (likely also untrusted). Be-

In such cases, when a client changes IP. address, it mugguse of the extensibility, well-defined interfaces, and the
resume its REX session to the same dialup server. T

Qse of file descript ing, the trusted t
achieve this, REX revalidates all DNS information when Se otlile descriplor passing, the frusted components can

. remain small and manageable.
reconnecting, and chooses the same DNS records as for g

the initial connection if still available. More precisely,
when the original connection used an SRV record, if theS-2 Performance

particular hostname and port chosen the first time ar§ye measured the performance of REX and OpenSSH
still available, reconnection uses them again. For a give@_spl [21] on two machines running Debian with a Linux
hostname, if the particular IP address initially used is stills 4 kernel. The client machine consisted of a 2 GHz Pen-
available, reconnection again re-uses it. tium 4 with 512 MB of RAM. The server machine con-
We note that the level of indirection provided by sisted of a 1.1 GHz AMD Athlon with 768 MB of RAM.
SRV records allows the location of an entire network of A 100 Mbit, switched Ethernet with a 118sec round-
servers behind a NAT gateway to be updated with therip time connected the client and server. Each machine
change of a single DNS A (address) record. For examnad a 100 Mbit Ethernet card.
ple, Figure 5 shows an example of SRV records for four e configured REX and SSH to use cryptographic
SFS servers in the static DNS domaiydomain.org , systems of similar performance. For authentication and
located behind a NAT gateway calletynat.dyndns. forward secrecy, SFS uses the Rabin-Williams cryp-
org . If the gateway's external address changes, onlytosystem [33] with 1,024-bit keys. SSH uses RSA with
the DNS record ofnynat.dyndns.org ~ needs to be 1 024-bit keys for authentication and Diffie-Hellman
updated—thenydomain.org domain can remain un- ith 768-bit ephemeral keys for forward secrecy. We
changed. configured SSH and SFS to use the ARC4 [14] cipher for
confidentiality. For integrity, SFS uses a SHA-1-based
. message authentication code while SSH uses HMAC-
6 Evaluation SHA-1 [7, 17]. Our SSH server had the privilege sep-

aration feature [24] enabled.
First, this section quantifies REX’s extensible architec-

ture in terms of code size. Second, we compare the pels :
formance of REX with the OpenSSH [21] implementa-%'z'l Remote login

tion of SSH protocol version 2 [37]. The measurementsWe compare the performance of establishing a remote
demonstrate that the extensibility gained from file de-login using REX and SSH. We expect both SSH and
scriptor passing comes at little or no cost. REX to perform similarly, except that REX should have

; SERVICE/NAME PRIO/WGHT PORT SERVER
_sfs._tcp.server-a.mydomain.org. SRV 1 600 mynat.dyndns.org.
_sfs._tcp.server-b.mydomain.org. SRV 1 601 mynat.dyndns.org.
_sfs._tcp.dialup.mydomain.org. SRV 1 602 mynat.dyndns.org.
_sfs._tcp.dialup.mydomain.org. SRV 1 603 mynat.dyndns.org.

oo oo

Figure 5: An example of DNS SRV for four SFS servers on different TCP ports of mynat.dyndns.org . Such
configurations are useful when mynat.dyndns.org is a NAT gateway, forwarding different TCP ports to different
internal server machines. The priority and weight columns affect load balancing across duplicate records. The values
are meaningless for server-a and server-b , and for dialup result in uniform distribution of connections across
TCP ports 602 and 603 of mynat.dyndns.org

a lower latency for subsequent logins because of conne®.2.2 Port forwarding throughput
tion caching.

Both SSH and REX can forward ports and X11 connec-

Average| Minimum tions. To demonstrate that REX performs just as well
Protocol Latency| Latency as SSH, we measure the throughput of a forwarded TCP
SSH 121 msec| 120 msec port with NetPipe [27]. NetPipe streams data using a va-
REX (initial login) 51 msec| 50 msec riety of block sizes to find peak throughput.
REX (subsequent logins) 21 msec| 20 msec

Protocol| Throughput| Latency
Table 1: Latency of SSH and REX logins TCP 87.1 Mbit/sec 118[JseC
SSH 86.2 Mbit/sec| 294 usec
Table 1 reports the average and minimum latencies of REX 86.0 Mbit/sec| 394 usec
100 remote logins in wall clock time. In each experi-
ment, we log in, runbin/true , and then immedi- Table 2: Throughput and latency of TCP port forwarding

ately log out. The user’s home directory is on a local
file system. For both REX and SSH, we disable agent \yss first measure the throughput of an ordinary, inse-

forwarding, pseudo-tty allocation, and X forwarding. ¢re TCP connection. Table 2 shows that the maximum
The results demonstrate that an initial REX login istcp throughput is 87.1 Mbit/sec. The round-trip latency
slightly faster than an SSH login. In both cases, much Ofrepresents the time to send one byte of data from the
the time is attributable to the computational cost of mod-gjient to the server, and receive acknowledgment. Next,
ular exponentiations. An initial REX connection requires e measure the throughput of a forwarded port over es-
two concurrent 1,024-bit Rabin decryptions—one by thetaplished SSH and REX connections. Table 2 shows that

client for forward secrecy, one by the server to authenti<jje descriptor passing in REX does not noticeably reduce
cate itself—followed by a 1,024-bit Rabin signature onthroughput.

the client to authenticate the user. All three operations
use the Chinese Remainder Theorem to speed up modqdq—
lar exponentiation.

We attribute the additional latency of ports forwarded
rough REX to the fact that data must be propagated
through bothproxy andconnecton the server, incurring

An SSH login performs a 768-bit Diffie-Hellman key 5, axira context switch in each directionrakandproxy
exchange—requiring two 768-bit modular exponentia-, o iged a way to “fuse” two file descriptors, we could

tions by each party—followed by a 1,024-bit RSA Sig- ojiminate the inefficiency. Note, however, that over any-

nature for server authentication and a 1,024-bit RSA sigying pyt a local area network, actual propagation time
nature .for user authenncatlpn. The lefle—HeIIman eX-\vould dwarf the cost of these context switches.
ponentiations cannot be Chinese Remaindered, and thus
are each more than 50% slower than a 1,024-bit Rabin
decryption. The RSA operations cost the same as Rabin
operations. 7 Related Work

The cost of public key operations has no bearing on
subsequent logins to the same REX server, as connectid®everal tools exist for secure remote login and execu-
caching requires only symmetric cryptography. Weretion. This section focuses primarily on those tools but
SSH to implement connection caching, we would expecttoncludes with a discussion of agents and file descriptor
performance similar to REX’s on subsequent logins. passing.

7.1 SSH up a server) requires permission from and coordination
with that realm’s trusted administrator. In part because

SSH [38] is the de-facto standard for secure remote X8 arberos is based on shared-secret cryptography, creat-

cution and login. SSH is decentralized: one needs onl){ng a new realm is not a simple task and requires admin-

local superuser privileges to run the SSH server daemor?strative permission to interoperate with existing realms.
and one does not need to obtain server certificates or oth- Kerberized remote login is based on this centralized

erwise register with any sort of realm administrator in : . .
architecture, and therefore requires a trusted third party
order to connect to the SSH server. SSH also offers sev-_ " . o
L ; for client-server authentication. REX and SFS both sup-
eral modes of user authentication. For example, it has

optional support for Kerberos [30], allowing password- port third-party authentication, but do not require it, and
free login plus ticket and AFS [13] token forwarding. in practice they are often used without it. The AFS [13]

S dfile system uses Kerberos for authentication, and Kerber-
SSH was the main inspiration for REX, as we neede ized remote login can authenticate users to the file system
an SSH-like tool that could work with SFS. Though we 9 Y

could have extended SSH for the task, we decided tbefore logging them in. REX provides similar support

build REX from scratch for several reasons. First, we?Or the SFS file system.

believed a design based on file descriptor passing would

simplify implementation, improve security, and increase7.3 Globus

extensibility. Leveraging SFS’s RPC compiler and Ii- ,))

brary further reduced the amount of new code needed' "€ Globus [8] Project provides a Grid metacomput-
We also wished to take advantage of SFS's infrastructurd'd infrastructure that supports remote execution and

for user and server authentication, particularly its use ofOb submission through a resource allocation manager

SRP to sidestep potential man-in-the-middle attacks. Fipalled GRAM [5] and access to global storage resources

nally, as commonly configured, SSH servers read file§hr,Ough ,GASS [1] C?'O*?“S was designed to prowdel a
in users’ home directories before authenticating themunn‘orm interface to distributed, remote resources, so in-

which is inconvenient when the home directories them—d'V'dual client users do not need to know the specific

selves reside on SES. mechanisms that local resource managers employ. By
Aside from file descriptor passing and integration with 9€fault, GRAM and GASS provide simple output redi-

SFS, REX offers several features not presently availabl&€€tion t0 ar:pcal tem;mzl _flor prograr?s Irutr:mng on]?
in SSH. REX’s connection caching improves connection €MOté machine. Tools built on top of Globus can of-

latency. Connection resumption and support for NATs al_ferdfeatures S?Ch asdpseudo—terhmlnalfs, X11 fohrwardmg
low REX to operate transparently over a wider variety of " TCP port forwarding [11]. These features, however,

network configurations. Selective signing improves se->€€™M to be built into the software and protocol whereas

curity in mixed-trust environments and saves users fronfEX provide_s thehsamehefﬁtegsibili_ty and segurity (privi-
typing their passwords unnecessarily. Conversely, SSHF9€ separation) through file descriptor passing.

provides features not present in REX, notably compati- | "€ Grid Security Infrastructure (GSI) [3, 9] provides
bility with other user-authentication standards. security and authentication to Grid-based services. GSI

We believe many of the ideas in REX are applicableis based on X509 [36] public-key certificates and the

to SSH and other remote login tools, and hope that SSFPSL/TLS protocols [6]. Recent extensions to GSI add
and REX can increasingly adopt each other's featuresSUPPOrt for proxy certificates [32], which allow an entity
For example, as part of the privilege separation code iri® delegate an arbitrary subset of its privileges. A new
OpenSSH [21], the OpenSSH server internally handle$&S!-enabled version of SSH can use these proxy certifi-
pseudo-terminals with file descriptor passing. ThoughCtes to provide limited delegation to applications run-
file descriptor passing is part of the source code, it is nof'!"d On the remote machine, similar to REX's selective
part of the protocol. Generalizing the idea cleanly to pas$19ning mechanism.

file descriptors for other purposes would require modifi-

cation to the SSH protocol, which we hope people will 7.4 Secure rlogin

consider in future revisions. .
Before SSH, researchers explored other options for se-

7.2 Kerberos cure remote login [16, 31]. Kim et al. [16] implemented

a securerlogin environment using a security layer be-
Kerberos [30] is a centralized authentication systenmeath TCP. The system defended against vulnerabilities
which includes remote login and execution utilities. It created by hostname-based authentication and source ad-
provides a unified way of naming, authenticating, anddress spoofing. Securgin used a modular approach
authorizing principals. Kerberos organizes users and mao provide a flexible security policy. Like REX, se-
chines into realms. Joining an existing realm (i.e., settingcurerlogin used small, well-defined module interfaces.

REX uses a secure TCP-based RPC layer implementedifferent, ad hoc mechanisms for handling different types
by SFS; securelogin used a secure network layer be- of resources.
tween TCP and IP, similar to IPSec [15].

8 Conclusions

7.5 Agents : . Lo
9 REX provides secure remote login and execution in the

While REX is not the first remote execution tool to em- tradition of SSH. REX offers a new architecture with

ploy user agents, it makes far more extensive use of itéhree main goals—extensibility, security, and transpar-
agent than other systems. The SSH agent, for exampl&nt connection persistence in the absence of global rout-
is capable of authenticating users to servers. For othdPd. REX's extensibility, based on emulated file descrip-
tasks such as server authentication, however, SSH relid8f passing between machines, allows users to add new
on configuration files (e.gknown_hosts) in users’ functions to REX without changing the protocol. REX'’s
home directories. When users have different home diSecurity benefits are a limited amount of exploitable code
rectories on different machines, they see inconsistent beand a convenient mechanism for building trust policies.
havior for the same command, depending on where it iginally, REX provides transparent operation in today’s
run. By contrast, encapsulating all state behind an RP&OMplex network configurations, which include NAT and
agent interface allows a user’s configuration to be propadynamic IPs.
gated from machine to machine simply by forwarding an The current REX implementation demonstrates that
RPC connection. the REX architecture is viable. We hope that the new
Another significant difference between the REX andid€as upon which REX is built will find wider applica-
SSH agents is that the SSH agent returns authenticatidif/ity in other systems. REX is available as part of the
requests that are not cryptographically bound to the idenSFS distributionlttp://www.fs.net/)-
tity of the server to which they are authorizing access. As
a result, a remote SSH client could lie to the local agen9 Acknowledgments
about what server it is trying to log into. Concurrently
and indepently of REX, the SSH agent added support foiWe thank our shepherd Werner Vogels and the anony-
a simple confirmation dialog feature, but the SSH agentmous reviewers for their comments and feedback. Niels
is unable to build up any meaningful policies or even tell Provos provided helpful feedback on an early draft of the
the user exactly what is being authorized. paper. This research was supported by the DARPA Com-
Recently, the security architecture for the Plan 9 sysposable High Assurance Trusted Systems program (BAA
tem has been redesigned [4]. The new Plan 9 architectur#01-24) under contract #N66001-01-1-8927, and by the
has an agenfactotum which is similar to the SSH and National Science Foundation under Cooperative Agree-
SFS agents but is implemented as a file server. ment No. ANI-0225660 (as part of the IRIS project).
The Taos operating system [18, 34] and the EchdMichael Kaminsky was partially supported by a National
file system [2] also have notions of an authenticationScience Foundation Graduate Research Fellowship, and
agent. Unlike SFS, they both implement the agent a@qvid Mazieres by an Alfred P. Sloan Research Fellow-
an operating-system component rather than as a useship.
controlled program.
References

7.6 File descriptor passing [1] Joseph Bester, lan Foster, Carl Kesselman, Jean Tedesgo, and
Steven Tuecke. GASS: A data movement and access service for

. . . - P } wide area computing systems. Pnoceedings of the Sixth Work-
An alternative to file descriptor passing is file name shop on Input/Output in Parallel and Distributed Systepeges

Space passing, as is done in Plan 9 [22]. Plan 9's CPU 78-88, Atlanta, GA, May 1999.
command can replicate parts of the file nhamespace of[z] Andrew b Birrell. Andy Hi Chuck Jerian. Timothy M

. . . . ndrew D. Birrell, Andy Hisgen, Chuck Jerian, Timothy Mann,
‘?”e maChme,on another. When Comb_med Wlth.dewce and Garret Swart. The Echo distributed file system. Technical
file SyStemS' ||keld9V/.fd) th|5. mechanism effectively Report 111, Digital Systems Research Center, Palo Alto, CA,
subsumes file descriptor passing. Moreover, because so September 1993.
mUCh of Pla_n _9S functlonallty (m_CIUdmg the window- [3] R. Butler, D. Engert, |. Foster, C. Kesselman, S. Tuecke,
ing system) is implemented as a file system, CPU allows™ " ; voimer, and V. Welch. A national-scale authentication infras-
most types of remote resource to be accessed transpar- tructure.IEEE Computer33(12):60-66, 2000.
Ff‘ntly' Unfortunately, Unix device and file SyStem. Ser.nan_(y] Russ Cox, Eric Grosse, Rob Pike, Dave Presotto, and Sean Quin-
tics are not amenable_to such an approach, which is on lan. Security in Plan 9. IProceedings of the 11th USENIX
of the reasons tools like SSH have developed so many Security SymposiunSan Francisco, CA, August 2002.

http://www.fs.net/

(5]

(6]

(7]

(8]

(9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[29]

[20]

[21]
[22]

K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, [23]

W. Smith, and S. Tuecke. A resource management architecture
for metacomputing systems. RFroceedings of the IPPS/SPDP
'98 Workshop on Job Scheduling Strategies for Parallel Process-
ing, pages 62—-82, 1998.

T. Dierks and C. Allen. The TLS Protocol, Version 1.0. RFC
2246, Network Working Group, January 1999.

24]

(25]

FIPS 180-1.Secure Hash StandardJ.S. Department of Com-
merce/N.I.S.T., National Technical Information Service, Spring-
field, VA, April 1995.

(26]

I. Foster and C. Kesselman. Globus: A metacomputing infras-
tructure toolkit. Intl J. Supercomputer Application$1(2):115—
128, 1997.

|. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A secu-
rity architecture for computational grids. Proceedings of the
5th ACM Conference on Computer and Communications Security

(27]

Conferencepages 83-92, San Francisco, CA, November 1998. [28]

fsh — Fast remote command execution.http://www.
lysator.liu.se/fsh/

[29]

glogin. http://www.gup.uni-linz.ac.at/glogin/

A. Gulbrandsen, P. Vixie, and L. Esibov. A DNS RR for speci- [
fying the location of services (DNS SRV). RFC 2782, Network
Working Group, February 2000.

John H. Howard, Michael L. Kazar, Sherri G. Menees, David A.
Nichols, M. Satyanarayanan, Robert N. Sidebotham, and
Michael J. West. Scale and performance in a distributed file
system. ACM Transactions on Computer Systerfil):51-81,
February 1988.

Kalle Kaukonen and Rodney Thayer. A stream cipher encryp-
tion algorithm “arcfour”. Internet draft (draft-kaukonen-cipher-
arcfour-03.txt), Network Working Group, July 1999. Work in
progress.

S. Kent and R. Atkinson. Security architecture for the interne
protocol. RFC 2401, Network Working Group, November 1998.

Gene Kim, Hilarie Orman, and Sean O’Malley. Implementing a
secure rlogin environment: A case study of using a secure net
work layer protocol. IrProceedings of the 5th USENIX Security
Symposiumpages 65-74, Salt Lake City, UT, June 1995.

Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-
hashing for message authentication. RFC 2104, Network Work-
ing Group, February 1997.

[32

30]

(31]

]

¢ [331

[34]

(35]

Butler Lampson, Martin Abadi, Michael Burrows, and Edward P. [36]

Wobber. Authentication in distributed systems: Theory and prac-
tice. ACM Transactions on Computer Systerh8(4):265-310,
1992.

(37

David Mazieres. A toolkit for user-level file systems.Rroceed-
ings of the 2001 USEN|pages 261-274. USENIX, June 2001.

David Maziéres, Michael Kaminsky, M. Frans Kaashoek, and [38]

Emmett Witchel. Separating key management from file system
security. InProceedings of the 17th ACM Symposium on Operat-
ing Systems Principlepages 124-139, Kiawa Island, SC, 1999.

(39]

OpenSSH http://www.openssh.com/

Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, and
Phil Winterbottom. The use of name spaces in planACM
SIGOPS Operating System Revji@#(2):72—-76, Apr 1993.

Dave Presotto and Dennis Ritchie. Interprocess communication
in the eighth edition UNIX system. IRroceedings of the 1985
Summer USENIX Conferendeortland, OR, 1985.

Niels Provos, Markus Friedl, and Peter Honeyman. Preventing
Privilege Escalation. IRroceedings of the 12th USENIX Security
SymposiumWashington, DC, August 2003.

Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and
E. Lear. Address allocation for private internets. RFC 1918, Net-
work Working Group, February 1996.

Jerome Saltzer. Protection and control of information in multics.
Communications of the ACM7(7):388—402, July 1974.

Q. Snell, A. Mikler, and J. Gustafson. Netpipe: A network
protocol independent performace evaluator. Proceedings of
the IASTED International Conference on Intelligent Information
Management and Systendsine 1996.

Alex C. SnoerenA Session-Based Architecture for Internet Mo-
bility. PhD thesis, Massachusetts Institute of Technology, De-
cember 2002.

R. Srinivasan. XDR: External data representation standard. RFC
1832, Network Working Group, August 1995.

J. G. Steiner, B. C. Neuman, and J. |. Schiller. Kerberos: An au-
thentication service for open network systemsPiaceedings of
the Winter 1988 USENpages 191-202, Dallas, TX, February
1988. USENIX.

David Vincenzetti, Stefano Taino, and Fabio Bolognesi. Stel: Se-
cure telnet. InProceedings of the 5th USENIX Security Sympo-
sium pages 75-84, Salt Lake City, UT, June 1995.

V. Welch, I. Foster, C. Kesselman, O. Mulmo, S. Tuecke L. Pearl-
man, J. Gawor, S. Meder, and F. Siebenlist. X.509 proxy certifi-
cates for dynamic delegation. Rroceedings of the 3rd Annual
PKI R&D Workshop April 2004.

Hugh C. Williams. A modification of the RSA public-key en-
cryption procedure lEEE Transactions on Information Theory
IT-26(6):726—729, November 1980.

Edward P. Wobber, Martin Abadi, Michael Burrows, and Butler
Lampson. Authentication in the Taos operating systehtM
Transactions on Computer Systerh2(1):3-32, 1994.

Thomas Wu. The secure remote password protocdProeceed-
ings of the 1998 Internet Society Network and Distributed System
Security Symposiumpages 97-111, San Diego, CA, March 1998.

X.509. Recommendation X.509: The Directory Authentication
Framework ITU-T (formerly CCITT) Information technology
Open Systems Interconnection, December 1988.

T. Ylénen and D. Moffat (Ed.). SSH Transport Layer Protocol.
Internet draft (draft-ietf-secsh-transport-17.txt), Network Work-
ing Group, October 2003. Work in progress.

Tatu Ylonen. SSH — secure login connections over the Internet.
In Proceedings of the 6th USENIX Security Symposipages
37-42, San Jose, CA, July 1996.

Victor C. Zandy and Barton P. Miller. Reliable network connec-
tions. InProceedings of the 8th Annual International Conference
on Mobile Computing and Networkingages 95-106, Atlanta,
GA, September 2002.

http://www.lysator.liu.se/fsh/
http://www.lysator.liu.se/fsh/
http://www.gup.uni-linz.ac.at/glogin/
http://www.openssh.com/

	Introduction
	Architecture
	User Authentication in SFS
	File descriptor passing
	Sessions
	Stage I
	Stage II

	Channels
	Connection caching

	Extensibility
	TTY Support
	Forwarding X11 Connections
	Forwarding Arbitrary Connections
	Forwarding the SFS agent
	File system integration

	Security
	Minimizing exploitable code
	Managing trust policies

	Transparency
	Address and port sharing
	Session resumption

	Evaluation
	Code size
	Performance
	Remote login
	Port forwarding throughput

	Related Work
	SSH
	Kerberos
	Globus
	Secure rlogin
	Agents
	File descriptor passing

	Conclusions
	Acknowledgments

