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ABSTRACT

Prolac is a new statically-typed object-oriented programming language designed for
implementing network protocols. Prolac is designed to make protocol specifications
readable to human beings, and thus more likely to be correct; easily extensible to
accommodate protocol enhancements; and efficient when compiled.

We present an overview of the Prolac language and a discussion of issues and prin-
ciples in its design, as well as a preliminary language reference manual. The prolacc
optimizing protocol compiler is also described. A prototype TCP specification is pre-
sented that is both readable and extensible; experience with the specification suggests
that, even untuned, Prolac overhead is negligible on normal networks.
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1
INTRODUCTION

Designing and implementing network protocols with conventional languages and tools
is difficult. The protocols themselves are hard to design; implementing a protocol
correctly is another challenge [WS95]. Furthermore, protocol efficiency has become
vital with the growing importance of networking, and the occasional need for protocol
extensions [Ste97, BOP94] only complicates the issue. Unfortunately, these tensions
work against one another. Many optimizations which make protocol code more efficient
also tend to make it much harder to understand [MPBO96], and therefore harder to
get right. Extensions affect deeply buried snippets of protocol code rarely identifiable
a priori. Finally, the clearest organization of protocol code is often among the slowest.

Specialized language tools are a natural area to investigate for a solution to this
software engineering problem. Most previous work, however, has focused on only
one of the three issues: correctness. Research has been particularly active in formal
specification languages amenable to machine verification [BB89, DB89]; while it is
possible to use one of these specification languages to generate an implementation
semi-automatically, very high performance is often precluded by the languages them-
selves. Some work has focused on high-performance implementation [AP93, CDO96],
but these languages may not be suitable for existing protocols, either by design or due
to limitations in the underlying language model.

This thesis presents a language, Prolac, and its compiler, prolacc, which address
all three issues in protocol implementation: correctness, efficiency, and extensions.
Our protocol compiler project, of which this thesis is the first concrete result, has
three specific goals: to implement protocol-specific optimizations, thus creating high-
performance protocol implementations; to facilitate protocol extensions; and to make
protocol implementations more tractable to human readers, and thus easier for people
to reason about.

Prolac is a statically-typed, object-oriented language. Unlike many such languages,
it focuses on small functions rather than large ones: its syntax encourages the program-
mer to divide computation into small pieces, and Prolac features, such as namespaces,
help a programmer name such small pieces appropriately. A protocol specification
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divided into small rules is both easier to read and easier to change; a small extension
is more likely to affect just a few small functions in Prolac, which can be overridden
by a subtype without complicating the base protocol code. Several novel features—
specifically, module operators and implicit rules—help make protocol specifications
easier to understand.

The prolacc compiler compiles a Prolac specification to C code. It applies sev-
eral protocol-specific optimizations, such as extensive inlining and outlining; these
optimizations are specified in the Prolac language as annotations to modules or to
individual expressions. Both the language and the compiler have been designed to
produce efficient generated code—our goal was to equal or exceed the performance
of protocol implementations hand-written in C. In particular, prolacc can analyze away
almost every dynamic dispatch and structure assignment.

We also describe a prototype implementation of the TCP protocol [Pos81] in the
Prolac language, written largely as a proof of concept. We focused on TCP because it
is a large, complex, important, and well-documented protocol. TCP is widely recog-
nized as being difficult to implement well; in fact, books have been written about its
implementation [WS95].

Our Prolac TCP specification is divided into small, sensibly interlocked pieces.
Logical extensions to the base TCP protocol, such as delayed acknowledgement and
slow start, are implemented in the specification as extensions to a set of base mod-
ules; very simple definitions determine which extensions, if any, are compiled, and
even their relative order of execution. The TCP specification is highly extensible
while staying highly readable—much of the specification is very similar to language
in the standard reference to TCP [Pos81]. Prolac TCP can communicate with other
TCPs, and experiments show that Prolac is not a bottleneck under normal networking
conditions.

1.1 Related work

The International Organization for Standards (ISO) has defined two formal descrip-
tion techniques originally intended for developing the ISO OSI protocol suite. These
techniques are LOTOS and Estelle. LOTOS [BB89], based on Milner’s Calculus of
Communicating Systems [Mil80], is an algebraic technique with functional proper-
ties. Like many functional languages, it is very effective for describing its fundamental
abstraction, processes. Unfortunately, also like many functional languages, these ab-
stractions are rigid and may not fit existing protocols without some pain—exactly the
pain that protocol languages are supposed to avoid. LOTOS users report some prob-
lems with using the language for specification [LMD90], and LOTOS presents very
serious challenges to the compiler writer, including valid programs which potentially
generate an infinite number of processes [WvB89]. It seems doubtful that LOTOS
specifications can be made to run efficiently.
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Estelle [DB89] is one of many protocol languages based on a finite state ma-
chine model much like that often used in parsers. Estelle, like LOTOS, includes
asynchronous parallelism; it is based on Pascal, and includes a module system (bound
up with the parallelism structure) where processes (modules) communicate through
broadcast signals. Estelle can be used to create semi-automatic implementations of
reasonable performance [SCB90]. However, experience with large protocols is not
reported, and high performance is not discussed. Furthermore, the state machine
model and its cousin the Petri machine model have intrinsic problems for modeling
protocols: the division into states often does not correspond to anything real in the
protocol, and relationships between states can become very complicated and difficult
to change, even in carefully layered protocols [vB86].

Esterel [BdS91] is a version of Estelle without asynchronous parallelism: an Esterel
specification has a defined sequential execution. High performance Esterel compilers
are being developed [CDO96]; however, full implementation of a large protocol is not
reported. In terms of language, Esterel suffers from many of the same problems as
Estelle due to their common extended finite state machine model.

RTAG [And88] is based on a context-free attribute grammar. RTAG provides a
relatively natural syntax with equivalent modeling power to extended finite state ma-
chines. Efficient compilers are reported in the literature [HA89], although “efficient”
turns out to mean “arguably efficient enough for research use”, i.e., simple protocols
suffer a factor of 2 slowdown. This slowdown comes partially from parallelism in the
language. RTAG is not always suitable for existing protocols, just as yacc is not always
suitable for describing computer languages.

The x-kernel [HP91] provides an infrastructure and various tools for creating pro-
tocol stacks. Prolac is complementary with the x-kernel, which focuses on organizing
protocol stacks; Prolac is primarily designed for implementing a single protocol.

Morpheus [AP93], an object-oriented protocol language, enforces a large number
of constraints on the protocol programmer. These constraints are restrictive enough
that “existing protocol specification[s] may not be implementable in Morpheus.” While
some of the constraints are meant to increase the knowledge available to the compiler
to enable domain-specific optimizations, others seem to exist solely to prevent the
programmer from making bad design choices. Impressive results are reported for
UDP speedup, but we regard Morpheus’s inflexibility and inability to implement real
protocols as definitive.

1.2 Motivation
This section describes some requirements we formulated in response to the triple
goal of tractability, extensibility, and efficiency, and how those requirements guided
Prolac’s design.

• The language must be easy to write. Programs in the language should be gen-
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erally understandable to most implementors without requiring major grounding
in new techniques.

This requirement steered us away from existing models, which are often obscure
from the point of view of traditional programming languages, and toward a simple
expression model with generally C-like syntax.

• The language must handle most of the protocol’s implementation, in-
cluding some lower levels. Semi-automatic protocol implementation gener-
ally means that the implementor provides vital pieces of the implementation in
an auxiliary file [SB90]. While some code rightfully belongs outside a protocol
language, most languages make the exclusion boundary too high. Separation can
cause problems when either specification or implementation changes, and acts
as a deterrent against reflecting vital implementation concerns in the specifica-
tion. These problems make high-performance semi-automatic implementation
quite difficult.

Prolac’s object-oriented features and namespaces address the requirement for a
readable high-level specification. The requirement for low-level implementation
led us to treat Prolac as bilingual; like yacc [Joh75], Prolac allows programmers
to escape to C to express complex implementation details. Both high and low
levels can easily coexist in a Prolac program through subtyping, which can be
used to provide implementation details for a high-level specification.

• The compiler must generate efficient code for well-written specifica-
tions.

Prolac’s simplicity is a result of this requirement: a simple language is easier
to compile into efficient code. Also, Prolac allows the programmer to specify
various hints to improve the generated code.

• The language should support integrated layer processing. Integrated
layer processing, or ILP, where processing for the various protocol layers is
performed all at once rather than sequentially, has proven very important for
high network performance [CT90, Cla82].

The inheritance mechanism should apply naturally to ILP, even when layers are
specified independently.

A study of the other protocol languages described in §1.1 led to other requirements:

• Asynchronous parallelism is a mistake. Every protocol language including
asynchronous parallelism has proved difficult or impossible to compile into high-
performance code, often demonstrably due to that parallelism.

Prolac has no asynchronous parallelism—or any parallelism at all, for that matter:
a Prolac specification is wholly sequential.
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• Inflexible abstractions cause problems. While whole protocols (i.e., TCP,
IP, Ethernet) can fit well into a fixed abstract framework [HP91], the internals
of these protocols are more complex and often don’t match up to the idealized
state or process abstractions in protocol languages. This forces some uncomfort-
able twisting to make the protocol fit the language—making the specification
harder to understand—or may make it impossible to implement the protocol in
the language [AP93]. Thus, any enforced abstraction is also an enforced limita-
tion, restricting the language so that only particular protocols can be naturally
implemented.

This consideration caused us to leave all protocol-specific abstractions out of
our protocol language. Prolac is a domain-specific language, in that many of
its features, both small and large, were formulated in direct response to how
protocols work; however, it is completely without domain-specific abstractions.1

Other requirements were inspired by properties common to many protocols.

• Protocols are often described in informal specifications as decision trees
augmented with actions. See, for example, the TCP specification [Pos81].

Prolac was designed so that this style of specification easily translates to Prolac.

• Protocols are not organized around data abstractions. Consider the large
and complex TCP protocol. This protocol is built around two central objects:
the transmission control block (TCB) and a segment, or incoming packet. Even
considering auxiliary objects like buffers and timers, these objects simply do not
determine a reasonable organization of TCP’s voluminous code.

The implicit rule mechanism (§3.2.2) was inspired by this property. It allows a
programmer to write maximally concise and understandable specifications, even
when code is not organized around data objects.

• Protocols evolve through accretion of small extensions. As mentioned
above, these extensions involve relatively small changes to deeply buried, seem-
ingly arbitrary pieces of protocol code. The first protocol designer cannot limit
such extensions to a few specific places: the right places are impossible to iden-
tify a priori. We expect the need for extensions to grow as user-level protocol
implementations become more important.

This inspired our decision to prohibit access control in Prolac: a module can
override any function from any of its supertypes. Module operators (§3.2.1)
allow module designers to suggest an interface to a module; however, that
module’s users can still access hidden rules, albeit with a more inconvenient
syntax.

1. Well, almost: see §3.3.1 regarding the seqint type.
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• Protocols behave predictably at run time. Protocols are generally specified
in the form of a state-transition graph; the next step in any protocol processing
is always very well-defined.

This means, in Prolac, that the dynamic dispatch the language provides will
often go unused; at run time, most call sites will always dispatch to a single
function, not one of a set. We further note that, in specifications we designed,
this unique function would often be the most overridden function available.
Prolacc, therefore, optimizes this case to a static dispatch when it is legal to do
so.

1.3 Contributions
This thesis makes the following contributions: The design of the Prolac language,
including the novel concepts of module operators and implicit rules; prolacc, a working
Prolac compiler generating reasonably efficient and high-level C code; and a prototype
TCP specification in Prolac which is readable, extensible, and can communicate with
other TCPs.

1.4 Thesis organization
Chapters 2 and 3 describe the Prolac language; Chapter 2 gives a general overview,
while Chapter 3 provides a more detailed discussion. Chapter 4 describes the inter-
nal structure of the prolacc compiler and describes some of the algorithms it uses.
Chapter 5 gives a brief description of our prototype TCP implementation; Chapter 6
provides a brief summary and directions for future work. Finally, Appendix A is a
preliminary version of the Prolac language reference manual.
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2
LANGUAGE OVERVIEW

This chapter introduces the Prolac language, providing a quick flavor of its syntax and
how it is used by developing a trivial example. Chapter 3 will discuss Prolac’s design
and some of its important features.

Some familiarity with conventional statically-typed object-oriented languages (e.g.,
C++ or Java) is assumed. This chapter will not describe any features in detail; the
curious reader is referred to Appendix A, which contains a preliminary version of
the Prolac language reference manual. The text contains references to the relevant
sections of the manual.

2.1 Basics
Prolac is an object-oriented language, by which we mean that it has data abstraction
(i.e., the user can define new data types and operations acting on them), subtyping
(i.e., a user-defined type can extend the definition of other user-defined types), and
dynamic dispatch (i.e., for some function calls, one of a set of actual function bodies
may be executed at run time, depending on the run-time type of a special argument).

Prolac is also statically typed: like C++ and Java, but unlike Smalltalk, Lisp and
Self, the compiler knows the type of every object in a Prolac program. The type the
compiler knows for an object, called its static type, may be different from the run-time
type of the object, called its dynamic type; specifically, an object’s dynamic type may
be a subtype of its static type.

Like ML and Lisp, Prolac is an expression language: everything returns a value,
and there is no concept of a statement which is not an expression. This contributes to
Prolac’s readable but very concise syntax. Prolac has even fewer complicated control
constructs than ML and Lisp—it has no looping constructs, for example. Looping
must either be expressed through recursion or in C. This is not generally a problem
when specifying protocols.

Prolac is designed for relatively small protocol specifications (i.e., less than 5,000
lines of code). The Prolac compiler can therefore read the source for an entire pro-
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gram at once, enabling some important global optimizations. For example, the Prolac
compiler can discover that a rule1 is never overridden, in which case any call of that
rule can use slightly faster static dispatch or—even better—be inlined.

A Prolac compiler generates C code from a Prolac specification. Prolac itself is
bilingual; a Prolac program can specify arbitrary C code to be executed inside a rule.
This allows tight integration with C without either complicating Prolac or forcing
implementation concerns into a separate file.

Prolac is call-by-value rather than call-by-object. C-style explicit pointer types must
be used to get true dynamic dispatch.

2.2 Modules and rules
The basic unit of program organization in Prolac is the module; a module in Prolac is
like a class in many other object-oriented languages (§A.3). Modules have associated
data, called fields (§A.6), and code, called rules (§A.5). Here is a prototype for a module
implementing rational numbers:

module Rational {
field num :> int;
field den :> int;
constructor(n :> int, d :> int) ::=

num = n, den = d;
negative ::= // Is it negative?

(num < 0) != (den < 0);
}

The fields num and den have separate values for each object of type Rational.
A field is often called a slot or class member in other languages. The ‘:>’ operator
declares a type; it should be read “is a”.

The constructor, named constructor, is used to create objects of type Ratio-
nal (§A.5.3); here, it initializes the num and den fields to values the user must pass as
constructor parameters.

Finally, negative is a rule taking no parameters (§A.5). The expression following
‘::=’ is the body of the rule, which is executed whenever the rule is called. The negative
rule actually returns type bool (the Boolean type, with values true and false; §A.8.4);
because bool return types are so common in Prolac protocol specifications, we allow
them to be elided. negative is a dynamic rule (often called a method), so it has access
to a “current object” of Rational type. Prolac also supports static rules which can be
called without reference to any object (§A.5.1).

1. Prolac’s blanket term for “function” and “method”; see §3.1.1 for discussion.
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2.3 Imports and supertypes
Here is how a module M would use the Rational module we’ve created:

module M has Rational {
field ir :> Rational;

}

Rational is listed in M’s module header (§A.3.1), in the has clause. A module must
explicitly declare every module it uses by importing it—that is, by listing it in the has
clause (§A.3.3). If we had left Rational out of the has clause, the field definition would
have caused an undefined name error.

To demonstrate supertypes, we extend Rational to enforce an additional invariant
(that the denominator must be positive):

module Pos−Denom−Rational :> Rational {
constructor(n :> int, d :> int) ::=

Rational(n, d), // first, call parent’s constructor
normalize−sign;

normalize−sign ::=
den < 0 ==> (num = −num, den = −den);

negative ::= num < 0;
}

Supertypes—more specifically, parents, which are direct supertypes—are also de-
clared in the module header, after a type declaration operator ‘:>’ (§A.3.2). While
eventually Prolac will have multiple inheritance (i.e., allow multiple parents for a sin-
gle module), the language and compiler described in this thesis only support single
inheritance.

The arrow operator ‘==>’ from normalize−sign is the usual way to express condi-
tional execution in Prolac; ‘X ==> Y’ essentially means ‘if X, then Y’ (§A.9.4.3).

The call of normalize−sign demonstrates that if a rule has no parameters, paren-
theses can be omitted when it is called (§A.9.2).

Pos−Denom−Rational adds one new rule, normalize−sign, and overrides an old one
from Rational’s collection, negative (§A.5.2). Consider:

module Test has Rational, Pos−Denom−Rational { ...
field pos−denom :> Pos−Denom−Rational;
test ::=

let p :> *Rational in
p = &pos−denom,
p−>negative // actually calls Pos−Denom−Rational’s negative—
// even though p’s type points to a Rational object—because the
// run-time type of *p is Pos−Denom−Rational.
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// This is dynamic dispatch.
end;

}

In Test, also notice the let expression, which resembles let expressions in many
functional languages (§A.9.5); the different syntax for pointer types (§A.8.6); and the
syntax for calling a specific object’s version of a rule, which is the same as C++’s.

2.4 Namespaces
Prolac allows the user to create explicit namespaces, both at file scope to group modules
and within modules to group rules (§A.4). To illustrate, we extend Rational again:

module Reduced−Rational :> Pos−Den−Rational {
constructor(n :> int, d :> int) ::=

Pos−Den−Rational(n, d), reduce;
reduce { // reduce is a namespace
reduce ::=

(den == 0 ==> { assert(0 && “Bad denominator!”); })
||| recurse(den);

recurse(try :> int) ::=
(try <= 1 ==> true)
||| (num % try == 0 && den % try == 0 ==>

(num /= try, den /= try, recurse(den − 1)))
||| recurse(try − 1);

}
}

Here, we avoided polluting the module’s top-level namespace with recurse by placing
it in a nested namespace, reduce. (This also meant that we could give it a short
name, rather than reduce−recurse or some such.) Note that, in the constructor, we
treated the namespace name ‘reduce’ as a rule call; this is legal, and abbreviates calling
‘reduce.reduce’ (§A.9.2.1).

Other things to notice: recursive rule calls to implement a looping construct;
the assert expression in braces { ... }, which is a C block specifying C code to be
executed (§A.9.6); and the case bars ‘|||’, which, together with the arrow operator
‘==>’, express a case expression analogous to Lisp’s cond (§A.9.4.7).

2.5 Advanced features
In our final example, we use some relatively advanced Prolac features. First, let’s make
it harder to change the values of the num and den fields without going through accessor
methods:
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module Rational−Interface :> Reduced−Rational {
// accessor methods:
numerator :> int ::= num;
denominator :> int ::= den;

} hide (num, den);

Here, hide is a module operator, or an operator which acts on modules instead of
values (§A.3.4). Placed in this position, it is an after-module operator which affects
what users of Rational−Interface will see by default (§A.3.4.2); in particular, it removes
the names num and den from Rational−Interface’s namespace. (However, in keeping
with Prolac’s anti-access-control philosophy, num and den can still be accessed, ei-
ther following a show operator or through Rational−Interface’s complete namespace,
Rational−Interface.all.) Module operators are Prolac’s main linguistic contribution;
they are discussed in greater detail in the next chapter.

Unfortunately, implicit rules, which are most useful in larger programs, are very
difficult to justify with a microexample. A larger justifying example is therefore pro-
vided along with the discussion of implicit rules; see §3.2.2.
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3
LANGUAGE DESIGN

This chapter discusses the Prolac language: its design; its linguistic contributions, es-
pecially module operators; and how it is used to write protocols, including a discussion
of optimizations it supports.

3.1 Design

3.1.1 History

The predecessor to the Prolac language, designed by Frans Kaashoek with input from
Eddie Kohler, was inspired by the yacc parser generator [Joh75]. The pc language had
named rules and an expression-based syntax. Like yacc, it was also bilingual, allowing
escapes to C code to express some parts of a computation. Prolac has inherited all
of these features. However, pc rules could not take parameters or return results, and
there were no modules or namespaces; a source file was a flat collection of rules, and
all communication between rules was through global variables.

The goals of the protocol compiler project are to implement protocol-specific
optimizations, thus creating high-performance protocol implementations; to facilitate
protocol extensions; and to make protocol implementations more tractable to human
readers. Experience with pc convinced us that while, with some work, we could
create a reasonably high-performance protocol implementation using the language,
the second and third goals would be essentially impossible to achieve.

Prolac is a completely new design that addresses those problems. Simplistic re-
strictions from the earlier language were removed: thus, rules can take parameters and
return results. Prolac’s new object-oriented module system and flexible namespaces
address the problems of extensions and tractability; the Prolac programmer splits
computation into many small, sensibly-named rules which may be overridden later.
Our experience with Prolac has been positive in all three areas: even before extensive
tuning, our new TCP specification is about as fast as the old, but also more extensible
(the TCP specification we present consists largely of extensions to a small base) and
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much more readable.
A word on rule terminology: The term “rule”—borrowed from yacc—was perfectly

appropriate for pc; in Prolac, rules are much more like functions or methods in
other programming languages. We find, however, that the unorthodox terminology
highlights salient differences between Prolac rules and most other languages’ methods.
In particular, Prolac rules tend to be smaller than methods; rule bodies are expressions,
not statements; and Prolac has no complicated flow-control statements like for or while,
so rules tend to be simpler and appear more “functional” than most methods.

3.1.2 Goals and principles

This section describes some goals and principles which guided the design of Prolac.
These goals and principles grew out of our experience with Prolac itself and are more
language-specific than those described in §1.2.

Encourage short rules. We want Prolac programs to consist of many sensibly-
named rules with small bodies; such code naturally lends itself to extension and to
quick top-down comprehension. However, such a style can rapidly become unreadable
unless rules are given appropriate names (neither too long nor too short) and organized
into useful groups. The namespace system was developed to facilitate this.

Eliminate syntax. Appropriate rule naming is necessary, but not sufficient, to
make a program with many small rules comprehensible. If there are many small rules,
a user will often forget what one does; the language must allow the user to quickly
find the rule in question and take in its purpose at a glance. Prolac tries to facilitate
this by eliminating nonessential syntax, so that a user doesn’t have to wade through
syntactic commonplaces to find what a rule really does. This (perhaps religious) point
is elaborated further in §3.2.3.

Abbreviate routine code. The language should allow a user to abbreviate or
eliminate routine code by implicitly generating it. Namespace call, implicit construc-
tors, and especially implicit rules are examples of how this principle was put into
practice. Implicit code generation is limited, and hopefully made less surprising, by
a simple restriction: implicit code generation only uses mechanisms also available to
the user.

Abbreviations degrade safely. Any implicit code the compiler generates should
degrade safely: when the user makes a change that would significantly change the
meaning of implicitly generated code, an error or warning should be produced rather
than a silent change in meaning. This goal has been only partially achieved; adding a
rule to a supertype may silently change the meaning of a (previously) implicit rule in
a subtype, for example.
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3.2 Contributions
This section describes novel aspects of the Prolac language, especially module opera-
tors and implicit rules. A list of smaller contributions, including the rationale behind
Prolac’s minimal syntax, closes the section.

3.2.1 Module operators

Module operators are Prolac’s simple and powerful mechanism for manipulating mod-
ules. A module operator is simply an operator which takes a module as a value and
returns a module as a result. A module operator expression is acceptable wherever a
module can be used in Prolac—as a supertype or import, for example, or as the type of
a field. The module operators we have implemented in Prolac affect only a module’s
extra-type information (a module’s namespace, which names are accessible to implicit
rule search, and which rules are inlined); however, the module operator concept is
fully general. We do not know of another language which provides an equivalent to
the module operator concept.

Module operators in Prolac

Prolac currently provides six module operators: hide, show, rename, using, notusing,
and inline. The first three control a module’s namespace and provide a form of access
control; using and notusing control how implicit rules are found; and inline controls
which rules are inlined, and by how much. The reference manual describes these
operators in more detail (in §A.3.4, to start with); this section provides an introduction.

A module operator expression looks like ‘M operator arguments’, where M is a
module expression and operator is one of the six operators listed above. The arguments
are generally a list of feature names or the all keyword; rename and, optionally, show
take name assignments ‘newname = oldname’ instead of individual names.

Module operators do not interact with Prolac’s type system. Thus, if M is a module,
M and ‘M hide all show f’ represent the same type. Module operators are purely
compile-time constructs and have no run-time representation.

Module operators are useful both for a module’s creator and for its users. Creators
can use after-module operators to provide a suggested interface to the module; for
example:

module M {
...
implementation−detail ::= ...;

} hide implementation−detail;

Users can apply additional operators in their module header, specifying necessary
changes to the module’s interface, suggested inlining, and so on.
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Individual module operators

The namespace module operators hide, show, and rename control module names-
paces. The rename operator is relatively straightforward, and resembles the renaming
facilities provided by several other object-oriented languages:

module X {
f ::= ...;

}
module Y {
f ::= ...;

}
// resolve the multiple inheritance conflict with rename
// (except that Prolac doesn’t yet support multiple inheritance)
module Z :> X rename (f−x = f), Y {
// use f−x for X’s f

}

Hide makes some of a module’s names inaccessible and show makes inaccessible
names accessible again. While hide can also be used to resolve multiple-inheritance
conflicts, the primary use for hide and show is to provide suggested interfaces to a
module. We saw above how hide can be used to hide a module’s implementation
details; because Prolac intentionally avoids ironclad access control, however, another
module can show the hidden rules if it wants. See below for an example of how one
might provide real access control with module operators.

Using and notusing provide an interface to Prolac’s implicit rule search mechanism.
(Implicit rule search is the process in which the Prolac compiler automatically writes
forwarding rules for frequently-used method calls; see below.) Using makes some
of a module’s names available for implicit rule search, while notusing makes them
unavailable. Implicit rule search would be so complex as to be unworkable were it not
for the user control the module operators provide.

Finally, the inline operator provides control over how a module’s rules are inlined.
(No notinline operator is necessary because the inline operator takes an optional
argument, a “level” between 0 and 10, where 0 means “never inline”.)

Discussion

When defining a module, the only way to hide a feature or to suggest that a rule be
inlined, etc., is to use an after-module operator. This has the advantage of factoring
subsidiary information out of the module definition, thus making the definition itself
smaller and cleaner. Unfortunately, this can also be a disadvantage: while some in-
formation (i.e., inlining and implicit rule search) seems to belong out of the module
definition, other information (i.e., whether or not a rule is in the interface) seems to
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belong inside it, with the relevant rules. Judicious use of comments and/or namespaces
can mitigate this.

It is not always clear which module operators the compiler should use. Consider:

module D {
rule ::= ...;

}
module S has D {
field d :> *D;

}
module M :> S has D inline all {
test ::= d−>rule;

}

The question is, should the call to d−>rule be inlined? According to S, which defined
d, it should not; but M seems to be implying, with its ‘D inline all’ declaration, that
it should. The current prolacc compiler will inline d−>rule in this example. In effect,
when the compiler refers to a field of module type or calls a rule returning a module,
it checks the current module to see if it should use a new set of module operators for
that module type. This algorithm has proved adequate for our current purposes.

One way of thinking about module operators is that they provide a very clean way
to give information to the compiler (e.g., using, notusing, and inline).

Hypothetical operators: Access control

Module operators were originally invented as a clean way to provide access control
after C++-style access declarations were rejected as too obtrusive and inflexible. The
Prolac module operator solution is much more powerful; for example, a module can
export multiple interfaces. Say we want to provide two interfaces for M, one containing
only f1 and the other only f2. This is simple:

module M {
f1 ::= ...;
f2 ::= ...;

}
module Interface−1 ::= M hide f2;
module Interface−2 ::= M hide f1;

Of course, in keeping with Prolac’s anti-access-control philosophy, Interface−1 and
Interface−2 do not prevent hidden methods from being accessed; they are essentially
suggestions.

The module operator concept is easily flexible enough to handle true access control,
however, and it is useful to consider how true access control might be provided using
module operators. One solution would be to introduce a private operator, which would
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leave a feature in the namespace but mark its use as an access control violation. To
illustrate:

module M {
...

}
module Interface−1 ::= M private f2;
module Interface−2 ::= M private f1;

Unfortunately, a module could circumvent private simply by using M directly. A
solution for this problem involves two new module operators, allow and disallow; a
module can refer to another module only if it has been explicitly allowed. Say that
module Alice should only use Interface−1, and Bob should only use Interface−2. This
could be coded as follows:

module M {
...

} disallow all allow (Interface−1, Interface−2);
module Interface−1 ::= M private f2 allow Alice;
module Interface−2 ::= M private f1 allow Bob;

Other hypothetical operators

This section lists some other module operators we have considered.
A warn module operator would provide a flexible, user-defined method to imple-

ment both generalized access control and compile-time usage hints. The warn operator
would tell the compiler to generate a particular warning or error when a feature is
used; for example:

module M {
armageddon ::= ...;

} warn (armageddon = “Are you sure you should be causing armageddon?”);

Extensions to warn could cause warnings on overriding a rule, on referring to a
class, on declaring a field, etc. This provides a generalization of obsolete routines in
Eiffel [Mey92].

All module operators we’ve described only affect a module’s extra-type information.
By contrast, a redefine operator affects only a module’s type. Redefine could change any
type into a type generator by allowing its parents or imports to be redefined. A redefine
operator has been planned for some time; it remains unimplemented for reasons we
describe below. To demonstrate its usage, assume we have a Prolac specification for
two related modules, A and B:

module A { ... }
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module B has A {
field f :> *A;
...

}

Now say we want to create an implementation of this specification. The first step is
natural enough:

module A−Impl :> A {
// overrides A’s rules and provides some new ones

}
module B−Impl :> B has A−Impl {
// initialize f with a pointer to A−Impl

}

However, we’re in trouble if we want to refer to some rules specific to A−Impl from
the B−Impl module; the field we have points to an A, not an A−Impl, so we have to cast.
As a further affront, prolacc will not be able to inline as many rule calls on f without
performing complicated data flow analysis, since it can only assume f is an A and not
the more specialized A−Impl.

Here is a potential solution to this problem using redefinition:

module B−Impl :> B redefine (A ==> A−Impl) {
// can refer to A−Impl rules from f

}

While this solution is attractive in that it literally embodies what the programmer
wants to do, it is difficult to implement. In particular, the compiler must re-check all
of B’s rule bodies after the redefine; assigning a pointer to an A object to the f field
must cause a compile-time type error in the redefined version! Redefine also becomes
clumsier to use in larger examples.

Currently, our TCP specification addresses this problem using module equations
and namespaces. Here is a simplified example:

Base { // the base protocol
module X−Tcb { ... }
module X−Code has Tcb {
// Note: use Tcb, the TCB we’ve chosen globally, not X−Tcb!
...

}
}
Delay−Ack { // extended for delayed acknowledgements
// which version are we extending?
module Parent−Tcb ::= Base.X−Tcb;
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module Parent−Code ::= Base.X−Code;
module X−Tcb :> Parent−Tcb { ...add fields... }
module X−Code :> Parent−Code has Tcb { ...refer to new fields... }

}
// which version are we using globally?
module Tcb ::= Delay−Ack.X−Tcb;
module Code ::= Delay−Ack.X−Code;
export Tcb.all, ...;

If we globally choose a TCB which is Delay−Ack’s or a subclass of it, all is well; if
we choose a different TCB, say Base.X−Tcb, the compiler will generate errors for the
references to Delay−Ack fields in Delay−Ack.X−Code—but that code should not be
used in this situation anyway.

Redefine is not the only possible module operator that would affect a module’s
type. In particular, note that instantiation of templates or parameterized types can be
considered a specialized form of module operator!

Related work

Eiffel [Mey92] provided the initial inspiration for module operators; it allows a subtype
to rename, undefine, and redefine its supertypes’ features through clauses in its parent
list. Many other object-oriented languages offer these operations, or a subset. Only
supertypes can be so manipulated, however, and the manipulations are restricted to
those useful during inheritance. Of Eiffel’s transformations, Prolac implements only
rename as a module operator; without a concept of “deferred feature”, undefinition is
meaningless, and redefinition—overriding—requires no special syntax.

3.2.2 Implicit rules

Many object-oriented languages make it easier to refer to features in the current class
by allowing the programmer to elide the class or object name. Prolac goes further:
it allows the programmer to elide other class or object names through the flexible
mechanism of implicit rule search. The following motivating example is copied with
modifications from the Prolac reference manual, §A.5.4.

Consider a module Segment−Arrives implementing part of the TCP protocol. This
module will frequently refer to the current transmission control block, tcb, which has
type *Tcb; we make tcb a field so we don’t have to constantly pass it as a parameter. This
code uses Tcb’s listen, syn−sent, etc. rules to determine the current protocol state:

// Example 1
module Segment−Arrives has Tcb {
field tcb :> *Tcb;
check−segment ::=
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(tcb−>listen ==> do−listen)
|| (tcb−>syn−sent ==> do−syn−sent)
|| (tcb−>syn−received ==> do−syn−received)
|| (tcb−>established ==> do−established)
...; // and much more!

}

The repetition of ‘tcb−>’ is tedious and hinders quick comprehension of the code.
We know Segment−Arrives deals with only one tcb; why should we have to tell the
compiler which tcb we mean again and again?

One solution is to generate forwarding rules in Segment−Arrives. We hide these
forwarding rules using after-module operators (§A.3.4.2), since they are artifacts of
the implementation.

// Example 2
module Segment−Arrives has Tcb {
field tcb :> *Tcb;
check−segment ::=
(listen ==> do−listen)
|| (syn−sent ==> do−syn−sent)
...;

listen ::= tcb−>listen;
syn−sent ::= tcb−>syn−sent;
...

} hide (listen, syn−sent, ...);

This is better; however, the forwarding rules clutter the module definition and, again,
are tedious and error-prone to write.

The solution in Prolac is to use implicit rules. We use the using module op-
erator (§A.5.4.4) to open tcb for implicit rule search. When the compiler creates
Segment−Arrives’s complete namespace, it searches its rules for undefined names,
entering them in Segment−Arrives’s top-level namespace as undefined implicit rules.
Later, it creates their definitions through a search process. It marks the implicit rules
as highly inlineable and hides them in the default namespace. Thus, the compiler
transforms the following code into something like Example 2:

// Example 3
module Segment−Arrives has Tcb {
field tcb :> *Tcb using all;
check−segment ::=
(listen ==> do−listen)
|| (syn−sent ==> do−syn−sent)
...;

}
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Example 3 is, in a sense, optimal: nothing distracts the reader from exactly what the
module is doing.

This example has demonstrated that implicit rules can make code more readable
rather than less. Overuse of implicit rules can make code very difficult to understand,
however; moderation is required, as with any powerful tool. The compiler will gen-
erate warnings rather than implement arbitrary choices when implicit rule use gets
ambiguous and complex.

Note that only rules can be found implicitly: referring to a field requires explicit
syntax.

Discussion

The implicit rule mechanism was inspired by Prolac’s intended domain, protocols. We
noted, after examining several protocol specifications, that protocols tend to handle a
relatively small number of data objects, each of distinct type—a control block and a
packet, for example. Unfortunately, arranging protocol code into hierarchies based on
those data objects feels unnatural and can result in convoluted code. We wanted the
syntactic convenience object-oriented languages provide without forcing programmers
to organize their code strictly according to those objects.

Implicit rules are most useful in similar situations, when a large part of a program
deals with one object of a given type at a time: if there is more than one object, which
one should be used to define the implicit rules? Of course, if there are multiple objects
of a given type, the using and notusing module operators give the programmer enough
control over implicit rule search to allow any desired result.

Prolac allows implicit rules to be found in imports (for static rules); in fields with
module type; in fields with pointer-to-module type; and in supertypes’ imports and
fields. The reference manual, in §A.5.4, describes the search process which finds the
relevant definition for an implicit rule.

The implicit rule mechanism is a good example of how our limitations on im-
plicit code generation (discussed above) work in practice. The compiler generates
forwarding rules—rather than, say, changing rule bodies to refer to the relevant rules
directly—because the user could write forwarding rules explicitly within the language.

Related work

Implicit rules are similar to package- or namespace-importing directives in languages
like C++, Java and Modula, and especially the open directive in ML. All these directives
affect functions (and classes and values), not methods, however: none of them can
make an object implicit in a method call. The implementation of implicit rules as
forwarding rules generated by the compiler—thus allowing subtypes to override an
implicit rule—also appears to be new.
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3.2.3 Other contributions

Some smaller novel Prolac features include the use of namespaces within modules to
organize rules; namespace call (§A.9.2.1), which facilitates working with namespaces
within modules by making them act somewhat like functions with local function
definitions; and the use of inline and outline levels for flexible control over optimization.

A more subjective contribution—which we nonetheless feel is quite important—is
Prolac’s minimal syntax. The remainder of this section explains the reasoning behind
Prolac’s syntax and provides some commentary.

Syntax does matter. A mathematical concept is almost impossible to work with
without decent notation to describe it; the better the notation, the easier it is to work
with the concept. Prolac was designed with careful attention to syntax, the overriding
goal being to make the syntax as minimal as possible without sacrificing readability.

Consider Prolac rule syntax for an illustration of the result. No keyword introduces
a rule definition; the rule’s name is the first thing in the definition; rules returning
bool—the most common return type in our protocol definitions—may elide the return
type; parentheses may be elided when calling a rule that takes no arguments. Because
Prolac is an expression language, a rule’s body is simply an expression representing its
result.

Taken together, this means that Prolac rule definitions are very small and easy
to both write and read. This removes any subconscious pressure on the programmer
to keep rule bodies large, since small rules actually look like small objects. (As a
programmer, I often fell victim to a visceral reaction that could be verbalized as “I’m
writing all this text to make a function that does this?! Forget it!”) Prolac syntax actually
becomes less readable as rule bodies get large; while this concerns us, it also provides
a convenient back-pressure to keep rules small.

A comparison with other object-oriented languages may provide some perspective.
Here are six functions which return true iff a TCP connection is in the closed state; in
each case, the code implements a “method” of the hypothetical TCB “class”:

closed ::= state == 0; // Prolac
bool closed() { return state == 0; } // C++, Java
fun closed({state,...}: TCB) = state=0; (* ML *)
closed: BOOLEAN is do Result := state = 0 end −− Eiffel
closed() returns (bool) return (state = 0) end closed % Theta
(defmethod tcb−closed ((t TCB)) (= (tcb−state t) 0)) ; CLOS

Obviously, Prolac’s syntax is the easiest to write,1 but because the function being
defined is so small, Prolac’s syntax is the easiest to read and understand as well. For
small functions, conciseness is readability. This example highlights Prolac’s relatively

1. Compared with some languages, like C++, the difference is admittedly minimal; however, if we
repeated the example 11 times for TCP’s 11 states—and then hundreds more times throughout the
program—even that 12-character difference would begin to become significant.
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unusual focus on small functions: most object-oriented languages are focused on
helping the programmer write large functions, rather than helping her divide a large
function into small ones. A similar example using a larger function would no doubt
show that Prolac’s syntax became the hardest to read.

We feel that, in combination with namespaces and other facilities for naming rules
appropriately, Prolac’s minimal syntax has succeeded: our programs are very readable,
and we naturally divide computation into small rules.

3.3 Usage
3.3.1 Prolac and protocols

With exactly one exception (the seqint type, representing sequence numbers; com-
parison on seqints is circular §A.9.11.4), Prolac contains no primitive data or control
structures targeted at network protocols. As mentioned above (§1.2), this is because
of the dangers of inflexible abstractions: it would be impossible to design a “connec-
tion” abstraction serving all protocols and situations equally well, and we did not want
programmers to have to work against the language. We note, however, that Prolac
would be a very good language in which to implement a library of domain-specific
abstractions. A library is the right place for such code: a user can use it if it is helpful,
but can work around it or change it when it is not. (We cannot expect a user to change
the compiler.)

Prolac was nevertheless specifically designed for protocol implementation. We list
a number of Prolac features below and describe how they were inspired by, and how
they help implement, network protocols.

Single source file. Protocol implementations are often not particularly large,
just complex. The Prolac compiler takes advantage of this by compiling the entire
source at once. This allows inlining across the entire program and global analysis for
optimization. For example, with the entire source on hand, the compiler can easily
see if a rule is ever overridden; if it is not, dynamic dispatch can be avoided. This
optimization is actually a very important one, since it allows the vast majority of rules
to be inlined.

Implicit rules. As discussed above, examination of several protocol specifications
directly led to the implicit rule mechanism.

No access control. Inspection of several TCP extensions, like slow start and fast
retransmit [Ste97], was what convinced us that protocol extensions do not affect code
identifiable ahead of time. Again, they tend to change code that the protocol designer
probably had not identified as meriting future extension. This led us to decide that
hard access control was inappropriate for Prolac.

We are now reconsidering this decision. The intuition was right, as far as it went,
but we did not fully consider the documentary value of access control declarations. It is
actually helpful to a module’s creator and to its users to have interface functions clearly
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defined. While the hide and show module operators allow module creators to define
an interface, there may be too many ways in Prolac for a user to get around them. A
tool that reads a Prolac specification and outputs a reduced version of a module, with
only interface functions actually visible, would be helpful as well.

3.3.2 Optimization

Prolac has direct linguistic support for two optimizations, inlining and outlining. In-
lining is directly including a function’s entire body at a call site. Outlining is when code
for an infrequently executed branch is moved to the end of the function body; this
will improve a program’s i-cache and instruction pipeline behavior when the common
path is taken.

These optimizations are particularly important for network protocols [MPBO96].
Protocol code is too important to suffer frequent function call overhead and loss
of intraprocedural optimization opportunities; Prolac’s focus on many small rules
makes inlining even more important. Secondly, much protocol code contains a lot of
error-handling code (or, more generally, infrequent-situation-handling code) along the
critical path. Moving this code out of the way, and thus allowing the common case to
be executed in a straight line, is another important optimization.

In Prolac, inlining and outlining are specified with two operators, inline and outline;
there is also an inline module operator which allows a programmer to say, for example,
“inline all rules from this module”.2 Both of these optimizations take an optional level
argument, which must evaluate to an integer between zero and 10. Zero means “do
not optimize at all”, while 10 means “optimize as much as possible”; for example,
inline[10] means “always inline this function call”, while outline[0] means “this code
is the most common path”. Intermediate levels can be interpreted appropriately by
the compiler. Prolacc, for example, takes a command-line argument which specifies
which inline levels should actually result in inlined code.

Prolac therefore supports two of the three optimization techniques discussed
in [MPBO96]. Outlining we have already described; cloning, or making more than
one copy of a function body, is not supported. Path inlining inlines a function call, as
well as any functions it calls, and so on, recursively; the prolacc compiler simply treats
a very high inline level—9 or 10—as a suggestion to perform this recursive inlining.

Automated optimization

Note that the optimization techniques supported in Prolac are entirely manually speci-
fied. We have carefully designed Prolac to make this manual specification as painless as
possible (consider particularly the inline module operator), but an automated system

2. An outline module operator would be slightly less useful, but perhaps still worthwhile; for
example, a module creator could specify that a rule will practically never be called, so any code path
which calls that rule should be outlined.
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for collecting statistics at run-time and applying them to the specification might be
more painless still.

We plan to eventually implement automated statistics collection, but not to au-
tomatically apply this information to the compilation process. The user will have to
analyze the statistics and modify the Prolac source accordingly. We believe that the
source code should completely determine the run-time behavior of a Prolac program,
and are convinced that the programmer will be better at specifying optimizations3

than any automated tool could be. For example, if profiling reveals that a certain path
is frequently executed, the programmer can rewrite the source to improve that path’s
behavior, while an automated tool could only inline and outline code more aggressively
along that path. Automation does keep system-specific optimizations out of the normal
source code, but if this is desired, subtyping and module operators can do the same
thing even more flexibly. We feel that if an optimization is difficult to specify as an
annotation on the source, this is a failure of the Prolac language, not an invitation to
automate the optimization.

Castelluccia [Cas96] describes a system for automating header prediction in a
compiler for the Esterel language. Basically, the system outlines all cases except the
common path which header prediction would take. This would be possible in Prolac;
in our TCP specification, however, we implement header prediction the old-fashioned
way—as additional code executing before normal processing begins. While this suffers
some of the problems Castelluccia describes (specifically, code duplication in the
generated C code), complexity is not one of them: header prediction requires only 33
lines of code, which is factored out of the base protocol by subtyping. Automating this
does not seem immediately worthwhile. Castelluccia also performs header prediction
across layered protocols; we expect subtyping and other Prolac mechanisms to continue
to be effective there.

3. Meaning the protocol-specific optimizations we have been discussing.
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4
THE prolacc COMPILER

This section gives an overview of prolacc, the Prolac compiler implemented for this
thesis. After a general description of its structure, we present three of its more interest-
ing subsystems: the representations of modules and namespaces; the name resolution
process, which creates the intermediate representation (IR); and the back end, which
compiles that IR to efficient C.

4.1 Overview
The prolacc compiler consists of about 16,000 lines of object-oriented C++ source
code, not counting comments. It has been tested on several different Unixes and
should be very portable, even to other operating systems; to enhance portability, it
uses only a subset of the C++ language and does not use any C++ library.

The compiler executes in three stages. The first, parsing, translates the source text
to parse trees without looking up any identifiers. The second stage, resolution, reports
semantic errors, looks up identifiers, and translates the parse trees to an intermediate
representation; the third stage, optimization and compilation, translates that IR to the
output language, C. Each of these stages runs to completion before the next is begun.

Difficult issues in compiling Prolac include supporting its order independence;
efficiently handling often-manipulated structures like modules and namespaces; and
generating efficient, high-level C.

This chapter will often discuss C++ classes forming a part of the compiler; when
mentioned by name, these are written in italics. Table 4.1, on page 34, provides an
overview of the more important classes we discuss.

Parsing

First, the source file is lexically analyzed and divided into tokens. Parser feedback is
necessary to read C blocks and support C code, which follow different parsing rules;
the contents of C blocks and support C code are treated simply as arbitrary text.
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Class Generated by Description
Yuck main() Recursive descent parser
Namespace Yuck, etc. A Prolac namespace
Prototype Yuck A Prolac module, module equation, or module op-

erator expression before resolution
Protomodule Yuck Subclass of Prototype. An actual Prolac module,

not an equation or module operator expression;
stores Exprs for the module’s features

Expr Yuck Parse tree
Module Protomodule Type- and rule-related portion of a Prolac module
ModuleNames Protomodule Namespace- and module operator-related portion

of a Prolac module
Node Expr Tree-structured intermediate representation
Target Node Nodes plus evaluation order
Location Target Nodes arranged in basic blocks

Table 4.1: Important prolacc classes

The tokens are passed off to Yuck, a recursive-descent parser.1 The Yuck class
builds three important sets of structures: Namespaces, including module namespaces
as well as file-level and nested namespaces; Prototypes, which represent modules
before they are resolved; and Exprs, which implement Prolac’s parse tree.

Parsing is complicated by Prolac’s order independence: the parser does not know
which names are types, for example, and subtypes may appear in the file before their
supertypes. Therefore, prolacc performs no analysis on the structures it creates, except
to complain if a name is multiply defined in a single namespace; specifically, it does
not resolve identifiers.

After parsing is complete, the compilation is in this state:

• The file-level namespace and its subnamespaces are prepared, meaning that
they map identifiers to the right features and that they will not be changed later.
Prototypes that represent the modules defined in the Prolac program are stored
in these namespaces.

• Each module’s internal namespace is prepared. This namespace contains any
rules, fields, and nested namespaces defined by the module.

1. Prolacc does not use a parser generator—specifically, yacc—both because yacc interacts badly
with C++, and because we prefer recursive descent parsers anyway. Recursive descent parsers can
provide better error recovery and better error messages, as well as being able to parse more languages.
Also, our experience with parser generators for larger languages has been generally negative: they are
too inflexible, too demanding, and tend to force an unnatural structure on the rest of the parser. We
are not alone in this preference; see [Str94, pp68–9].

34



• A complete Prototype exists for each module and module equation. Protomod-
ules, which are Prototypes for actual module definitions, store parse trees for
each of a module’s features.

Resolution

Once the entire source has been parsed, prolacc transforms the objects created by
the parser (Prototypes and Exprs) into the corresponding objects in the intermediate
representation (Modules and Nodes). The goal of resolution is twofold: first, to pre-
pare a Module class for every Prolac module M, which involves merging M’s parents
with M’s internally defined features; and second, to use the complete namespaces so
generated to resolve rule bodies and implicit rules, producing the Node intermediate
representation.

The Node intermediate representation is tree-based. Later stages of the compiler—
optimization, for example—generally treat Nodes functionally: the compiler creates
new Node trees (which may share partial state with existing trees) rather than modifying
ones that already exist.

The resolution process has three substages, which are described in more detail
in §4.3.

After resolution is complete, the compilation is in this state:

• Each module’s complete namespace (§A.4.4) is prepared. This contains its par-
ents’ namespaces as well as its internal namespace and its implicit rules.

• Each module is prepared: all of its ancestors are known; the compiler knows
which of its rules are overrides (and what they are overrides of) and which ones
originate in the module itself; and all of its fields, including those defined in
ancestors, have been collected.

• Every declared type—e.g., the types of fields, parameters, return types, and
let-bound variables—is known.

• Each rule is prepared: its body expression has been translated into unoptimized
IR; its signature has been checked against the rule it overrides, if there is such
a rule; and the compiler knows whether or not it has ever been overridden.

• All user errors have been reported.

Prototypes and Exprs can be thrown away once resolution has completed.

Optimization and compilation

The final stage is code generation, which creates a C header file (containing structure
definitions for Prolac structures) and a C source file (containing C code implement-
ing exported rules as well as any rules they call). The Node IR is optimized before
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generation by passing it through a NodeOptimizer; there are several kinds of NodeOp-
timizer, corresponding to different optimizations and to several code transformations
necessary for generating correct C. A NodeOptimizer class, assisted by the Node hier-
archy, makes a bottom-up pass over a Node tree while simultaneously creating a new,
optimized result tree.

During compilation, prolacc arranges a Node tree into a traditional basic block
representation. This process is described in more detail in §4.4.

4.2 Representation issues
4.2.1 Modules

The internal representation of Prolac modules is complicated by the requirement for
reasonably efficient module operator support. The solution adopted for prolacc has
been to split a module into two parts. The first, Module, contains type- and rule-
related information; for example, a module’s ancestors, fields, and rules are all stored
in the Module. In the compiler’s class hierarchy, Modules stand alone: Module is not a
subclass of Type, for example.

A ModuleNames, in contrast, contains a module’s namespace, as well as any inline
and using operators the user has applied. Each ModuleNames object corresponds to
a Module object; there can be many ModuleNames for each Module. A new Module-
Names is created, also during the resolution phase, each time a collection of module
operators is applied to a module. The ModuleNames class is a subclass of Type; differ-
ent ModuleNames with the same Module are equivalent to the type system except for
feature lookup. For example:

module M {
field f :> int;
test ::=

let m :> M, m−hidden :> M hide f in
m = m−hidden, // OK
m−hidden = m, // OK
m.f, // OK
m−hidden.f // error: no such feature

end;
}

Here, the two assignment statements are legal because assignment depends only on
type: ‘M’ and ‘M hide f’ are, again, equivalent to the type system except for feature
lookup. The two member expressions demonstrate how feature lookup differs between
‘M’ and ‘M hide f’.

A third class, Protomodule, represents modules before the resolution stage; where
ModuleNames and Modules contain features, Protomodules contain parse trees for
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those features. The parsing stage creates Protomodules, and the resolution stage—
largely controlled by the Protomodule class—builds ModuleNames and Modules from
those Protomodules.

4.2.2 Namespaces

A Prolac compiler will expend a lot of effort manipulating namespaces—for example,
see the namespace resolution algorithm described below. This requires an efficient
representation for namespaces. Prolacc, therefore, allows namespaces to be shared
when possible, even potentially between different modules. In the following example,
prolacc will only create nested−namespace once, since it can be shared between
modules M and N:

module M {
nested−namespace {
... many definitions ...

}
}
module N :> M {
}

This is facilitated by making each namespace an indirection. Most of the com-
piler deals only with Namespace objects; Namespace is largely a forwarding class that
sends messages to the ConcreteNamespace class. ConcreteNamespaces are reference-
counted and, when necessary, a Namespace is changed to point to a unique copy of its
ConcreteNamespace. This needs to happen here, for example:

module M {
nested−namespace { ... }

}
module N :> M {
nested−namespace { ... }

}

After its parents’ namespaces are merged, but before its internal definitions are added,
N will be sharing M’s nested−namespace; when its internal definitions are added, N’s
version of nested−namespace will be changed to a unique copy.

4.3 Resolution
The problem of resolution boils down to resolving names. How and when does prolacc
decide what a particular name means in a particular situation? Prolac’s order inde-
pendence partially determines the method we choose. The goal is simple: The Prolac
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language was designed so that a human being can unambiguously discover what a
name refers to; the prolacc compiler should unambiguously discover the same result.

4.3.1 Overview

Prolac disallows only impossible circular dependencies—that is, circular dependencies
in subtype relations, module equations, and object composition. Thus:

module M :> N { ... } // error: circular dependency
module N :> M { ... }
module X ::= Y // error: circular dependency
module Y ::= X

Circular dependencies through imports are allowed:

module M has N { ... } // OK
module N has M { ... }

As of this writing, prolacc does not detect circular dependencies of object composition;
however, the C compiler does:

module M has N { field f :> N; ... }
module N has M { field f :> M; ... }
// OK to Prolac, C will complain

The resolution process works one module at a time. Each of the three stages is run
to completion on all modules defined in the program before the next stage is begun.
The stages can be characterized as follows:

1. Namespace. Resolve parents and create the completed namespace (§A.4.4).

2. Types. Resolve imports and feature types.

3. Rules. Find all implicit rules; check that overrides are legal; resolve each rule’s
body.

Again, resolution is mostly directed by methods in the Protomodule class.

4.3.2 First stage: Namespace resolution

After the first stage of the resolution process has completed on a module M, the
following invariants are true of M:

• M’s complete namespace has been prepared. It will not be changed in any later
stage of the process.
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• All of M’s rules have been identified, either as overrides or not. Note that this
includes any implicit rules, although definitions for implicit rules are not found
until the third stage.

• For each rule defined in M or any of its supertypes, prolacc knows which rule
definition is effective in M.

• All of M’s slots and imports, including slots and imports inherited from M’s
supertypes, have been created; however, their types have not yet been resolved.

To complete the first stage on a Protomodule M, the compiler first looks up the
names of M’s parents and imports, simply to check that they are actually modules (or,
to be precise, Prototypes). This can never result in a circular dependency.

The process begins in earnest when it executes the first stage on each parent P. An
error is reported here on a circular dependency.

Once M’s parents satisfy the invariants above, prolacc creates the actual Module
A and its corresponding ModuleNames. First, it merges all parents’ supertypes, rules,
imports, and fields into A;2 then, it adds to A new features originating in M.

M’s completed namespace is created using the algorithm described in the reference
manual (§A.4.4). This algorithm, which also finds all of M’s implicit rules, will not be
repeated here. Rule overrides are discovered during this process; when a rule RI
defined by M has the same name as a rule RP defined by some supertype, RI is marked
as an override of RP.

Note that M’s imports are not resolved whatsoever by this first stage.

4.3.3 Second stage: Type resolution

After the second stage of the resolution process has completed on a module M, the
following invariants are true of M in addition to those listed above for the first stage:

• All of M’s types have been resolved. This includes the type of each field and the
signature of each explicit rule.

To complete the second stage on a Protomodule M, prolacc first executes the
second stage on every parent P and the first stage on every import I. This ensures
that I’s namespace- and type-related information is available. The compiler then goes
through each field and explicit rule and resolves the simple Exprs which represent
their types and signatures.

2. Again, the current Prolac language definition only supports single inheritance, so there can be
no conflict here.
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4.3.4 Third stage: Rule resolution

After the third stage of the resolution process has completed on a module M, the
following invariants are true of M in addition to those listed above for the second
stage:

• Definitions have been found for all of M’s implicit rules (except those which
had no definition). Implicit rules have the correct types, subject to the caveat
described below (§4.3.5).

• Overriding rules defined in M have been checked for correctness by the usual
contravariance rule, which is described in §A.5.2.1.

• The body of each rule has been translated into the intermediate representation,
Nodes.

• All user errors have been reported.

To complete the third stage on a Protomodule M, prolacc first executes the third
stage on every parent P and the second stage on every import I. The implicit rule
search process described in the reference manual (§A.5.4.1) is used to find definitions
for implicit rules. The contravariance check is straightforward; it is left until the third
stage in case an implicit rule is overridden—an implicit rule’s signature is not known
until its definition is found. The final step, transforming the Expr parse trees for rule
bodies into Node intermediate representations, is also more or less straightforward,
now that all signatures, types, and namespaces have been resolved by this and earlier
stages.

In future, we will solve the problems described below by performing the third
stage one rule at a time, rather than one Protomodule at a time.

4.3.5 Circularity issues

The current prolacc compiler meets the goal of resolving all unambiguous names with
only two exceptions. The more important of these is symbolic constants, used in Prolac
inline and outline levels. Rather than introduce a new syntax, we would like symbolic
constants to be calls of static rules with constant bodies:

module Constants {
static inline−Bob :> int ::= 9;

}
module Bob.M {
...

} inline[Constants.inline−Bob] all;

This may seem simple enough; however, consider this example:
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module A has B {
static level :> int ::= B.level;

}
module B has A {
f ::= inline[A.level] ...;
static level :> int ::= 9;

}

The call of A.level is unambiguous to a human, who can easily see that A.level even-
tually evaluates to 9. However, implementing this correctly would require a more
complicated strategy than the one described above. Again, resolution currently works
one module at a time; it is an error if a circular dependency is found between modules.
The example does have a circular dependency on modules, because resolving the body
of rule B.f requires that A.level already be resolved (so we can find the inline level);
however, A.level similarly depends on B.level—that is, B depends on A depends on B.

The second problem—much less important in practice—boils down to the same
issue: circularity at the module level when no circularity exists at the rule level.
This problem involves complicated and unlikely manipulations of implicit rules. For
example:

module M has N {
field f1 :> N using all;
rule1 ::= find−me;

} show (renamed−find−me = find−me);
module N has M {
field f2 :> M using all;
rule2 ::= renamed−find−me;
find−me ::= true;

}

First, consider module M. Its rule1 refers to an undefined name, find−me; prolacc
will therefore define find−me as an implicit rule, and eventually resolve it to f1.find−
me—the find−me rule from module N. Now, consider module N. Here, rule2 also
references an undefined name, renamed−find−me; this also becomes an implicit rule.
This implicit rule is eventually resolved to f2.renamed−find−me—but, due to the show
operator on module M, it turns out that this is M’s implicit rule find−me!

The circularity comes when we try to determine the signatures of the implicit rules.
To find the signature of N.renamed−find−me, we need the signature of M.find−me; but
to find the signature of M.find−me, we need the signature of N.find−me—N depends
on M depends on N.

The obvious solution is to work one rule at a time rather than one module at a
time during the third stage of the resolution process. Because the problem’s scope is
so limited, however, we have not yet implemented this.
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4.4 Compilation
The compilation process, which translates the Node intermediate representation to C,
is complicated by several issues:

• We would like to keep the generated C code as high-level as possible. In par-
ticular, we do not want an expression like ‘x + y * z’ to compile down to a
straightforward three-address-code version in C:

int T 1;
int T 2;
...

T 1 = y * z;
T 2 = x + T 1;

/* code uses T 2 */

The main reason for this is to keep the generated C code readable, and therefore
debuggable. A secondary reason is that we do not trust C compilers to always
optimize such explicit temporaries away; while some preliminary tests supported
our caution, we do not feel that enough tests were completed to come to any
definite conclusion.

• Some Prolac constructs which are part of a Prolac expression must generate
C code which is syntactically a statement; the most prominent example is a C
block, but control-flow operators generally compile to if statements. Thus, the
Prolac compiler must occasionally introduce temporaries. This is required when
a single expression is broken up by statements, and also when a rule call is
inlined: direct substitution obviously won’t work when inlining a rule call like
f(x++).

• We want prolacc-generated C code for a Prolac program to be potentially as
efficient as a version of the program hand-written in C. Several optimizations
address this issue. In particular, simple global analysis is done on rules, turning
many dynamic dispatches into static ones, and some structure assignments are
optimized away.

4.4.1 Nodes and compilation

Each Node object can generate two kind of code:

• State code. State code must be executed exactly once, and is syntactically a
statement. A Node representing a C block generates state code, for example.
Most nodes do not generate any state code.
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• Value code. Value code may be executed multiple times, and is syntactically an
expression.

The method which generates a Node’s value code will often call its subexpressions’
value code generation methods. For example, the Node representing ‘A + B’, where A
and B are expressions, will generate the value code ‘(va) + (vb)’, where va and vb are A
and B’s value code, respectively. This procedure allows prolacc to generate reasonably
high-level output C code by copying input Prolac expressions when possible.

If a Node tree were translated without optimization, any Node’s value code will
be generated exactly once. However, optimization—particularly inlining, where a
parameter value is substituted for the parameter as many times as necessary—can
introduce Nodes whose value code must be generated multiple times. This is perfectly
safe for some Nodes: integer literals, for example, and variables. For others, however
(assignments, increments, rule calls), this is an invalid transformation. To address this,
each Node can return a Node which is its corresponding simple value—a value which
is safe to reuse—or 0 if it has no simple value. For example, an integer literal’s simple
value is itself; an assignment ‘x = f(94)’ has the simple value ‘x’; and a rule call ‘f(94)’
has no simple value. Any code transformation which can cause a Node to be used
multiple times will ensure that the Node is a simple value by creating a new temporary
if necessary.

Using simple values, rather than, say, always generating a temporary, allows prolacc
to avoid many spurious structure assignments. This was an important optimization:
gcc, the optimizing C compiler we used, does not optimize away spurious structure
assignments through copy propagation.

Any Node can be temporarized, meaning that prolacc will generate a new tempo-
rary to hold its value. A temporarized Node will always generate state code; this has
the form ‘temporary variable = (the expression’s real value);’. A temporarized Node’s
value code is just the name of the temporary variable.

4.4.2 Targets

The Target class is the first step the compiler takes on the way to a basic-block
representation of a Node tree. Target, like Node, is tree-structured, but with only
two-way branching. A Target tree represents the evaluation order of a Node tree; thus,
a Node tree representing the simple addition ‘x + y’ will compile to three Targets:

calculate x! calculate y! add x and y.

Each Target points back to the Node whose computation it represents. The second
branch of a Target is only used at when the execution path can fork, such as for most
control flow operators.

Targets are then used to decide whether an execution point must start a basic
block. A Target starts a new basic block if it reachable through more than one path; it is
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reachable through one branch of a forking Target; or it represents a new occurrence of
the outline operator. The next stage makes these basic blocks explicit: the Location class
and its subclasses, particularly BlockLocation, represent basic blocks. Once Locations
are generated, the Targets can be thrown away.

4.4.3 Locations and C generation

The compiler then makes several passes over the generated Locations to arrange them
in output order. The first pass creates C && and | | expressions, where possible, to en-
hance code readability—and, hopefully, object code performance—relative to nested
ifs; the compiler looks for the following patterns, generating && and | | expressions as
indicated.

A B S

F

if (A && B) { S; goto L; } F; L:

A B F

S

if (A | | B) { S; goto L; } F; L:

(Any basic block with two branches has, as its final action, a test to see if it some
expression is zero: one branch is taken on zero, the other if not. In the figure, thick
black arrows represent the nonzero branch and thin grey arrows represent the zero
branch.) Prolacc will apply either transformation only if B cannot generate any state
code and B has not been outlined relative to A.

Prolacc then decides which branches will be placed in line and which will be
implemented as gotos, using any outline information provided by the user.

The penultimate step is assigning temporaries, including any temporaries required
because an expression’s definition in one basic block has been separated from its use
in another. All temporaries are gathered and emitted in one block of declarations at
the beginning of the resulting function body.

Finally, the compiler generates C code for all of the basic blocks in the order it
previously found. Once the C code is generated, all Locations can be freed, as well as
the optimized Node tree.

4.5 Evaluation and future work
The prolacc compiler is stable on correct programs. Unfortunately, some errors can
cause a crash; improving error recovery is high on our list of priorities. Other directions
for future work include:
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• Implementing multiple inheritance.

• More carefully analyzing the C compiler’s behavior on our C output. We would
like to determine how, and if, our high-level C output affects the C optimizer.

• Implementing more optimizations, both general and protocol-specific.

• Investigating separate compilation.

45



46



5
RESULTS

This section presents our prototype Prolac TCP specification. The specification is
divided into small, modular pieces; computation is divided into small rules; and some of
the protocol is implemented as extensions, overriding some parts of the base protocol.
The prototype TCP can communicate with other TCPs, and we show that Prolac is
not a performance bottleneck on a normal network.

5.1 TCP in Prolac
The Prolac TCP specification, tcp.pc, is one source file containing 1300 lines of Prolac
and 700 lines of support C code. The support C code connects the Prolac specifica-
tion with operating system code, specifically timers and mechanisms for sending and
receiving messages.1

Figures 5.1 and 5.2 on pages 48 and 49 provide an overview of tcp.pc’s internal
organization. The figures show namespaces and modules, but no module internals; for
each module, supertypes are listed, but not imports.

The TCP which tcp.pc implements includes delayed acknowledgements and slow
start, which are structured in the tcp.pc file as extensions to a base protocol. The base
protocol and the two extensions are localized in file-level namespaces in tcp.pc. Each
namespace contains definitions for several modules; the Simple namespace defines
the base protocol’s versions of the modules, while the extension namespaces define
subtypes of those modules which override some of their behavior. This organization
makes the base protocol simpler while grouping changes relevant to an extension.
Extensions are easy to write: the Delay−Ack extension takes 30 lines of Prolac code,
the Slow−Start extension takes 65.

A block of module equations, shown in Figure 5.2, chooses the global version of
each of these extended modules. Elsewhere in the program, other modules referring to

1. A single tcp.pc file supports communicating both over Unix pipes and through the Berkeley
Packet Filter system, which doubles the size of the support code.
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// Headers defines simple structures for network headers.
Headers {
module Ethernet−Header;
module Ip−Header;
module Tcp−Header :> Ip−Header; // single header for TCP/IP

}

// Simple defines the base protocol.
Simple {
// Segment is Tcp−Header plus data and some helpful rules.
module Segment :> Headers.Tcp−Header;

// The TCB, a complicated structure, is built up through accretion.
Tcb−Build {
module Tcb−Base; // basic fields defined in the RFC, allocation, statistics
module Tcb−Timer :> Tcb−Base; // ...plus retries
module Tcb−Flags :> Tcb−Timer; // ...plus some flags
module Tcb−Drop :> Tcb−Flags; // ...optionally drop some packets for testing
module Tcb−Listen :> Tcb−Drop; // ...plus listening
module Tcb−Write :> Tcb−Listen; // ...plus sending data
module Tcb−Read :> Tcb−Write; // ...plus receiving data
module Tcb−State :> Tcb−Read; // ...plus rules related to the connection’s state
module Tcb−Buffering :> Tcb−State; // ...plus buffering

}
// Choose the TCB other people will override.
module X−Tcb ::= Tcb−Build.Tcb−Buffering;

// Common pairs a Tcb and a Segment and provides common methods.
module X−Common;
// Reassembly supports reassembling data when it arrives out of order.
module X−Reassembly :> Common;

// The protocol is separated into modules for readability.
module Listen, Syn−Sent, Other−States, Fin :> Common;

// Sender builds up and sends messages with a convenient syntax;
// Fragmentation fragments them if necessary.
module X−Sender;
module X−Fragmentation;

// Timeout is the interface for timeout events.
module X−Timeout;

}

Figure 5.1: tcp.pc overview, part 1—Base protocol
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// Delay−Ack implements delayed acknowledgements as an extension to
// the base protocol.
Delay−Ack {
module X−Tcb :> Simple.X−Tcb;
module X−Sender :> Simple.X−Sender;
module X−Reassembly :> Simple.X−Reassembly;

}

// Slow−Start, implementing slow start, is also an extension,
// but an extension of Delay−Ack (when they extend the same structure).
Slow−Start {
module X−Tcb :> Delay−Ack.X−Tcb;
module X−Common :> Simple.X−Common;
module X−Fragmentation :> Simple.X−Fragmentation;
module X−Timeout :> Simple.X−Timeout;

}

// Our simple header prediction module.
module Header−Prediction :> Common;

// Choose the components we’ll actually use.
module Tcb ::= Slow−Start.X−Tcb;
module Common ::= Slow−Start.X−Common;
module Reassembly ::= Delay−Ack.X−Reassembly;
module Sender ::= Delay−Ack.X−Sender;
module Fragmentation ::= Slow−Start.X−Fragmentation;
module Timeout ::= Slow−Start.X−Timeout;

// Tcp−Interface has only static rules; C code calls these
// to interface with the Prolac code.
module Tcp−Interface;

Figure 5.2: tcp.pc overview, part 2—Extensions and interface
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a possibly extended module—for example, Tcb—always refer to the global name: Tcb,
not Simple.X−Tcb or Slow−Start.X−Tcb. This avoids most casts that would otherwise
have been required; see §3.2.1 for more discussion.

In fact, parameterization through module equations goes further than this. The
figure shows extension modules referring literally to the modules they are extending;
in actuality, another level of indirection allows the programmer to alter the order in
which extensions are applied simply by altering one block of module equations. For
example:

Delay−Ack {
module X−Tcb :> Parent−Tcb;
module X−Sender :> Parent−Sender;
...

}
...
module Delay−Ack.Parent−Tcb ::= Simple.X−Tcb;
module Delay−Ack.Parent−Sender ::= Simple.X−Sender;

5.1.1 Status

The TCP specification is a prototype; we plan to rework it substantially for readability,
correctness, and performance. Many aspects of TCP remain unimplemented, includ-
ing TCP options, the urgent pointer, window scaling, and estimated round-trip time.
tcp.pc also do not implement several conventional TCP optimizations, such as fast
retransmit and caching TCBs and response messages. It only sends out segments of
the smallest possible size, 512 bytes, which severely restricts maximum bandwidth.

None of this prevents tcp.pc from communicating with other TCPs; the omitted
features are secondary or exist to improve network behavior. We do not expect any
of these features to cause performance problems when implemented. In fact, several
features, such as caching TCBs and response messages, should make the specification
faster.

5.1.2 Sample code

This Prolac code, from the Simple.Other−States module, illustrates the general flavor
of our TCP specification. It implements the initial part of processing for an incoming
segment when the relevant TCB is in one of the SYN−RECEIVED, ESTABLISHED,
FIN−WAIT−1, FIN−WAIT−2, CLOSE−WAIT, CLOSING, LAST−ACK, and TIME−WAIT
states.

module Other−States :> Common has Tcb, Segment, Fin, Sender, Reassembly {
// set up fields seg :> *Segment and tcb :> *Tcb so we don’t have
// to constantly pass parameters
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constructor(s :> *Segment, t :> *Tcb) ::= Common(s, t);

// do−other is the main interface rule
do−other ::= check−seq, check−rst, check−syn, do−ack, do−states,

after−ack−and−syn;

// “first check sequence number” (RFC793)
// check−seq will throw an exception if all is not well.
check−seq {
check−seq ::= is−next−ack // valid cases (see RFC793 p69):

|| within−wnd−begin // if any succeed, the sequence number is OK
|| within−wnd−end
|| (ack ==> send−ack−fail) // invalid cases: fail throws exception
|| send−reset−fail;

is−next−ack ::=
seg−>len == 0 && tcb−>rcv wnd == 0
&& seg−>seq == tcb−>rcv next;

... // define within−wnd−begin and within−wnd−end
}
...

}

Note how close this code is to a literal translation of the TCP specification [Pos81].
The code for do−other, for example, is essentially the same as this language from the
TCP specification [Pos81, pp69–76], except for portions tcp.pc does not implement:

tcp.pc do−other ::= check−seq, check−rst, check−syn, do−ack,
do−states, after−ack−and−syn;

do−states ::= state-specific processing;
after−ack−and−syn ::= check−urg, Reassembly(seg, tcb).process−text,

Fin(seg, tcb).check−fin;

[Pos81] Otherwise, first check sequence number...second check the RST
bit,. . .third check security and precedence...fourth, check the SYN
bit,. . .fifth check the ACK field,.. .sixth, check the URG bit,. . .seventh,
process the segment text,. . .eighth, check the FIN bit,. . .and return.

While not all of tcp.pc corresponds so clearly to the specification, Prolac’s namespace
features allow us to get pretty close. This congruence between implementation code
and specification language was one of the goals of Prolac; we believe it makes Prolac
specifications both more readable and easier to get correct.
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5.2 Generated code
To get a feel for what prolacc’s generated C code looks like, consider the Sender
module, which provides a convenient interface for sending packets. A Sender is meant
to be used something like this:

Sender(sequence number).ack(acknowledgement sequence number)
.rst.send(tcb)

Sender(sequence number) creates a new Sender object representing a packet about to
be sent. The other rules—ack and rst here, but syn and fin are also possible—affect
that packet: by setting the ACK bit and the acknowledgement sequence number, for
example. The rules then return the modified Sender object so that other rules can be
applied. The final send rule sends the packet.

In tcp.pc, Sender is overridden once, by Delay−Ack (when a packet is sent, any
delayed acknowledgements do not need to be sent).2 Here are simplified portions of
the code:

// the basic sender
module Simple.X−Sender has Tcb, Segment, Ethernet−Header {
field e :> *Ethernet−Header;
field s :> *Segment;

// set the sequence number
constructor(seqno :> seqint) ::= e = Ethernet−Header.new,

s = Segment.new, s−>seq = seqno, s−>len = 0;

// rules for specific kinds of messages
ack(ackno :> seqint) :> X−Sender ::= s−>ackno = ackno, s−>set−ack−flag, self;
rst :> X−Sender ::= s−>set−rst−flag, self;
syn :> X−Sender ::= s−>set−syn−flag, self;
fin :> X−Sender ::= s−>set−fin−flag, self;

// internal rule, called by send and send−data
set−default−values(tcb :> *Tcb, size :> int) ::= ...;

// send with no data
send(tcb :> *Tcb) ::= set−default−values(tcb, 0), ...;
...

}

2. It is difficult to write this kind of code without reference types. Consider the Simple.X-Sender.ack
rule: it is declared to return an X-Sender. Strictly speaking, this means that prolacc should force the
return type to be Simple.X-Sender even if self has type Delay-Ack.X-Sender! Because of a problem
mentioned in the reference manual—prolacc does not correctly handle the assignment of subtypes to
supertypes—this code will actually work. Reference types are the solution to this problem; the return
type of ack should be “reference to X-Sender”, which would allow a Delay-Ack.X-Sender to be returned.
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// Delay−Ack’s sender
module Delay−Ack.X−Sender :> Simple.X−Sender has Tcb {
// override set−default−values to clear any pending delayed acknowledgements
set−default−values(tcb :> *Tcb, size :> int) ::=

tcb−>reset−delay−ack,
super.set−default−values(tcb, size); // call supertype’s rule

}

// the global Sender is Delay−Ack’s:
module Sender ::= Delay−Ack.X−Sender;

We now present a small portion of the C source code generated by the following
Prolac expression:

inline[9] (Sender(97).ack(43).rst.send(tcb))

Most of the generated C has to do with setting up the Ethernet header, sending the
packet, etc. We focus instead on Sender’s rules, and particularly on prolacc’s optimiza-
tion features. The expression above, if naively implemented, would generate at least
three structure assignments and a dynamic dispatch on the overridden set−default−
values rule; prolacc generates no structure assignments and no dynamic dispatches.
The comments are not in prolacc’s output.

Simple Sender Base ctor T 153; // temporary Sender
...
// Implementing Sender(97):
// set up Simple.X−Sender’s virtual function table
( ctor T 153). pcvt Simple Sender Base =

&Simple Sender Base pcvt;
... code to initialize Ethernet header and segment omitted ...
((*(( ctor T 153).s)).seq) = ((seqint)(97)); // ‘s−>seq = seqno’
((*(( ctor T 153).s)).len) = (0); // ‘s−>len = 0’
// now we’re back in Delay−Ack.X−Sender’s constructor; install its virtual table
( ctor T 153). pcvt Simple Sender Base =

&Simple Sender Base 9Delay Ack Sender Delay Ack pcvt;

// Implementing .ack(43):
((*(( ctor T 153).s)).ackno) = ((seqint)(43)); // ‘s−>ackno = ackno’
((*(( ctor T 153).s)).flags) |= ((uchar)(16)); // ‘s−>set−ack−flag’

// Implementing .rst:
((*(( ctor T 153).s)).flags) |= ((uchar)(4)); // ‘s−>set−rst−flag’

// Implementing .send(tcb):
// prolacc statically determines that Delay−Ack.X−Sender.set−default−values is
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TCP implementation Round-trip time (ms) Bandwidth (KB/s)
Prolac − inlining 1.68 690
Prolac + inlining 1.68 684
OpenBSD 1.76 875

Table 5.1: Round-trip time and bandwidth over a public 10Mb/s Ethernet for three
TCP implementations. Round-trip times are for 4-data-byte packets; bandwidth was
measured by sending roughly 1MB of data.

// the relevant set−default−values definition, and inlines it.
((*(tcb)).flags) &= (~(2)); // ‘tcb−>reset−delay−ack’
set default values Simple Sender Base

((Simple Sender Base*)&( ctor T 153),
(tcb), (0)); // ‘super.set−default−values(tcb, 0)’

... rest of code omitted ...

5.3 Performance
This section presents some preliminary results concerning our Prolac TCP implemen-
tation. Our measurements attempt to answer two questions. First, does Prolac impose
unacceptable overhead? Second, do Prolac optimizations, particularly inlining, affect
TCP performance? Future work, including refining tcp.pc and taking more careful
measurements, will answer other interesting questions, such as: Can a readable Pro-
lac TCP specification meet or exceed the performance of existing high-performance
TCPs?

Table 5.1 shows measurements for three TCPs running over a public Ethernet. We
measured our Prolac specification, tcp.pc, both with path inlining and with no inlining
whatsoever; the baseline implementation is the mature TCP from OpenBSD, a free,
BSD-derived Unix operating system. For these tests, Prolac’s TCP was run in a user
space program on an OpenBSD machine. The Berkeley Packet Filter system [MJ93]
was used to forward the packets to Prolac.

Note that, in terms of round-trip time, Prolac is actually faster than OpenBSD.
This surprising result might be due to several factors: OpenBSD is a complete TCP,
while tcp.pc is not, and the OpenBSD version may be slowed down by the kernel’s
mbuf buffering scheme, for example. In terms of bandwidth, Prolac performs poorly
because it only sends segments of the minimum length (512 bytes); once we implement
TCP options, we expect to achieve comparable bandwidth.

Table 5.1 shows that, for normal networks, any Prolac overhead is negligible com-
pared with network delay; Table 5.2 investigates Prolac overhead on a simulated
fast network by timing communication over a Unix pipe. The raw pipe’s round-trip
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TCP implementation Round-trip time (µs) TCP receive path (cycles)
Prolac − inlining 241 2790
Prolac + inlining 214 1550
Hand-coded 161 1100
Raw pipe 33 N/A

Table 5.2: Round-trip time and TCP receive path latency over a Unix pipe. Round-trip
times are for 4-data-byte TCP packets; TCP receive path latency measures time spent
within the TCP protocol processing the arrival of a single segment containing 4 data
bytes.

latency—i.e., without any protocol processing—is 34µs. The “hand-coded” TCP is
a high-performance TCP hand-written in C, originally described in [WEK96]. Like
tcp.pc, the hand-coded version is not a fully compliant TCP: it implements options,
but all other functionality not present in tcp.pc is also not present in the hand-coded
version.

The difference between Prolac with and without inlining is clear in Table 5.2: path
inlining cuts 40% of the cycles spent in the TCP receive path. The remaining gap
between Prolac and the hand-coded version is due to the fact that tcp.pc is untuned;
an arriving segment will cause five mallocs in the Prolac version due to its simplistic
buffering strategy, while the hand-coded TCP will usually not malloc at all.

These preliminary experiments show that, even untuned and with relatively few
optimizations, Prolac does not impose unacceptable overhead for a normal TCP im-
plementation. We have also shown that one of Prolac’s existing optimizations, path
inlining, is extremely effective at reducing protocol processing relative to unoptimized
Prolac. For future work, we will tune our specification and perform more detailed
measurements, hopefully showing that Prolac’s overhead can be negligible even on a
high-performance network.
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6
SUMMARY

This thesis has described Prolac, a new statically-typed, object-oriented language
designed for protocol implementation; prolacc, a compiler for Prolac generating effi-
cient C code from a Prolac specification; and tcp.pc, a preliminary TCP specification
in Prolac that is readable, extensible, and can communicate with other TCPs.

Contributions of this thesis include:

• The design of the Prolac language, including the novel concepts of module
operators and implicit rules.

• Implementation of prolacc, the Prolac compiler, including algorithms necessary
for compiling the Prolac language and methods for generating high-quality,
high-level C code.

• A TCP specification which demonstrates that a Prolac program can be both
readable and extensible without serious overhead. We are optimistic that fu-
ture work will show that our Prolac TCP can be made as fast as most TCP
implementations hand-written in C.

Future work on this project will include:

• Designing and implementing multiple inheritance.

• Enhancing prolacc’s error recovery.

• Implementing further optimizations.

• Writing specifications for other protocols.

• Completing and refining the Prolac TCP specification.

• Making a detailed performance analysis of the TCP specification.
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1 Introduction

This is a draft of the Prolac language reference manual.
Prolac is an object-oriented language designed for creating
efficient but readable protocol implementations. This draft
does not always precisely define Prolac’s versions of conven-
tional concepts; we will address this issue in a later version
of the manual.

After a brief section on lexical analysis, the manual is
structured in a top-down fashion: the largest Prolac struc-
tures, modules, are discussed first, while types and expres-
sions are saved for last.

A Prolac specification is stored in a single file; the Prolac
compiler reads the file, analyzes it, and produces two output
files in the C language. The first output file is a header file
containing C structure definitions corresponding to Prolac
structures; the second is a C source file containing defini-
tions for any exported Prolac rules (§5.5).

Prolac constructs are completely order-independent:
anything can be used before it is declared or defined. Thus,
Prolac input files can be structured top-down, bottom-up,
or however you like.

1.1 Terminology

A name is either a simple name—that is, a name with one
component, or, equivalently, an identifier—or a member
name, which is a member expression ‘X.n’ (§9.7) where
‘X’ is a name. (Note that a pointer-to-member expression
‘X−>n’ is not a name.) A name which is not simple is also
called a qualified name.

A feature is simply something that has a name. Mod-
ules (§3), namespaces (§4), rules (§5), and fields (§6) are
features.

2 Lexical analysis
Prolac programs are stored as a sequence of ASCII char-
acters, which are interpreted as the following sections de-
scribe.

2.1 Whitespace and comments

As in C, whitespace—comments as well as spaces, hori-
zontal and vertical tabs, formfeeds, carriage returns, and
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newlines—is ignored except as it separates other tokens.
Prolac supports both C’s comment syntax ‘/* ... */’ and C++’s
‘// ... newline’.

2.2 Identifiers

An identifier is an arbitrarily long sequence of letters, digits,
underscores, and hyphens ‘−’, which tend to enhance read-
ability. Identifiers must start with a letter or underscore; an
identifier cannot contain two consecutive hyphens or end
in a hyphen. For example:

a−pretty−long−identifier � one identifier
−23x x−23 � ‘− 23 x x−23’
x−− � ‘x −−’

Identifiers which differ only in substituting hyphens for
underscores and vice versa are considered identical; thus,
‘one−thing’ and ‘one thing’ are the same identifier. (In gen-
erated C code, Prolac substitutes underscores for all hy-
phens.)

Identifiers containing double underscores ‘ ’ or an equiv-
alent (‘− ’, ‘ −’) are reserved for the implementation.

2.3 Keywords

The following identifiers are reserved for use as keywords,
and may not be used otherwise:

all field notusing true
allstatic has outline uchar
bool hide rename uint
char if self ulong
constructor in seqint ushort
else inline short using
elseif int show void
end let static
export long super
false module then

These single characters serve as operators or punctuation:

! % ^ & * ( ) − + = { } | ~
[ ] \ ; ’ : ” < > ? , . /

These multi-character sequences are also single tokens:

−> ++ −− :> << >> <= >= ==
!= && || += −= *= /= %= ^=
&= |= <<= >>= ==> ||| ::= %{ %}

2.4 Numbers and literals

Prolac’s definitions for number, string, and character liter-
als are the same as C’s. However, Prolac does not support
floating-point types or values, so any floating-point literal
encountered is an error. The current prolacc compiler does
not really support string or character literals either.

2.5 Preprocessing

Although the Prolac language is preprocessing-neutral—it
does not require or encourage any preprocessing phase—
the prolacc compiler does have some features to facilitate
preprocessing Prolac files with cpp, the C preprocessor. In
particular, the lexer understands ‘# line’ directives: any error
messages will have appropriate line numbers. Prolacc also
generates ‘# line’ directives in its C output files.

2.6 Including C code

C code may be included in a Prolac file in two ways. First,
C blocks (§9.6) occur within rule bodies, where they spec-
ify code to run during the rule’s execution. An open brace
‘{’ within an expression introduces a C block; to read the
C block, the lexer copies characters without interpretation,
respecting nested braces, until the next unbalanced ‘}’ char-
acter not in a string or character literal or a comment.1 C
blocks can refer to some Prolac objects using Prolac names;
see §9.6 for details.

The ‘%{’ and ‘%}’ operators specify support C code not
relating to any rule; support C code is passed unchanged to
the output file at file scope. Support C code cannot refer to
any Prolac objects using Prolac names.

‘%{’ can occur wherever a definition is expected; the lexer
then copies characters without interpretation until the next
‘%}’ sequence not in a string or character literal or a com-
ment. Note that support C code can therefore contain un-
balanced braces.

Support C code occurring in the input file before any ac-
tual Prolac code is collected, in order of definition, and
placed in the output C source file before any Prolac-
generated code. All other support C code is collected in
order of definition and placed at the very end of the output
source file.

3 Modules

Modules are Prolac’s basic means of organizing programs.
Modules contain rules (§5), which represent computation,
and fields (§6), which represent data. Each module is also a
namespace (§4). A module is wholly self-contained; it must
explicitly import other modules if it wants to refer to them
(§3.3). Modules can be subtypes of other modules (§3.2). A
module can have a special rule which initializes objects of
its type (§5.3). Module definitions cannot be nested.

A module definition looks like this:

1. As of this writing, the prolacc compiler will be confused by ‘{’ and
‘}’ characters in string or character literals or comments.
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module name [:> parents...] [has imports...] {
...features...

}

3.1 The module header

The module header defines the interface between a module
and the rest of the program. The interior of a module can
only refer to other modules if they have been explicitly
specified in the module header.

The module header has two parts, parents and imports.
Each part is a comma-separated list of module expressions,
where a module expression is a module name possibly mod-
ified by module operators (§3.4).

The names of parents and imports must be distinct;
specifically, the rightmost components of all parent and im-
port names must be distinct. These name components can
be used within the module to refer to the parents and im-
ports. Thus, this example is illegal:

Alice {
module M { ... }

}
Bob {
module M { ... }

}
module N has Alice.M, Bob.M {
// error: two definitions for ‘M’

}

Use module equations (§3.4.1) to get around this restriction.

3.2 Supertypes

A module may have any number of supertypes, which must
be other modules. The supertype relation is transitive: if A
is a supertype of B and B is a supertype of C, then A is a
supertype of C. A module’s immediate supertypes, which
are explicitly listed in its module header, are also called its
parents.

[Implementation note: We have not yet completed the
definition of multiple inheritance in Prolac. The prolacc
compiler works only with single inheritance as of this writ-
ing, and some other parts of this manual (e.g., §5.2) also
assume single inheritance.]

A module inherits its supertypes’ features—i.e., their im-
ports, fields, namespaces, and rules. Each parent’s features
are generally available without qualification under their own
names, as if the module’s definition was inserted into the par-
ent’s definition; see §4.5.1 for a detailed description of how
parents’ namespaces are combined into a module’s name-
space.

Supertypes interact with the Prolac type system (§8).
Specifically, if P is a supertype of M, then M may be used
wherever P is; or, in notation, M :> P (§8.7).

A module can override some of its supertypes’ rules; on
an object of that module type, the overriding definitions will
be used whenever the parents’ overridden rules are called.
This process, called dynamic dispatch, is described in §5.2.

It is not an error to explicitly mention another parent’s su-
pertype as a parent. This is not actually multiple inheritance;
only one copy of the supertype in question is inherited. For
example, this is legal:

module M { ... }
module N :> M { ... }
module O :> M, N { ... }

This can be useful to redefine some of M’s module
operators—for example, its inline levels (§9.9.1).

3.3 Imports

To gain access to a module M which is not one of its su-
pertypes, a module must list M as an import in its mod-
ule header’s has clause. Imports’ features are generally not
available under their own names—the importing module
must qualify them through the import’s name (but see §5.4).
Imports do not interact with the Prolac type system; if M
imports I, it is not true that M :> I.

3.4 Module operators

Prolac has a powerful collection of module operators, which
are simply operators that act on modules instead of val-
ues. There are operators that control a module’s name-
space (hide, show, and rename; §4.6), operators that con-
trol how implicit rules (§5.4) are found (using and notus-
ing; §5.4.3), and an operator controlling how rules are in-
lined (inline; §9.9.1).

A module operator expression has a module value; thus,
module operators may be used anywhere a module is ex-
pected. A module’s creator can suggest how the module
should be used with module operators; the module’s user
can use the same syntax to define how it actually will be
used. For example, a module’s creator might suggest which
rules should be inlined and hide any rules not in the normal
interface; its user might force a different set of rules to be
inlined, and specify which of the module’s rules are to be
used during implicit rule lookup.

Each module operator described in this manual changes
how a module is perceived—its namespace, its exported
rules, its preferred inline levels—without changing the
module itself. In particular, this means that two module ex-
pressions differing only in module operators have the same
type.

The individual module operators are described elsewhere
in the manual, closer to the features they affect.
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3.4.1 Module equations

A module equation defines a module as an abbreviation for
applying module operators to another module. The syntax
is:

module new−module ::=
old−module [module operators...] ;

Other modules can then refer to new−module as an abbrevi-
ation for ‘old−module module operators...’. A module equation
does not define a new type.

3.4.2 After-module operators

A module’s creator can apply module operators to the mod-
ule by placing them directly after the module definition.
For example:

module M {
interface−rule ::= ...;
impl−rule−1 ::= ...;
impl−rule−2 ::= ...;

} hide all show interface−rule;

A module definition with after-module operators ‘module
M { ... } operators’ is effectively equivalent to this definition
with a module equation:

module “M” { ... }
module M ::= “M” operators;

4 Namespaces

A namespace is a container mapping names to features.
The most common examples of namespaces in Prolac are
modules—each module defines a namespace. The program-
mer can also create explicit namespaces, either outside all
modules (to organize modules into groups) or within a mod-
ule (to organize rules into groups).

Namespaces may be nested; thus, a namespace may have
a parent namespace which is used during name lookup.
Most namespaces are open; in other words, you can define
a namespace in parts through several definitions. (Module
namespaces are not open: each module namespace is de-
fined in exactly one place.)

4.1 Explicit namespaces

Namespaces are introduced simply by following the name
of the namespace by an open brace ‘{’:

namespace−name {
...features...

}

4.2 Name lookup

When a simple name n is used, Prolac searches for n in the
current namespace, then in its parent, then its grandparent,
etc.; the first definition found is used. If no definition is
found, the lookup fails.

When a member name ‘X.n’ is used, Prolac first looks up
the name X in the current namespace; the result’s type must
be a namespace. After this, Prolac looks for n in X’s name-
space: no recursive search is performed. If no definition is
found, the lookup fails. This algorithm is described in more
detail in §9.7.

A name which defines a Prolac feature is treated differ-
ently; see §4.2.2 below.

4.2.1 Global names

The direct member operator ‘.’ can also be used as a prefix;
for example, ‘.M’ is a name. To look up a name ‘.n’, Prolac
first finds the current most global namespace, GS. Within a
module, the most global namespace is the module’s top-level
namespace; outside any module, it is the file namespace.
Once it has found GS, the name lookup proceeds as if the
expression was ‘GS.n’. This syntax allows an expression in an
inner namespace to refer to features in an outer namespace,
whether or not their names have been reused in the inner
namespace.

4.2.2 Defining names

A name used to define a Prolac feature is treated differently
than a name used to refer to a Prolac feature. This example
illustrates where defining names occur:

module DN1 { // module definition
DN2 { // namespace definition

DN3 ::= ...; // rule definition
field DN4 :> ...; // field definition

}
} rename (DN5 = ...);
// module operators that create names

A definition ‘n1...nk� F’ is an abbreviation for a definition
within nested namespaces, ‘n1 { ... { nk� F } ... }’. Thus, these
two examples are completely equivalent:

module Package.M {
internal.rule ::= ...;

}
Package {
module M {

internal {
rule ::= ...;

}
}

}
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Because namespaces are open, the intermediate names-
paces created by such a definition can be extended by other
namespace definitions.

Note that the usual search algorithm for simple names
(i.e., search the current namespace, then its parent, etc.)
does not apply when a name is being defined. A definition
‘n1 � F’ always means “bind n1 to F in the current name-
space”.

4.2.3 Explicit supertype overrides

Consider a feature definition at the top level of a module
M. If the first component of the defining name is the name
of one of the module’s supertypes, S, this definition is an
explicit supertype override and is treated specially by Prolac.
The remainder of the defining name is looked up in S’s
complete namespace (§4.4); thus, any name defined by S
can be overridden, regardless of whether or not it is visible
in M.

An explicit supertype override cannot introduce new
names into S’s namespace: it can only override existing
names in S. Since fields cannot be overridden, this means
that explicit supertype overrides must refer to rules.

The body of a rule defined as an explicit supertype over-
ride is resolved in a special namespace. This namespace lay-
ers S’s complete namespace, with any intermediate names-
paces referred to in the defining name, over M’s top-level
namespace. Thus, names are looked up as if the rule had
really been defined in S, except that if a name cannot be
found, M’s top-level namespace is checked before an error
is reported.

Here is an example of an explicit supertype override.

module S {
override−me ::= ...;
x ::= 97;

} hide all;
module M :> S {
m−rule ::= ...;
x ::= ...;
S.override−me ::= x, // finds S.x

m−rule; // finds M.m−rule
}

4.2.4 Notes

Prolac allows rules which take no arguments to be called
without parentheses (§9.2). This means that an expression
which looks like a name may actually contain rule calls; for
example:

module M1 {
a.b.c.d.e ::= ...;
test ::= a.b.c.d.e; // really just a name

}

module D {
d.e ::= ...;

}
module M2 has D {
a :> M2 ::= ...;
b.c :> D ::= ...;
test ::= a.b.c.d.e; // not just a name!
// same as:
test−2 ::= let temp1 :> M2 = a() in

let temp2 :> D = temp1.b.c() in
temp3.d.e()

end end;
}

These name-like expressions are not allowed where a name
is required; for example, ‘M2.a.b.c.d.e’ cannot be hidden by
the hide module operator.

4.3 Module namespaces

Each module is a namespace. A module namespace is sealed
off from surrounding namespaces; in other words, it has no
parent. To illustrate:

module Find−Me { ... }
N {
... Find−Me ... // finds Find−Me

}
module M {
find−me−2 ::= ...;
inner {

... find−me−2 ... // finds M.find−me−2
}
... Find−Me ... // does not find Find−Me

}

The outside world—specifically, other modules—can only
be reached through a module’s parents and imports, which
the module explicitly declares in its module header (§3.1).
This means that a module interior is completely self-
contained and relatively insulated from the effects of other
modules’ name changes: only the module header needs to
be changed.

4.4 Complete and default namespaces

Each module M has a complete namespace, which is the
namespace seen inside the definition of M. It contains a
union of M’s parents’ complete namespaces, as well as every
rule, field, and nested namespace defined in M, and every
implicit rule (§5.4) used by M. While module operators may
rename or hide some features from a module’s complete
namespace, the complete namespace is always accessible
through the special syntax ‘module−name.all’. Thus:
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module M {
x ::= ...;

} hide all;
module N :> M {
y ::= x, // error: no definition for implicit rule ‘x’

M.x, // error: ‘M’ has no ‘x’ feature
M.all.x; // OK

}

Most clients of M see a different namespace, M’s de-
fault namespace. M’s default namespace is equal to the its
complete namespace with all the implicit rules hidden and
any after-module operators (§3.4.2) applied. (Note that the
after-module operators might show some of the implicit
rules again.) The default namespace is the namespace found
when you refer to a module without further qualification.

4.5 Creating the complete namespace

A module M’s complete namespace R is created by merging
all of M’s parents’ complete namespaces, and then merging
M’s internal namespace into that. Finally, any implicit rules
referred to in M are stored in M’s top-level namespace.

Imports coming from M’s parents are not merged into
the complete namespace. Name conflicts during the merg-
ing process are generally an error, unless the two names
intuitively refer to the same feature (the same supertype or
the same rule).

The remainder of this section describes this process in
more precise detail.

4.5.1 Parents

If M has parents P1, . . . , Pk, we first recursively create their
complete namespaces, then combine these into a new result
namespace R.

We do not actually combine all of the parents’ features
into the result namespace. Specifically, we omit all imports
and all constructors.

Of course, there may be name conflicts when combining
namespaces (two features with the same name coming from
different parents). We now consider how a conflict is re-
solved, considering only a two-feature conflict—specifically,
a conflict where a feature F1 from parent P1 and a feature F2
from parent P2 are inherited under the same name. (Three
or more conflicting features are handled in essentially the
same way.) There are four cases:

1. If F1 and F2 refer to the same feature, no error is
reported. This can happen when F1 and F2 both inherit
a feature from a mutual supertype.

2. If F1 and F2 are supertypes of P1 and P2, respectively,
and they refer to the same module, no error is reported.

3. If F1 and F2 are both namespaces, then R inherits one
namespace with the combined contents of F1 and F2.
Conflicts found when combining these namespaces are
resolved using this algorithm.

4. Otherwise, an error is reported.

4.5.2 Imports and parents

After creating the merged namespace R, we combine it with
features representing M’s parents and imports.

Each parent or import is imported under a simple name,
N, which is the rightmost component of its module name.
The complete namespace for M will have a feature named
N representing that parent or import.

Any conflict between a feature FP, inherited in the last
stage from some parent P, and FM, a parent or import being
added, is resolved silently in favor of FM (i.e., FM replaces
FP in R).

4.5.3 The internal namespace

After creating R, we merge M’s internal namespace, I, into
it. A module’s internal namespace contains only the defini-
tions the user explicitly provided when defining the module;
in particular, changing a module’s module header does not
change its internal namespace. Again, there may be con-
flicts; conflicts between two features FR, from R, and FI,
from I, are resolved as follows:

1. If FR and FI are both rules, then the rule FI overrides
the rule FR; there is no conflict. See §5.2 for details on
overriding.

2. If FR and FI are both namespaces, the contents of FI
are merged into FR. Conflicts found during the merge
are resolved using this algorithm.

3. If FR is an supertype and FI is a namespace, then the
user has given an explicit supertype override for super-
type FR (§4.2.3). We look up FR’s complete namespace
C, and merge FI into C. The merging process uses this
algorithm, except that all names in FI must already ex-
ist in C: that is, it is an error for there not to be a name
conflict.

4. Otherwise, an error is reported. If FR was inherited
from some parent (i.e., it is not one of M’s parents or
imports introduced in §4.5.2), FI replaces FR.

4.5.4 Implicit rules

Finally, all rules that were defined in M have their body
expressions scanned for implicit rules. If any simple name
in a rule body cannot be found through the usual namespace
search, it means that name is an implicit rule (§5.4) attached
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to some field or import; its definition will be found later. The
name in question is defined in R as a new implicit rule.

The resulting namespace R is M’s complete namespace.

4.6 Namespace module operators

This section describes the three module operators which
affect module namespaces: hide, show, and rename.

4.6.1 ‘hide’

The hide operator hides some of a module’s names. The left
operand to hide is a module specification; the right operand
is a name, a comma-separated list of names,2 or ‘all’, which
hides all of the module’s names. Some examples:

M hide internal−operation
M hide (evil, kill, horrible.death, maim)
M hide all

It is an error to attempt to hide a name through a super-
type or import; for example, this is an error:

module A {
x ::= ...;

}
module B :> A {
}
... B hide A.x ... // illegal!

Note that hidden names are still available by explicit qual-
ification through the module’s complete namespace (§4.4).

4.6.2 ‘show’

Show is the converse of hide. Hide makes names from the
complete module namespace inaccessible; show makes hid-
den names accessible again.

The left argument to show is a module specification; the
right argument must be a list containing any number of
names ‘n’ and name assignments ‘(new = old)’.3 A name ‘n’
is essentially equivalent to the name assignment ‘(n = n)’.

To evaluate a show operator applied to a module M, Pro-
lac first looks up the old name, ‘old’, in M’s complete name-
space (i.e., as if through ‘M.all’). This name may be further
qualified through M’s supertypes. This must result in a fea-
ture F.

Prolac then evaluates the new name ‘new’ in M’s current
namespace. This name must not be qualified through M’s
supertypes and imports.4 It is an error if a feature with this

2. Such a list must be enclosed in parentheses because of module
operators’ high precedence.

3. Again, the parentheses are necessary.
4. A show operation ‘M show A.n’—that is, where there is only one

name, and it is qualified through an supertype or import—is not an error;
it is equivalent to ‘M show (n = A.n)’.

name already exists; otherwise, Prolac binds F to this name
in the resulting module.

It is an error to show a module’s constructor in a nested
namespace or under a name other than constructor.

Note that show can be used to make a single feature
available under multiple names; for example:

module M {
bad ::= ...;

}
module M2 ::= M show (good = bad);

Since M2.bad and M2.good are the same feature—not two
copies of a feature—overriding either one will effectively
override them both.

Because old names are looked up in the module’s com-
plete namespace, renamed features cannot be hidden and
then shown; this code will not work:

module M { r ::= ...; }
module N :>

M rename (r = weird)
hide weird // OK
show weird // error: no weird in M
show r // OK

{}

The ‘show all’ operation is not yet implemented.

4.6.3 ‘rename’

Rename changes the name you use to access a feature.
The left operand must be a module specification; the right
operand must be a name assignment ‘(new = old)’ or a list
of name assignments.

‘M rename (new = old)’ is equivalent to ‘M show (new = old)
hide old’. It is an error for either old or new to be qualified
through supertypes or imports. It is an error to attempt to
rename a module’s constructor, or to give a new name which
conflicts with an existing name.

4.6.4 Usage commentary

The namespace module operators are powerful tools—
perhaps too powerful: I am worried about their misuse.
Particularly dangerous is the ability to change a module’s
namespace arbitrarily with show and rename. While this is
useful when fitting one module to another, incompatible
interface and when resolving multiple inheritance conflicts,
other solutions might be cleaner in the long run.

A reasonably careful discipline for using the namespace
module operators might be as follows:

1. Never hide or show names in a nested namespace.
Instead, hide or show the whole nested namespace.5

5. The original definition of Prolac enforced this restriction, which
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2. Never use show to change a feature’s name.

3. Never use rename. Instead, use hide and explicit su-
pertype overrides (§4.2.3), or forwarding methods. For
example, here is a multiple inheritance conflict solved
using all three methods:

module A {
x ::= ...;

}
module B {
x ::= ...;

}
module C :> A, B { } // conflict on ‘x’

// rename solution:
module C2 :> A rename (x = a−x),

B rename (x = b−x) { }

// Explicit supertype override solution:
module C3 :> A hide x, B hide x {
// submodules use A.all.x and B.all.x

}

// Forwarding solution:
module C4 :> A hide x, B hide x {
a−x ::= A.all.x;
b−x ::= B.all.x;
// submodules override A.all.x and B.all.x
// but refer to a−x and b−x

}

Another forwarding scheme allows submodules to
override a−x and b−x as well as refer to them, but
at the cost of one more dynamic dispatch per call of
A.x or B.x in a supertype:

module C5 :> A hide x, B hide x {
A.x ::= a−x;
B.x ::= b−x;
a−x ::= super.A.all.x;
b−x ::= super.B.all.x;

}

5 Rules

A Prolac program organizes code by dividing it into rules.6

Like functions in most programming languages, rules can
take parameters and can return a value. Rules can call one
another, possibly recursively.

we may reenforce.
6. This unorthodox terminology is mostly due to Prolac’s prehistory

as a yacc-like language.

Rules can be static or dynamic. Static rules are equiva-
lent to normal functions. Dynamic rules are called with an
implicit reference to some object of module type; thus, dy-
namic rules are like most object-oriented languages’ meth-
ods.

A module may provide new definitions for some of its
supertypes’ dynamic rules. This process is called overriding
the supertypes’ rules. When an overridden rule is called on
an object with that module’s type, the call will be handled by
the new, overriding definition instead; this is called dynamic
dispatch.

Each rule has an origin, which is the module that provided
the first, non-overriding definition for the rule. Each rule
definition comes from some module, which is called its
actual. For example:

module M {
r ::= ...; // origin = M, actual = M

}
module N :> M {
r ::= ...; // override: origin = M, actual = N

}

Rule definitions look like this:

rule−name(parameters...) :> return−type ::= body ;

Each parameter has the form name :> type. If there are no
parameters, the parentheses may be omitted. If the return
type is bool (§8.4), ‘:> return−type’ may be omitted. Body is
an expression (§9); it may be omitted, in which case any
call of the rule will result in a run-time error.7 Here is the
shortest rule definition possible:

x::=;

Static rule definitions have a static keyword before the
rule name.

5.1 Static and dynamic rules

A dynamic rule defined in module M is called with reference
to some object whose type is either M or one of M’s subtypes.
Within the rule body, this object is called self. Any dynamic
rule call must provide a value for self; this is done with
member operator syntax (§9.7). The intuition is that the
rule is also a member of the module. For example:

module M {
r ::= ...;

}
module N has M {
... let m :> M in

m.r
end ...

}

7. Such a rule can still be overridden, however.
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It is an error to refer to a dynamic rule without reference
to an object. This is a special case of the rules for static and
dynamic context described in §9.7.

Within a dynamic rule, ‘self.’ can be elided in field and
rule references. For example, these two rule definitions are
identical:

module M {
rule ::= ...;
field f :> ...;
d1 ::= self.rule, self.f;
d2 ::= rule, f;

}

It is an error to refer to a dynamic rule or field in a static
rule, unless the rule or field is accessed through an object.

5.2 Overriding and dynamic dispatch

A rule declared with the same name as a supertype’s rule
is an overriding rule. The exact algorithm for determining
whether a rule is an override is described in §4.4 (specifi-
cally, §4.5.3); this section describes the semantics of over-
riding.

Only dynamic rules may be overridden. It is an error to
attempt to override a static rule.

5.2.1 Correctness

An override of rule RA by rule RB is correct only if RB’s
signature8—i.e., the number and types of its parameters and
its return type—agree with RA’s by the usual contravariance
rule. Specifically:

1. RA and RB must take the same number of parameters.

2. For corresponding parameter types PA and PB, we
must have PB :> PA; that is, PA and PB are equal, or PB
is a supertype of PA. Thus, the overriding parameters
are the same as, or more general than, the overridden
parameters. This ensures that any value passed as a
parameter to RA is also valid as a parameter to RB.

3. For the rules’ return types TA and TB, we must have
TA :> TB; that is, TA and TB are equal, or TB is a subtype
of TA. Thus, the overriding return type is the same as,
or more specific than, the overridden return type.

It is an error to define an incorrect override.

8. When and if Prolac supports rule types, we will say “RB’s type”
here.

5.2.2 Rule selection

The process of deciding which actual rule definition to use
for a given rule call is called rule selection. Rule selection
depends on only one factor: the run-time type of the object
which will become the rule’s self.

In Prolac, an object of type M, where M is a module, can
be used in place of any of M’s supertypes. Therefore, an
object’s run-time type, or the actual type of the object used
at run time, can differ from its static type, or the type used
to declare the object.

For objects of simple module type, the static type is always
identical to the dynamic type; Prolac’s semantics are call-
by-value, like C, rather than call-by-object, like Clu. For
example:9

module M { ... }
module N :> M { ... }
module U has M, N { ...
let m :> M, n :> N in

m = n // This assignment actually copies
// the M part of n’s state into the m object!
...

}

An object’s static and dynamic types can differ only if the
object is referenced through a pointer (§8.6), or the object
is self.10 For example:

module M {
r ::= ...;

}
module N :> M { ... }
module U has M, N { ...
let m :> *M = ..., n :> *N = ... in

m = n, // *m has static type M but dynamic type N,
// as the m pointer actually points to the n object.
m−>r // Within r, self will have dynamic type N.
...

}

The rule selected for a rule call O.r depends then on the
run-time type of O. Let the run-time type of O be T; then
we select the most specific definition for r existing in T and
its supertypes. A more precise definition follows:

Consider all possible definitions for r coming from T and
all of its supertypes. Let these definitions be d1, . . . , dk,
coming from modules M1,. . . , Mk. We only consider sin-
gle inheritance here; therefore, the modules M1,. . . , Mk
must form a total order under the supertype relation. Let

9. As of this writing, the prolacc compiler cannot handle object as-
signment of subtypes to supertypes. This example and any similar example
(e.g., parameter passing) will result in bad C code being generated.

10. Unlike any other value, self is actually a reference. We are con-
sidering adding reference types to Prolac, however.
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Ms 2 fM1,. . . , Mkg be the most specific module in this
order—that is, we have Ms :> Mi for all Mi 2 fM1,. . . , Mkg.
The definition selected for the rule call is then ds, the rule
definition from Ms.

5.2.3 ‘super’

A module can specify that its immediate supertypes’ defini-
tion for a rule be used by calling the rule through the special
object super. For example:

module One {
f :> int ::= 1;

}
module Two :> One {
f :> int ::= 1 + super.f; // returns 2

}
module Three :> Two {
f :> int ::= 1 + super.f; // returns 3

}

Except for its behavior in relation to dynamic rules, super
acts exactly like self.

Any dynamic rule in the module can use super to call
any inherited rule; it is not limited to calling the supertypes’
version of the current rule. For example:

module One ... // same as above
module Two :> One {
f :> int ::= 2;
old−f :> int ::= super.f; // returns 1

}

Note that super is very different from calling a rule
through the module’s parent references. Calling a rule
through a parent reference still refers to the most specific
definition of the rule; for example:

module One ... // same as above
module Two :> One {
f :> int ::= 2;
test ::= f, // calls Two.f

One.f, // also calls Two.f
super.f, // calls One.f
super.One.f; // also calls One.f

}

It is not immediately clear how to generalize super for
multiple inheritance.

5.3 Constructors

Each module may contain a special rule, called its construc-
tor, which is called when objects of the module type are
created. (See §9.2.2 for more information on when con-
structors are called.) The constructor is distinguished by

its name, which is the keyword ‘constructor’. A constructor
must appear in the module’s top-level namespace; it must
not be static and must not define a return type, but it can
take parameters.

The body of a constructor rule is parsed slightly differ-
ently than those of normal rules. It consists of zero or more
parent constructor expressions separated by commas, fol-
lowed by a normal expression. A parent constructor expres-
sion is just a constructor call (§9.2.2) for one of the module’s
parents; it allows the subtype to give any necessary argu-
ments for the parents’ constructors. For example:

module Friends {
field num−friends :> int;
constructor(f :> int) ::= num−friends = f;

}
module Friends−and−Enemies :> Friends {
field num−enemies :> int;
constructor(f :> int, e :> int) ::=

Friends(f), // parent constructor expression
num−enemies = e;

}

In a normal context, the subexpression ‘Friends(f)’ would
have no visible effect; it’d create a new Friends object, then
throw away the result. As a parent constructor expression,
however, it does have a visible effect—specifically, initializ-
ing self.num−friends.

If a parent is not mentioned in the parent constructor
expressions, its constructor is called without arguments. It
is an error to omit a parent constructor expression for a
parent that requires arguments.11

If no constructor is provided for a module, Prolac will
generate a default constructor which calls any necessary
parent constructors, but does nothing else. Exactly one of
the module’s parents’ constructors may take arguments in
this case; if so, the generated constructor will take the same
number and types of arguments and pass them to that su-
pertype’s constructor.

The prolacc compiler does not currently generate any
necessary constructor calls for a module’s fields. In future,
parent constructor expressions will be generalized to sup-
port field initialization as well as parent initialization.

5.4 Implicit rules

Explicit rules are rules the user explicitly defines. Implicit
rules, on the other hand, are created automatically when
a Prolac expression refers to an undefined name (§4.5.4).
The compiler will fill in the implicit rule’s definition by
looking through the module’s fields and imports, subject to

11. As of this writing, prolacc implements neither default parent
constructor call, nor the necessary checks on omitted constructors.
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any using and notusing module operators, until it finds a
rule with the same name. Implicit rules can considerably
simplify the text of a module by eliding frequently-used
object or module names.

A motivating example seems in order. Consider a module
Segment−Arrives implementing part of the TCP protocol.
This module will frequently refer to the current transmis-
sion control block, tcb, which has type *Tcb. Here is a partial
definition for a hypothetical Tcb module:

module Tcb {
field state :> int;
field flags :> int; ...
// Which state are we in?
listen ::= state == 0;
syn−sent ::= state == 1;
syn−received ::= state == 2;
...

}

Now, how should we implement Segment−Arrives? We
want to divide computation into many small rules, so we
could make tcb a parameter to each; however, passing the
parameter would quickly become tiresome. Therefore, we
make tcb a field in Segment−Arrives. Here is a sample of
what our code might look like, considerably simplified for
didactic purposes:

// Example 1
module Segment−Arrives has Tcb {
field tcb :> *Tcb;
// constructor sets tcb
check−segment ::=

(tcb−>listen ==> do−listen)
|| (tcb−>syn−sent ==> do−syn−sent)
|| (tcb−>syn−received ==> do−syn−received)
|| (tcb−>established ==> do−established)
...; // and much more!

}

The repetition of ‘tcb−>’ is tedious and hinders quick com-
prehension of the code. We know Segment−Arrives deals
with only one tcb; why should we have to tell the compiler
which tcb we mean again and again?

One solution is to generate forwarding rules in Segment−
Arrives. We hide these forwarding rules using after-module
operators (§3.4.2), since they are artifacts of the implemen-
tation.

// Example 2
module Segment−Arrives has Tcb {
field tcb :> *Tcb;
check−segment ::=

(listen ==> do−listen)
|| (syn−sent ==> do−syn−sent)

...;
listen ::= tcb−>listen;
syn−sent ::= tcb−>syn−sent;
...

} hide (listen, syn−sent, ...);

This is better; however, the forwarding rules clutter the
module definition and, again, are tedious and error-prone
to write.

The solution in Prolac is to use implicit rules. We use the
using module operator (§5.4.4) to open tcb for implicit rule
search. When the compiler creates Segment−Arrives’s com-
plete namespace, it searches its rules for undefined names,
entering them in Segment−Arrives’s top-level namespace
as undefined implicit rules. Later, it creates their defini-
tions through a search process. It marks the implicit rules
as highly inlineable and hides them in the default name-
space. Thus, the compiler transforms the following code
into something like Example 2:

// Example 3
module Segment−Arrives has Tcb {
field tcb :> *Tcb using all;
check−segment ::=

(listen ==> do−listen)
|| (syn−sent ==> do−syn−sent)
...;

}

Example 3 is, in a sense, optimal: nothing distracts the
reader from exactly what the module is doing.

This example has demonstrated that implicit rules can
make code more readable rather than less. Overuse of im-
plicit rules can make code very difficult to understand, how-
ever; moderation is required, as with any powerful tool.

Note that only rules can be found implicitly: referring to
a field requires explicit syntax.

The remainder of this section describes the various mech-
anisms supporting implicit rules, specifically the implicit
rule search algorithm and the using and notusing module
operators.

5.4.1 Implicit rule search

Prolac allows implicit rules to be found in a module’s super-
types. Therefore, this example will work:

module I {
implicit ::= ...;

}
module S has I using all { }
module M :> S {
... implicit ... // finds I.implicit

}
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This is necessary behavior; consider, for example, inheriting
from a module in order to extend it—not being able to refer
to implicit names which the parent module used would be
very counterintuitive. Unfortunately, this seriously compli-
cates implicit rule search. The following algorithm never-
theless provides relatively few surprises.

To find an implicit rule named n in module M, a breadth-
first search is performed. First all of M’s imports and fields
are checked for a top-level rule named n; then all M’s par-
ents’ imports and fields; then all M’s grandparents’ imports
and fields; and so on.

The algorithm finds a definition for n in some import or
field iff:

1. That import or field has a module or pointer-to-module
type;

2. That module has a top-level visible rule or namespace
call (§9.2.1) named n; and

3. A ‘using n’ or ‘using all’ directive (§5.4.4) is in effect on
that module.

A warning is given if, at any point during the search, the
algorithm finds a field or a namespace that cannot be
called (§9.2.1) instead of a rule.

If two or more rule definitions for n are found in the same
generation of the search, the implicit rule is ambiguous and
an error is reported. For example, if two of M’s fields define
n, n is ambiguous; but also, if M has two parents P1 and P2
which both have a field defining n, then n is ambiguous, and
so on.

If a unique definition for n is found in any generation of
the search, that definition is used. A warning is given if no
definition is found; calling an undefined implicit rule will
result in a run-time error.

There are some caveats. First, if any parent (grandpar-
ent, etc.) is closed off to implicit rule search by an explicit
‘notusing all’, neither that parent nor its supertypes are
searched.

Second, only static rules (§5.1) are considered in imports,
and only dynamic rules are considered in fields. Thus, there
is no ambiguity in this example:

module I {
dyn ::= ...;
static stat ::= ...;

}
module M has I using all {
field f :> I using all;
test ::=

dyn, // unambiguously f.dyn (I.dyn not considered)
stat; // unambiguously I.stat (f.stat not considered)

}

5.4.2 Implicit rule definitions

Once the compiler finds an unambiguous definition D for an
implicit rule named n, it writes a forwarding definition for
n which simply calls D. The forwarding definition depends
on the type of D: specifically, the new definition takes the
same number parameters with the same respective types as
D, and returns the same type.

If D was found in an import I, the definition will look like
this:

static n(parameters) ::= I.n(parameters);

If D was found in a field f, there are two possibilities, de-
pending on whether f has pointer-to-module type:

n(parameters) ::= f.n(parameters);
n(parameters) ::= f −>n(parameters);

5.4.3 Implicit rule module operators

The user controls implicit rule search through the using and
notusing module operators.

5.4.4 ‘using’

The using operator makes a module’s names available for
implicit rule search. Its left operand must be a module
expression; its right operand must be a list of simple names
(qualified names can never be implicit rules, anyway), or
either ‘all’ or ‘allstatic’.

Here is a simple example:

module M {
static r ::= ...;

}
module U has M {
... r ... // error: undefined implicit rule

}
module U2 has M using r {
... r ... // OK

}

‘using all’ makes all of a module’s top-level names avail-
able for implicit rule search, while ‘using allstatic’ makes all
of a module’s static top-level names available for implicit
rule search.

Note that any field module types are actually references
to a module’s import list. This can lead to more effective
using directives than you want:

module U1 has M using all {
field m1 :> M;
field m2 :> M;

}
// is equivalent to...
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module U2 has M using all {
field m1 :> M using all;
field m2 :> M using all;

}

Any reference to a dynamic implicit rule from M will result
in an ambiguity between m1’s definition and m2’s. To fix this
situation, use notusing, or say ‘using allstatic’ in the module
header instead of ‘using all’.

5.4.5 ‘notusing’

The notusing operator hides a module’s names from implicit
rule search. Its left operand must be a module expression;
its right operand must be a list of simple names or ‘all’. (You
can’t say ‘notusing allstatic’.)

5.4.6 Notes

Once they are defined through the implicit rule search de-
fined above, implicit rules are treated identically to normal
rules by the language. In particular, this means that implicit
rules can be overridden in a module’s subtypes. This will
not normally happen because implicit rules are hidden by
default, but does enhance Prolac’s flexibility.

5.5 Export specifications

Prolac does not, by default, generate a C function definition
for every rule in the Prolac program; rather, export specifi-
cations tell Prolac which rules to generate. Export specifi-
cations are placed outside of any module in the Prolac input
file. Here is the syntax for an export specification:

export module.rule [, module.rule ...]

Module must be a module name (possibly preceded by
namespace qualifiers); rule can be a rule from that module
or ‘all’, which means “export all rules defined in module”.

Prolac collects all export specifications and generates
code for the rules they mention in arbitrary order. It then
recursively generates code for all the rules they call, the
rules those rules call, and so on, until it reaches closure.

6 Fields

Fields are essentially module-specific variables. Fields, like
rules (§5.1), can be static or dynamic; dynamic fields are
like instance variables or slots in other object-oriented lan-
guages. Each object of a module type has its own copy of
each of the module’s dynamic fields, while only one copy
exists of each of a module’s static fields. Any field, static or
dynamic, must be part of some module.

Fields are declared with the following syntax:

[static] field name :> type;

Remember that, if type is a module type, it must be a vis-
ible supertype of the current module or it must have been
explicitly imported (§3.3).

A dynamic field can be referred to only in a dynamic
context (§9.7); in a dynamic rule, ‘self.’ can be omitted when
referring to self’s dynamic fields. Note that, unlike rules,
fields cannot be overridden12 and they cannot be found
with any kind of implicit search.13

7 Exceptions

Prolac exceptions are not yet implemented, although they
are perhaps more necessary in Prolac than in many
other languages. Prolac protocol specifications often involve
deeply-nested calls of many small rules; a rule far down in
the call stack may detect an error, in which case it would
like to terminate processing immediately. It is tedious and
error-prone to require any intermediate rules to detect and
act on such a result.

Currently, our TCP specification uses the C setjmp/
long jmp facility to fake exception handling; this makes our
current TCP specification unsuitable for use as an in-kernel
TCP implementation. Prolac exception handling, when de-
signed and implemented, will not use setjmp or long jmp.

8 Types

This section describes the Prolac type system, including
Prolac’s built-in types and their values and allowable con-
versions between types.

We write that a value V has type T with the notation
‘V :> T’; the type declaration operator ‘:>’ (§9.8) is used in
Prolac to declare the types of fields, parameters, rules, and
supertypes. The expression ‘V :> T’ should be read “V is a
T”.

12. One way to see why not is to think of a field as an abbreviation for
two rules, a setter and a getter. For a field ‘f :> M’, these have signatures
set-f(M) :> void and get-f :> M. Now, say we hypothetically overrode f to have
type N. The overriding setter and getter have signatures set-f(N) :> void and
get-f :> N; but these must be correct relative to the overridden signatures.
If we apply the contravariance rules (§5.2.1), we see that this implies both
M :> N and N :> M—therefore, M must equal N!

Interestingly, module operators—which create usefully different
modules with the same effective type—imply that it might still be use-
ful to override a field, even if the effective type of the field is constrained to
be the same! We are considering this as an extension.

13. The reason why not is mostly philosophical: Implicit rule search
abbreviates something the user can already do (write forwarding rules).
However, the user cannot create anything resembling a “forwarding field”.
If we introduce such a concept, we may add implicit field search as well.

71



8.1 Converting and casting

The two processes of conversion (or, equivalently, implicit
conversion) and casting convert a value from one type to
another. Casting is strictly more powerful than conversion.

Prolac automatically invokes implicit conversion in any
context where a value is expected to be of some type—for
example, as test argument to a choice operator ‘?:’ (§9.4.5)
must be of type bool. Integral values and pointer values both
implicitly convert to bool, as defined below; therefore, these
values are also acceptable as test arguments. The phrase “V
is converted to T” means “V is implicitly converted to T if
this is possible; if not, an error is reported.”

Prolac never automatically casts a value; the user explic-
itly invokes a cast by using the type cast operator (§9.8).
Whenever a value V can be implicitly converted to a type
T, the explicit cast ‘(T)V’ is also possible and has the same
result.

8.2 Common types

Two types T1 and T2 always have a common type, which is
used when T1 and T2 are combined in an expression; for
example, the choice expression ‘test ? V1 : V2’, whose value
may be either V1 :> T1 or V2 :> T2, has the common type of
T1 and T2 as its type. Implicit conversions (never casts) are
used to convert each operand to the common type.

The common type for two types T1 and T2 is found as
follows:

1. If T1 and T2 are the same type T, the common type is
T.

2. If either T1 or T2 is bool and the other can be implicitly
converted to bool (i.e., it is bool or an integral or pointer
type), the common type is bool.

3. If both T1 and T2 are integral types, the common type
is the larger of them (see §8.5).

4. If both T1 and T2 are pointer types, then:

(a) If either T1 or T2 is *void, the common type is
*void.

(b) If T1 and T2 are pointers to module types M1
and M2, then if either module is an supertype
of the other, the pointer type to the supertype is
returned.

5. Otherwise, the common type is void.

8.3 void

The void type signifies the absence of any value. Any expres-
sion can be implicitly converted to void. A void expression
cannot be cast to any other type.

Because void implies the absence of a value, it is an error
to declare a value (object, parameter, field, etc.) of type void.
void is most useful as a rule return type and as the base for
the generic pointer type *void.

8.4 bool

bool is the Boolean type. It has two values, true and false.
bool values may be implicitly converted from integral val-

ues; specifically, 0 converts to false, and any non-zero value
converts to true. Pointer types also implicitly convert to
bool: the null pointer converts to false, any non-null pointer
to true.

bool values may be explicitly cast to integral types; false
casts to 0 and true casts to 1.

8.5 Integral types

Prolac has nine integral types: four signed types, char, short,
int, and long; four unsigned types, uchar, ushort, uint,
and ulong; and one unsigned type with circular compari-
son (§9.11.4), seqint. Their properties are summarized in
this table; size is in bits:

Size Signed Unsigned Circular
8 char uchar

16 short ushort
32 int uint seqint
64 long ulong

The common type of two integral types is the larger of
the two types, as defined below.

• If either type is ulong, the common type is ulong.

• Otherwise, if either type is long, the common type is
long.

• Otherwise, if either type is seqint, the common type is
seqint.

• Otherwise, if either type is uint, the common type is
uint.

• Otherwise, the common type is int.

8.6 Pointer types

If T is a type, then *T is also a type, representing a pointer to
a value of type T. (Note that Prolac differs syntactically from
C, where the ‘*’ operator attaches to the declared name, not
the type.)

As in C, *void is the generic pointer type: any pointer can
be implicitly converted to type *void, and an object of type
*void can be implicitly converted to any pointer type.
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A pointer to a module M can be implicitly converted to
a pointer to a module S, where S is an supertype of M.
Furthermore, a pointer to S can be explicitly cast to type
*M.

The integer constant 0 can be implicitly converted to
any pointer type, resulting in a null pointer of the given
type. The semantics of such a null pointer are the same as
in C. Note that, unlike C, any integer constant expression
evaluating to 0 will not do.

8.7 Module types

Each defined module M is a distinct type. Note that two
versions of the same module with different module oper-
ators (§3.4) do not define two different types; in terms of
type, M is equivalent to ‘M hide all inline x’.

An object of module type M may be implicitly converted
to module type S, where S is one of M’s supertypes.14

9 Expressions

This section describes the Prolac operators. Prolac is an
expression-based language; unlike C, but like Lisp and ML,
Prolac has no concept of a statement (i.e., a control struc-
ture which is not an expression). This property means that
Prolac has even more operators and precedence levels than
C (which, some might argue, already had too many); it also
means that once you understand the Prolac operators, you
can understand any computation expressed in Prolac.

Prolac operators fall into several categories. Rule call is
the first to be discussed (§9.2), followed by control flow op-
erators, which control Prolac’s order of computation. The let
operator (§9.5) and C blocks (§9.6), two special operators,
come next, followed by member operators (§9.7), typing
operators (§9.8), code motion operators (i.e., inline and out-
line) (§9.9), and, finally, C operators, whose meanings are
the same in Prolac as in C (§9.11).

9.1 Operator precedence

Table 9.1 lists all of Prolac’s operators and their precedences.
Some operators do not have precedence—they textually
contain all their subexpressions, and thus are never am-
biguous; these are listed at the bottom of the table. Of
course, grouping parentheses can be used to override any
precedence or associativity.

14. As of this writing, prolacc does not completely implement this
conversion; for example, the assignment ‘let s :> S, m :> M in s = m end’ is
not generated correctly.

Operators with precedence
23. (t)x type cast §9.8
22. x.n .n member §9.7

x−>n pointer to member §9.7
21. f (x, y, ...) rule call §9.2

x[y] array reference
x++ x−− postincrement, postdecrement

20. module operators (§3.4):
M hide x M show x M rename (x=y)

namespace control §4.6
M using x M notusing x implicit rules §5.4.3
M inline[n] x inlining §9.9.1

19. x :> t type declaration §9.8
18. *x dereference

&x address of
+x −x unary plus/minus
~x bitwise not
!x logical not
++x −−x preincrement, predecrement
inline[n] x inlining §9.9.2

17. x * y x / y x % y multiply, divide, remainder
16. x + y x − y add, subtract
15. x << y x >> y left and right shift
14. x < y x > y arithmetic compare

x <= y x >= y
13. x == y x != y equality tests
12. x & y bitwise and
11. x ^ y bitwise xor
10. x | y bitwise or

9. x && y logical and
8. x || y logical or
7. x = y assignment (r)

compound assignment (r):
x += y x −= y x *= y x /= y x %= y
x &= y x ^= y x |= y x <<= y x >>= y

6. x ? y : z choice (r) §9.4.5
5. x {C} y C block §9.6
4. x ==> y arrow (r) §9.4.3
3. x ||| y case §9.4.7
2. outline[n] x outlining §9.9.3
1. x, y comma §9.4.1

Operators without precedence
(x) grouping
if x then y if-then-else §9.4.6

else z end
let decls let §9.5

in body end

Table 9.1: Prolac operators and precedence levels. Oper-
ators higher in the table bind more tightly; (r) denotes
right-associative operators. If a reference is not given, the
operator is described in §9.11.
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9.2 Rule calls

A rule call expression ‘r(...)’ expresses the execution of the
specified rule. Any actual parameters to the rule are given
inside the parentheses, separated by commas; they must
match the rule’s declared parameters in number and type.
The types need not match exactly: Prolac attempts to con-
vert the actual parameters to the types of the declared pa-
rameters.

Calls to rules without parameters need not provide paren-
theses. For example:

module M {
r ::= true;
s ::= r(), // call M.r

r; // also call M.r
}

9.2.1 Namespace call

To facilitate the use of namespaces, a namespace name may
be treated as a rule call. If a namespace originally named
n15 is found within an expression where namespaces are not
expected, Prolac looks in that namespace for a rule named
n and uses that if it is found. For example:

module M {
nest { nest ::= ...; }
r ::= nest.nest, // call M.nest.nest

nest; // also call M.nest.nest
}

Note that the search is only performed one level deep. Thus,
this is an error:

module M {
nest { nest { nest ::= found−the−prize; } }
r ::= nest; // error:

// namespace ‘M.nest’ cannot be called
}

In a normal Prolac expression (that is, any expression
except supertype and import lists and operands to module
operators), namespaces are expected in only one context:
to the left of a direct member operator ‘.’ (§9.7). Thus, this
search is performed everywhere except to the left of ‘.’.

9.2.2 Constructor calls

Constructors (§5.3) can be called indirectly by Prolac, or
directly by the user. Most constructor calls are indirect;
direct constructor calls are useful to initialize a block of
memory allocated by C code as a Prolac object.

Direct constructor calls. To call a constructor directly,
simply treat it as a normal rule. For example:

15. I.e., before any show or rename operations.

module M {
constructor(i :> int) ::= ...;
static new :> *M ::= let ptr :> *M in

{ ptr = malloc(sizeof(M)); }
ptr−>constructor(97), // direct constructor
ptr end;

}

Indirect constructor calls. A module’s constructor is
called whenever an object of that module type, or one of
its subtypes, is created. This happens within let expres-
sions (§9.5) when the value for a variable is not given, and
whenever a module type is used as a value expression (§9.3).

An indirect constructor call for a module M looks like
M(args). Just as with rule calls, the actual arguments to
a constructor call must match the constructor’s declared
parameters in number and type. To illustrate:

module M {
constructor(n :> int) ::= ...;
r ::= let m :> M, // error:

// ‘M’s constructor requires 1 argument
m2 :> M(97) // OK

in false end;
}

As with rule calls, the parentheses can be omitted from a
constructor call when the constructor takes no arguments.
This leads to an ambiguity between treating module names
as type names and as calls to constructors with omitted
parentheses. For example:

module N has M {
... M.r ... // calling import M’s static rule r,
// or calling dynamic rule r in a newly constructed M?

}

This issue is discussed in more detail below (§9.3). To sum-
marize that discussion, Prolac assumes that such an expres-
sion is a type name wherever a type name might be mean-
ingful. Thus, M.r above is resolved to calling M’s static rule
r. (This resolution does not depend on whether or not M.r
is actually static, or whether or not M’s constructor takes no
arguments.) To force the other interpretation, simply leave
in the parentheses: ‘M().r’.

It is an error to call a constructor, directly or indirectly,
if the constructor has been hidden (§4.6.1). This technique
allows a module to suggest16 that no objects of that module
type be created except through visible interface functions.

16. A user of the module can always show the constructor.
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9.3 Type expressions and value expressions

Prolac expressions come in two flavors: those that name
types and those that name values. Some expressions, espe-
cially module names, can be either type or value expres-
sions; which form is used depends on the context in which
the expression is found.

Here are some examples of type and value expressions:

module M {
static x ::= ...;

}
module N has M {

field f :> M;
test ::=
int, // type
* int, // type
75, // value
M, // type or value (here, value)
M.x, // value; M is type
f = M; // value; M is value

}

The expression ‘M’ can be interpreted in two ways: either
as naming the module M, or as creating an object of module
M via a call to M’s constructor. Given an expression E which
can be either type or value, Prolac resolves E as follows:

1. If E is in a context where a type can be expected (for
example, as the argument to unary ‘*’ (§9.11.1) or one
of the module operators (§3.4), or as the second argu-
ment to the type declaration operator ‘:>’ (§9.8)), E is
a type expression.

2. Otherwise, if E is in the context E.name, E is a type
expression.

3. Otherwise, E is a value expression.

9.4 Control flow operators

Control flow operators are semistrict: they do not always
evaluate all of their operands. Different control flow oper-
ators express sequencing, choice or if-then-else semantics,
conjunction, disjunction, conditional execution, and case
statements.

9.4.1 Comma: ‘,’

The comma operator ‘,’ expresses sequencing: an expression
‘A, B’ first evaluates A, then throws the result away and
returns the result of B.

A and B can each have any type. The expression’s type is
the type of B.

9.4.2 Logical and: ‘&&’

The logical and operator ‘&&’ expresses conjunction: an
expression ‘A && B’ evaluates to true iff both A and B are
true. A is evaluated first; if it is false, the whole expression
must be false, and B is not evaluated at all.

Both A and B are converted to bool. The expression also
has type bool.

9.4.3 Arrow: ‘==>’

The arrow operator ‘==>’ expresses conditional execution.
An expression ‘A ==> B’ evaluates to true iff A is true—but
in that case, B is evaluated before the expression returns.

A is converted to bool, but B can have any type. The
expression has type bool (but see below §9.4.7).

This example demonstrates the difference between &&
and ==>:

true && false // result: false
true ==> false // result: true

This behavior is useful for building “case statements”; for
example,

(condition−1 ==> case−1)
|| (condition−2 ==> case−2)
|| else−case

This code will evaluate else−case only if condition−1 and
condition−2 are both false. At most one of case−1, case−2,
and else−case will be executed. (For a case statement which
in addition returns a useful value, see §9.4.7.)

Contrast this with a version using &&:

(condition−1 && case−1)
|| (condition−2 && case−2)
|| else−case

This is both more opaque and probably incorrect: if
condition−1 is true, but case-1 returns false, the remaining
two clauses will still be executed.

The expression ‘A ==> B’ is exactly equivalent to ‘A &&
(B, true)’, except for its behavior within case bars (§9.4.7).

9.4.4 Logical or: ‘||’

The logical or operator ‘||’ expresses disjunction: an expres-
sion ‘A || B’ evaluates to true iff either A is true, B is true, or
both. A is evaluated first; if it is true, the whole expression
must be true, and B is not evaluated at all.

Both A and B are converted to bool. The expression also
has type bool.

The bool return type of || hides information from its
subexpressions; this may result in overly convoluted pro-
grams. The case bar operator ‘|||’ addresses this issue
(§9.4.7).
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9.4.5 Choice: ‘?:’

The question mark–colon operator ‘?:’—also called the
choice operator—expresses choice. An expression ‘A ? B : C’
first evaluates A. If A is true, it returns B (without evaluating
C); otherwise, it returns C (without evaluating B).

A is converted to bool; the type of the expression is the
common type of B and C.

9.4.6 ‘if-then-else’

The if-then-else operator is another way to express choice.
The full syntax for if-then-else is as follows:

if condition
then case−1
[elseif condition−2 then case−2]...
[else else−case]
end

This expression is a synonym for:

condition ? case−1
[: condition−2 ? case−2]...
: else−case

The type of the if-then-else expression is the common
type of all cases. The else−case can be omitted, forming an
if-then expression; if it is omitted, the type of the expression
is void.

‘if−then−else’ is provided primarily as an alternative to
‘?:’ for larger expressions—the ‘?:’ syntax becomes difficult
to read very quickly when its operands are large.

9.4.7 Case bars: ‘|||’

The case bar operator ‘|||’, in conjunction with the arrow
operator (§9.4.3), expresses a case statement returning a
meaningful value.

A case statement has this general form:

condition−1 ==> consequent−1
||| condition−2 ==> consequent−2 ...
||| else−case

Exactly one of the consequents or else−case is executed, de-
pending on which, if any, condition is true. The result of
that consequent or else−case is returned as the value of the
expression.

The case statement’s syntax is based on matching con-
structs from functional programming languages; here, how-
ever, the conditions are all converted to bool. The case state-
ment is exactly analogous to Lisp’s cond special form.

Case bars are actually syntactic sugar for choice opera-
tors (§9.4.5). Given an expression containing ‘|||’, the com-
piler repeatedly applies the following transformations until
no ‘|||’s remain:

1. A ==> B ||| X ) A ? B : X
2. (A ? B : C) ||| X ) A ? B : (C ||| X)
3. A ||| X ) A || X

Note that ‘|||’s used outside the context of a case statement
reduce to normal logical ors, ‘||’ (§9.4.4).

Here is a demonstration of the rules:

A ==> B ||| C ==> D ||| E
) (A ==> B ||| C ==> D) ||| E // left-associative
) (A ? B : (C ==> D)) ||| E // rule 1
) A ? B : ((C ==> D) ||| E) // rule 2
) A ? B : (C ? D : E) // rule 1

The type of the whole expression is therefore the common
type of B, D, and E.

A case statement without a final else−case usually has type
bool. To see why, consider this expansion:

A ==> B ||| C ==> D
) A ? B : (C ==> D) // rule 1

Since there are no case bars remaining, expansion is over.
The type of the expression is then the common type of B
and ‘C ==> D’; but the type of ‘C ==> D’ is just bool, so B will
be converted to bool if possible.

9.5 ‘let’

The let operator, like the let operator in many functional
languages, introduces new statically-bound variables within
a subexpression. The syntax of let is as follows:

let variable [:> type] [= value]
[, variable [:> type] [= value] ...]

in body end

Variable is just an identifier. Type is a type expression and
value is a value expression; either type or value may be omit-
ted, but not both. If value is omitted, variable is constructed
implicitly if it has module type (§9.2.2), or left uninitialized
otherwise; if type is omitted, variable’s type is the type of the
value expression.

To evaluate a let expression, Prolac first evaluates the
value expressions and any necessary type constructors in an
arbitrary order. The resulting values are then bound to the
variables. Finally, body is evaluated with these bindings in
force. The value of the let expression is the value of body;
the type of the let expression is the type of body. Note that
a let expression’s variables are not visible to any of its type
or value expressions.

9.6 C blocks: ‘{...}’

A C block ‘{...}’ is used to call C code at a given point during
the execution of a rule. The type of a C block is bool and its
value is always true.
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C blocks are syntactically rather special: a C block acts like
a Prolac value—specifically, ‘true’—with “implicit commas”
on either side. These implicit commas are equivalent to the
comma operator (§9.4.1), but have different precedence—
specifically, just above the arrow operator (§9.4.3). Some
examples will make things clearer; the implicit true is shown
when necessary.

{A} � {A}, true
{B} X � {B}, X
X {C} � X, {C}, true
X {D} Y � X, {D}, Y
X ==> {E} � X ==> ({E}, true)
X ==> Y {F} � X ==> (Y, {F}, true)
X = Y {G} Z � (X = Y), {G}, Z
X ? Y : Z {H} � (X ? Y : Z), {H}, true

Of course, parentheses can be used to override C blocks’
precedence.

Some Prolac names can be used in a C block to refer to
the C equivalents of those Prolac objects. Specifically, the
following objects are available under their Prolac names:

1. In a dynamic rule, self.

2. In a dynamic rule, any of self’s fields accessible by
simple names.

3. Parameters from the current rule.

4. Variables bound by surrounding let expressions (§9.5).

Note that this list does not include Prolac rules: you cannot
call Prolac rules from C blocks using Prolac syntax. Also
note that if you need to use a member name to refer to
some object in Prolac, you can’t refer to it in a C block; only
simple names will work.

Finally, C and Prolac treat hyphens differently (§2.2):
C does not allow hyphens in identifiers. Prolac follows C’s
rules while parsing C blocks; thus, this C block will not work
as expected:17

let thing−1 = 0 in { return thing−1; } end

To refer to an object with a hyphen in its name, simply
change the hyphen to an underscore:

let thing−1 = 0 in { return thing 1; } end

17. Or maybe it is the Prolac code that does not work as expected!

9.7 Member operators: ‘.’ and ‘−>’

The member operators ‘.’ and ‘−>’ express finding a feature
in a namespace or object. The right operand of a mem-
ber operator must be an identifier. The pointer-to-member
operator ‘−>’ is used on pointer types (§8.6); the expres-
sion ‘A−>x’ is exactly equivalent to ‘(*A).x’. The rest of this
section only discusses the direct-member operator, ‘.’.

The left-hand operand, or “object operand”, of a member
expression must be a namespace or have a module type. The
object operand may be either a type or value expression. If
it is a type expression, the member has static context; if it is
a value expression, it has dynamic context. It is an error to
refer to a static feature in a dynamic context, or a dynamic
feature in a static context. To illustrate:

module M {
field d :> int;
static s ::= 0;

}
module N has M {
field m−object :> M;
test ::=

M.s, // OK: static context, static rule
m−object.d, // OK: dynamic context, dynamic field
M.d, // error: static context, dynamic field
m−object.s; // error: dynamic context, static rule

}

Fields, parameters, and objects are always value expres-
sions, and thus always have dynamic context. Imports are
always type expressions, and thus always have static context.
Supertypes are a special case: In a static rule, supertypes are
type expressions and have static context. In a dynamic rule,
supertypes are value expressions and have dynamic context;
however, in this case and this case only, you may refer to
an supertype’s static feature, even though the supertype has
dynamic context.

As discussed above (§9.3), ambiguous object operands
are resolved to type expressions, and thus static context.
To force such an object operand to dynamic context, use
parentheses to tell Prolac to call the operand’s constructor:

module M {
field d :> int;
constructor ::= ...;

}
module N has M { ...
M.d, // error: dynamic field in static context
M().d; // OK: parentheses make it a constructor call

}

The direct member operator ‘.’ also has a prefix version
‘.x’, used to look up names in a global namespace (§4.2.1).
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9.8 Type operators: ‘:>’ and ‘(cast)’

The type declaration operator ‘:>’ is used elsewhere in Pro-
lac to declare the types of objects; inside a value expression,
‘:>’ expresses a type assertion. The right operand of ‘:>’
should be a type expression, T. The value of an expression
‘V :> T’ is the value of V converted (§8.1) to type T. Note
that the ‘:>’ operator will only use implicit conversions on
V; an error is given if V cannot be implicitly converted to T.
Thus, ‘:>’ can be used to guarantee that V has type T without
invoking a possibly dangerous type cast.

The type casting operator ‘(type)’ is used to change the
type of its value operand. The value of an expression ‘(T)V’,
where T is a type expression, is the value of V cast (§8.1) to
type T.

9.9 Code motion operators

Prolac provides two operators to control optimization and
code motion, inline and outline. inline is also available as a
module operator.

9.9.1 ‘inline’ module operator

The inline module operator controls how a module’s rules
are inlined. Its left operand must be a module expression;
its right operand must be a list whose elements are one of
the following kinds of expressions:

1. A simple rule name, or the name of a namespace that
can be called (§9.2.1); the corresponding rule will be
affected.

2. ‘NS.all’, where NS is a namespace; all rules defined in
NS or any of its nested namespaces will be affected.

3. ‘M.all’, where M is a supertype of the module expres-
sion; all rules defined by M (i.e., whose actual is M) will
be affected.

4. ‘all’; all rules will be affected.

In addition, inline can take an optional inline level ar-
gument, which must appear in brackets directly after the
inline keyword. An inline level is a static integer constant18

whose value must be between 0 and 10, where 0 means
“never inline” and 10 means “always inline”. If no optional
argument is given, the corresponding inline level is 5. The
default inline level for a rule (if no inline operator has been

18. While we intend eventually to allow symbolic constants to be
used in inline levels, they have presented implementation difficulties that
far outstrip their immediate utility. Prolacc currently accepts inline levels
which are integer literals or integer literal expressions; rule calls sometimes
work, but most often do not due to order dependencies.

applied) is 2. A Prolac compiler may provide an option de-
termining which inline levels actually result in inlined rules;
normally, the default level of 5 will result in inlined rules.

When a rule call expression (§9.2) is evaluated, Prolac
checks the corresponding module for that rule’s inline level;
if it is high enough and the rule call is unambiguous (i.e., no
dynamic dispatch is possible), the rule call will be inlined.
For example:

module M {
rule ::= ...;

}
module N has M {
test(r1 :> M, r2 :> M inline all) ::=

r1.rule, // not inlined
r2.rule; // inlined

}

9.9.2 Expression ‘inline’

Expression inline is a prefix unary operator appearing in rule
bodies, while the inline module operator is a binary operator
appearing in module specifications. Like the inline module
operator, expression inline can take an optional inline level
argument in brackets.

An expression ‘inline[n] X’ simply evaluates X and returns
its value; the type of ‘inline[n] X’ is the type of X. How-
ever, any rule calls within X are inlined with inline level
n. An expression inline overrides all relevant inline module
operators.

An expression inline with a high enough inline level (9
or 10 in the current implementation) will also cause nested
calls to be inlined; for example:

module M {
a ::= { XXX; };
b ::= a;
d ::= inline[10] b;
// generates code equivalent to ‘d ::= { XXX; };’
// rather than ‘d ::= a;’

}

This recursive inlining can be stopped by expression inlines
in the inlined rules’ bodies. Recursive or mutually recursive
rules are currently inlined only one level deep; any recursive
calls are generated as procedure calls.

9.9.3 ‘outline’

outline is a prefix unary operator appearing in rule bodies;
it controls code outlining, or the removal of infrequently-
executed code from a computation’s critical path. The out-
line operator tells the compiler that the current branch of
control flow is relatively unlikely; the compiler will move
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that branch to the end of the function body in the code it
generates.

Like the inline operators, outline it takes an optional static
integer constant argument which must be between 0 and
10. Here, 0 means “never outline”, while 10 means “outline
as far as possible”; or, equivalently, 0 means “this is the most
common branch” and 10 means “this is the least common
branch”.

An expression ‘outline[n] X’ evaluates X and returns its
value; its type is the type of X.

The outline operator is only meaningful to the right of
a control flow operator (§9.4).19 To see why, consider the
expression ‘A + (outline B)’. This expression suggests that B
is less likely to be executed than A; but this is impossible,
since (unless A generates an exception) B will be executed
whenever A is.20 Prolac does not warn on such expressions;
rather, it floats the outline into the expression until it finds
a control flow operator, and attaches the outline onto that
operator’s right operand. Thus, these pairs of expressions
are equivalent:

A + (outline B ? C : D) � A + (B ? C : (outline D))
outline A || B � A || (outline B)

9.10 Lvalues

Some expressions are lvalues, meaning that they can ap-
pear on the left side of an assignment expression. Only the
following expressions are lvalues:

1. Field (§6), parameter, or let-bound variable (§9.5) ref-
erences;

2. Dereferences ‘*X’, where X is an object of pointer
type (§9.11.1);

3. Assignments ‘X = Y’ (§9.11.8);

4. Compound assignments ‘X @= Y’ where @ is a binary
arithmetic operator (§9.11.9);

5. Increment or decrement expressions ‘X++’, ‘X−−’,
‘++X’, ‘−−X’ (§9.11.10);

6. ‘(X)’, where X is an lvalue.

9.11 C operators

This section describes the remaining operators, whose def-
initions are generally borrowed from C.

19. It is meaningful on any consequent of any of the choice opera-
tors (§9.4.5, §9.4.6, §9.4.7), but not on the test.

20. Strictly speaking, the comma operator (§9.4.1) has the same prop-
erty.

9.11.1 Dereference: unary ‘*’

The star or dereference operator ‘*’ acts differently depend-
ing on whether its operand X is a type or value expression.

If X is a value expression, then it must have some pointer
type *T, but not *void. The expression ‘*X’ then has type T;
its value is the value of the object to which X points.

If X is a type expression, then ‘*X’ is also a type expression
defining the type “pointer to X” (§8.6).

9.11.2 Address of: unary ‘&’

The operand in an address expression ‘&X’ must be an
lvalue (§9.10). The value of the expression is a pointer to X;
it has type ‘*T’, where T is the type of X.

9.11.3 Equality tests: ‘==’, ‘!=’

Any two non-module values may be compared for equality.
In an expression ‘X == Y’, X and Y are both converted to their
common type (§8.2), which must not be void; as a special
case, any pointer can be compared with the integer constant
0, which is converted to a null pointer. The result has type
bool, and is true iff X and Y are equal.

The expression ‘X != Y’ is a synonym for ‘!(X == Y)’.

9.11.4 Arithmetic compare: ‘<’, ‘<=’, ‘>’, ‘>=’

The operands to an arithmetic compare operation are con-
verted to their common type, which must be an integral
or pointer type. Any integer value can be compared to any
other, and two pointers of the same type can be compared.
As a special case, any pointer can be compared with the in-
teger constant 0, which is converted to a null pointer (§8.6).
An arithmetic compare expression has type bool.

If the operands have type seqint, a special circular com-
pare is performed which provides better results on overflow
than normal compare. To illustrate, consider the unsigned
integer expression ‘L < H’ where L = 4294967294 and H =
4294967295: L and H have values close to one another, but
also close to 232. This comparison is true, but all we need to
do is add one to H to make it false; H will wrap around to 0,
and 4294967294 < 0 is obviously false. Circular comparison
does not exhibit this flipping behavior until the difference
between L and H is very large (231

�1, to be exact), and
is therefore more useful in certain contexts, such as TCP
sequence numbers.

The circular comparison operators are defined as follows:

x < y � (int)(x − y) < 0
x <= y � (int)(x − y) <= 0
x > y � (int)(x − y) > 0
x >= y � (int)(x − y) >= 0

Again, these definitions only come into play when x and y
have type seqint.
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9.11.5 Logical not: ‘!’

The operand to a logical not expression ‘!X’ is converted to
bool; the expression has type bool. If the value of X is true,
the expression has value false, and vice versa.

9.11.6 Arithmetic operators

The binary arithmetic operators are addition ‘+’, subtraction
‘−’, multiplication ‘*’, division ‘/’, remainder ‘%’, left ‘<<’ and
right ‘>>’ shift, bitwise and ‘&’, bitwise or ‘|’, and bitwise
exclusive or ‘^’. The unary arithmetic operators are unary
plus ‘+’ and minus ‘−’ and bitwise not ‘~’.

The operands to most arithmetic operators must have
integral type. The type of a unary arithmetic expression
is the type of its operand; the type of a binary arithmetic
expression is the common type of its operands.

Binary addition and subtraction also support some com-
binations of pointer operands. In an addition expression
‘A + B’:

• Either A or B may be a pointer; the other must have
integral type. The result has the type of the pointer
operand.

In a subtraction expression ‘A − B’:

• A and B may be pointers of the same type. The result
has type int.

• A may have pointer type and B may have integral type.
The result’s type is the type of A.

All arithmetic operators behave as they do in C.

9.11.7 Array reference: ‘[]’

The bracket operator ‘[]’ expresses array reference. As in C,
an expression ‘X[Y]’ is exactly equivalent to the expression
‘*(X + Y)’. Note that array reference is not yet fully functional
in Prolac, in that array types do not currently exist; however,
the bracket syntax is still useful when one of X and Y is a
pointer.

9.11.8 Assignment: ‘=’

The assignment operator ‘=’ expresses variable assignment.
In an expression ‘X = Y’, X must be an lvalue (§9.10); Y is
converted to the type of X. The expression has the type of X;
its value is the value of X after the assignment is performed.

9.11.9 Compound assignment

A compound assignment expression ‘X @= Y’, where @ is
a binary arithmetic operator (§9.11.6), is exactly equivalent
to the expression ‘X = X @ Y’ except that X is evaluated only
once.

9.11.10 Increment and decrement: ‘++’, ‘−−’

The increment and decrement operators ‘++’ and ‘−−’ are
used to increment or decrement an lvalue by 1. Their
operand must be an lvalue with arithmetic or pointer type;
the result of the expression has the same type. The follow-
ing table shows equivalent expressions for each increment
and decrement operator, except that postfix increment and
decrement evaluate their operand only once.

++X � X += 1
−−X � X −= 1
X++ � let temp = X in X += 1, temp end
X−− � let temp = X in X −= 1, temp end
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