
Retroactive Auditing

Xi Wang Nickolai Zeldovich M. Frans Kaashoek
MIT CSAIL

ABSTRACT
Retroactive auditing is a new approach for detecting past intrusions
and vulnerability exploits based on security patches. It works by
spawning two copies of the code that was patched, one with and
one without the patch, and running both of them on the same inputs
observed during the system’s original execution. If the resulting
outputs differ, an alarm is raised, since the input may have triggered
the patched vulnerability. Unlike prior tools, retroactive auditing
does not require developers to write predicates for each vulnerability.

1. INTRODUCTION
Due to the increasing size and complexity of software, software

defects have become inevitable [2]. These defects often lead to
vulnerabilities, and allow an adversary to break into the system,
until developers release updates that fix the defects and administra-
tors patch the system with those updates. Once the administrators
install an update, they may want to know whether some adversary
already exploited the corresponding vulnerability before the patch
was installed.

This position paper proposes a new tool, RAD, to help adminis-
trators audit the past execution of their system and detect intrusions.
RAD’s workflow is shown in Figure 1. After a patch is released,
RAD re-executes all programs that invoked the vulnerable code,
both with and without the patch applied, and feeds in the inputs
seen during the system’s original execution. If the programs behave
differently, an adversary may have exploited this vulnerability. As
we describe in Section 6, unlike previous approaches [5], RAD does
not require developers to write predicates for each vulnerability.

The key challenge facing RAD is reducing false alarms. Executing
the patched code may lead to a different bit-level system state, even
if that state is functionally identical to the original one. For example,
the program may be non-deterministic, in which case each run would
produce a different result. A program might also create a complex
data structure, such as a binary tree, which may end up having
different pointer values, due to differences in malloc’s behavior,
even though the trees are equivalent.

The main contribution of this paper is the idea of retroactive audit-
ing. Based on a visual inspection of past vulnerabilities discovered

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
APSys’11, July 11–12, 2011, Shanghai, China.
Copyright 2011 ACM 978-1-4503-1179-3/11/07 ...$10.00.

Replay Fork

Run original code

Run patched code

Compare

Figure 1: The workflow of retroactive auditing.

in the Apache web server, we argue that this approach should work
well in practice. We further propose several ideas for reducing false
alarms.

The rest of the paper is organized as follows. Section 2 gives
an overview of RAD. Section 3 presents a feasibility study using
vulnerabilities from Apache, based on visual inspection. Section 4
shows some initial results for applying RAD to two vulnerabilities.
Section 5 discusses future challenges. Section 6 relates RAD to
previous work and Section 7 concludes.

2. OVERVIEW
This section describes how RAD works, using CVE-2009-0023

shown in Figure 2 as a running example. This vulnerability was
discovered in the APR-util library bundled with the Apache web
server. At line 7, the developers mistakenly used a signed integer
(int)s[i] as an index of array shift; the index could be negative,
which allows an adversary to craft an input string to overwrite heap
memory. Line 14 contains a similar bug. Patching the problem is
straightforward: use an unsigned index. RAD’s goal is to apply the
patch retroactively to a system and determine if an attacker used the
vulnerability to compromise the system.

2.1 A strawman approach
Consider a simple command-line text search program xgrep,

which reads from stdin and prints results to stdout, just like standard
grep, except that it makes use of the vulnerable function in our run-
ning example (see Figure 2). We assume that the administrator has
deployed a monitoring infrastructure that records the past execution
of the system and is able to replay the system’s execution from a
previous state (e.g., using Retro [7]). To determine whether any
past execution of xgrep was exploited, a strawman version of RAD
works as follows.

First, RAD rolls the system back to a state before the exploit
could have occurred (e.g., when the vulnerable software was first
installed).1 Then, RAD replays the system’s execution using the
inputs recorded during the original run. During replay, before each
execution of xgrep, RAD spawns both a copy of xgrep using the
1Administrators may need to make trade-offs between a longer time
horizon for auditing and higher storage costs for audit logs.



1 --- apr/apr-util/branches/1.3.x/strmatch/apr_strmatch.c ...
2 +++ apr/apr-util/branches/1.3.x/strmatch/apr_strmatch.c ...
3 @@ -103,12 +103,13 @@
4 if (case_sensitive) {
5 pattern->compare = match_boyer_moore_horspool;
6 for (i = 0; i < pattern->length - 1; i++) {
7 - shift[(int)s[i]] = pattern->length - i - 1;
8 + shift[(unsigned char)s[i]] = pattern->length - i - 1;
9 }

10 }
11 else {
12 pattern->compare = match_boyer_moore_horspool_nocase;
13 for (i = 0; i < pattern->length - 1; i++) {
14 - shift[apr_tolower(s[i])] = pattern->length - i - 1;
15 + shift[(unsigned char)apr_tolower(s[i])]
16 + = pattern->length - i - 1;
17 }
18 }

Figure 2: The patch for CVE-2009-0023, heap underwrites in
APR-util function apr_strmatch_precompile.

original, vulnerable APR-util library, and a copy of xgrep using the
patched APR-util library. RAD then runs the two processes, collects
the outputs from both runs, and compares their outputs. If there is
no difference, RAD concludes that the vulnerable function was not
exploited; otherwise RAD reports a possible exploit. This conclusion
assumes that the patch was designed to address the vulnerability and
that the patch addresses the vulnerability correctly.

The strawman approach re-executes any process, in its entirety,
that may have been affected by the patched code. This poses several
challenges when applying the same approach to a complex pro-
gram like the Apache web server. First, it is costly to re-execute
the entire process, and it is often unnecessary, because a patch is
often small [10] and typically causes small changes in a program’s
behavior. Second, programs such as Apache often involve several
threads or processes, and their behavior can be non-deterministic
even with the same inputs. As a result, it is difficult to match
two non-deterministic runs, even if the patch does not functionally
change anything.

2.2 Fine-grained auditing
RAD addresses the above challenges by using fine-grained re-

execution and auditing. Instead of auditing the whole process, RAD
can audit runs of a smaller code piece that is likely to be determinis-
tic (e.g., a single function in Figure 2) as follows.

Again, RAD rolls back the system to a correct state, and replays
the past executions of vulnerable processes. Since the patch mod-
ifies only one function, apr_strmatch_precompile, RAD inter-
cepts every call to that function in all processes (currently, it uses
LD_PRELOAD on Linux to inject a code stub).

Before every invocation of the vulnerable function, the injected
code stub forks the calling process into two: one fork invokes the
vulnerable function and the other fork invokes the patched function.
RAD runs the two versions of the function and records the mem-
ory writes they perform during their execution. This recording is
implemented using Pin [8], which can instrument load and store
instructions.

RAD compares the resulting system state of the two processes,
by doing a diff of the recorded memory writes. In our example, if
an adversary did not compromise the vulnerable function, then the
stores to the array shift are within its boundary. Thus both versions
of the function will behave in the same way (e.g., there will be no
difference in the recorded writes), and RAD will report no warnings.
If an adversary enticed the program to use a negative index, however,
the underwrites of shift will happen in the vulnerable code, but
not in the patched code. In this case the diff between the recorded

1 --- modules/proxy/mod_proxy_ftp.c ...
2 +++ modules/proxy/mod_proxy_ftp.c ...
3 @@ -385,4 +385,5 @@
4 if (wildcard != NULL) {
5 + wildcard = ap_escape_html(p, wildcard);
6 APR_BRIGADE_INSERT_TAIL(out, apr_bucket_pool_create(
7 wildcard, strlen(wildcard), p,
8 c->bucket_alloc));

Figure 4: The patch for CVE-2008-2939, cross-site scripting.

memory writes will be non-empty, and RAD will report an exploit
and output the diff (see Section 4.1).

This fine-grained auditing scheme imposes additional require-
ments on patches. Particularly, a patch should not change the func-
tion signature, such as adding or removing parameters, nor should
it change the layout of any external data structures used by the
function. Otherwise, the patched code cannot run starting with the
same inputs from the state after fork. For patches that don’t meet
these requirements, RAD will fall back to the strawman approach
and audit the whole program. As we will detail in Section 3, we
inspected 36 patches for Apache and only 2 do not satisfy these
requirements.

3. FEASIBILITY STUDY
This section presents a feasibility study of RAD’s approach based

on a visual inspection of reported vulnerabilities and the correspond-
ing patches for the Apache web server. Figure 3 summarizes all 36
vulnerabilities announced in every Apache 2.2.x release [1], from
2005 to 2010. These vulnerabilities are located in Apache’s core
code, modules, lower-level libraries (APR and APR-util), and third-
party libraries (expat). We determine whether RAD would be able
to detect these vulnerabilities correctly or report false alarms by
manually inspecting their patches.

12 vulnerabilities (marked as ∅) do not require auditing because
they don’t result in a compromise but just cause denial of service
(i.e., crash or hang). Particularly, 5 may lead to null pointer derefer-
ence, 4 may consume more memory than necessary, 2 may hang the
server, and 1 may cause the “billion laughs” attack [4], i.e., infinite
recursion. None of these vulnerabilities allow attackers to break the
integrity of the system or sniff any sensitive information.

Out of the 24 other vulnerabilities, we believe RAD would catch
exploits and incur no false alarms for 15 of them (marked as �).
Their patches meet the requirements discussed in Section 2.2. Sec-
tion 4 uses two of them for a detailed case study.

For the remaining 9 vulnerabilities, RAD may report false alarms
(marked as �). We further break them down into the following
categories.
Memory layout (3). Figure 4 shows one of the cases, CVE-2008-
2939. The patch allocates a new memory block to hold the sanitized
input, thus the memory layouts diverge in the two executions, though
they are structurally equivalent. RAD’s naïve diff of writes would
report false alarms for inputs that don’t contain any dangerous
characters.
Character encoding (3). The browser may be tricked into interpret-
ing the HTTP response using an incorrect character encoding (e.g.,
UTF-7), if the server does not set it explicitly. The attacker can
exploit this vulnerability using carefully chosen inputs to mount a
cross-site scripting (XSS) attack. The patch enforces the encoding at
the server side, and results in a change of every response, even where
there is no compromise. Thus, RAD would report false alarms.
Web page (1). An administration web page provided by one of
Apache’s modules is vulnerable to cross-site request forgery (CSRF)
attacks. The patch adds a token to the forms in the web page, which



Version Identifier Component Type Detectability
2.2.17 CVE-2009-3720 expat buffer overread �

CVE-2009-3560 expat buffer overread �
CVE-2010-1623 APR-util resource exhaustion ∅

2.2.16 CVE-2010-2068 mod_proxy_http logic error �
CVE-2010-1452 mod_cache & mod_dav null dereference ∅

2.2.15 CVE-2010-0425 mod_isapi logic error �
CVE-2010-0434 mod_headers dangling pointers �
CVE-2010-0408 mod_proxy_ajp hang ∅

2.2.14 CVE-2009-3094 mod_proxy_ftp null dereference ∅
CVE-2009-3095 mod_proxy_ftp missing checks �
CVE-2009-2699 APR hang ∅

2.2.13 CVE-2009-2412 APR integer overflow �
2.2.12 CVE-2009-1890 mod_proxy resource exhaustion ∅

CVE-2009-1191 mod_proxy_ajp logic error �
CVE-2009-1891 mod_deflate resource exhaustion ∅
CVE-2009-1195 config logic error � design
CVE-2009-1956 APR-util off-by-one �
CVE-2009-1955 APR-util billion laughs ∅
CVE-2009-0023 APR-util heap underwrite �

2.2.10 CVE-2010-2791 mod_proxy_http logic error �
CVE-2008-2939 mod_proxy_ftp cross-site scripting � memory

2.2.9 CVE-2007-6420 mod_proxy_balancer cross-site request forgery � web page
CVE-2008-2364 mod_proxy_http resource exhaustion ∅

2.2.8 CVE-2008-0005 mod_proxy_ftp cross-site scripting � charset
CVE-2007-6422 mod_proxy_balancer null dereference ∅
CVE-2007-6421 mod_proxy_balancer cross-site scripting � memory
CVE-2007-6388 mod_status cross-site scripting � memory
CVE-2007-5000 mod_imagemap cross-site scripting � charset

2.2.6 CVE-2007-3847 mod_proxy buffer overread �
CVE-2006-5752 mod_status cross-site scripting � charset
CVE-2007-3304 MPM SIGUSR1 killer � design
CVE-2007-1862 mod_cache information leak �
CVE-2007-1863 mod_cache null dereference ∅

2.2.3 CVE-2006-3747 mod_rewrite off-by-one �
2.2.2 CVE-2005-3357 mod_ssl null dereference ∅

CVE-2005-3352 mod_imagemap cross-site scripting �

∅ = auditing not required � = RAD works � = false alarms

Figure 3: Vulnerabilities in Apache 2.2.x releases [1].

changes every output, even when there is no compromise. RAD
would report false alarms.
Design flaw (2). Two vulnerabilities involve design flaws. A
malicious local user may override some permissions enforced in
httpd.conf, or kill an arbitrary process by spoofing the scoreboard.
The patches change either the semantics or the architecture of the
Apache program. Whole-process auditing seems unavoidable since
the changes are global, instead of local to a single function. For
Apache, whole-process auditing can lead to false alarms due to
non-determinism.

In summary, RAD may report false alarms for 9 of the 36 vulnera-
bilities in Apache. Specifically, 3 XSS cases require a more elabo-
rate diff, 4 charset-XSS and CSRF cases need further incorporation
with browsers, and the 2 design cases would require whole-process
auditing. Section 5 speculates how we might handle these cases.

4. INITIAL RESULTS
This section presents the results of applying RAD to retroactively

auditing two vulnerabilities: CVE-2009-0023 in Apache 2.2.10 and

CVE-2005-3352 in Apache 2.2.0. For these two vulnerabilities RAD
does not report false alarms for normal workloads, and is effective
in detecting all exploits of the vulnerabilities. All the experiments
are conducted on 64-bit Ubuntu 10.10 with Linux kernel 2.6.35.

4.1 Case study I: Heap underwrites
The first case study of retroactive auditing is CVE-2009-0023,

the running example shown in Figure 2. The vulnerable function
apr_strmatch_precompile is invoked by both the server core
and several modules, such as mod_substitute, which uses it to
perform string substitutions on HTTP response bodies. This vulner-
ability allows a malicious local user to mount an attack by creating
an .htaccess configuration file that contains a bad string.

To evaluate whether RAD will generate false alarms we create two
different .htaccess files and enable .htaccess in httpd.conf.
The first file is created in a directory named good, which contains
the following line:

Substitute s/work/sink/n



1 --- modules/mappers/mod_imagemap.c ...
2 +++ modules/mappers/mod_imagemap.c ...
3 @@ -342,6 +342,6 @@
4 if (!strcasecmp(value, "referer")) {
5 referer = apr_table_get(r->headers_in, "Referer");
6 if (referer && *referer) {
7 - return apr_pstrdup(r->pool, referer);
8 + return apr_escape_html(r->pool, referer);
9 }

Figure 5: Part of the patch for CVE-2005-3352, cross-site
scripting in mod_imagemap.

A web page in this directory that originally displays “it works” will
be rewritten to “it sinks”, where the string “work” is used as input
to apr_strmatch_precompile.

To simulate an attack we create another .htaccess file in a
directory named bad; this file differs from the previous one in
changing the character “o” in “work” to 0xf0. This string tricks the
vulnerable function into writing integer 2 into shift[-16] rather
than shift[240].

To generate a workload, we send 100 HTTP requests for files in
the good directory. RAD records 110 invocations of apr_strmatch_
precompile, among which are 100 calls from mod_substitute,
and the remaining 10 are invoked from the server core and other
modules. RAD audits each invocation and reports no warnings.

We also request one file in the bad directory. This time RAD re-
ports one alarm and outputs the following diff of memory addresses
and corresponding hex values:

address original patched
0x00000000007ac188 02 --
0x00000000007ac189 00 --
0x00000000007ac18a 00 --
0x00000000007ac18b 00 --
0x00000000007ac18c 00 --
0x00000000007ac18d 00 --
0x00000000007ac18e 00 --
0x00000000007ac18f 00 --
=====================================
0x00000000007ac988 04 02

The diff indicates that the vulnerable code wrote the value 2 to
address 0x7ac188 (shift[-16]), which is the heap underwrite.
The patched code did not write to this address. It also shows that
the vulnerable code left 4 at 0x7ac988 (shift[240]), while the
patched code wrote 2 there.

4.2 Case study II: Cross-site scripting
Figure 5 shows part of the patch for CVE-2005-3352, a vulnerabil-

ity in mod_imagemap, a module for processing imagemap files. The
vulnerable code copies the value of the “Referer” field to the HTTP
response without sanitizing it, which allows attackers to launch
cross-site scripting attacks. The patch escapes the value. Note that
unlike the previous cross-site scripting case in Figure 4, in this case
both the vulnerable and the patched code return a duplicated string,
so the memory layout is unchanged by the patch.

To test RAD, we create an imagemap file served by the vulnerable
Apache server, and set up a separate web site, hosting a normal web
page good.html, and bad.html, which will exploit the vulnerabil-
ity to steal a user’s cookie. As a user, we visit both web pages using
the IE browser from a Windows XP SP3 machine.

In the first experiment, a user visits good.html 10 times. RAD
records 80 invocations to the vulnerable function in mod_imagemap,
and audits each invocation by comparing the memory writes by the
vulnerable and the patched code. It reports no warnings.

In the next experiment, the user visits bad.html. RAD audits the
invocations to the vulnerable function, and reports one alarm. The

important excerpt from the memory diff between the vulnerable and
patched runs is as follows:

address original patched
0x0000000001da2b11 > &
0x0000000001da2b12 < g
0x0000000001da2b13 s t
0x0000000001da2b14 c ;
0x0000000001da2b15 r &
0x0000000001da2b16 i l
0x0000000001da2b17 p t
0x0000000001da2b18 t ;

This excerpt shows part of the injected <script> tag that was
passed through by the original code, and the corresponding escaped
characters from the patched code.

5. FUTURE CHALLENGES
If an attacker exploits a vulnerability, RAD will identify it. The

main challenge for RAD is avoiding false alarms. The preliminary
experimental results for fine-grained auditing of two vulnerabilities
are promising: RAD does not report any false alarms and identifies
compromises correctly. The feasibility study further suggests that
RAD should do well on many vulnerabilities: 15 out of 24 should
not cause any false alarms.

To reduce false alarms for the remaining ones, we plan to refine
the diff approach by comparing data structure topology, rather than
the raw diffs of memory writes. We can consider two memory im-
ages to be equivalent if the corresponding graphs formed by memory
blocks and pointers among them are equivalent, i.e., isomorphic,
even if the addresses of memory blocks differ. This plan should
eliminate false alarms caused by the XSS patches, as long as the
patches do not introduce or remove any pointer aliasing (which
would make the memory graphs non-isomorphic).

Another source of false alarms arises from client-side exploits,
such as the charset-XSS and CSRF vulnerabilities. To determine
whether they actually caused attacks at client side, we would like
to integrate the browser behavior into the auditing system. For
example, RAD could see whether the browser generates the same
DOM tree for the HTTP responses from the web server with and
without the patch.

In addition to memory differences, RAD should also record sys-
tem calls issued during re-execution to determine if there are dif-
ferences in the effects on the execution environment. To avoid
conflicting changes to the system state, we expect that RAD would
allow system calls from one of the forked processes (e.g., the un-
patched parent) to proceed, and intercept system calls from the other
fork (e.g., the patched child). If the child’s system calls or arguments
differ from those in the parent process, an alarm is raised and the
child is terminated. If the child’s system calls and arguments are
the same, the return values from the parent’s corresponding system
calls are supplied to the child.

Finally, we would like to extend RAD to help the administrator
determine exploit severity and analyze actual damages (e.g., deter-
mine which files an adversary has modified). We plan to leverage
Retro [7] to address both issues.

6. RELATED WORK
Existing intrusion detection tools include COPS, Snort, and Trip-

wire [6], among many others [9]. These tools log system activities
and report anomalies according to a set of predefined security rules.
RAD takes a different approach: it uses patches to detect exploits of
software vulnerabilities.

IntroVirt [5] asks developers to write predicates in addition to
patches for every vulnerability. IntroVirt then detects past intrusions



by checking these predicates while replaying past executions of the
system at the virtual machine level. For example, the predicate for
the vulnerability in Figure 2 would be as follows:

For any character c in s,
0 ≤ c ≤ 127 if case_sensitive is true,

0 ≤ tolower(c) ≤ 127 otherwise.

RAD’s new auditing scheme leverages patches to remove the burden
of writing predicates.

Retro [7] uses re-execution to repair the system. It asks the
administrator to mark the initial intrusion point, and re-executes
legitimate actions to construct a new system state as if the intrusion
never happened. RAD can use a system like Retro to roll back to
an earlier state and replay inputs. It extends Retro by retroactively
identifying compromises based on security patches. If RAD finds an
attack, an administrator can then use Retro to recover.

Delta execution [11] is a mechanism to validate untrusted code
changes by comparing system behaviors running different versions
of the program. In contrast, RAD trusts security patches, and uses
them to detect intrusions.

BinHunt [3] displays the differences between the original and
the patched versions of a program by constructing their control
flow graphs from instructions and comparing the two graphs. RAD
further tells whether the two versions would behave the same given a
particular input, and uses that information to infer whether a security
vulnerability may have been exploited.

7. CONCLUSION
RAD allows an administrator to determine whether an attacker

exploited a vulnerability. RAD audits the past execution of a system
based on security patches released by vendors. It retroactively
applies the patch and executes the patched code with the original
input, and compares the resulting output with the original output. If
the outputs are different, RAD concludes that the vulnerability may
have been exploited. A feasibility study suggests that this approach
is applicable to a complex program like the Apache web server.

Acknowledgments
We thank the anonymous reviewers for their feedback. This research
was partially supported by the DARPA Clean-slate design of Re-
silient, Adaptive, Secure Hosts (CRASH) program under contract
#N66001-10-2-4089, and by NSF award CNS-1053143. The opin-
ions in this paper don’t necessarily represent DARPA or official US
policy.

References
[1] Apache httpd 2.2 vulnerabilities. http://httpd.apache.
org/security/vulnerabilities_22.html.

[2] B. Chelf and A. Chou. Controlling software com-
plexity. http://www.coverity.com/library/pdf/
ControllingSoftwareComplexity.pdf, 2008.

[3] D. Gao, M. K. Reiter, and D. Song. BinHunt: Automatically
finding semantic differences in binary programs. In Proceed-
ings of the 10th International Conference on Information and
Communications Security, Birmingham, UK, October 2008.

[4] E. R. Harold. Tip: Configure SAX parsers for secure pro-
cessing. http://www.ibm.com/developerworks/xml/
library/x-tipcfsx.html, 2005.

[5] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. Detect-
ing past and present intrusions through vulnerability-specific
predicates. In Proceedings of the 20th ACM Symposium on
Operating Systems Principles, Brighton, UK, October 2005.

[6] G. H. Kim and E. H. Spafford. The design and implementation
of Tripwire: A file system integrity checker. In Proceedings of
the 2nd ACM Conference on Computer and Communications
Security, Fairfax, VA, November 1994.

[7] T. Kim, X. Wang, N. Zeldovich, and M. F. Kaashoek. Intrusion
recovery using selective re-execution. In Proceedings of the 9th
Symposium on Operating Systems Design and Implementation,
Vancouver, Canada, October 2010.

[8] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building cus-
tomized program analysis tools with dynamic instrumentation.
In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, Chicago,
IL, June 2005.

[9] D. Swan. comp.os.linux.security FAQ. http://www.
linuxsecurity.com/docs/colsfaq.html, 2002.

[10] L. Torvalds. Re: [RANT] Linux-IrDA status. http://lkml.
org/lkml/2000/11/8/1, 2000.

[11] J. Tucek, W. Xiong, and Y. Zhou. Efficient online validation
with delta execution. In Proceedings of the 14th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Washington, DC, March 2009.

http://httpd.apache.org/security/vulnerabilities_22.html
http://httpd.apache.org/security/vulnerabilities_22.html
http://www.coverity.com/library/pdf/ControllingSoftwareComplexity.pdf
http://www.coverity.com/library/pdf/ControllingSoftwareComplexity.pdf
http://www.ibm.com/developerworks/xml/library/x-tipcfsx.html
http://www.ibm.com/developerworks/xml/library/x-tipcfsx.html
http://www.linuxsecurity.com/docs/colsfaq.html
http://www.linuxsecurity.com/docs/colsfaq.html
http://lkml.org/lkml/2000/11/8/1
http://lkml.org/lkml/2000/11/8/1

	Introduction
	Overview
	A strawman approach
	Fine-grained auditing

	Feasibility Study
	Initial Results
	Case study I: Heap underwrites
	Case study II: Cross-site scripting

	Future Challenges
	Related Work
	Conclusion

