
A Readable TCP in the Prolac Protocol Language

Eddie Kohler, M. Frans Kaashoek, and David R. Montgomery
M.I.T. Laboratory for Computer Science

Cambridge, MA 02139, USA
{eddietwo, kaashoek, dmontgom}@lcs.mit.edu

http://www.pdos.lcs.mit.edu/

ABSTRACT

Prolac is a new statically-typed, object-oriented language for
network protocol implementation. It is designed for read-
ability, extensibility, and real-world implementation; most
previous protocol languages, in contrast, have been based on
hard-to-implement theoretical models and have focused on
verification. We present a working Prolac TCP implemen-
tation directly derived from 4.4BSD. Our implementation
is modular—protocol processing is logically divided into
minimally-interacting pieces; readable—Prolac encourages
top-down structure and naming intermediate computations;
and extensible—subclassing cleanly separates protocol ex-
tensions like delayed acknowledgements and slow start. The
Prolac compiler uses simple global analysis to remove ex-
pensive language features like dynamic dispatch, resulting in
end-to-end performance comparable to an unmodified Linux
2.0 TCP.

1 INTRODUCTION

Most familiar programming idioms handle network protocols
badly—even modern languages are stressed by common pro-
tocol characteristics like complicated control flow, soft modu-
larity boundaries, and stringent efficiency requirements. This
makes protocol code hard to read, verify and maintain. Spe-
cialized languages are a promising area for solutions to this
problem, and network protocol languages and compilers have
been an active research area for decades [1, 4, 7, 10, 11, 17].

This research was supported by the Defense Advanced Research Projects
Agency (DARPA) and Rome Laboratory under agreement number F30602-
97-2-0288. In addition, Eddie Kohler was supported by a National Science
Foundation Graduate Research Fellowship, and M. Frans Kaashoek was
supported by a National Science Foundation Young Investigator Award.

Most existing protocol languages focus on verification.
Their underlying theoretical models are designed for testing
and provability, often making pragmatic goals like real-world
implementation difficult to achieve. Even languages designed
with pragmatism in mind can have theoretical models that are
difficult to program.

In this paper, we describe a language that takes a dif-
ferent approach. Prolac is a lightweight object-oriented lan-
guage tailored for network protocol implementation. It is
focused on readability rather than provability, and on the
human programmer rather than a machine verifier; protocol
implementation requirements inspired its design. No part of
Prolac is difficult to compile into efficient low-level code,
as we demonstrate with our TCP implementation. Section 3
describes the Prolac language and its compiler in more detail.

Section 4 presents the reimplementation of most of TCP
in Prolac. Our TCP is modular, readable, and extensible
compared to other implementations in 4.4BSD and Linux
2.0. Modules and methods are used to break complex func-
tionality into focused parts, and the protocol’s top-down de-
sign remains visible in the final implementation; all this has
no significant performance overhead. Four TCP extensions
(delayed acknowledgements, slow start, fast retransmit, and
header prediction) are implemented through subclassing as
add-ons to a clean base. These extensions are simple—each
one fits in a single source file with less than 60 lines of
Prolac—and can be independently turned on with no changes
to the base protocol. The Prolac TCP runs inside a Linux
2.0 kernel, interfaces with the networking subsystem, and
is able to exchange packets with other, unmodified TCPs
with roughly the same end-to-end performance as unmodi-
fied Linux, as discussed in Section 5.

The contributions of this work are the Prolac language,
including several novel language features; a new way of
structuring a TCP implementation in Prolac, giving superior
readability and extensibility; and a preliminary performance
analysis of this Prolac TCP.

2 RELATED WORK

This section discusses both how Prolac relates to other pro-
tocol languages and compilers, and how the Prolac TCP im-
plementation relates to other TCPs, including modular TCPs
written in conventional languages like C++.

2.1 Protocol languages

Many previous protocol languages have been designed for
verification, not readability or implementation. Prolac uses
ideas from some of these languages, but we found that spe-
cific language features designed with protocols in mind—for
example, parallelism to model both sides of a connection—
often worked against readability, implementability, extensi-
bility, or all three. Prolac’s final design is more conventional
and less domain-specific than these languages; the protocol
domain generally affected the details of our versions of com-
mon concepts, not specific language features.

Two protocol languages, or “formal description tech-
niques,” were originally designed for developing the OSI
protocol suite: LOTOS [4] and Estelle [10]. Estelle, the lan-
guage intended for implementation, is Pascal-like; it struc-
tures a protocol as a set of finite state machines running in
parallel and communicating via broadcast signals. We find
Estelle specifications difficult to read because of this, al-
though it is well suited for state analysis and test genera-
tion. Semi-automatic implementations of Estelle specifica-
tions have been built [20], but finite state machines make
specifications complicated and difficult to change, even for
carefully layered protocols [23].

Esterel [5] addressed some of Estelle’s implementation
difficulties by removing its asynchronous parallelism, leaving
a completely sequential language. This worked. Impressive
performance results are reported for a restricted Esterel ver-
sion of TCP [7], better than a similarly restricted BSD TCP;
this convinced us to leave parallelism out of Prolac. However,
Esterel still shares Estelle’s formal model, interlocking finite
state machines, and the problems this causes: complexity,
unfamiliarity, unreadability, and difficulty of modification or
extension. The Esterel TCP did not include connection es-
tablishment, and appears not to include important extensions
like congestion avoidance.

RTAG [2] is based on a different formal model: context-
free attribute grammars. RTAG is more readable than LOTOS
and Estelle, but large RTAG specifications, like large attribute
grammars generally, become hard to read since the name-
space is flat. An early version of Prolac resembled RTAG, but
readability and other issues have pushed it in the direction of
conventional programming languages. RTAG’s performance
is problematic, again due to parallelism in the language.

Thex-kernel [12], which introduces an explicit architec-
ture for constructing and composing protocols, is orthogonal
to Prolac. We focus on making a single protocol implemen-
tation readable; thex-kernel provides a uniform interface
between protocols and aims to improve the structure and
performance of protocol layering.

Morpheus [1], another object-oriented language for pro-
tocol implementation, is based onx-kernel ideas. To force
clean protocol designs and enable domain-specific optimiza-
tions, it puts many constraints on the programmer.As a result,

existing protocol specifications may not be implementable in
Morpheus. Its compiler has not been written.

2.2 TCP specifications

TCP specifications [19, 22] and existing C implementations
of TCP—particularly the 4.4BSD implementation as pre-
sented by Stevens [21, 24]—have greatly influenced our
TCP implementation, suggesting code structures to emulate
and to avoid. Prolac TCP was rewritten for readability from
4.4BSD’s TCP, using both general object-oriented techniques
and techniques specific to Prolac.

The Fox project’s structured TCP [3], which is based
on x-kernel ideas, uses a functional language—a dialect of
Standard ML—to explore the advantages and disadvantages
of using a non-traditional language in the systems domain.
They report readability and modularity benefits similar to
Prolac’s. Their TCP is not built for protocol extensibility,
however, and because of advanced language features, it is
unsuitable for in-kernel implementation and performance is
low.

Although Prolac resembles object-oriented languages
like C++ and Java, it is designed to be more useful for network
protocols than these languages. We initially tried to imple-
ment a modular TCP in C++, but were foiled by C++’s pro-
gramming paradigm, which pushed us toward a conventional
inheritance structure and a small number of types. Addition-
ally, C++ has inflexible access control, function definitions
are syntactically expensive, and most programmers habitu-
ally avoid virtual functions. These factors suggest that a C++
TCP would combine most protocol data into one large class
(avoiding access control issues at the expense of modularity),
tend towards larger functions, and use dynamic dispatches
only rarely (making it less extensible). Many of these proper-
ties occur inns, the Berkeley network simulator [18], which
contains a C++ implementation of TCP.

3 THE PROLAC LANGUAGE

This section is an introduction to the Prolac language. We
do not provide a thorough description of the language (see
the reference manual [14] for that); instead, we focus on
general features and design goals. We kept Prolac largely
conventional, hoping it would be easy to grasp, but our focus
on protocol-related issues and an additional concentration
on simplicity has led to some novel language contributions.
Two of these, module operators and implicit methods, are
described below.

3.1 Methods and computation

All computation in a Prolac program is performed bymeth-
ods, functions that belong to a module. A method’s body is
simply an expression: Prolac is an expression language, like
Lisp, ML or Haskell, so it has no concept of “statement”. All
of C’s operators (including assignments), plus a few addi-
tions, are usable in Prolac expressions.

2

Prolac method bodies tend to be very short comparedwith
C function bodies—most are 5 lines or less. There are several
reasons for this: Prolac makes it easy and efficient to name
parts of a computation, so large methods tend to be broken
up into sensibly-named parts; furthermore, large expressions
can become unreadable, so there is pressure to keep methods
small.

The choice of an expression language was influenced by a
desire to eliminate syntax, particularly routine or boilerplate
syntax. We find that lightweight syntax makes small methods
more readable, as the substance of the code is the only thing
on display.

Much like Yacc parsers [13], Prolac is wedded to the
C language through uninterpretedactions. A C action may
be included in any Prolac expression; the Prolac compiler,
which generates C, will copy the action to its output when
compiling that expression. C actions can easily refer to Prolac
objects and change their values, as well as perform arbitrary
computation in C. They are extremely useful for interfacing
with the environment a Prolac specification is embedded in.

Figure 1, which is extracted from the Prolac TCP speci-
fication, should give a flavor of what Prolac is like. It gives
a concrete example of Prolac code and explains some of the
language’s features.

3.2 Modules and object orientation

Prolacmodulesrepresent groups of methods and data (data
members are calledfields). Modules may extend other mod-
ules through inheritance, and may provide new definitions for
their superclass’s methods; the correct definition is chosen at
runtime (dynamic dispatch). Thus, Prolac is object oriented,
and modules are similar to C++ or Java classes.

Like Java, the Prolac language is statically typed, all code
is part of some module, a module can have at most one parent,
every method is potentially subject to dynamic dispatch, and
Prolac source code is completely order-independent. How-
ever, not all Java features translate to Prolac—there is no
interface inheritance, for example.

In our TCP implementation, we use inheritance both for
subclassing and to build complex subsystems from smaller
parts. For example, the module representing the base trans-
mission control block is built through successive inheritance
from 6 submodules (basics and connection state, windows,
timeouts, round-trip time measurements, retransmission, and
output). The submodules serve more as grouping constructs
than as types with individual identities.

In the interests of flexibility and simplicity, Prolac does
not provide primitives for manipulating heap storage. Instead,
the user can get memory inside a C action (usingkmalloc,
for example) and use Prolac to initialize it.

3.3 Naming

Descriptive naming makes any program more readable, but in
a programming language like Prolac, which encourages the

module Trim−To−Window ... {

trim−to−window :> void ::=
(before−window ==> trim−old−data),
(after−window ==> trim−early−data),
(sending−data−to−closed−socket ==> reset−drop);

before−window ::= seg−>left < receive−window−left;
trim−old−data {
trim−old−data ::=

(syn ==> trim−syn),
(whole−packet−old ==> duplicate−packet)
| | seg−>trim−front(receive−window−left − seg−>left);

whole−packet−old ::=
seg−>right <= receive−window−left;

duplicate−packet ::=
clear−fin, mark−pending−ack, ack−drop;

}

after−window ::= seg−>right > receive−window−right;
trim−early−data {
trim−early−data ::=

(whole−packet−early ==> early−packet)
| | seg−>trim−back(seg−>right − receive−window−right);

whole−packet−early ::=
seg−>left >= receive−window−right;

early−packet ::=
((receive−window−empty

&& seg−>left == receive−window−left)
==> mark−pending−ack)

| | { PDEBUG(”early packet\n”); }, ack−drop;
}

... }

Figure 1: Part of Prolac TCP’s code for trimming incoming
packets to fit the current receive window. The current packet
is stored in the ‘seg’ field. Code is split into small, readably
named methods, which are grouped into namespaces. Pack-
ets have wide interfaces: both ‘seg−>seqno’ and ‘seg−>left’
refer to the first sequence number in the packet, but read well
in different situations. Methods not defined in the figure are
taken from other modules, such as the transmission control
block (TCB); their purposes should be clear from their names.
Methods ending in ‘-drop’ are exceptions. There is one C ac-
tion, in early−packet; as in Yacc, C actions are enclosed in
braces. Syntax notes: Rule definitions look like ‘rule-name
::= expression;’, possibly with arguments in parentheses or
a return type following ‘:>’. Hyphens are allowed in identi-
fiers. Parentheses may be left off when calling methods that
take no arguments. Most operators behave as in C. The new
operator ‘==>’ is used for simple if statements; ‘x ==> y’ is
equivalent to ‘x ? (y, true) : false’.

3

use of many small methods, sensible naming is an imperative.
In the Prolac TCP implementation, we try to use method
names that make their purposes immediately clear; without
this property, a reader would have to jump nonlinearly from
method to method to have any hope of understanding the
code. In this section, we discuss a range of Prolac features
that encourage and support sensible naming. Together, these
features make naming in Prolac significantly more flexible
than in C++ or Java.

Prolac supports namespaces both inside and outside mod-
ules, allowing methods and modules to be grouped into re-
lated units. More flexibility is provided bymodule operators,
operators that affect the compiler’s behavior rather than the
running program’s behavior. Thehide andshow module oper-
ators support loose, flexible access control. IfM is a module
with a feature namedx, then ‘M hide x’ is the same module,
except that itsx feature is inaccessible. The Prolac TCP im-
plementation useshide to hide implementation details from
module users. But hard access control is a disadvantage in the
protocol domain: protocol extensions often work by chang-
ing deeply buried, almost random bits of protocol code that
cannot be determined a priori. This suggests that access con-
trol should be overridable, which theshow operator supports
by making hidden names accessible again.

The implicit methodmechanism was also inspired by
the protocol domain. In most object-oriented languages, it is
syntactically easier to call an object’s methods from within
another method of that object, since you can leave off the
reference to ‘this’ or ‘ self’. When a piece of code uses many
of a particular object’s methods, the user will therefore tend
to write it as a method, since it’s so much easier that way.
Protocol implementations differ from most programs in that
data objects are small and limited in number: TCP, for ex-
ample, deals with transmission control blocks (TCBs) and
packets, and not much else. But all TCP processing deals in-
timately with TCBs; does that mean all of TCP’s code should
be situated in a TCB module?

The implicit method mechanism solves this problem by
allowing the programmer to refer toanotherobject’s meth-
ods with the same syntactic convenience. The programmer
can mark a field with theusing module operator. When the
compiler finds an undefined name, it transparently looks for
methods with that name on any fields marked withusing.
If a unique method is found, it is used implicitly. With im-
plicit methods, TCP processing can be broken into modules
based on control flow structure, rather than the less revealing
structure of the data, without giving up on readability.

3.4 Compilation and optimization

The Prolac compiler compiles Prolac into C. It generates
high-level C, featuring large expressions resembling the Pro-
lac input, reasonable indentation, and relatively few intro-
duced temporaries. The result is reasonably readable, debug-
gable with C debuggers, and, with some C compilers, results

in better object code than an equivalent lower-level version.
The compiler accepts an entire Prolac program at once.

This is not a problem even for our relatively complex TCP
implementation; with full optimization, the Prolac compiler
processes it in under a second on a 266 MHz Pentium II
laptop.

The Prolac language has many features that are poten-
tially expensive to implement—universal dynamic dispatch,
many small functions, exceptions, modules, and so forth. We
carefully arranged the details of these features to minimize
their overhead, and simple compiler optimizations can re-
move that overhead almost entirely. The remainder of this
section describes some of these optimizations.

3.4.1 Static class hierarchy analysis

The most important optimization the compiler performs is
static class hierarchy analysis[9], a simple global analysis
that removes every dynamic dispatch in our TCP implemen-
tation. The idea is simple: if the compiler can prove that the
method being called was not overridden—it is a leaf in the
inheritance graph—then that method can be called directly,
without the need for dynamic dispatch.

Removingdynamic dispatches is absolutely necessary for
performance. A dynamic dispatch is slightly more expensive
than a conventional function call, but the real problem is that
Prolac will not inline a dynamically dispatched method. The
language encourages the use of small methods for naming
extremely simple computations; the only hope of having good
performance is therefore aggressive inlining.1

To show the magnitude of the problem, we removed static
class hierarchy analysis from the Prolac compiler. Even when
allowing the compiler to inline or directly call methods that
were only defined once, the number of dynamic dispatches
jumps to 62, many for trivial methods that obviously should
be inlined. Considering thateveryProlac method is poten-
tially dynamically dispatched, however, the situation is even
worse: a naive compiler (equivalent to an average C++ or
Java compiler) would generate 1022 dynamic dispatches in
the Prolac TCP implementation.

Our implementation of static class hierarchy analysis was
motivated by, and works so well because of, characteristics
of network protocols. The type-related behavior of TCP, for
example, is static at runtime: it deals with one kind of control
block, one kind of packet, one kind of header, and so on. In
other words, there is only one kind of TCP running at any
time. Since we don’t have to demultiplex among varieties
of TCP, we can use inheritance purely for grouping related
methods and including extensions that should always be used.
In this style, the module we want will always be the most
derived module (the TCB we want is the most derived TCB,

1. It is possible to inline dynamic dispatches with mechanisms such as
speculative inlining, which inlines one version of the code in question
and generates a check to see if that version is the correct one. However,
these mechanisms are complex and have nonzero overhead.

4

and so forth). But every method in a most derived module is
a most derived method, so static class hierarchy analysis will
always succeed.

Of course, it would be perfectly possible to use inheri-
tance to demultiplex packets or kinds of processing—to de-
rive TCP and UDP modules from a superclass representing
Internet transport protocols, for example. In this case, static
class hierarchyanalysis would appropriately fail, and the nec-
essary dynamic dispatches would be generated. The analysis
would continue to be effective within the module hierarchies
for the individual protocols.

3.4.2 Inlining and outlining

Mosberger et al. [16] list a number of useful techniques for
improving protocol efficiency. Prolac has direct support for
three of these: inlining, path inlining, and outlining. Inlin-
ing is replacing a function call with the function’s body;
path inlining is recursive inlining, where functions called by
an inlined body are replaced with their bodies, and so on;
and outlining is moving code for uncommon cases out of
common-case code, thus improving i-cache behavior.

The programmer is given fine-grained control over these
optimizations through expression operators and module op-
erators. Module operators are especially useful, as they allow
the programmer to specify, without cluttering either the call
site or the method’s definition, that a method should inlined—
and, unlike C++’sinline declaration, module operators can
be overridden.

4 A READABLE, EXTENSIBLE
TCP IMPLEMENTATION

This section describes the structure of the Prolac TCP imple-
mentation, highlighting its readability and extensibility and
describing several of its subsystems in detail.

4.1 Overview and status

The core of the Prolac TCP is a near-full reimplementation of
4.4BSD’s TCP as described by Stevens [24], rethought and
reorganized from the ground up for greater readability and
extensibility. We implement full input and output process-
ing including retransmissions, slow start, fast retransmit and
congestion avoidance, TCP options, and header prediction.
We do not yet fully implement keep-alive or persist timers or
urgent processing. Also, some changes were made to emulate
some of Linux 2.0 TCP’s behavior; for example, Linux TCP
occasionally delays anack for at most .02 sec where BSD
would send anack immediately.2 Packet comparisons using
tcpdump show that Linux 2.0–Prolac TCP exchanges are in-
distinguishable from Linux 2.0–Linux 2.0 TCP exchanges,
except for keep-alive and persist timers and urgent process-
ing.

2. This happens when responding to a packet whosepsh bit is set.

Prolac TCP currently runs inside the Linux kernel as a dy-
namically loadable kernel module. It works alongside Linux’s
default TCP; packets directed to specific configurable ports
are routed to Prolac instead of the default TCP stack. Prolac
TCP is fully integrated with lower-level Linux networking
code, including IP processing, network devices, and memory
management. This integration even extends to sharing data
structures; we use C actions and a Prolac structure-punning
feature3 to make Prolac’sSegment module an alias for Linux’s
internal packet representation,struct sk_buff. We have
begun integration with higher-level networking code, partic-
ularly thestruct sock structure representing BSD sockets,
but for the results in this paper we used an alternative inter-
face to communicate with user level: a handful of new system
calls for connection, data transfer, and polling that bypass the
socket interface.

Most Linux-specific code is localized in a handful of
modules, which should make it easier to port Prolac TCP
to other operating systems. The Linux TCP is only slightly
modified from a TCP that runs at user level using Berkeley
Packet Filters [15].

4.2 Organization

The Prolac TCP implementation was guided by the goal of
separating TCP into small, focused modules, ormicroproto-
cols, handling one job each. TCP extensions are separated
from the base protocol into independently selectable units.
This principle was also used within the base protocol: we di-
vided complex functionality, like connection state and input
processing, into several microprotocols each. Input window
management, for example, can be considered a microprotocol
within TCP; it is localized in two modules, one for the trans-
mission control block (Window−M.TCB) and one for input
processing (Trim−To−Window,which was shown in Figure 1).

The current Prolac TCP implementation consists of 21
source files and about 2100 nonempty lines of code. This is
about one-third the size of Linux 2.0’s TCP implementation,
although that TCP does have more functionality than ours
(syn cookies, for example). The Prolac files are combined by
the C preprocessor and the resulting preprocessed source is
passed to the Prolac compiler.

Modules in the base TCP implementation fall into six cat-
egories:utilities, for byte-swapping and checksumming rou-
tines;data, for data-centric protocol modules—IP and TCP
headers, TCP packets, and the transmission control block;
input, for processing received packets;output, for sending
packets;timeouts,for slow and fast timeout events; andin-
terfaces,for communicating with the rest of the system. Fig-
ure 2 lists the modules constituting the base protocol, many
of which are described in detail in the following sections.

3. The programmer can control how a module is laid out in memory by
giving specific byte offsets for its fields. Prolac automatically generates
any required padding and warns when field offsets conflict.

5

Utilities
Byte−Order Byte-swapping
Checksum Checksumming

Data
Headers.IP IP header
Headers.TCP TCP header
Segment Packet
TCB Transmission control block

Base.TCB Basics and connection state
Window−M.TCB Send and receive windows
Timeout−M.TCB Timeouts
RTT−M.TCB Round-trip time measurement
Retransmit−M.TCB Retransmission
Output−M.TCB State for BSD-like output

Input
Base.Input General input processing

Base.Listen Handle input inlistenstate
Base.Syn−Sent Handle input insyn-sentstate
Base.Trim−To−Window Trim packet to fit receive

window
Base.Reset Processrst
Base.Ack Processack
Base.Reassembly Reassembly
Base.Fin Processfin

Output
Base.Output Output processing

Timeouts
Base.Timeout Timeouts

Interfaces
Tcp−Interface User-level interface

(read, write, etc.)
Base.Socket Interface to socket layer

Figure 2: Module structure of the Prolac TCP implementa-
tion: the base protocol.

4.3 The TCB

In the RFC definition of TCP [19], all persistent TCP-specific
data about a connection is stored in a single structure, the
transmission control block (or TCB). The 4.4BSD TCP im-
plementation and our Prolac TCP implementation follow this
organization. The TCB is large—the 4.4BSD TCB structure
has 48 fields, while our Prolac TCB structure currently has
42. This is too large to be readably defined in a single module,
especially if methods are included. Therefore, as mentioned
above, we build the TCB by successive inheritance from six
components: basics and connection state, windows, timeouts,
round-trip time measurement, retransmission, and output.
Each of these components is made self-contained through
hide, the access control module operator; private fields and

methods are hidden from other components. This defines a
public interface for the module, which has the usual benefit
of making it easier to safely change module internals.

The TCB is mostlypassive,meaning that it does not
usually act upon other modules—other modules act upon it.
This resembles 4.4BSD’s non-object-oriented implementa-
tion, where the TCB simply a flat structure. Even in Prolac,
however, passive organization seems right for the TCB: TCP
processing is so complex that separating control flow from
data generally improves readability.

Even our passive TCB still benefits from object-oriented
design. First, the TCB provides small, descriptive methods
that perform simple calculations, so users need never touch
the fields themselves. For example, there are two ways to
determine whether a received acknowledgement,ackno, is
valid for the current connection:

valid−ack(ackno :> seqint) ::=
ackno >= snd una && ackno <= snd max;

unseen−ack(ackno :> seqint) ::=
ackno > snd una && ackno <= snd max;

(snd una andsnd max are fields maintained by the TCB. All
variables have typeseqint, so the arithmetic comparison op-
erators are actually circular comparison mod 232.) valid−ack
and unseen−ack both return true iff they are given a good
acknowledgement number, butvalid−ack allows duplicate ac-
knowledgements whileunseen−ack does not. The method
names make this clearer than the expressions, which dif-
fer only subtly. Calling these methods makes code easier
to read, since the reader doesn’t need to parse expressions;
it also helps prevent errors, since the programmer must ac-
tively choose between them. The choice betweenvalid−ack
andunseen−ack puts the issues more clearly at stake than the
choice between> and>=, which makes the programmermore
likely to choose carefully and correctly.

Second, some TCP events, such as receiving a new ac-
knowledgement, trigger complex behavior that cuts across
Prolac’s module structure. To model this cleanly, the TCB
useshooks,methods that are called to mark the occurrence of
a protocol event. Hooks exist to be extended; a base hook de-
fined inBase.TCB often does nothing—the action takes place
in overriding definitions from later TCB components. Here
are a few of the TCB’s hooks, including the event that triggers
each and typical actions they perform.

• receive−syn−hook(seqno :> seqint)

Called when asyn is received on a connection.seqno is
the syn’s sequence number. Effects: Sets various TCB
fields (like irs, the initial received sequence number,
andrcv next, the sequence number we expect to receive
next).

6

• new−ack−hook(ackno :> seqint)

Called when a new acknowledgement is received. Ef-
fects: Removes newly acknowledged data from the re-
transmission queue, updatessnd una (the first unac-
knowledged sequence number sent), adjusts the send
window, and updates the current round-trip time esti-
mate if appropriate.

• total−ack−hook

Called when all outstanding data has just been acknowl-
edged. Effects: Cancels the retransmission timer.

• send−hook(seqlen :> uint)

Called when a packet is sent.seqlen is its length
in sequence numbers. Effects: Movessnd next and
snd max forward, clears the pending-acknowledgement
and delayed-acknowledgement flags, adjusts the send
window, and optionally starts round-trip time measure-
ment and the retransmission timer.

Most hooks are multiply overridden,with each overriding
definition adding behavior to the previous definition. Figure 3
shows how this works in practice forsend−hook, which has
five definitions total (four in base modules and one in the
delayed-ack extension). Each individual definition is small,
focused, and clear, although the aggregate behavior is sophis-
ticated.

The individual TCB submodules are similarly readable:
each contains limited, focused processing, with complex be-
havior only created through the modules’ combination. This
style does obscure the aggregate behavior—the code in Fig-
ure 3 was taken from five source files—but when suitably
natural hooks are chosen, this doesn’t tend to be a problem.

4.4 Input and output

The Prolac TCP implementation divides input processing
into eight independent modules based on processing steps
specified in the original TCP RFC [19]. 4.4BSD TCP also
follows the RFC in outline, but obscures that relationship by
hand-inlining large chunks of code. Prolac, in contrast, keeps
the high-level structure crystal clear: Figure 4 demonstrates
this by comparing an excerpt from our input processing code
with headings from the TCP RFC. This top-down organiza-
tion has no associated cost in Prolac, since the methods can
all be inlined.

The base input processing module,Input, declares ex-
ceptions and convenience methods and directs control flow
through the other modules. (The methods defined in Figure 4
are all taken fromInput.) The other seven input modules—
Listen, Syn−Sent, Trim−To−Window, Reset, Ack, Reassembly,
and Fin—all inherit from Input and use its exceptions and
convenience methods.

The relevant TCB and the input packet being processed
are stored inInput, as fields namedtcb andseg. This allows

Base.TCB.send−hook(seqlen :> uint) ::=
// This is the base hook. It adjusts some fields and clears
// some flags
clear−flag(F.pending−ack | F.pending−output),
snd next += seqlen,
snd max max= snd next;

Window−M.TCB.send−hook(seqlen :> uint) ::=
// The window TCB additionally adjusts the send window
// and clears another flag
inline super.send−hook(seqlen), // calls Base.TCB.send−hook

clear−flag(F.need−window−update),
snd wnd −= seqlen;

RTT−M.TCB.send−hook(seqlen :> uint) ::=
// Decide whether to measure this packet’s round-trip time.
// After inline super.send−hook, the sent packet’s sequence
// number issnd next − seqlen, not snd next

inline super.send−hook(seqlen),
(seqlen && !retransmitting && !timing−rtt ==>

start−rtt−timer(snd next − seqlen));
Retransmit−M.TCB.send−hook(seqlen :> uint) ::=

// Start the retransmit timer if necessary
inline super.send−hook(seqlen),
(!is−retransmit−set && !recently−acked ==>

start−retransmit−timer);
Delay−Ack.TCB.send−hook(seqlen :> uint) ::=

// Clear the delayed acknowledgement flag
inline super.send−hook(seqlen),
clear−flag(F.delay−ack);

Figure 3: The five send-hook methods defined by the
Prolac TCP implementation, from the initial definition (in
Base.TCB) to the most derived version (in Delay-Ack.TCB).
Each method except the first explicitly calls its predecessor
with super.send-hook(seqlen), resulting in cumulative behav-
ior.

them to be passed implicitly from method to method within
each module, and enables implicit method search as described
in Section 3.3, making the code more readable by avoiding
fussiness. If the packet and TCB weren’t fields, for example,
the user would have to pass them as parameters to every
method—which, with many small methods, would quickly
become annoying. There is a performance penalty: the packet
and TCB are structure members, and therefore not stored in
registers by some compilers; and creatingInput objects, or
objects derived fromInput like Ack and Reassembly, has a
small but nonzero overhead.

Output processing, which is smaller and simpler than
input processing, is implemented in a single module. Out-
put processing follows the 4.4BSD model: a single routine,
Output.do, is called whenever any normal kind of output is
needed; theOutput module then decides exactly what kind of
packet to send. Several small changes were made, including
consistently using sequence number length rather than data

7

do−segment ::=
(closed ==> reset−drop)
| | (listen ==> do−listen)
| | (syn−sent ==> do−syn−sent)
| | other−states;

other−states ::=
trim−to−window,
(rst ==> do−reset),
(syn ==> reset−drop),
(!ack ==> drop), do−ack,
process−data;

process−data ::=
(urg ==> check−urg),
let is−fin = do−reassembly in
(is−fin ==> do−fin)

end,
send−data−or−ack;

If the state isclosed . . .
If the state islisten . . .
If the state issyn-sent . . .

Otherwise,
first check sequence number . . .
second check therst bit, . . .
fourth, check thesyn bit, . . .
fifth check theack field, . . .

sixth, check theurg bit, . . .
seventh, process the segment text, . . .
eighth, check thefin bit, . . .

and return. [19]

Figure 4: The Prolac implementation, at left, directly echoes the TCP RFC specification, at right. (The RFC’s third step, “check
security and precedence”, is missing.)

length (sequence number length is data length plus anysyn
andfin flags). These changes, which were only intended to
make the code more consistent and therefore readable, ended
up discovering a bug in the 4.4BSD code as reported by
Stevens [24]: if a packet just fits in a maximum segment size,
but doesn’t quite fit when options are included, that code
could leave afin on the packet when it should have been
removed. While this small bug had already been fixed in
our OpenBSD kernel, our independent discovery eloquently
demonstrates the advantages of code readability.

4.5 Extensions

TCP has been extended over time, with some of these ex-
tensions becoming standard—slow start, congestion avoid-
ance, fast retransmit, and fast recovery, for example [22].
We used subclassing to extend the Prolac TCP without clut-
tering its base definition. We have currently implemented
four TCP extensions: delayed acknowledgements, slow start
and congestion avoidance, fast retransmit and fast recovery,
and header prediction. A C preprocessor mechanism called
hookupmakes these extensions both transparent and inde-
pendent: almost any subset of them can be turned on without
changing the rest of the system in any way.

Each extension consists of several modules that override
modules from the base protocol. All modules relating to a
particular extension are placed in a single source file. The
extension is turned on only if that source file is#included
into the preprocessed source. Figure 5 lists the modules that
constitute some of the extensions and their corresponding
source files.

This arrangement makes extending TCP simple, natural,
and convenient. None of our extensions takes more than 60
lines of Prolac proper. Each extension is concentrated and

Delay−Ack.* Delayed acknowledgements
Delay−Ack.TCB (in delayack.pc)
Delay−Ack.Reassembly
Delay−Ack.Timeout

Slow−Start.* Slow start and congestion
Slow−Start.TCB avoidance (inslowst.pc)
Slow−Start.Ack

Fast−Retransmit.* Fast retransmit
Fast−Retransmit.TCB (in fastret.pc)
Fast−Retransmit.Ack

Header−Prediction.* Header prediction
Header−Prediction.Input (in predict.pc)

Figure 5: Module structure of the Prolac TCP implementa-
tion: some protocol extensions.

readable, since extension-related code is contained in one
file rather than spread throughout thousands of lines of other
protocol processing. Finally, the extension code runs without
additional runtime overhead, thanks to static class hierarchy
analysis and inlining. All this makes Prolac a good platform
for developing protocol extensions.

4.6 Discussion

If, while extending our TCP, we discover the need for a new
hook, we simply add it to the base protocol with an empty
definition. This can make the implementation easier to follow,
but similar techniques would work without changing the base
protocol at all. A user can add a new hook by overriding the
method or methods that should call the hook, and adding a
call of the hook itself. Changing asend−segment method to

8

End-to-end latency Processing time
(µs) (cycles)

Linux TCP 184 3360
Prolac TCP 181 3067
Prolac without inlining 228 6833

Figure 6: Microbenchmark results for the echo test. The test machine sends 4 bytes of data to an unmodified Linux 2.2.7
machine’s echo port and waits for an ack. Results are averaged over five trials, each consisting of 1000 round-trips, for a total
of 10000 packets: 5000 input and 5000 output. Processing time represents the average number of cycles it took to process a
packet.

include a hook might look like this:

Base.TCB.send−segment(s :> *Segment) ::= ...;
Extension.TCB.send−segment(s :> *Segment) ::=

super.send−segment(s),
send−hook(s−>seqlen);

Extension.TCB.send−hook(seqlen :> uint) ::= ...;

The extension framework we have described works best
for extensions that do not fundamentally change the base
TCP’s behavior or data structures. An extension implement-
ing extended sequence numbers, for example, would be much
more complex than our delayed-ack extension.

5 PROLAC TCP NETWORK PERFORMANCE

This section describes experiments that compare Prolac TCP
with an unmodified Linux 2.0 TCP implementation. These
experiments show that Prolac’s high-level language features
come with little or no associated performance cost; when
Prolac does worse, it seems to be due to implementation
artifacts like packet copies.

We compared the Prolac TCP loadable kernel module,
running on a Linux 2.0.36 kernel, with Linux 2.0.36’s native
TCP. There are important differences between the two. Linux
TCP is generally more reliable, well tested, and complete
than Prolac TCP, although Prolac does have some features
Linux lacks, such as header prediction. In addition, Linux
TCP communicates with user level through the socket API,
while Prolac TCP uses its own system-call-based API and a
private socket-like structure. We tested sources of overhead
in both TCPs and found that only one was significant: due
to implementation artifacts, Prolac TCP copies packets one
more time on input and two more times on output than Linux.
The sole input copy and one output copy are due to Prolac’s
socket-like API, and affect only end-to-end measurements
like latency and throughput; the other output copy is in output
processing proper and affects cycle counts as well.

The test machines were 200 MHz Pentium Pro desk-
top PCs with DEC Tulip-based Ethernet cards (SMC
10/100 EtherPower). One machine ran either Linux 2.0.36
or Linux 2.0.36 with Prolac TCP; the other always ran
Linux 2.2.7. They communicated over an otherwise idle

100 Mbit/s Ethernet with one hub.
Figure 6 shows the results of an echo test, which mea-

sures end-to-end latency and protocol processing overhead.
In this test, the Prolac machine repeatedly writes four bytes
of data to the other machine’secho port; the other machine
echoes the data. Prolac’s extra data copies do not affect this
test significantly as the data size is small. To measure proto-
col processing time in isolation, we instrumented Linux and
Prolac input and output processing functions using Pentium
performance counters. Although both Linux and Prolac can
output packets because of input events—for example, send-
ing anack or more data in response to an input packet—this
does not occur in the echo test. Linux IP layer processing
time is included in output processing time.

Results show that Linux and Prolac TCP have comparable
end-to-end latency to within a few microseconds. Prolac did
slightly better in terms of cycles per packet (3067, versus
3360, average cycles to process a packet). The difference
may be due to the two TCPs’ timer implementations. Linux
sets multiple fine-grained millisecond timers per connection
to handle various timeouts; Prolac, following the 4.4BSD
model, uses one fast timer (with 200 ms resolution) and one
slow timer (with 500 ms resolution) for all of TCP. In the
echo test, where timers are being set and cleared on each
round trip, this results in Linux having significantly more
timer overhead.

We also measured the impact of the compiler’s inlining
optimizations on Prolac TCP. With no inlining whatsoever,
Prolac TCP processing time jumps by more than 100% to
6833 cycles per packet on the echo test, and end-to-end la-
tency increases by 25%.

Prolac does significantly worse on a test measuring
write throughput. In this test, the Prolac machine writes
8000 Kbytes of data to the other machine’sdiscard port.
Prolac’s end-to-end write bandwidth was 8 Mbyte/s com-
pared to Linux’s 11.9 Mbyte/s. This is probably due to Pro-
lac’s two extra data copies, a hypothesis cycle count measure-
ments tend to confirm. While Prolac’s cycle count is lower
than Linux’s by 10% in the echo test, it is roughly twice as
high as Linux’s in the throughput test, and the only signif-
icant difference in the packets processed is the amount of
data attached to them. Also, load instruction count on the

9

0

1000

2000

3000

4000

5000

6000

7000

32 64 128 256 512 1024 2048

C
yc

le
s

pe
r

pa
ck

et

Packet size (bytes)

Prolac
Linux

Figure 7: Input packet processing, in cycles per packet, for
different packet sizes (echo test). Packet sizes include TCP
and IP headers. The vertical bars indicate one standard de-
viation either way from the average.

throughput test (using a slightly different configuration) was
much higher for Prolac than for Linux.

Figures 7 and 8 justify this hypothesis further by showing,
for the echo test, the effect of packet size on cycles per packet
for both Linux and Prolac TCP. On the input processing path,
Prolac has no extra copies and always slightly outperforms
Linux; on the output processing path, however, there is one
extra copy, and Prolac TCP performs worse on larger packets.

Overall, these results show that the Prolac language’s per-
formance overhead is minimal, even for a highly modularized
implementation of a large, complex protocol like TCP.

Prolac may become more efficient in the future. First, we
could eliminate the extra data copies in the input and output
paths, which, as we have shown, are the key difference be-
tween Linux and Prolac TCP behavior. Second, we haven’t
yet applied all the compiler optimizations we have imple-
mented, such as outlining. Third, there are optimizations we
have not yet tried; Prolac’s natural extensibility, combined
with the compiler’s ability to optimize modularity away, may
allow us to exploit layer collapsing as discussed by Clark and
Tennenhouse [8].

6 DISCUSSION

Prolac is intended to be robust, readable, and efficient enough
for real-world use. Our focus on real-world application has
made Prolac a better language: simpler, faster, more readable,
more familiar. Nevertheless, it’s fair to ask whether Prolac is
truly suited for production use. This section discusses argu-
ments for and against using Prolac in the real world.

We have discussed Prolac’s advantages of readability,
modularity, and extensibility throughout this paper. Due to
careful structuring and Prolac’s module-manipulation facili-
ties, the Prolac TCP is substantially easier to understand piece

0

1000

2000

3000

4000

5000

6000

7000

32 64 128 256 512 1024 2048

C
yc

le
s

pe
r

pa
ck

et

Packet size (bytes)

Prolac
Linux

Figure 8: Output packet processing, in cycles per packet, for
different packet sizes (echo test).

by piece than other TCPs we have seen. Our TCP is certainly
easier to extend than conventional TCPs: the protocol exten-
sions are among the clearest sections of the Prolac TCP, and
are guides for those wanting to extend the protocol further. It
is easy to integrate Prolac into an existing C-based system.
Finally, and in contrast to C or C++, Prolac’s aggressive in-
lining and dynamic dispatch removal make it possible to use
these ideas without sacrificing performance.

But there are compelling reasons to keep Prolac out of
production code as well. The Prolac compiler, which is not
small (20,000 lines of C++), would effectively become part of
the system’s code base. The compiler is stable but not bullet-
proof, and would need to be maintained. Furthermore, while
we find Prolac very readable, it is also not C: it takes work
to learn Prolac, particularly if you are used to large func-
tions instead of small, interconnected ones. Some of Prolac
TCP’s design features may be usable in a more conventional
language, but those languages’ syntactic qualities, and the
runtime costs of unoptimized dynamic dispatch, would make
some of its best features less attractive.

We have shown that Prolac makes it much easier to extend
protocols, but how common is that? If you don’t need to mod-
ify a protocol, Prolac’s ease of extension and modification is
irrelevant. However, even production TCPs are changed all
the time: extended with security measures likesyn cookies or
optimizations like TCP Vegas [6], or even completely rewrit-
ten (Linux’s TCP input processing functions were redone
between Linux 2.0 and Linux 2.2).

7 CONCLUSION

Prolac’s readability and features tailored for network proto-
cols made writing TCP a pleasant experience, and the result-
ing specification is significantly more readable than any other
we have seen. Its extensibility should be useful for proto-
col teaching, research, and development. Prolac’s high-level

10

language features were carefully designed to have minimal
runtime costs, as demonstrated by experimental results.

ACKNOWLEDGEMENTS

We would like to thank Charles Blake for helping with our
experimental setup, and Robert T. Morris and the anonymous
reviewers for insightful comments.

REFERENCES
[1] Mark B. Abbott and Larry L. Peterson. A language-based ap-

proach to protocol implementation.IEEE/ACM Transactions
on Networking, 1(1):4–19, February 1993.

[2] David P. Anderson. Automated protocol implementation
with RTAG. IEEE Transactions on Software Engineering,
14(3):291–300, March 1988.

[3] Edoardo Biagioni. A structured TCP in Standard ML. In
Proceedings of the ACM SIGCOMM 1994 Conference, pages
36–45, August 1994.

[4] Tommaso Bolognesi and Ed Brinksma. Introduction to the
ISO specification language LOTOS. In Peter H. J. van Eijk,
Chris A. Vissers, and Michel Diaz, editors,The formal descrip-
tion technique LOTOS, pages 23–73. North-Holland, 1989.

[5] Fréd́eric Boussinot and Robert de Simone. The ESTEREL
language. Technical Report 1487, INRIA Sophia-Antipolis,
July 1991.

[6] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Pe-
terson. TCP Vegas: new techniques for congestion detection
and avoidance. InProceedings of the ACM SIGCOMM 1994
Conference, pages 24–35, August 1994.

[7] Claude Castelluccia, Walid Dabbous, and Sean O’Malley.
Generating efficient protocol code from an abstract specifica-
tion. InProceedings of the ACM SIGCOMM 1996 Conference,
pages 60–71, August 1996.

[8] David D. Clark. Modularity and efficiency in protocol imple-
mentation. RFC 817, IETF, July 1982.

[9] Jeffrey Dean, David Grove, and Craig Chambers. Optimiza-
tion of object-oriented programs using static class hierarchy
analysis. InProceedings of the ECOOP 1995 Conference,
pages 77–101, August 1995.

[10] P. Dembinski and S. Budkowski. Specification language Es-
telle. In Michel Diaz, Jean-Pierre Ansart, Jean-Pierre Courtiat,
Pierre Azema, and Vijaya Chari, editors,The formal descrip-
tion technique Estelle, pages 35–75. North-Holland, 1989.

[11] Diane Hernek and David P. Anderson. Efficient automated pro-
tocol implementation using RTAG. Report UCB/CSD 89/526,
University of California at Berkeley, August 1989.

[12] Norman C. Hutchinson and Larry L. Peterson. Thex-kernel:
an architecture for implementing network protocols.IEEE
Transactions on Software Engineering, 17(1):64–76, January
1991.

[13] Stephen C. Johnson. Yacc—Yet Another Compiler-Compiler.
Comp. Sci. Tech. Rep. #32, Bell Laboratories, July 1975.
Reprinted as PS1:15 inUnix Programmer’s Manual, Usenix
Association, 1986.

[14] Eddie Kohler. Prolac language reference manual. Avail-
able from http://www.pdos.mit.edu/∼eddietwo/prolac/, Jan-
uary 1999.

[15] Steven McCanne and Van Jacobson. The BSD packet fil-
ter: a new architecture for user-level packet capture. In
USENIX Technical Conference Proceedings, pages 259–269,
San Diego, Winter 1993. USENIX.

[16] David Mosberger, Larry L. Peterson, Patrick G. Bridges, and
Sean O’Malley. Analysis of techniques to improve protocol
processing latency. InProceedings of the ACM SIGCOMM
1996 Conference, pages 73–84, August 1996.

[17] Linda Ness. L.0: a parallel executable temporal logic language.
In Mark Moriconi, editor,Proceedings of the ACM SIGSOFT
International Workshop on Formal Methods in Software De-
velopment, pages 80–89, September 1990.

[18] UCB/LBNL/VINT network simulator NS homepage. Avail-
able from http://www-mash.cs.berkeley.edu/ns/.

[19] Jon Postel. Transmission Control Protocol: DARPA Internet
Program protocol specification. RFC 793, IETF, September
1981.

[20] Deepinder Sidhu, Anthony Chung, and Thomas P. Blumer. A
formal description technique for protocol engineering. Tech-
nical Report CS-TR-2505, University of Maryland at College
Park, July 1990.

[21] W. Richard Stevens.TCP/IP Illustrated, Volume 1: The Pro-
tocols. Addison-Wesley, 1994.

[22] W. Richard Stevens. TCP slow start, congestion avoidance,
fast retransmit, and fast recovery algorithms. RFC 2001, IETF,
January 1997.

[23] Gregor v. Bochmann. Methods and tools for the design and val-
idation of protocol specifications and implementations. Pub-
lication #596, Universit́e de Montŕeal, October 1986.

[24] Gary R. Wright and W. Richard Stevens.TCP/IP Illustrated,
Volume 2: The Implementation. Addison-Wesley, 1995.

11

