
Modular Components for Network Address Translation

Eddie Kohler Robert Morris Massimiliano Poletto
ICSI Center for Internet Research MIT Lab for Computer Science Mazu Networks

kohler@icir.org rtm@lcs.mit.edu maxp@mazunetworks.com

Abstract

We present a general-purpose toolkit for network address
translation in Click, a modular, component-based network-
ing system. Network address translation, or NAT, was de-
signed to allow disparate address realms to communicate.
The components of our toolkit can be combined in a va-
riety of ways to implement this task and many others, in-
cluding some that, superficially, have nothing to do with
address translation. Our NAT components are more flexi-
ble than monolithic alternatives. They concern themselves
solely with address translation; separate components handle
related functions, such as classification. The user can choose
where network address translation takes place in relation
to other router functions; combine multiple translators in a
single configuration; and use NAT in unintended, surprising
ways.

We describe our design approach, demonstrate its flexibil-
ity by presenting a range of examples of its use, and evaluate
its performance. Our components have been in use in a pro-
duction environment for over eighteen months.

1 Introduction

This paper presents a general-purpose toolkit for network
address translation (NAT), or, more generally, for rewrit-
ing packets’ addresses and port numbers. The toolkit is
implemented as a family of elements in the Click modular
router [6, 12]. Individually, each element is not necessarily
more powerful than other NATs or traffic redirectors. How-
ever, the ability to combine elements into new arrangements
makes our system more flexible than any single monolithic
system. Our NAT demonstrates the advantages of flexible,
component-based networking systems, and Click in partic-
ular. It also provides a case study of how to design Click
components for a relatively complex networking task.

The rewriting elements divide into three categories:
rewriters, which store NAT state and modify packets; map-

Much of this research was performed while all three authors were at MIT
LCS. It was supported there by a National Science Foundation (NSF) Young
Investigator Award and the Defense Advanced Research Projects Agency
(DARPA) and Rome Laboratory under agreement number F30602-97-
2-0288. In addition, Eddie Kohler was supported by a National Science
Foundation Graduate Research Fellowship.

ping plugins, which implement arbitrarily complex policies
for assigning new addresses to packets; and application-level
gateways, which help protocols pass through the NAT. Each
individual element has clear, specified semantics, so a given
configuration is easily analyzed and understood. The ele-
ments may be combined in arbitrary ways to implement ad-
dress translation and tasks that, superficially, have nothing
to do with address translation.

Conventional NATs, such as those distributed with Linux
and *BSD, implement common rewriting tasks well, but they
are not flexible enough to handle unusual situations, such as
those requiring multiple rewriters, and it may be difficult to
tell how they will behave in corner cases. Click performs on
par with these conventional NATs while remaining flexible
and understandable.

The contributions of this paper are a description of
Click’s modular, component-based NAT implementation;
novel uses of NAT facilitated by Click’s NAT components;
and, more generally, an application of Click’s component de-
sign principles, showing how those principles lead to flexible
designs.

The next section gives some background on network ad-
dress translation. Section 3 describes the design and im-
plementation of the family of rewriting elements. Section 4
presents a variety of examples of how the rewriter can be
used, and Section 5 analyzes its performance. Sections 6
and 7 discuss related work and conclude. Finally, Appendix A
provides a whirlwind overview of the Click system.

2 Network address translation

This section describes network address translation in gen-
eral, then lists the features desirable in a modern NAT.

2.1 Overview

Packets contain both addressing information, such as IP
addresses and TCP/UDP port numbers, and data. Network
address translation (NAT) works from the simple insight
that addressing information is largely independent of data.
For many Internet protocols, IP addresses and TCP port
numbers appear only in packet headers; the data transferred
between endpoints is independent of address and port. Thus,
a middle box could change the addressing information on



local machine
10.0.0.4

NAT gateway
64.55.139.2

remote machine
18.26.4.44

(10.0.0.4, 5019,
18.26.4.44, 80)

(18.26.4.44, 80,
10.0.0.4, 5019)

(64.55.139.2, 58321,
18.26.4.44, 80)

(18.26.4.44, 80,
64.55.139.2, 58321)

Figure 1—Network address port translation. A packet is represented by
its flow identifier, the quadruple (source address, source port, destination
address, destination port).

passing packets without affecting the semantics of the end-
to-end connection, or requiring changes at end hosts.

Basic NAT was introduced in the early nineties to re-
duce the pressure for globally allocated IP addresses [9].
With NAT, an organization could assign unique, private IP
addresses to each of its hosts, reserving just a few globally-
allocated addresses to be shared among the hosts. All packets
leaving or entering the organization would pass through a
NAT box. When an internal host sent a packet to the In-
ternet, the NAT box would temporarily assign that host a
global IP address, and rewrite its packets to use that address.
Reply packets from the Internet also need rewriting, since
the internal computers recognize their private IP addresses,
not addresses from the global pool. The NAT box reclaims
global addresses after some period of inactivity. Note that
only the internal hosts with temporarily-assigned global ad-
dresses are reachable from the Internet. A newer, and now
more common, variant, NAPT (network address port trans-
lation) [17], rewrites both IP addresses and TCP/UDP port
numbers. The rewriting unit is a TCP or UDP connection, not
an IP address. This lets multiple hosts share the same global
address, further reducing the number of global addresses
required, but it generally prevents externally-initiated con-
nections. Figure 1 illustrates NAPT in action.

NAT’s other uses include network security (prevent-
ing externally-initiated connections), transparently load-
balancing requests among servers [16], and allowing dis-
parate address realms to communicate, including realms
using different IP versions [13, 18]. Other uses have been
proposed, such as creating network redundancy [11].

NAT is sometimes seen as a blemish on the Internet archi-
tecture [10], but it deserves its place in the network adminis-
trator’s toolbox. Furthermore, its underlying technology—
that is, the ability to keep track of active addresses and/or
connections—can be useful for other network tasks, such as
building transparent proxies, when the NAT implementation
is flexible enough.

2.2 Implementation characteristics

This section lists the important properties of modern NAT
implementations.

• The addressing unit used to look up a packet. For
Basic NAT, this is a single internal IP address. For NAPT, it
is a flow identifier: the tuple of source address, destination
address, source port, destination port, and IP protocol (TCP
or UDP). Other forms of NAT might choose other units.

• Mapping table. Every NAT includes a table record-
ing the current mappings between internal and external
addressing units. The table must allow translation in both
directions—for packets leaving the internal network, which
generally have their source addresses changed, and for pack-
ets entering that network, which generally have their desti-
nations changed.

When a packet arrives, the NAT will extract its addressing
unit and look that up in the mapping table. If a mapping
is present, the NAT rewrites the packet according to the
mapping and sends it on its way. If no mapping is present,
the packet is called fresh, and is handled according to the
NAT’s fresh packet rules.

• Fresh packet rules. Usually, a fresh packet causes a new
mapping to be installed in the table; the NAT then rewrites
the packet according to that mapping and sends it on its way.
The NAT must allow the user a fully general choice of address
and port ranges used to construct the new mapping. NATs
also support different actions for different classes of packet.
For example, NAPT drops the class of fresh packets that
originated on the external network, rather than creating new
mappings. However, a NAPT configuration might pass some
externally-initiated packets through to internal servers, such
as rewriting all Web requests to head to an internal Web
server.

• Garbage collection. The NAT should garbage-collect
mappings after some period of inactivity, making their ex-
ternal addressing units available for reuse. This policy gen-
erally involves timeouts. Most TCP connections on a NAPT
are garbage-collected soon after FIN flags indicate the con-
nection has closed. A flexible NAT may wish to provide more
control over state, by limiting the rate at which new mappings
can be introduced, for example.

• APIs for “application-level gateways” (ALGs). Some
protocols mix addressing information in the data stream.
To support these protocols, the NAT must export APIs that
allow application-specific translation agents, also known as
ALGs [17], access to address mappings. The classic example
is FTP [14], which opens a new data connection for each
file transfer. The FTP control connection gives, in ASCII, the
address and port to be used for the data. An FTP gateway
examines and occasionally modifies FTP control packets to
change the embedded addresses and ports. It also installs a
new NAT mapping for each data connection.∗ Changing the

∗In normal usage, the server contacts the client to open a data con-



ASCII IP addresses and ports may alter the packet’s length,
which requires TCP sequence number adjustments.

• Flexible placement relative to other network process-
ing tasks. The machine running NAT may be conceptually
“inside” or “outside” the NAT’s boundary; that is, its services
may have a public or private address. NATs should support
either placement.

2.3 Existing NAT implementations

NAT is well supported by many of today’s routers and oper-
ating systems. Here, we describe Linux 2.4’s Netfilter-based
NAT [1] as a typical implementation. We also describe Net-
filter NAT’s limitations. Its single mapping table and limited
placement relative to other networking tasks limit its use-
fulness for advanced and unexpected NAT configurations.
Section 6 describes other commonly deployed NATs; they
suffer from the same limitations.

The Netfilter facility examines packets at each of a fixed
set of points in the Linux IP forwarding path: on entry from
interfaces, on forwarding, on exit to interfaces, and on the
way to (and from) applications on the router itself. Netfilter
is configured by giving it a set of rules. A rule specifies the
point at which to examine packets, the particular interface
(where appropriate), a particular packet property to look for,
and an action. An action can range from simply dropping
matching packets to calling an arbitrary dynamically-loaded
module for further processing. One of the modules available
performs NAT.

Netfilter’s NAT allows little control over where the packets
it processes come from, or where they go after processing,
since it is embedded at particular places in the IP processing
path. Also, the way it finds returning packets is implicitly
embedded in the code implementing Netfilter and IP, and
not expressed in the configuration. This rules out a variety
of advanced configurations. One example is embedding of
NAT functions in an otherwise fully transparent Ethernet
bridge; while Linux has bridging code, it cannot be com-
bined with Linux’s NAT code without kernel modifications.
A second example is multiple fully independent NATs, which
the Linux NAT code cannot support since it has just one con-
nection state table. This might be useful for a load balancer,
which might have multiple interfaces to back-end servers
that shared the same private net address; a truly indepen-
dent NAT per interface would allow returning packets to be
associated with the correct NAT. Furthermore, independent
tables, one per processor, can speed up NAT processing on a
multiprocessor machine [4].

nection. Any NAPTs between server and client must be forewarned of this
connection, since it initiates externally.

3 Design of a Click NAT

Here, we describe the NAT modules we built for Click, a mod-
ular networking system. (See Appendix A for an overview
of Click.) Our components easily implement conventional
NAT functions, like those described above, but avoid the
limitations of conventional NATs. Multiple NAT tables can
easily coexist in a single configuration, the placement of the
NAT is flexible relative to other networking elements, and
Click NAT easily supports unexpected uses, some of which
we describe in Section 4.

Click divides the functions of a router into modular com-
ponents called elements. In conventional operating systems,
NAT hooks in to the IP processing path at fixed places. Such
a design would be inappropriate for Click, where the pro-
cessing path for a given router is essentially arbitrary. Fur-
thermore, Click elements should generally be fine-grained,
implementing limited functionality. Given these constraints,
how should NAT functionality be divided into elements?
How should the processing path—and other NAT compo-
nents, such as application-level gateways—access rewriting
functionality?

We started from a well-known principle: design around
the data structures. In particular, the main NAT element,
IPRewriter, corresponds to a single mapping table. To use
multiple NAT tables in a configuration, you simply include
multiple IPRewriter elements. The multiple entry and exit
points provided by conventional NATs correspond to multi-
ple input and output ports on the NAT elements. However,
in Click, the user controls the semantics of input and output
ports, which enables unexpected uses of the elements. The
NAT elements export simple APIs to one another, facilitating
the construction of ALGs and rewriter plugins.

Click currently has seven NAT-specific element classes:
four mapping tables, a plugin that implements a par-
ticular mapping discipline (load-sharing NAT), and two
application-level gateways. Figure 2 lists the element classes
and their functions.

Click handles Section 2.2’s NAT requirements and prop-
erties as follows:

• Addressing units. Different “rewriter” elements use
different addressing units. IPAddrRewriter, which imple-
ments Basic NAT, uses the source address as its addressing
unit. For IPRewriter and TCPRewriter, two NAPT elements,
the addressing unit is a flow identifier; for ICMPPingRe-
writer, it is the triple of source address, destination address,
and ICMP identifier. This list is clearly extensible; the user
can simply write another element.

• Mapping table. Each “rewriter” element contains a sin-
gle mapping table. When a packet arrives, the element per-
forms the required mapping function: extracting the packet’s



Element Function Supported packet types

IPRewriter NAPT mapping table TCP, UDP
IPAddrRewriter Basic NAT mapping table Any IP
TCPRewriter NAPT mapping table for TCP with sequence number adjustment TCP
ICMPPingRewriter NAPT-like mapping table for ICMP pings ICMP echoes, replies
RoundRobinIPMapper mapping table plugin implementing load-sharing NAT none
FTPPortMapper application-level gateway for FTP FTP control
ICMPRewriter application-level gateway for ICMP errors ICMP errors

Figure 2—Click NAT elements and their functions.

addressing unit, looking it up in the mapping table, rewriting
the packet accordingly, and sending the packet along.

• Fresh packet rules. A flexible NAT should support
general mechanisms for dividing packets into classes, and
allow the user to associate a fresh packet rule with each
class. Most NATs build in a single classification mechanism.
Click NAT skirts this problem by avoiding the classification
decision entirely.

Click elements, including the NAT elements, can have mul-
tiple input ports on which packets arrive, and multiple output
ports on which packets are emitted. Classification elements
in this scheme have one input port and multiple output ports:
packets arriving on the single input are classified according to
some criteria, then emitted on the corresponding outputs.
Click comes with BPF-like classification elements, among
many others, and users can add to the set however they like.
Click’s rewriter elements, then, implement no classification
on their own; they support multiple input ports instead. Each
input port corresponds to a packet class. The user divides
packets into classes and routes them to the intended input
ports. This open-ended design is maximally flexible.

Each input port is associated with a single fresh packet
rule. Section 3.1 describes this further.

• Garbage collection. Click NAT elements feature user-
specifiable timeouts for expiring unused mappings. The el-
ements that handle TCP optionally time out closed con-
nections earlier. Garbage collection proceeds incrementally,
as new mappings appear. Helper elements can implement
arbitrary expiration and/or rate-limiting behavior.

• APIs for application-level gateways. The Click NAT
elements export simple APIs for looking up mappings, enter-
ing new mappings, and, in the case of TCPRewriter, changing
sequence number adjustments on the fly. Application-level
gateway elements like FTPPortMapper and ICMPRewriter
use these internal APIs. User-level programs can also access
them with ioctl commands.

• Flexible placement. Click’s NAT elements can be
placed anywhere in a configuration, and there can be as
many of them as the user wants.

3.1 Fresh packet rules

Each input port on a rewriter element corresponds to a sin-
gle fresh packet rule, which determines how fresh packets
arriving on that input port are translated. (The rules are irrel-
evant for non-fresh packets: a packet whose corresponding
mapping is already in the table is treated independently of
the input port on which it arrived.) This section describes
the fresh packet rules supported by Click. The IPRewriter,
IPAddrRewriter, and TCPRewriter elements’ configuration
strings consist of a list of rules, one per input port.

Most fresh packet rules insert a pair of mappings into the
rewriter element’s mapping table. One of these mappings
corresponds to the input packet, and applies to all packets
with the same addressing unit. The other mapping applies to
all reply packets—that is, packets that represent replies to the
rewritten addressing unit. Say that the input packet had TCP
flow ID (a1, p1, a2, p2),∗ and the fresh packet rule suggested
the new flow ID (a′1, p′1, a′2, p′2). (Most fresh packet rules will
not change everyaddress and port, however.) Then one of the
installed mappings will map (a1, p1, a2, p2) to (a′1, p′1, a′2, p′2),
and the other, for reply packets, will map (a′2, p′2, a′1, p′1) to
(a2, p2, a1, p1).

Fresh packet rules also indicate the output port on which
the rewriter element should emit matching packets. Two
output port numbers are generally listed, one for the original
packet’s addressing unit and one for reply packets. This turns
rewriters intoflowclassifiers,sincetheyremembertheoutput
port corresponding to a particular addressing unit. Several
unexpected uses of IPRewriter take advantage of this facility.

The rule types are:

– ‘drop’. Fresh packets are dropped.

– ‘passthru O’. Fresh packets are passed through the transla-
tor element unchanged and emitted on output O. No new
mappings are installed.

– ‘keep OF OR’. The rewriter installs a mapping that keeps the
fresh packet unchanged, and the corresponding mapping
∗Again, flow IDs are written (source address, source port, destination

address, destination port).



for replies. The packet is emitted on output port number
OF ; replies will be emitted on output port OR. Thus, future
packets of this connection will pass through the rewriter
even if they arrive on an input port with, say, a ‘drop’ rule.

– ‘pattern A1 P1 A2 P2 OF OR’ (IPRewriter and TCPRewriter
only). The first four parts of the pattern represent a new
flow ID for the input packet: a new source address A1,
source port P1, destination address A2, and destination
port P2. The rewriter installs a mapping that changes the
fresh packet’s flow ID to the flow ID given by the pattern,
and the corresponding mapping for replies. Packets sim-
ilar to the fresh packet are emitted on output port OF ;
replies are emitted on output port OR.

Any of the addresses and ports can be a dash ‘–’, which
means “leave unchanged”. Thus, the pattern “1.0.0.1 –
1.0.0.2 –” will set the packet’s source and destination ad-
dresses but leave the ports as they are. The source port
specification also supports ranges “PL–PH”, in which case
the rewriter will choose a port between PL and PH. It
will also ensure that any two active mappings created
by this pattern have different source ports. The pattern
‘1.0.0.1 1024–65535 1.0.0.2 80’, for example, sets every
fresh packet’s source address to 1.0.0.1, destination ad-
dress to 1.0.0.2, and destination port to 80. The new
source port, however, will differ for any two active ses-
sions. Therefore, the new source port uniquely identifies
an session, and every reply packet can be mapped back to
a unique flow ID.

Source ports are only unique within a single rewrite pat-
tern. That is, different patterns may simultaneously allo-
cate the same source port.

– ‘pattern A1 A2 OF OR’ (IPAddrRewriter only). This limited
version of pattern changes packets’ source and destination
addresses only. The A1 argument may be a range of IP
addresses, similar to P1 above.

– ‘pattern name OF OR’. Named patterns, which are stored
in a special IPRewriterPatterns element, can be shared
by multiple rewriter elements, or by multiple input ports
on a single rewriter element. This helps keep allocated
addresses and/or source ports unique.

– ‘elementname’. A fresh packet rule may consist of a single
element name. This element must implement the IPMap-
per interface. When a fresh packet is encountered, the
translator element will call one of that element’s meth-
ods. The mapping helper may install new mappings using
whatever criteria it likes. This makes the mapping mecha-
nism arbitrarily extensible. Click comes with one IPMap-
per element, RoundRobinIPMapper, which assigns new
flow IDs in a round-robin fashion among several choices.

IPRewriter
(pattern 192.150.9.1 1024-65535 - - 0 1,

drop)

from intranet

from extranet
to 192.150.9.1

to extranet

to intranet

Figure 3—An IPRewriter element implementing NAPT.

This implements load-sharing NAT. To implement a pol-
icy more complex than round-robin, the user need only
write a new element.

3.2 IPRewriter

The rest of this section demonstrates several Click NAT ele-
ments: IPRewriter and TCPRewriter, RoundRobinIPMapper,
and FTPPortMapper. We use conventional NAT applications
as examples, which many currently available NATs can im-
plement with more or less effort. For these applications,
Click NAT’s modularity makes the functions of individual
elements, and the connections between them, clear and easy
to manipulate. Section 4 presents some applications that are
simple with Click NAT, but difficult to impossible with other
NATs.

The IPRewriter and TCPRewriter translation elements im-
plement network address port translation (NAPT). IPRe-
writer handles TCP and UDP; TCPRewriter is specialized for
TCP, and can change packets’ sequence and acknowledgment
numbers as well as their addresses and ports.

Figure 3 shows an IPRewriter element set up for simple
NAPT (“IP masquerading”) with a single externally-visible
IP address, 192.150.9.1. The element has two inputs and two
outputs. The user arranges the configuration so that packets
headed out of the internal network arrive on input port 0,
and packets headed into the internal network arrive on input
port 1. We’ll describe the action of this element in detail.

The IPRewriter’s configuration string has two clauses, one
per input port. First, fresh packets arriving on input port 0
represent new connections to the outside world. The NAPT
should rewrite these packets to use its external IP address,
allocating a new source port per connection and storing
the mapping for later. A “pattern” rule, “pattern 192.150.9.1
1024–65535 – –”, fits naturally. (This rule uses only non-
reserved source ports.) Packets arriving on input port 1 rep-
resent new connections from the outside world and destined
for the NAT’s externally-visible address. Any such packets
that are fresh should be dropped; thus, the “drop” rule. To
figure out the semantics of the two output ports, we look
at the mappings that might be installed by the rules. The
“drop” rule never installs a mapping or emits a packet, so
we can ignore it. The “pattern” rule installs two mappings:
the forward mapping emits packets on output 0, the reply
mapping on output 1. Since all packets arriving on input



IPRewriter
(pattern 192.150.9.1 1024-65535 - - 0 1,

pattern - - 10.0.0.8 80 1 0,

drop)

from intranet

from extranet
to 192.150.9.1

port 80

from extranet
to 192.150.9.1

other ports

to extranet

to intranet

Figure 4—An IPRewriter element implementing NAPT, with redirection
of port 80 to an internal Web server.

0 originated internally, we know that the forward mapping
corresponds to packets originating internally (and headed
outside), and the reverse mapping corresponds to packets
originating externally (and heading inside). Thus, the IPRe-
writer sorts packets leaving the intranet onto output port 0,
and packets entering the intranet onto output port 1.

Figure 4 extends this IPRewriter to redirect port 80 con-
nections to an internal Web server at 10.0.0.8. All we do is
add a new input port, for packets destined for the rewriter’s
port 80, and a corresponding rule, “pattern – – 10.0.0.8 80”,
which rewrites packets’ destination addresses to that of the
internal server. The new rule’s output ports, “1 0”, preserve
the output port semantics from Figure 3. Some classification
elements, not shown, select packets destined for port 80 and
send them to the relevant input port. Extending Figure 3
into Figure 4 was easy. Given a new packet class, we added an
input port (and the necessary classifiers) and a correspond-
ing rule. Pleasantly, the configuration remains modular and
readable.

3.3 RoundRobinIPMapper

Complex applications like load-sharing NAT, which dis-
tributes connections to a service among several machines,
require more flexibility than the built-in fresh packet rules
provide. Therefore, rewriters can delegate fresh packet han-
dling to arbitrary “mapper plugin” elements. Those elements
implement a C++ method, get_map, which a rewriter el-
ement calls when it encounters a fresh packet. Arguments
specify the relevant rewriter and describe the fresh packet.
The mapper plugin should choose a new mapping, install it
into the rewriter, and return it.

RoundRobinIPMapper is one example mapper plugin. It
has no inputs or outputs; packets don’t pass through it.∗ Its
configuration string is a list of fresh packet rules. On calls to
get_map, it cycles through those rules in round-robin order,
returning the first mapping it can allocate. Using RoundRob-
inIPMapper, connections to a single “virtual server” could
be distributed round-robin to a set of real servers. Say that,
starting with the NAT of Figure 4, we’d like to distribute
connections to the internal Web server among machines

∗In Click terminology, it is an information element.

ftprw :: TCPRewriter
(pattern to extranet 0 1,

drop)

rw :: IPRewriter
(pattern to extranet 0 1,

drop)

FTPPortMapper
(ftprw, rw,

pattern to extranet 0 1)

from intranet
to TCP port 21

from extranet
from TCP port 21

from intranet
other ports

from extranet
other ports

to extranet to intranet

Figure 5—The FTPPortMapper ALG in context of a NAPT.

10.0.0.8, 10.0.0.9, and 10.0.0.10. First, we’d add a RoundRob-
inIPMapper:

rr mapper :: RoundRobinIPMapper
(pattern – – 10.0.0.8 80 1 0, pattern – – 10.0.0.9 80 1 0,
pattern – – 10.0.0.10 80 1 0);

Then, we just replace the relevant line in the IPRewriter’s
configuration string with a reference to rr mapper:

IPRewriter(pattern 192.150.9.1 1024–65535 – – 0 1,
rr mapper, drop);

This simple design makes it easy to write and use new load
balancers.

3.4 FTPPortMapper

To demonstrate how application-level gateways work in
Click, we add an FTPPortMapper element to our NAPT,
allowing FTP to pass through the NAT gateway. Recall that
an FTP application-level gateway must (1) rewrite outgoing
PORT commands embedded in the FTP control stream to
use external addresses, (2) adjust sequence and acknowl-
edgment numbers in the FTP control stream, and (3) install
mappings for FTP data connections in the corresponding
rewriter. The FTPPortMapper element takes three configu-
ration arguments: the name of a TCPRewriter element han-
dling FTP control streams (used forsequence number adjust-
ment), the name of an IPRewriter or TCPRewriter element
handling FTP data streams (used to install mappings; it may
be equal to the control-stream element), and a fresh packet
rule used to create and install mappings for data streams.
Only FTP control packets leaving the intranet need pass
through the FTPPortMapper. After leaving FTPPortMapper,
packets must pass through the TCPRewriter mentioned in
FTPPortMapper’s configuration string.†

Figure5showshow thismightfittogether. FTPPortMapper
is placed in line with FTP control traffic, the only kind of

†FTPPortMapper checks this property on initialization.



rw :: IPRewriter
(pattern 10.0.0.1 20000-65535 10.0.0.2 - 1 1,

pattern - - 10.0.0.2 - 1 0,

pattern to extranet 0 1,

passthru 2)

ftprw :: TCPRewriter
(pattern to extranet 0 1,

drop)

ICMPPingRewriter
(64.55.3.2, -)

ICMPRewriter
(rw ftprw)

ICMPRewriter
(rw ftprw)

IPClassifier(...) IPClassifier(...)

FTPPortMapper
(ftprw, rw,

pattern to extranet 0 1)

TCP/UDP
to port 21

TCP/UDP
to 64.55.3.2

other
TCP/UDP

ICMP echo
requests

ICMP
errors

TCP/UDP
from port 21

TCP/UDP
to 64.55.3.2

other
TCP/UDP

ICMP echo
replies

ICMP
errors

from intranet
to extranet

from extranet
to 64.55.3.0/28

from intranet
to extranet

from extranet
to intranet

from extranet
to NAT host

Figure 6—A complex firewalling NAPT configuration.

traffic it examines. Click’s modularity clarifies the types of
traffic that an application-level gateway affects. The named
pattern, “to extranet”, prevents reuse of source ports among
the different rewriter elements.

3.5 Discussion

Once a given rewrite pattern’s source port range is exhausted,
that pattern will drop new packets rather than reuse active
source ports. As mappings are removed, of course, the cor-
responding source ports become available again.

Some care is required to ensure that different fresh packets
are never mapped to the same new flow ID. For example,
consider the following IPRewriter element:

IPRewriter(pattern 1.0.0.1 1024-65535 – – 0 1,
pattern 1.0.0.1 1024-65535 – – 0 1);

Clearly, these patterns conflict, which might make it impossi-
ble to determine the internal source address to which a reply
packet should be sent. However, the rest of the configuration
might ensure that packets arriving on input 0 had destination
port 80, while packets arriving on input 1 had destination
port 22. Then there would be no conflict between the pat-
terns, because two new flow IDs created by the two patterns
would never share the same destination port. Shared named
patterns also prevent conflicts.

Click supports hot swapping, where a new configuration
atomically takes the state of an old configuration on instal-
lation. The IPRewriter elements support hot swapping; their
mapping tables need not be lost when configurations change.

4 Examples

The best way to demonstrate the flexibility and utility of the
IP rewriting elements is through examples. We present first
two complex, but conventional, configurations: a NAPT and
a transparent traffic diverter. We close with several config-
urations easily supported by Click NAT that conventional
NATs can’t handle.

4.1 A complex NAPT

First, we present a more realistic and complex NAPT config-
uration. Versions of this configuration have been in daily use
as a small startup company’s Internet gateway for the past
eighteen months. Its functional requirements include:

– Internal hosts have unlimited access to the extranet via
TCP, FTP, UDP, and ICMP pings. ICMP errors, such as
“port unreachable” messages, pass through to internal
hosts.

– External hosts can initiate connections to two internal
machines, a file server (external address 64.55.3.2, internal
address 10.0.0.2) and the gateway itself (external address
64.55.3.1, internal address 10.0.0.1).

– Internal hosts can access the file server using either its
internal address or its external address.

Figure 6 shows the corresponding configuration. We’ve
seen its core before: the FTPPortMapper, IPRewriter, and
TCPRewriter come from Figure 5. The IPClassifier elements,



local machine
10.0.0.4

NAT gateway
10.0.0.1

file server
10.0.0.2

(1
0.

0.
0.

4,
x,

64
.5

5.
3.

2,
y)

(10.0.0.1, z,

10.0.0.4, y)

(10.0.0.4, y,

10.0.0.1, z)

(6
4.

55
.3

.2
, y

,

10
.0

.0
.4

, x
)

Figure 7—Rewriting packets headed for the file server’s external address.

not shown earlier, divide packets into classes as appropriate
for the configuration. The gateway’s expanded requirements
translate to configuration changes as follows:

– ICMP echo support. The ICMPPingRewriter elementacts
like an IPRewriter for ICMP echo requests and replies.
Outgoing pings have their source addresses rewritten, to
the externally visible address 64.55.3.2; incoming replies
are rewritten correspondingly.

– ICMP error support. ICMP error packets, such as “port
unreachable” or “network unreachable”, must be rewrit-
ten if they are to cross a NAT. Each ICMP error packet con-
tains a fragment of the offending packet’s header, enough
to extract a flow identifier. The ICMPRewriter elements
use these flow identifiers to look up any corresponding
mapping in the rewriter elements (rw and ftprw). If a
mapping is found, they rewrite the ICMP error’s desti-
nation address and enclosed packet header, and emit the
rewritten error.

– Access to the file server (64.55.3.2). External access to
the file server uses the same technique as Figure 4. An
input port on the IPRewriter accepts packets headed for
the file server’s external address, rewriting them to use
the internal address with the rule “pattern – – 10.0.0.2 –
1 0”. The new wrinkle is that we want to let internal hosts
access the file server using its external address. We don’t
want to send those packets out into the extranet; they
would cause ICMP redirects. Instead, we rewrite them
to appear to come from the NAT gateway, using the rule
“pattern 10.0.0.1 20000-65535 10.0.0.2 – 1 1”. Both output
ports are 1 because all communication is with the intranet.
Figure 7 shows how this works for an example connection.

– Access to the NAT gateway. The “passthru 2” rule, which
corresponds to TCP and UDP packets from the extranet,
allows external connections to the NAT gateway. Packets
without a mapping are emitted on the IPRewriter’s second
output, from which they head to the NAT host’s IP stack.
The host will discard and/or log any inappropriate packets.

IPClassifier(...)

IPRewriter
(pattern 10.0.0.1 1024-65535 64.55.3.9 8000 0 1,

drop)

ToHost(fdev0)

FromHost
(fdev0, 10.0.0.1)

Classifier(...)

ARPResponder

CheckIPHeader

Strip(14)

EtherEncap(0x0800, ...)

to TCP port 80 other

ARP queries IP

to ARPQuerier

from IPFragmenter to LookupIPRoute

Figure 8—A transparent Web traffic diverter extension for the IP router
configuration (Figure 12).

Figure 6’s complexity derives from its requirements. De-
spite this complexity, Click’s modularity makes it relatively
easy to pick apart the configuration and see what it does, and
to extend it if necessary.

4.2 Transparent traffic diverter

This section presents a NAT-based transparent traffic di-
verter suitable, for example, for turning ordinary proxies and
servers into transparent proxies [7]. The diverter is meant
to intercept all connections of a certain type, regardless of
intended destination, and send them to a particular host and
port. The connections arrive at that host looking as if they
were originally intended to connect there. The program lis-
tening to the relevant port can accept the connections as if
they were ordinary connections. When the program sends
data on such connections, the diverter rewrites them to look
as if they came from the host the connection was originally
meant to connect to.

Figure 8 shows a Click configuration fragment that fits the
diverter’s IPRewriter into the larger IP router configuration
of Figure 12 (in the appendix). Figure 8 catches outgoing
traffic just before it reaches the outgoing interface’s ARP-
Querier and separates Web traffic from other traffic using
an IPClassifier. Web traffic passes through an IPRewriter el-
ement, which diverts connections to port 8000 on the local



IPRewriter
(keep 0 2,

keep 2 1)

from intranet

from extranet

to extranet
(internally initiated)

to extranet
(externally initiated)

to intranet

Figure 9—An IPRewriter for classifying packets into internally-initiated
connections and externally-initiated connections.

machine (64.55.3.9). Packets’ source addresses are changed
to 10.0.0.1. This private address corresponds to a fake device,
fdev0, created and installed in the host’s device and routing
tables by the FromHost element. The local machine’s replies
to the Web connections are then sent to 10.0.0.1. The fake
device hands them to the Click configuration, where they are
emitted by the FromHost element and eventually rewritten.

This diversion technique works for more than just HTTP
traffic. For example, we used exactly this configuration frag-
ment to build a transparent DNS cache that diverts DNS UDP
packets to a host running an name server. The name server
need not be modified at all as long as recursion is enabled.

4.3 Rate limiting by direction

The remaining examples present some uses of the IP rewriter
elements that are difficult or impossible with conventional
NAT. They are possible with Click because of the NAT ele-
ments’ component nature—for example, multiple rewriters
are possible in a single configuration—and because impor-
tant properties of the NAT elements, such as the semantics
associated with input and output ports, are determined by
the user.

For our first example, we rate limit TCP connections dif-
ferently depending on where they initiated. In particular,
we might like to limit externally-initiated TCP connections
to use at most half the available outgoing bandwidth. Cur-
rently, this kind of operation is approximated with per-port
rate limits. However, some applications, such as peer-to-peer
or network conferencing, may not use well-known ports,
making the approximation inviable.

What’s required here is a table that classifies connec-
tions into two categories, internally-initiated and externally-
initiated. Click NAT easily handles this; see Figure 9. The two
fresh packet rules, “keep 0 2” and “keep 2 1”, do not change
packets’ addresses or TCP ports, but outbound packets due
to internally-initiated and externally-initiated connections
are sent to different output ports (0 and 1, respectively). The
user could then hook a rate-limiting element, such as Rat-
edSplitter, up to output 1. This use of NAT does no address
translation whatsoever. Instead, it opportunistically uses IP-
Rewriter’s mapping table to achieve an interesting effect. The
repurposing succeeds because IPRewriter delegates port se-
mantics to the user.

IPRewriter
(pattern 10.0.0.1 1024-65535 ...)

IPRewriter
(pattern 10.0.0.4 1024-65535 ...)

HashSwitch(16, 4) HashSwitch(12, 4)

from intranet from extranet

to extranet to intranet

. . .

Figure 10—Multiple IP rewriters reduce SMP lock contention. The Hash-
Switch elements divide packets into classes based onexternal address; each
class has a different IPRewriter.

By contrast, Linux 2.4’s Netfilter does not currently sup-
port rate limiting by direction. Its connection state tables
don’t store accessible information about the direction in
which connections were initiated. Of course, Linux could
be extended, but Click’s flexible elements support this use
automatically.

4.4 Multiple NATs for SMP

Dividing expensive computations among multiple proces-
sors is a well-known technique for improving performance.
Click can use multiple processors on SMP machines, but
when doing so, mutable data structures, such as rewriter
tables, should be touched by as few CPUs as possible [4].
Otherwise, the locking required to protect the data struc-
tures would drag down performance.

Conventional NATs allow at most one table per configu-
ration, so locking overhead is unavoidable. Click, however,
makes it easy to include multiple rewriters, as long as requests
and replies for a given connection are always sent through the
same rewriter. The configuration designer might choose, for
example, to divide packets into classes based on the external
IP address, which is visible as the destination address of out-
going packets and the source address of incoming packets.
Different classes would then be routed to different rewriters,
reducing the chance of lock contention; see Figure 10. Alter-
nately, the user could try to allocate one IPRewriter per CPU
or output interface.

4.5 Resilient overlay networks

To close this section, we sketch how another project, Re-
silient Overlay Networks [2], uses Click’s IP rewriting ele-
ments. The RON project builds overlay networks designed
to improve end-to-end reliability. One RON implementation
is built on Click. In that implementation, RON clients en-
capsulate packets and send them via RON relays when their
direct links to the Internet become unsuitable. RON clients
use IPRewriters to classify packets based on where their con-
nections initiated. Connections initiated as part of the RON



are routed according to RON’s routing table; other packets
use the conventional routing table, allowing simultaneous
conventional and RON connections to the machine. These
IPRewriters simply maintain state about connections. RON
relays, in contrast, use conventional NAPT to forward pack-
ets from clients to ordinary servers on the Internet. However,
a RON relay might interact with many clients. It must remem-
ber the client corresponding to each mapping, so that it can
correctly encapsulate reply packets from the Internet for the
relevant client. This is easy; different clients get different in-
put and output ports on the relay’s IPRewriter. In both cases,
Click NAT naturally handles extended requirements that the
default Linux NAT framework cannot.

4.6 Summary

Click’s NAT elements support conventional NAT operations,
unusual uses of address translation like the traffic diverter,
and unexpected uses like the rate limiter, equally well. The
broad applicability of Click NAT’s simple, well-specified
components speaks well for the Click paradigm, and for
modular networking systems in general.

5 Performance

IP rewriting in Click is sufficiently fast to make its perfor-
mance impact negligible in the context of a larger router,
firewall, or other packet processing configuration.

We evaluated the latency of an individual IPRewriter by
using micro-benchmarks. Measurements were taken on a
700MHz Pentium III with 256MB of memory and a 256KB
L2 cache, using Pentium performance counters. The test
harness consists of a packet source element feeding fake
UDP packets through an IPRewriter and into a packet sink.

In the first test, the packet source generates 100 identical
packets. These packets create only one mapping, so the test
measures the forwarding cost of the IPRewriter exclusive
of the overhead of generating new mappings. IPRewriter’s
median forwarding latency in this scenario is 393 cycles, or
561 ns, per packet.

In the second test, the packet source generates 100 packets
with different UDP port numbers. This combines the over-
head of packet forwarding with the overhead of generating
new mappings, since each fresh packet adds two mapping
entries to the IPRewriter’s hash table. The median latency
for forwarding and generating a new mapping is 2338 cycles,
or 3.34 µs, per packet. This is of course a worst-case value,
since for normal traffic not every packet will result in a new
mapping being created. For example, if every tenth packet
starts a new flow, the average per-packet cost will be about
0.9 µs.

To put these numbers in context, a basic Click IP router

MLFFR (packets/s)
Configuration IP NAT Ratio

Linux, interrupting 172,000 110,000 64%
Click, interrupting 222,000 210,000 94%
Click, polling 540,000 490,000 91%

Figure 11—Maximum loss-free packet forwarding rates for Click and
Linux 2.2.18 configurations.

(without NAT) on the same hardware takes about 2.8 µs of
CPU time to forward a packet [12]. This includes Ethernet
device interaction (with polling rather than interrupts) and
all standard IP processing, such as IP checksum verification.
The Linux 2.2.14 kernel IP forwarding code running on
the same hardware, using Linux’s interrupting drivers, takes
about 12 µs of CPU time to forward a packet.

Figure 11 shows some macrobenchmarks of NAT for-
warding rates. The router involved was a 1.2 GHz Pen-
tium III, running Linux 2.2.18, with two Intel Pro/1000 F
Server Adapter gigabit Ethernet cards in 64-bit 66 MHz PCI
slots. The load was 10 flows of 64-byte UDP packets, in
one direction only; each flow had a unique and unchang-
ing address/port-number combination. The numbers in the
table are the maximum input rates that the router could for-
ward with no losses. The lines marked “interrupting” involve
an interrupting driver. The line marked “polling” was taken
with a driver modified to allow Click to poll for incoming
packets, thus avoiding all interrupts. The IP column refers
to standard IP forwarding; for Click, this means the con-
figuration in Figure 12. The NAT column refers to a simple
NAPT configuration. For Click, this is IPRewriter; for Linux,
it was produced by the command ipchains -A forward

-s 1.0.0.0/8 -j MASQ.
Figure 11 should not be interpreted as a direct comparison

of Click and Linux. For example, Linux’s forwarding table
lookup algorithms are more complex than Click’s, but scale
better to large numbers of routes. However, the figure shows
that Click’s NAT implementation adds only modestly to the
cost of basic IP forwarding, and that Click’s modular separa-
tion of NAT from other forwarding tasks does not prevent it
from performing as well as a more conventional architecture.

6 Related Work

The first documented IP network address translator per-
formed address-based NAT only [9]. Network Address Port
Translation, or NAPT, and the use of NAT for load balancing
appeared later [16, 17].

RFC 2663 lays out consistent terminology for NAT vari-
ants [17]. Click NAT elements can perform Basic NAT with
IPAddrRewriter, Network Address Port Translation with IP-
Rewriter, Load Sharing NAT with IPRewriter plus an IPMap-



per element,Two-WayNATwith IPRewriter andaDNSproxy,
Twice-NAT with two IPRewriters in different realms, and
Multihomed NAT.

Hasenstein describes a wide variety of network address
translation configurations in the context of a system for NAT
in Linux [11]. All of his configurations may be easily imple-
mented in Click.

Cisco IOS’s NAT implementation [5] supports static and
dynamic address-based NAT, NAPT, round-robin load shar-
ing NAT, and combinations thereof. Interfaces are divided
into two classes, “inside” and “outside”. The translations ap-
plied to a particular packet depend on the class of interface
on which it was received, and, optionally, on its source ad-
dress, destination address, protocol, or port number. Other
arrangements, such as more than two classes of interface or
other load sharing arrangements, are difficult or impossible
to achieve.

Similarly, while the NAT implementations shipped with
desktop operating systems—Linux’s ipchains and ipnat [11]
and Netfilter [1], BSD’s IP Filter [15], and Windows 2000’s
NAT—are flexible to different degrees, none of them support
multiple NAT components in a single configuration, or allow
fully flexible control over NAT placement relative to other
forwarding tasks.

Cohen et al. [7, 8] present a configurable tool for re-
mapping packet addresses and port numbers. It consists of
a kernel module that implements re-mapping with a fixed
table, and applications that add new mappings when they ob-
serve packets from as-yet unmapped flows. While the system
can perform a wide range of NAT functions, it is embedded
inside a fixed router configuration; unlike Click’s NAT tools,
the way it interacts with other forwarding functions cannot
be changed.

7 Conclusion

We have presented a flexible set of components for network
address translation in Click, a modular networking system.
These components implement only the core functionality re-
quired of any network address translator—namely, changing
IP packet headers and finding mappings corresponding to
input packets. They leave other functions, such as determin-
ing which packets should be subject to translation, to other
parts of the configuration. This makes configurations involv-
ing address translation flexible and understandable. NAT el-
ements can be placed in a configuration exactly where they
are required; packets meant for translation can be selected
in arbitrary ways; the mechanism for choosing a transla-
tion for a new packet is completely extensible; and multiple
NAT elements can coexist in a single configuration. The IP
rewriting components are made more useful and general by
the modular networking system of which they are a part. We

demonstrated the practical usefulness of this system with
real configurations, including an IP router with port transla-
tion, a transparent traffic diverter, and several configurations
impossible to achieve with conventional NATs, and showed
that the IP rewriting elements have acceptable performance
cost.

The components described in this paper, and several ex-
ample configurations, are freely available on line athttp://
www.pdos.lcs.mit.edu/click/.

Acknowledgments

We thank Paul Hsiao, Sulu Mamdani, Dean Bogdanovic,
Prem Gopalan, and Mazu Networks, Inc. for support of this
project, Benjie Chen for his initial work on the configuration
described in Section 4.1, Alex Yip for the RON example, and
Frans Kaashoek and the members of MIT LCS’s Parallel and
Distributed Operating Systems group for supporting Click.

References

[1] The netfilter/iptables project. Technical report. http://

www.netfilter.org/, as of January 2002.

[2] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek,
and Robert Morris. Resilient overlay networks. In Proc. 18th
ACM Symposium on Operating Systems Principles (SOSP),
pages 131–145, October 2001.

[3] F. Baker. Requirements for IP Version 4 routers. RFC 1812,
Internet Engineering Task Force, June 1995. ftp://ftp.

ietf.org/rfc/rfc1812.txt.

[4] Benjie Chen and Robert Morris. Flexible control of paral-
lelism in a multiprocessor PC router. In Proc. 2001 USENIX
Annual Technical Conference (USENIX ’01), June 2001.

[5] Cisco Systems. Cisco IOS Network Address Translation
(NAT). Technical report, 2001. http://www.cisco.com/
warp/public/cc/pd/iosw/ioft/ionetn/prodlit/

1195_pp.htm, as of February 2002.

[6] Click Project. The Click modular router: Documentation.
Technical report, 2002. http://www.pdos.lcs.mit.

edu/click/doc/, as of February 2002.

[7] A. Cohen, S. Rangarajan, and N. Singh. Supporting trans-
parent caching with standard proxy caches. In Proceedings
of the 4th International Web Caching Workshop, 1999.

[8] Ariel Cohen and Sampath Rangarajan. A programming in-
terface for supporting IP traffic processing. In Proc. of IWAN
’99: Active Networks, First International Working Conference,
number 1653 in Lecture Notes in Computer Science, pages
132–143, June 1999.

[9] K. Egevang and P. Francis. The IP Network Address Transla-
tor (NAT). RFC 1631, Internet Engineering Task Force, May
1994. ftp://ftp.ietf.org/rfc/rfc1631.txt.



[10] T. Hain. Architectural implications of NAT. RFC 2993,
Internet Engineering Task Force, November 2000. ftp://
ftp.ietf.org/rfc/rfc2993.txt.

[11] Michael Hasenstein. IP network address translation. Diplo-
marbeit, Technische Universität Chemnitz, Chemnitz, Ger-
many, 1997. Available online at http://www.suse.de/
~mha/linux-ip-nat/diplom/nat.html, as of Febru-
ary 2002.

[12] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti,
and M. Frans Kaashoek. The Click modular router. ACM
Transactions on Computer Systems, 18(4), November 2000.

[13] E. Nordmark. Stateless IP/ICMP Translation algorithm
(SIIT). RFC 2765, Internet Engineering TaskForce, February
2000. ftp://ftp.ietf.org/rfc/rfc2765.txt.

[14] J. Postel and J. Reynolds. File Transfer Protocol (FTP).
RFC 959, Internet Engineering Task Force, October 1985.
ftp://ftp.ietf.org/rfc/rfc0959.txt.

[15] Darren Reed. IP Filter TCP/IP packet filtering package.
Technical report, 2002. http://coombs.anu.edu.au/

~avalon/, as of February 2002.

[16] P. Srisuresh and D. Gan. Load sharing using IP Network Ad-
dress Translation (LSNAT). RFC 2391, Internet Engineering
Task Force, August 1998. ftp://ftp.ietf.org/rfc/

rfc2391.txt.

[17] P. Srisureshand M. Holdrege. IP Network Address Translator
(NAT) terminology and considerations. RFC 2663, Internet
Engineering Task Force, August 1999. ftp://ftp.ietf.
org/rfc/rfc2663.txt.

[18] G. Tsirtsis and P. Srisuresh. Network Address Translation—
Protocol Translation (NAT-PT). RFC 2766, Internet En-
gineering Task Force, February 2000. ftp://ftp.ietf.

org/rfc/rfc2766.txt.

A Click

Click routers are built from components called elements. Ele-
ments are modules that process packets; they control every aspect
of router packet processing. Router configurations are directed
graphs with elements as the vertices. The edges, called connections,
represent possible paths that packets may travel. Each element be-
longs to an element class, which determines the code executed
when the element processes a packet. Each element also has an
optional configuration string, which element classes can use to se-
lect behavior more precisely. For example, the Tee element class
duplicates packets; a Tee element’s configuration string, an integer,
says how many copies to make. Inside a running router, elements
are represented as C++ objects and connections are pointers to
elements. A packet transfer from one element to the next is imple-
mented with a single virtual function call.

Elements also have input and output ports, which serve as the
endpoints for packet transfers. Every connection leads from an
output port on one element to an input port on another. An
element can have zero or more of each kind of port. Different
ports can have different semantics; for example, the second output
port is often reserved for erroneous packets.

FromDevice(eth0) FromDevice(eth1)

Classifier(...) Classifier(...)

ARPQuerier(1.0.0.1, ...)

ToDevice(eth0)

ARPQuerier(2.0.0.1, ...)

ToDevice(eth1)

ARPResponder
(1.0.0.1 ...)

ARPResponder
(2.0.0.1 ...)

IPGWOptions(1.0.0.1)

IPFragmenter(1500)

DecIPTTL

FixIPSrc(1.0.0.1)

PaintTee(1)

DropBroadcasts

ICMPError
redirect

ICMPError
bad param

ICMPError
TTL expired

ICMPError
must frag

IPGWOptions(2.0.0.1)

IPFragmenter(1500)

DecIPTTL

FixIPSrc(2.0.0.1)

PaintTee(2)

DropBroadcasts

ICMPError
redirect

ICMPError
bad param

ICMPError
TTL expired

ICMPError
must frag

Paint(1) Paint(2)

Strip(14)

CheckIPHeader(...)

LookupIPRoute(...)

ARP
queries

ARP
responses IP

ARP
queries

ARP
responses IP

to Queue to Queueto ARPQuerier to ARPQuerier

from Classifier from Classifier

to host

Figure 12—An IP router configuration.

Every queue in a Click configuration is explicit. Thus, a con-
figuration designer can control where queueing takes place by
deciding where to place Queue elements.

Click uses a simple, declarative language to describe router
configurations. The language specifies how elements should be
connected together. To configure a router, the user passes a Click-
language file to the system. The system parses the file, creates the
corresponding router, tries to initialize it, and, if initialization is
successful, installs it and starts routing packets with it.

Figure 12 shows a basic 2-interface IP router configuration,
the starting point for some of the configurations described in the
body of the paper. This configuration implements all required IP
forwarding functionality [3]; see [12] for a description of how it
works.

Click router configurations run in a downloadable Linux kernel
module, at user level, or in a FreeBSD kernel.


