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Abstract 
 

This thesis proposes a mux abstraction that multiplexes messages of a network file 
protocol to provide asynchronous access to all system resources on the Plan 9 operating 
system.  The mux provides an easy-to-program asynchronous interface alleviating the 
need to manage multiple connections with different servers. A modified version of the 
Plan 9 Web server demonstrates that the mux can be used to implement a high-
performance server with user-level threads without having to use a kernel thread for each 
user-level thread. 
 
Scalability tests demonstrate that the mux implementation scales well with hundreds of 
clients and hundreds of servers. Furthermore, the user-threaded version of the web server 
performs comparably with the kernel-threaded implementation on disk bound workloads 
and exhibits an 18% decrease in performance on in memory workloads. These results 
suggest that the mux could provide performance benefits for more intricate applications 
that can exploit the fine-grained control of user-level scheduling. 
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1 Introduction 

High performance systems require asynchronous I/O to exploit the parallelism 

provided by the hardware.  Existing asynchronous interfaces lack completeness or 

consistency across different devices.  These deficiencies make implementations of 

systems that require non-blocking access to multiple devices both difficult and error-

prone. 

In this thesis, we address the need for an interface for asynchronous I/O on the Plan 

9 operating system [10].  The next section defines several terms used in the thesis and 

details the general need for asynchronous I/O.  Section 1.2 presents an example that 

illustrates the problems that stem from the lack of completeness and consistency in 

existing asynchronous interfaces.  Section 1.3 details the specific problems with existing 

methods of performing asynchronous I/O on Plan 9.  Finally, section 1.4 details the 

contributions of this thesis and outlines the remainder of the thesis. 

1.1 Problem Statement 

In this thesis, we use the following definitions for several terms: 

Process – A flow of control defined by a single register set operating within a single 
address space.  Processes are scheduled by the kernel. 
 
Kernel Thread – A flow of control defined by a single register set operating in a shared 
address space with zero or more other kernel threads.  Kernel threads are scheduled by 
the kernel. 
 
User Thread – A flow of control defined by a single register set operating in a shared 
address space with zero or more other user threads.  User threads are scheduled by a user-
level thread manager. 
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For each of these abstractions, we use the definition to refer to the abstraction running in 

user mode. 

Processes provide an abstraction of the physical processor and isolation from other 

concurrently executing processes.  Context switches between processes have a high 

overhead from entering and leaving the kernel and from the need to switch address 

spaces.  Kernel threads alleviate some of this overhead by eliminating the need to switch 

address spaces.  Both of these abstractions must obey the kernel scheduling policy.  This 

can be detrimental to performance because the kernel scheduling decisions may not 

match the needs of the application.   

User threads allow scheduling at the application level.  Eliminating the need to 

transfer control to the kernel also makes context switching less expensive.  However, user 

threads must be implemented on top of existing operating system abstractions, such as 

kernel threads.  This leads to restrictions on the ability of user threads to provide a 

complete abstraction of the physical processor.  

In particular, if a user thread performs an I/O operation that blocks in the kernel, 

none of the other user threads running on top of the same kernel thread can run until the 

operation completes and the kernel returns control to the blocked kernel thread.  The next 

section provides a concrete example of this general problem in the context of a web 

server. 

1.2 Example: Asynchronous I/O in Web Servers 

In this section, we illustrate the benefits from overlapping processing and device 

operations by reviewing work on the Flash web server [7].  This work also demonstrates 

the difficulty in using the available operating system interfaces to achieve concurrency. 
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To provide high throughput, web servers serve requests from multiple clients 

concurrently.  A web server running on a system with a single processor overlaps 

processing with network operations.  As an example, a web server might locate the 

content for one request while the network interface receives a new incoming request.  

Additionally, for web servers with disk-bound workloads, obtaining concurrency requires 

that disk operations overlap with both request processing and network I/O.  Web server 

designs achieve this overlap by employing one of several different approaches. 

One approach relies on the operating system to manage concurrency.  Web servers 

designed with the multi-process (MP) architecture allocate one process to handle each 

request.  The operating system overlaps processing with disk I/O by switching to a 

runnable process whenever the active process performs a blocking operation.  The MP 

approach suffers from per-request memory overhead and expensive context switching.  

Additionally, the MP architecture makes it difficult to incorporate centralized caching 

and information gathering used to improve performance.  These penalties cut into the 

performance benefits provided by overlapping disk operations with processing.   

An improvement on this architecture, called multi-threaded (MT), uses kernel 

threads instead of processes.  This reduces memory and context switching overheads, and 

allows more convenient use of centralized information gathering.  Despite these 

improvements, performance tests presented in the Flash paper demonstrate that MT 

implementations perform only marginally better than MP implementations.  This lack of 

improvement indicates that the reliance on application-unaware kernel mechanisms to 

manage concurrency prohibits extremely high-performance web server implementations. 
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To avoid reliance on the kernel for scheduling, another approach to web server 

design explicitly manages concurrency at the application level by interleaving the 

processing stages of multiple outstanding requests.  The single-process event-driven 

architecture (SPED) consists of one process that makes non-blocking system calls to 

perform I/O asynchronously.  In principle, this approach should perform better than 

MP/MT implementations because it does not suffer from substantial per request overhead 

or context switching.   

Many existing operating system interfaces impede high-performance 

implementations of SPED.  For example, the BSD UNIX select system call allows 

applications to register a set of file descriptors to determine which can be read from or 

written to without blocking [4].  The select system call works correctly on network 

sockets and pipes, but cannot handle disk files.  Since SPED uses a single process, all 

request processing ceases when an operation blocks.  Other interfaces exist to circumvent 

blocking on disk I/O, but no uniform interface exists that covers all devices.  The authors 

of the Flash paper summarize this problem: 

Many UNIX systems provide alternate APIs that implement true asynchronous 
disk I/O, but these APIs are generally not integrated with the select operation.  
This makes it difficult or impossible to simultaneously check for completion of 
network and disk I/O events in an efficient manner.  Moreover, operations such as 
open and stat on file descriptors may still be blocking [7]. 

The Flash web server implements a hybrid design to attain some of the 

performance gains of the SPED architecture without altering existing operating system 

interfaces.  The asymmetric multi-process event-driven (AMPED) architecture starts with 

a single server process that dispatches on ready I/O operations.  When an event requires a 

potentially blocking I/O operation, the server process delegates the operation to a helper 
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process.  The server and helper processes communicate through a pipe, which the server 

registers with select.  When the I/O operation completes, the helper process notifies 

the server process using the pipe.  Flash shows marked performance gains over MP/MT 

and blocking SPED implementations.  However, the use of helper processes in Flash and 

the overheads incurred therein imply that a non-blocking SPED implementation would 

outperform an AMPED implementation. 

In addition to AMPED’s overheads, ensuring that the main process never blocks 

requires a careful implementation.  Analysis of the Flash web server performed using 

DeBox, a system call performance profiling tool, revealed that the main process still  

blocked on seven different system calls [9].  Since the main process opens the same file 

that the helper process retrieves, some of the system calls blocked because of contention 

on file system locks.  To prevent the main and helper processes from both trying to open 

a file, the designers changed the helper processes to pass open file descriptors to the main 

process with sendmsg.   

Deeper analysis of the other reasons for blocking discovered a subtle performance 

bug in the Flash implementation.  The Flash web server employs two different caches: 

one for URL-to-path name translations and a second for data of memory mapped files.  In 

the process of translating a URL to a path name, Flash retrieves the file metadata and 

stores it in the data cache.  If a name lookup hits its cache, Flash assumes that it just 

performed the name translation and that it has the file metadata in memory.  However, 

the metadata could have been replaced in the data cache even though the URL-to-path 

name entry still remains.  When the main process calls open, it may block.  This 
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demonstrates the difficulty in guaranteeing non-blocking behavior without a complete 

asynchronous interface. 

In addition to the blocking behavior discovered with DeBox, the analysis 

pinpointed the major overheads in the Flash design.  The main process originally used the 

mincore call to determine memory residency of files before calling a potentially 

blocking operation.  However, the system call profiling demonstrated that that the 

operations required for memory residency checking constituted a large portion of the total 

CPU time.  The Flash designers eliminated the memory residency checks and chose to 

rely instead on heuristics based on bookkeeping for the mapped-file cache.  This method 

caused occasional blocking in calls to sendfile, a zero-copy I/O operation [8].  To 

solve this problem, the authors added a flag to sendfile so that it returns an error if the 

operation will blocking on disk. 

The preceding discussion demonstrates the need for a complete and intuitive 

interface for asynchronous I/O.  In this thesis, we provide such an interface for the Plan 9 

operating system.  The next section motivates the use of Plan 9 and outlines the specific 

shortcomings of current methods for performing asynchronous I/O in Plan 9.   

1.3 Limitations of Asynchronous I/O in Plan 9 

Plan 9 presents access to all resources through a standard file interface.  A single 

asynchronous interface for file I/O therefore provides asynchronous access to all 

resources in the system.  Additionally, Plan 9 is a distributed operating system that 

constructs a computing environment from a network of independently operating 

components.  The inherently asynchronous behavior of this environment motivates the 

need for a usable asynchronous interface.    
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For remote resources, Plan 9 already provides an asynchronous interface through 

9P, the network-level file protocol.  (See the Appendix for a description of the 9P 

protocol.)  This does not immediately provide a user-level interface for asynchronous file 

I/O, however, because the kernel presents a 9P connection to an application as a file 

descriptor.  A client reads and writes 9P messages on the file descriptor to correspond 

with a 9P server.  Since these reads and writes could block, the client application 

achieves asynchronous behavior by creating additional processes to handle the I/O.  As 

the number of servers that a client wishes to communicate with increases, the task of 

managing multiple connections and the corresponding I/O processes becomes 

burdensome.   

As a further complication to the task of performing asynchronous I/O, the kernel 

presents local devices through a blocking procedural interface.  This thesis addresses 

these issues to provide more convenient mechanisms for performing asynchronous file 

I/O in Plan 9. 

1.4 Contributions and Outline 

The primary contribution of this thesis is the construction of a user-level library for 

a 9P multiplexer (mux).  The mux presents a new abstraction of a 9P connection that 

allows clients to asynchronously carry out conversations with multiple servers over a 

single connection.  Clients using the mux call non-blocking procedures to send and 

receive 9P messages.   To implement these procedures, the mux manages the I/O 

processes needed for asynchronous communication with servers. 

We also demonstrate the feasibility of providing user-level 9P access to local 

devices by exporting a 9P connection to the network device.  We combine the network 9P 
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connection and a 9P connection to a disk file server through the mux in an 

implementation of a user-threaded web server.  In constructing the web server, we 

modify a user-level library to provide implementations of the standard file I/O system 

calls that block at the user-level. 

The remainder of this thesis is structured as follows.  Section 2 surveys work 

related to asynchronous I/O and the more general topic of exposing control to the user 

level.    We present the design of the mux in section 3 and describe the mux 

implementation in section 4.  Section 5 describes the design for providing user-level 9P 

access to local devices.  In section 6, we evaluate the design and present the user-

threaded web server used in the benchmarks.  We conclude in section 7 and offer 

suggestions for future work. 
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2 Related Work 

In this section we describe and evaluate previous work on providing asynchronous 

interfaces.  Additionally, we present work detailing the performance benefits of exposing 

fine-grained access to hardware to the user-level. 

2.1 Asynchronous Interfaces 

Existing asynchronous interfaces only achieve non-blocking behavior for a 

restricted class of operations.  A number of interfaces exist that allow applications to poll 

sets of file descriptors to determine if an I/O operation on that file descriptor will block.  

These interfaces only support a subset of I/O operations such as read and write.   

The BSD UNIX select system call allows applications to inquire about the 

blocking status of three sets of file descriptors [4].  An application passes a set of file 

descriptors for reading, a set of file descriptors for writing, and a set of file descriptors to 

check for exceptions as arguments to select and select returns subsets containing 

the descriptors ready for reading, ready for writing, and those with exceptions 

respectively.   

The System V poll system call performs similarly to select, except that an 

application only passes one set of file descriptors as an argument [4].  The structure 

associated with each file descriptor contains a bit mask that allows the application to 

register the type of events that poll should check for. 

The Solaris 7 Operating Environment provides the /dev/poll (devpoll) 

pseudo-device [13].  This device provides the same functionality as the select and 
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poll calls, while allowing an application to register kernel-level polling information that 

persists between system call invocations.  An application acquires access to a new 

instance of the devpoll device by opening /dev/poll.  To register file descriptors 

for devpoll to monitor, the application writes to on the file descriptor returned by 

open.  The application can use the ioctl system call to retrieve the set of file 

descriptors ready for I/O.  With devpoll, an application that repeatedly polls a set of 

file descriptors need only pass the set to the kernel once.  For this reason, devpoll 

provides better performance than select or poll in applications monitoring large 

number of file descriptors. 

The select, poll, and devpoll (select-style) interfaces suffer from the 

drawback that they allow an application to achieve non-blocking I/O only with socket 

and pipe file descriptors.  In particular, select-style interfaces do not allow an 

application to register an offset in a file or specify the number of bytes to read or write.  

For example, if an application registers a file descriptor for a file stored on a local disk, 

these interfaces will return a ready status for the file descriptor when the application polls 

for non-blocking read events.  If the application calls read on the file descriptor for data 

not currently in cached in memory, the operation will block while the disk retrieves the 

data. 

The POSIX Asynchronous I/O (AIO) interface addresses this problem by providing 

asynchronous read (aio_read) and write (aio_write) operations [4].   To 

asynchronously read or write a file, an application calls the corresponding AIO function.  

The application passes a structure to the call containing the relevant information such as 

the offset and number of bytes and a pointer to a buffer for the data.  The application then 
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repeatedly calls aio_error to determine whether the operation has completed.  On 

completion, a call to aio_return gives the return status of the file.  This interface 

solves the specific problem of asynchronous reading and writing files, but leaves out 

other potentially blocking I/O operations, such as open.  Open calls have a high chance 

of blocking because the kernel must resolve each element of the path, which may require 

multiple disk operations.  Additionally, the AIO interface does not integrate well with the 

select-style interfaces.  As noted in the Flash paper, this makes it difficult to design 

applications that need to both poll sockets and pipes and perform asynchronous reads and 

writes. 

The kqueue API provides a more general polling interface for asynchronous I/O 

[4].  With kqueue, an application registers a set of events with the kernel by calling 

kevent.  The application calls kevent again to check for action on a specified list of 

previously registered events.  The kernel calls event-specific filter procedures when it 

detects the specified action on the registered event.  Kqueue supports several different 

types of events including both file descriptor read and write monitoring of the select-

style interfaces and support for the AIO interface.  An application can register a call to 

aio_read or aio_write with kqeueue and the kernel will modify the associate 

event structure when the operation completes.  On a subsequent call to kevent, the 

application will receive the notification of completed I/O and call aio_return.  

Although kqueue provides a common polling interface for some of the existing 

specialized asynchronous I/O operations, it does not support other asynchronous calls 

such as open.  Adding support for new interfaces in kqueue requires modifying the 

kernel to implement filters for the new event type.  The complexity of providing access to 



 16

all resources with the kqueue interface stems from the underlying problem of having 

different asynchronous interfaces to different resources.  A uniform asynchronous 

interface to all resources eliminates the need to modify the kernel to provide 

asynchronous support for each new resource. 

The libasync library solves many of these problems by providing a generic 

interface for non-blocking functions [6].  Libasync uses C++ templates that allow an 

application to wrap a callback function and arguments into an asynchronous call.  

Libasync uses the select system call to poll for ready network events and performs 

NFS transactions to handle file operations.  When the operation completes, libasync calls 

the callback function with the result and any passed in arguments. 

2.2 Exposing Control to the User Level 

In their paper on scheduler activations, Anderson et al. argue that user threads 

achieve inherently better performance than kernel threads [1].  The authors note that 

previous implementations of user threads suffer from a lack of control over scheduling.  

Processes, on top of which user threads are implemented, do not provide a complete 

representation of the underlying physical processor.  In particular, when a user thread 

performs an I/O operation that causes it to block, the entire user thread package blocks 

even though another user thread could run on the now idle processor.  Scheduler 

activations work around this problem by communicating scheduling information between 

the kernel and the user thread manager.  A scheduler activation plays a similar role as a 

kernel thread.    A single user thread runs on top of a scheduler activation.  When a user 

thread performs a blocking operation, the kernel creates a new scheduler activation and 

performs an upcall to inform the user thread manager of the blocking user thread.  The 
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user thread manager removes the state of the blocking user thread from its scheduler 

activation and notifies the kernel that it may reuse the old scheduler activation.  The user 

thread manager then selects a ready user thread and runs it on the new scheduler 

activation.  This scheme provides a way around blocking I/O, but requires that the user 

thread scheduler interact with the kernel in order to manage threads correctly.  Ideally, 

the kernel would provide a user thread package with a time-slice, and within that time-

slice, the user thread manager could detect blocking threads and switch to a runnable 

thread without interacting with the kernel. 

In a generalization of the concept of increasing user-level control, the exokernel 

design concentrates on separating the protection of physical resources from the 

management of those resources [3].  The exokernel architecture securely exports low-

level access to the underlying hardware to the user-level, leaving the development of 

abstractions for resource management to operating systems libraries.  This design 

provides flexibility and efficiency by allowing applications to take advantage of the full 

capabilities of the hardware.  Experiments on an exokernel operating system prototype 

bear the design logic out in practice.  Most primitive kernel operations execute ten to 100 

times faster on the prototype than on Ultrix, a standard UNIX operating system.  These 

results illustrate the benefits of providing fine-grained access to hardware at the user 

level. 
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3 Mux Design 

The mux provides clients a manageable, non-blocking interface to interact with 

servers by multiplexing 9P conversations between one or more clients and one or more 

servers.  The mux maintains one 9P connection with every client and one 9P connection 

with every server.  Using these 9P connections, the mux provides three functions: 

1) The mux multiplexes the requests from multiple clients to access files on a server 

over the single 9P connection with that server. 

2) The mux multiplexes the responses from multiple servers to requests from a client 

over the single 9P connection with that client. 

3) The mux hides the multiplexing from both the clients and the servers.  Each 

server believes it is carrying out a 9P conversation with a single client.  Likewise, 

each client believes it is carrying out a 9P conversation with a single server. 

3.1 Interface 

Mux* muxalloc(void) 
int muxmount(Mux *mux, int fd, char *old, int flag) 
int muxbind(Mux *mux, char *new, char *old, int flag) 
Muxcon* muxattach(Mux *mux) 
void muxsend(Muxcon *mc, Fcall *msg) 
int muxrecv(Muxcon *mc, Fcall *msg) 

Figure 1: Mux interface.  This figure shows the external interface to the 9P mux. 

Figure 1 shows the procedures provided by the mux interface.  The muxalloc 

procedure creates a new 9P multiplexer.  It takes no arguments and returns a pointer to a 

Mux structure. 
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The muxmount procedure allows an application to attach the root of a file 

hierarchy served by a 9P server at an arbitrary place in the name space of a Mux.  In the 

arguments to muxmount, fd corresponds to an open connection to a 9P server.  After a 

successful call to muxmount, the root of the file tree served by fd appears in the name 

space of mux with file name old.  The flag argument specifies how the root of the file 

tree served by fd (new) will be mounted on old.  A flag value of MREPL causes new 

to replace the existing directory old.  A value of MBEFORE or MAFTER makes old into 

a union directory with new at the beginning or end respectively.  Muxmount returns a 

positive integer on success and –1 on failure. 

A call to muxbind rearranges the existing name space.  A successful call to 

muxbind causes the file new in the name space of mux to appear in the directory old 

in the same name space.  The flag argument has the same effect as in muxmount.  

Muxbind returns a positive integer on success and –1 on failure. 

The muxattach procedure establishes a connection with the mux.  It returns a 

pointer to a Muxcon.  A Muxcon uniquely identifies a client of the mux. 

The muxsend procedure communicates 9P messages to a mux.  Muxsend sends 

the 9P message msg to the input queue of the mux connected to mc. 

The muxrecv procedure reads from mc and fills out the Fcall structure msg 

with the first 9P message received.  Muxrecv returns a positive integer if the client must 

free buffers associated with msg and 0 otherwise.  A call to muxrecv blocks until a 

message arrives. 
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3.2 Using the Mux Interface to Perform Asynchronous I/O 

A client uses the mux to perform asynchronous I/O by sending and receiving 9P 

messages to servers.  Currently, a client performs 9P transactions with servers by reading 

and writing the file descriptor representing the 9P connection.  The reads and writes to 

the file descriptor could cause the calling thread to block. 

To provide the ability to send and receive 9P messages without blocking, the mux 

replaces the file descriptor interface to a 9P connection with a Muxcon.  A call to 

muxsend or muxrecv that cannot execute immediately causes the calling thread to 

wait on a user-level queue.  A user-level thread manager can then schedule a ready user 

thread until the send or receive completes. 
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3.3 Overview of Internal Structure 

Figure 2:  Internal mux structure.  This diagram shows the internal structure for a mux connecting 
two clients and one external server together.  Threads use shared queues to pass 9P messages 
between one another.  Different arrow types represent the three different 9P message formats used 
by the mux.  The byte-stream arrow indicates the presence of an I/O process. 

 
struct Msg 
{ 
   Queue *qret; //return queue for the response 
   Msg *mwrap; //chain of saved messages 
   uchar type; //9P or muxcall 
   union { 
      Fcall f; //9P message structure 
      Muxcall m; //muxcall message structure 
   }; 
}; 
 
struct Muxcon 
{ 
   Muxcon *next; //next Muxcon in list 
   Queue *qin; //queue of incoming messages 
   Queue *qout; //queue of outgoing messages 
   CFid *cfids; //list of client fids 
}; 

Figure 3: Msg and Muxcon structures. 
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Figure 2 depicts the internal structure of the mux.  The mux consists of multiple 

user threads that send and receive 9P messages by manipulating fixed-sized message 

queues.  We use a queue size of 512 in the implementation of the mux.  In the process of 

serving 9P transactions, the mux converts messages between two external 9P message 

formats and an internal format used by the mux.  Clients use the Fcall representation of 

a 9P message.  Calls to muxsend and muxrecv use the client’s Muxcon to convert 

between the Fcall representation and the internal Msg structure which contains 

additional information that the mux uses in servicing requests (Figure 3 details the 

Muxcon and  Msg structures).  Server threads convert messages between the Msg 

structure and the machine independent byte-stream representation.  An I/O process reads 

and writes the byte-stream representation to the file descriptor for the 9P connection to 

the server. 

A call to muxalloc creates a new Mux and creates two threads in the address 

space of the calling thread: the message dispatching thread (mdthread) and the file 

server thread (fsthread).  The mdthread processes and routes 9P messages and is 

described in detail in section 4.1.  The fsthread serves the internal mux file tree.  This 

file tree provides the backbone onto which an application mounts file trees for external 

9P servers.  Section 4.2 describes the implementation of the fsthread. 

A client thread attaches to the mux by calling muxattach.  Muxattach 

allocates a new Muxcon (see Figure 3).  The Muxcon contains a pointer to an input 

queue (qin) and an output queue (qout).  Each Muxcon has a unique qin, but the 

qout for all  Muxcons points to the Client Input Queue of the mdthread.  A call to 
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muxsend wraps the Fcall structure representation of the 9P request into a Msg 

structure and sets the return queue (qret) of the Msg structure to point to the 

Muxcon’s qin.  Muxsend then sends the request to Client Input Queue of the 

mdthread.  After the mdthread processes the request, it sends the response to queue 

specified in the qret field of the Msg structure of the request.  Muxrecv retrieves 

responses from the qin of the Muxcon and returns the Fcall in the Msg structure to 

the client. 

A call to muxmount attaches the file tree of an external server into the mux 

namespace.  Muxmount sets up a server thread and two I/O processes to manage 

communication with the external server being mounted.  Each server thread has a unique 

input queue from which it retrieves requests send by the mdthread.  The server thread 

converts requests from the Msg structure into the byte-stream representation and uses the 

first I/O process to write the converted requests to the file descriptor representing the 

connection with the server.  To retrieve responses from the external server, the server 

thread uses the second I/O process to read from the server file descriptor.  After retrieving 

a response, the server thread converts the message to the Msg structure format and sends 

it to the Server Input Queue of the mdthread. 

The previous discussion described the functions of the constituent components of 

the mux and how messages flow between them.  The next section explains the problems 

encountered in message multiplexing and the data structures employed to solve those 

problems. 
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3.4 Data Structures 

The mux must provide three primary functions.  Each of these functions raises 

specific problems that the mux design solves.  In order to multiplex requests from 

multiple clients over a single server connection, the mux solves the problem of collisions 

in the tag and fid spaces.  To multiplex responses from multiple servers over a single 

client connection, the mux solves the problem of collisions in the qid space.  To provide 

the single server/single client abstraction, the mux manages a name space that integrates 

file trees from multiple servers into a single file hierarchy presented to the clients and 

hidden from the servers. 

3.4.1 Avoiding Tag Collisions 

Tag collisions arise when multiplexing multiple clients over a single 9P connection.  

Clients choose tags to uniquely identify 9P requests.  However, two (or more) clients may 

each send a request with the same tag.  The mux uses the qret field of the incoming 

Msg structure to associate a client with the tag of incoming requests.  When the mux 

needs to send a message to a server in order to satisfy a request, the mdthread saves the 

original request in an array and uses the index into this array as the tag for the request that 

it sends to the server.  The saved message remains in the array until a response arrives 

from the server.  At this point, the mdthread removes the saved message and the tag 

can be reused.  This convention ensures that the every outstanding message on a server 

has a unique tag. 
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3.4.2 Avoiding Fid Collisions 

struct CFid 
{ 
   uint num;    //client fid number 
   CFid *next;    //next CFid in list 
   Fid *fid;    //fid used on servers 
   Fid *fidcur;    //current fid in unionread 
   vlong offset;    //offset in file, for unionread 
   MheadHistory *mhHist;  //stack of mount points crossed, for ".." 
}; 
 
struct Fid 
{ 
   Queue *qsrv;    //input queue that specifies the server 
   uint num;    //fid number 
   Qid qid;     //qid of the file 
}; 

Figure 4: CFid and Fid structures. 

Multiplexing multiple clients over a single 9P connection to a server also raises the 

possibility of fid collisions.  Since clients choose the fids to use in 9P sessions, two (or 

more) clients may choose the same fid to refer to two different files on the same server.  

To address this problem, the mux uses a single set of fids (maintained in Fid structures) 

in all of its 9P sessions with servers.  The mux translates the fids chosen by clients 

(maintained in CFid structures) to these internal fids.  This method ensures that each fid 

sent to a server unambiguously refers to a file handle managed by the server. 

Figure 4 outlines the Fid and CFid structures.  Each Fid contains the fid number 

and a pointer to the input queue of the server on which the fid is valid.  Each Muxcon 

contains a list of pointers to CFid structures.  CFids contain the number of the fid 

chosen by the client and a pointer to the Fid corresponding to the CFid. 

The mdthread manages the mapping of CFids to Fids.  The mdthread looks 

up the Muxcon for a client from the qret in the Msg structure of a client request.  The 

Muxcon provides the mdthread access to the CFids corresponding to a client.  When 
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a client sends a message that assigns a new fid to a file, the mdthread creates a new 

CFid to Fid mapping and adds it to the list stored in the Muxcon of the client.  When a 

client sends a request containing an existing fid, the mdthread looks up the 

corresponding CFid and follows the pointer to retrieve the Fid.  The Fid tells the 

mdthread which server and fid to use to satisfy the client’s request.  The mdthread 

destroys the CFid and corresponding Fid when it receives a clunk request. 

3.4.3 Avoiding Qid Collisions 

struct Queue 
{ 
   Channel *c; //underlying queue implementation 
   union { 
      Muxcon *mc; //Muxcon, if this is a Muxcon input queue 
      Qidmap *qm; //qid mappings, if this is a server input 
queue 
   };  
}; 
 
struct Qidmap 
{ 
   Qidmap *next; //next mapping 
   uint from; //top two bytes of server qid 
   uint to;  //top two bytes of mapped qid 
}; 

Figure 5: Queue and Qidmap structures. 

Qid collision, the mirror problem of fid collision, may occur when multiplexing 

multiple servers over a single connection to a client.  Each server assigns qids to uniquely 

identify files in its file tree.  However, two (or more) different servers may use identical 

qids to refer different files in their respective hierarchies.  A client cannot identify the 

context of a qid from the information contained in the 9P response, so the mux translates 

qids from servers to guarantee their uniqueness. 

The mux handles qid translation differently than fid translation.  First, the mux only 

translates the path field of the qid, and passes the version and type fields on to a client 
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unaltered.  Second, the mapping makes use of common structure of qid paths.  Many 

servers assign qids to files sequentially, starting at 0.  Therefore, the most significant bits 

of a qid’s path field have relatively low entropy within a server.  In contrast, fids chosen 

by clients do not generally have this property. 

The mux maintains a mapping for the top two bytes of every qid it receives from a 

server, called a Qidmap.  Each Qidmap entry contains the top two bytes of the server 

qid and the replacement two bytes to ensure qid uniqueness.  The mux stores the 

Qidmap for a server in the Queue structure for the server’s input queue.  Figure 5 

outlines these structures. 

The mdthread manages the Qidmaps, and ensures uniqueness across all of the 

servers.  When the mdthread receives a response from a server that contains a qid, it 

looks up the top two bytes of the qid in the Qidmap for the server.  If the Qidmap 

contains an entry, the mdthread replaces the top two bytes of the qid with the 

replacement bytes.  If no mapping exists, the mdthread creates a new entry in the 

Qidmap.  To ensure uniqueness of the new entry, the mdthread maintains a two-byte 

counter that contains the value of the replacements bytes of the next mapping.  Each time 

the mdthread creates a Qidmap entry, it increments the counter.  After the mdthread 

makes an entry in a server’s Qidmap, that entry remains for the entire time the server is 

attached to the mux. 

The qid translation scheme employed by the mux reduces translation overhead 

from a pure qid to qid mapping in the common case.  If the servers connected to the mux 

use qid assignment schemes with low entropy in the top two bytes of the qid’s path field, 

the Qidmap for that server will only contain a small number of entries. 
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3.4.4 Providing a File Tree 

struct Mhead 
{ 
   Fid *from; //the from side of the mount point 
   Mount *mount; //first directory on the to side of the mount point 
   Mhead *hash; //next Mhead in hash bucket 
}; 
 
struct Mount 
{ 
   Fid *to;  //fid on the to side of a mount point 
   Mount *next; //next directory in the union mount 
}; 

Figure 6: Mhead and Mount structures. 

 

Figure 7: Mount point lookup process.  The mux uses the low MNTLOG bits of the qid.path 
field to index into the mnthash table.  The mux follows chain of Mhead structures and compares the 

qid.path field of the From Fid to find the corresponding mount point.  The chain of Mount structures 
contain the Fids on the to side of the mount. 
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The mux hides the underlying multiplexing from clients and servers.  The mux 

hides the multiplexing of servers from its clients by serving a single file tree.  The mux 

translates client requests that act on this file tree into requests for one or more servers.   

The mux makes these requests on behalf of its clients, hiding the existence of multiple 

clients from the servers. 

The mux provides name space management tools similar to those exported by the 

Plan 9 kernel.  The mux allows applications to mount the root of a server’s file trees at 

arbitrary points in the name space with a call to muxmount.  The muxbind call 

rearranges the existing name space.  Both of these calls create a mount point in the 

existing name space.  A mount point maps the qid of the old file (called the from side of 

the mount point) to one or more (in the case of union mounts) qid(s) of the mounted 

file(s) (called the to side of the mount point).   

For each mount point, the mux stores an Mhead structure.  As a client traverses the 

mux’s file hierarchy, the mux must check if each file visited is on the from side of a 

mount point.  The mux searches through its Mhead structures to see if the qid of the file 

matches an existing mount point.  To improve the performance of this lookup, the Mux 

structure contains a hash table (mnthash) of Mheads.  The mux uses as an index into 

the mnthash a fixed number (MNTLOG) of the low order bits of the qid’s path field.  

Each bucket in the table contains a list of Mheads.  Each Mhead contains a pointer to a 

Fid associated with the from side of the mount point and a chain of pointers to Mount 

structures.  The Mount structures contain a pointer to a Fid associated with the to side 

of the mount point.  The order of the Mount structures in the chain determines the order 
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of the files in a union mount.  Figure 6 illustrates the mount data structures and Figure 7 

outlines the mount point lookup process. 

The mdthread administers these data structures and references them to process 

requests from clients.  To administer the data structures, the mdthread responds to 

muxmount and muxbind calls.  These procedures wrap the arguments into a special 

message type called a muxcall.  The Msg structure contains either a pointer to an Fcall 

(for a 9P message) or an Muxcall (for muxcall messages).  Muxmount or muxbind 

send their muxcall to the mdthread, which updates the mount data structures 

accordingly.  The mdthread sends a muxcall response to a temporary return queue used 

by the muxmount and muxbind calls.  These calls block until they receive a response. 

The mux uses the data structures described in this section to solve the problems 

introduced by multiplexing 9P connections.  In the next section, we describe the 

implementation of the mdthread and the fsthread and explain how the mdthread 

use the data structures presented in this section to manage client requests and server 

responses. 
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4 Implementation 

This section describes the implementation of the threads that perform the tasks 

needed for message multiplexing.  Section 4.1 describes the implementation of the 

mdthread, which routes messages and maintains the mux name space.  Section 4.2 

explains the implementation of the fsthread, which serves the internal mux file tree. 

4.1 Mdthread 

The mdthread performs the primary logic of the mux.  It receives requests from 

clients, carries out transactions with servers to serve those requests, and sends responses 

back to clients.  The mdthread also manipulates the mux data structures to manage the 

mux’s file tree. 

4.1.1 Main Loop 

The mdthread infinitely repeats a main loop.  Each time through the loop, the 

mdthread reads in a message from its input queue, processes it, and sends out a 

message to a client or server.  The mdthread has two input queues: a client input queue 

and a server input queue.  Each time through the loop, the mdthread checks the server 

input queue first for any outstanding response from servers.  When the server input queue 

is empty, the mdthread polls from both the client and server input queues until a it 

receives a message.  This priority biases the mux towards completing outstanding 

transactions before processing new requests.   
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When the mdthread retrieves a request from a client, it calls a handler 

corresponding to the message type.  If the mux can service the request in-house, the type-

specific handler constructs a response and sends the message to the client.  If the request 

requires one or more interactions with servers, the handler saves a pointer to the request’s 

Msg structure in an array called msave.  The handler uses the index of the message in 

msave as the tag field for the first request.  This guarantees that all outstanding requests 

from the mux on servers have unique tags.  The handler constructs the rest of the first 

request and sends it to the appropriate server. 

When the mdthread retrieves a response from a server, it retrieves the saved 

request by using the tag of the response to index into the msave array.  If the response 

contains a qid, the mdthread performs the qid translation.  The mdthread calls a 

handler corresponding to the response type of the saved request.  This handler parses the 

response from the server and performs the next steps in processing the request, which 

may require sending another request to a server.  If servicing the request requires another 

request, the handler saves the message as before.  Since message processing may require 

storing the results of previous transactions, the mdthread can wrap other messages up 

in the Msg structure with the mwrap pointer.  Thus a message saved in the msave array 

may also store a chain of previous requests and responses.  Eventually, the mdthread 

will have all of the information from servers needed to satisfy the request, so the handler 

constructs a response and sends it to the client. 

4.1.2 9P Message Handlers 

These handlers correspond to the 9P message types.  The main loop of the 

mdthread calls the type-specific handler upon receiving a 9P request. 
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Version 

The version handler closes all outstanding CFids for the client.  It checks that the 

version string specifies an accepted version of the 9P protocol. Currently only “9P2000” 

is supported.  If the message contained an invalid version, version sends an Rerror 

message to the client.  Otherwise, the handler constructs an Rversion message and 

sends it to the client.  The version handler currently ignores the msize field. 

Auth 

The mux currently does not support authentication.  The auth handler always sends 

an Rerror to the client.  Since authentication occurs once per each 9P session, it is not 

clear how to provide authentication over a multiplexed 9P connection.  Thus, the mux 

only handles servers that do not require authentication. 

Attach 

A client attaches to the root of the mux file tree.  The fsthread serves the root.  

The attach handler creates a new CFid corresponding to the fid specified in the client’s 

attach message and a new Fid to point to the root of the file tree.  The attach handler 

sends a walk request to the fsthread that walks the current Fid pointing to the root of the 

name space to “.”, creating a second Fid that points to the root.  When the mdthread 

receives the response from the fsthread it generates a response to the client’s request 

and sends it to the client. 
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Walk 

The mdthread must keep track of mount points when handling walk requests on 

behalf of clients.  The mdthread sends the complete walk message to the server 

associated with the fid in the client’s request.  When the server returns a response, the 

mdthread looks through the list of returned qids and determines if any of them 

correspond to files on the from side of a mount point.  If so, the mdthread sends the 

walk from the next path element onward to the first server of the to side of the mount 

point.  If the server returns an error, the mdthread tries the next server on the to side of 

the mount point.  When the mdthread runs out of mounted servers, it returns a walk 

response containing the list of qids so far to the client. 

The mdthread must also keep track of walking backwards (with the “..” element) 

across mount points.  The mdthread stores a stack of Mheads corresponding to 

crossed mount points in the CFid structure.  When a walk on the CFid crosses a mount 

point, the mdthread pushes the Mhead on the stack.  When a walk contains a “..” 

element at a mount point, the mdthread pops the top entry off the stack to retrieve the 

from side of the mount point. 

Read 

If the read request corresponds to a file not on the from side of a mount point, the 

mdthread forwards the read to the appropriate server and returns the response. 

 If the request corresponds to a file on the from side of a mount point, the 

mdthread issues a read request to the first server on the to side of the mount point.  

When the mdthread receives the response, it stores the returned data in a buffer.  If 
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response returned the requested number of bytes, the mdthread issues a response 

containing this buffer to the client.  Otherwise, the mdthread issues a read request to 

the next server on the to side of the mount point until the total number of bytes requested 

have been accumulated or the last server in the union directory has responded to the read. 

 The mdthread stores the Mhead and the Fid corresponding to the last server 

read along with an offset in the file on that server in the CFid structure associated with 

the read.  If the client issues a subsequent read on the CFid, the mdthread can retrieve 

the next segment of data from the stored information. 

Remove 

The mdthread must check whether the file affected in a remove message belongs 

to a mount point.  The remove handler looks up the qid corresponding to the fid in the 

request in the mount table, and if the qid is part of the from side of a mount point, the 

remove handler sends an error to the client.  Otherwise, the remove handler forwards the 

remove request to the server.  If the server returns an error, the remove handler forwards 

this error to the client.  Otherwise, the remove handler determines if the file belonged to 

the to side of any mount points.  If the file belongs to a mount, the server removes the 

corresponding Mount record from the mount data structure and clunks the mounted fids.  

The remove handler then sends a remove response to the client. 

 All remove requests clunk the specified fid, regardless of whether or not the 

request caused the removal of the file. 
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Flush 

The flush handler searches the msave array for a request with the tag specified by 

oldtag in the flush message.  If it does not find a corresponding request, the flush 

handler sends back flush response to the client.  If the flush handler discovers a matching 

message, it sends a flush to the server on which the mdthread currently has an 

outstanding transaction in servicing the original request.   This flush request sets oldtag 

to the index of the original client request in the msave array.  When the flush handler 

receives the response to this flush request, it discards the message state and responds with 

a flush response to the client.  If the outstanding transaction on the server returns, the 

flush handler discards the results and continues to wait for the flush response. 

Open, Create, Write, Stat, Wstat, Clunk 

The handlers for these message types create a new request of the same type, 

translate the fid and the tag fields, and send the message to the server specified in the 

Fid structure.  Upon receiving the response from the server, these handlers fill in the tag 

field of the response with the tag from the saved request and forward the response to the 

client.  The clunk handler also removes the state associated with the clunked fid. 

4.1.3 Muxcall Handlers 

These handlers correspond to the muxcall message types.  The main loop of the 

mdthread calls the type-specific handler upon receiving a muxcall request. 
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Attach 

A client call to muxattach generates an attach muxcall message and sends it to 

the mdthread.  The muxcall attach handler allocates a new Muxcon and adds it to the 

list of active Muxcons in the Mux structure.  The handler constructs a response 

containing a pointer to the Muxcon and sends it to the thread calling the muxattach 

procedure. 

Bindmount 

The muxmount and muxbind procedures both generate a bindmount muxcall 

message and send it to the mdthread.  The similarity of the mount and bind operations 

makes it convenient to use a single message type and handler to satisfy both requests.  

The bindmount handler walks to the old file to obtain a Fid that becomes the from side of 

the mount point.  For a mount, the bindmount handler sets up a server thread and attaches 

to the server file tree to obtain a Fid that becomes the to side of the mount point.  For a 

bind, the bindmount handler walks to the new file to obtain a Fid that becomes the to 

side of the mount point.   

After obtaining from and to Fids, the bindmount handler adds an entry in the 

mount table.  If the flag specifies MREPL, the handler replaces any existing mounts, and 

clunks the corresponding Fids.  If the flag specifies MBEFORE, the handler places the 

new Mount structure at the front of the list of existing Mounts.  An MAFTER flag 

instructs the handler to add the new Mount structure after any existing Mounts.  This 

ordering determines the search order for union directories.  The handler then generates a 
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response to the bindmount muxcall specifying the mount status.  A positive value denotes 

a successful mount, and a negative value denotes failure. 

4.2 Fsthread 

The fsthread serves a file tree from memory using the RAM based file system 

ramfs [11].  A call to muxalloc starts the fsthread.  When the fsthread starts, it creates 

a RAM file for the root directory of the file tree.  Muxalloc then creates the 

mdthread, which begins a 9P session with the fsthread by performing version and 

attach transactions.  It then enters a loop that reads a request from the mdthread from 

its input queue, serves the request from its file tree, and sends the response to the 

mdthread. 
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5 Device 9P Servers 

To provide access to a device through the mux, the devices must serve 9P.  We 

focus on providing 9P access to the disk and network devices, which are sufficient to run 

the web server.  We use the Plan 9 file server to provide access to files on disk.  We alter 

the network device to export 9P access to the user level. 

Once a device provides user-level 9P access through a file descriptor, the mux can 

present an asynchronous interface to the file tree served by the device.  A call to 

muxmount on the file descriptor attaches the device file tree into the mux namespace.  

Clients can asynchronously access the device with the muxsend and muxrecv 

functions, as described in section 3.2. 

5.1 File Server 

The Plan 9 file server, fossil, currently serves 9P [12].  A client establishes a 

connection with it to obtain a file descriptor (fd).  The client writes 9P requests to the fd 

and can retrieve responses from fossil by reading from the fd.  The client calls 

muxmount to mount the file tree served by fossil into the mux name space.  Since the 

mux currently does not support authentication, fossil must run with authentication 

disabled. 

Fossil runs a user level program and uses multiple kernel threads to serve requests.  

Fossil creates two new kernel threads to handle I/O on each new 9P connection from a 

client.  One thread reads requests and the second writes responses to the connection.  

When an I/O process receives a request, it places it on a central message queue.  Fossil 
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creates service threads to read messages from the central queue.  The service threads 

serve cached data immediately and interact with other threads that perform disk I/O to 

serve disk-bound data.  Fossil employs one disk I/O thread for each physical disk. 

Fossil places a fixed limit on the number of service threads it creates as well as on 

the number of outstanding messages in the system.  If the incoming load causes fossil to 

reach either of these limits, new requests will stall until fossil finishes processing a 

current request. 

5.2 Network Device 9P Server 

To provide 9P access to the network device at the user level, we provide export, a 

new system call.  A call to export returns a 9P connection to the network device via a 

pipe.   

The kernel implementation of export is derived from the implementation in Inferno 

operating system, changed to eliminate copies [2], [5].  The implementation consists of a 

number of kernel threads running in the kernel’s address space (kprocs).  A main kproc 

reads 9P requests from the pipe, passing each request to one of a pool of kprocs 

(exslaves) that run the incoming requests.  The exslaves call the network device 

procedures to perform I/O and then write the 9P response to the pipe.  If all exslaves are 

busy handling requests when a new request arrives, the main server process creates a new 

exslave.  The implementation imposes no explicit limit on the number of exslaves, so 

incoming requests do not stall waiting for exslaves. 



 41

6 Evaluation 

To evaluate the design, we analyze the performance of the mux in isolation and 

also carry out performance testing on a web server that uses the mux to perform 

asynchronous I/O. 

6.1 Mux Performance 

In order to achieve performance benefits from asynchronous I/O, the 

implementation must be efficient. In particular, we measure the latency of 9P transactions 

handled by the mux.  We perform a series of tests to determine how message latency 

degrades as different factors increase. 

In these tests, we consider the scalability of the mux with respect to the number of 

clients and servers.  Additionally, we test the performance of the mux name space of the 

mux by measuring the latency of messages that walk across mount points and read union 

directories.  For each of these tests, we take the average value over a series of  trials, 

ignoring the first few data points.  The latencies of the first several messages suffer, 

because the newly visited pieces of code are paged into memory.  We discount these 

latencies because they do not accurately reflect the steady state behavior of the system. 

6.1.1 Client and Server Scaling 

In the client and server scalability tests, we measure the latency of a set of 9P 

transactions (the message suite) as the number of clients and servers increase.  We run 

three separate tests.  The client scalability test measures latency with one server and an 

increasing number of clients.  The server scalability test measures latency with one client 
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and an increasing number of servers.  The combined scalability test measures latency as 

both the number of clients and servers increase. 

Each test sets up a user thread for each client and starts a process running ramfs 

for each server.  The client scalability test does not set up a ramfs server, but instead 

uses the internal mux file server to avoid measuring overhead from external servers.  For 

each ramfs server, the test creates a directory in the mux namespace and mounts the 

root of the server at that directory.  Clients attach to the mux and sequentially run the 

message suite on each server in the test.  The message suite consists of an instance of 

every 9P message type except auth and flush. 
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Figure 8: Client scalability.  In the test, clients simultaneously perform a message suite.  Latency 

becomes steeply non-linear after the queue size of 512 is exceeded and the mdthread begins to block. 

 
Figure 8 shows the results of the client scalability test.  The figure shows nearly 

linear growth until the 512 clients.  After this point, latency increases sharply.  This 

comes from the use of fixed-sized queues in the mux implementation.  For these tests, we 

use a queue size of 512 messages.  A thread attempting to send a message on a full queue 
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will block.  Therefore, the central dispatching thread may block if the internal file 

server’s input is full even though the dispatching thread could be processing outstanding 

responses to earlier messages.  If the queue implementation were replaced with one that 

grew dynamically, we would expect the increase in latency to remain linear. 
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Figure 9: Server scalability.  A single client loops over all servers and performs the message suite.  

The latency is dominated by the server response time. 

 
Figure 9 shows the results of the server scalability test.  Since the client executes its 

script on each server in turn, the latency remains fairly constant as the number of servers 

increase.  Much of the latency comes from the time to send and receive messages from 

the external server.  Indeed, we observed an average time of 40-50 ms to carry out a 

transaction with the ramfs server. 
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Figure 10: Combined scalability where the number of clients equals the number of servers.  Each 
client loops through the servers performing the message suite.  After some initial variation in the 

latency, the long-term behavior is linear in the number of clients and servers. 

 
Figure 10 shows the results of the combined scalability test.  In this test, all clients 

start by running the test suite on the same server.  When a client finishes, it moves on to 

the next server.  For a small number of clients and servers, there is variation in the 

average message latency.  After 16 clients and servers, the latency scales linearly.  For 

small numbers of clients, the system may not reach a steady pipelined state.  In this case, 

some messages may be delayed longer than others depending on the timing of the server 

responses.  



 45

6.1.2 Walk Performance 
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Figure 11: Walk scalability.  This test measures walk latency over a series of mount points. 

 
The walk test measures the latency of a single walk message across a series of 

mount points.  Each instance of the test binds a flat hierarchy of directories together into 

a single chain.  A client attaches to the mux and performs a walk to the end of this chain, 

crossing a mount point for each element in the path.  Figure 11 shows the results of this 

test.  We test up to sixteen mount points, which is the maximum number of elements 

allowed in a single walk message.  The linear behavior indicates that the mux imposes 

only constant overhead for each additional mount. 
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6.1.3 Union Read Performance 
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Figure 12: Union read scalability.  This test measures the latency of a read message on a union 

directory consisting of an empty directory repeatedly bound to the end of the union. 

 
The final test of mux performance measures the latency of union reads.  This test 

repeatedly binds an empty directory at the end of a base directory.  Thus, a read on the 

base directory will cause the mux to perform an intermediate read message for each 

instance of the empty directory in the union.  Figure 12 shows the results of the union 

read test.  The graph shows that the read latency grows super-linearly, but with a small 

factor.  It is unclear why this occurs, but for union directories of most sizes used in 

practice, the growth is essentially linear. 

6.2 Web Server Performance 

To test the viability of using the mux to provide asynchronous I/O, we perform 

benchmark tests on a web server that uses asynchronous I/O to overlap network and disk 

operations with request processing.  We start with the Plan 9 multi-process web server, 

httpd, as a basis for comparison [11].  We modify this web server to use the user thread 
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library and perform asynchronous I/O through the mux.  We present the modifications 

made to httpd in the next section and the performance comparisons between the modified 

web server (uhttpd) and httpd in the subsequent section. 

6.2.1 Uhttpd Design 

To allow the web server to use the user thread library, we replace the I/O system 

calls (open, read, write, etc.) with library functions that block at the user level.  

Thus, the thread manager can switch between blocking threads to manage concurrency.  

To provide the library functions, we use an existing library (libfs) that implements I/O 

procedure calls by carrying out the appropriate 9P transactions on a file descriptor.  We 

modify libfs to use Muxcons instead of file descriptors. 

To implement uhttpd, we replace all instances of I/O system calls in the httpd and 

network code to use the modified libfs calls.  Uhttpd begins by allocating a mux and 

mounting the file trees served by fossil and the network device 9P server into the mux 

namespace.  Next, the web server attaches to the mux and registers the Muxcon with 

libfs.  When uhttpd performs an I/O operation, libfs carries out the appropriate 9P 

conversation with the mux and any blocking will occur at the user level. 

6.2.2 Benchmark Setup 

To evaluate the performance of the non-blocking web server, we run a set of 

benchmark tests on uhttpd and httpd and compare the results.  We run the tests with the 

profiling tools used to measure the Flash web server [7].  The tests use multiple 

directories each containing 5 MB of data in files varying from 102 bytes to 921 KB for 

the web server data set.  This data set is the same as the one used for SpecWeb99 
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benchmarks.  The workload is a Zipf distribution heavily weighted toward small files.  

We vary the number of directories served to measure cached versus disk bound 

workloads and vary the number of clients to measure scalability.  We run each test for 5 

minutes to allow caches to reach a steady state, wait 5 minutes with no load to stabilize 

the caches, and then run the tests for 5 minutes and record the results. 

We run the benchmarks on a server machine and a client machine connected with 

copper gigabit Ethernet through a NetGear model GS504T gigabit Ethernet switch.  Both 

machines have Intel PRO/1000 MT network cards.  The web server  runs on a 3 GHz 

Pentium 4 CPU and 2 GB of RAM running Plan 9.  The client runs Linux 2.6.5 on a 2.4 

GHz Pentium 4 CPU and 1 GB of RAM. 

6.2.3 Benchmark Results 

To evaluate the web server, we run tests to measure throughput as the number of 

clients scale.  All clients run concurrently on the single client machine.  We run each 

throughput test on two different workloads.  We measure the in-cache performance by 

using a 10 MB workload (2 directories).  To measure disk bound performance, we use a 

3.4 G.B workload (679 directories).  Since httpd does not employ a cache, it retrieves 

data from the file server on every request. 

Figure 13 shows the results of throughput tests.  The graph shows that uhttpd 

generates a lower throughput than httpd on the in memory workload, but that the 

performance of uhttpd degrades more slowly as the number of clients increases.  For 64 

clients, the latency of uhttpd is 18% worse than httpd. 
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Figure 13: Web server throughput comparison.  The throughput for the in memory workload is 

shown in (a).  The disk bound workload is shown in (b). 

 

Figure 14 shows the cumulative distribution of response times for 32 clients.  This 

graph indicates that httpd serves more requests than uhttpd does for the in memory 

workload.  For the disk bound workload, httpd and uhttpd exhibit almost identical 

characteristics.  Interestingly, the steeper slope of the uhttpd distribution function for the 
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in memory workload indicates that the latency of almost all requests is essentially the 

same.  
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Figure 14: Cumulative distribution of response times for 32 clients.  The results for the in memory 

test are shown in (a).  The disk bound test results overlap and are depicted in (b). 
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6.2.4 Discussion 

The results of the benchmarks indicate that the user-threaded web server performs 

worse than the kernel-threaded implementation on in memory workloads and comparably 

for disk bound workloads.  The performance of the uhttpd server degrades more slowly 

than httpd as the number of clients increase because the uhttpd does not require a new 

process for each request. 

Neither httpd nor uhttpd is optimized for high performance.  In particular, the 

implementations copy data a handful of times in the process of serving requests.  Figure 

15 outlines the memory copies made on the data path of a request and response for httpd 

and uhttpd.  Many of these copies could be eliminated with the use of zero-copy I/O 

mechanisms [8].  Additionally, the user-level copies in uhttpd between the web server 

memory and the mux I/O processes could be eliminated with a more careful 

implementation of the asynchronous system call interface.  These extra copies are the 

likely cause of both the throughput and latency gaps between uhttpd and httpd for the in 

memory workload. 

The steep slope of the cumulative distribution function in uhttpd indicates that the 

mux provides a fair message servicing policy.  The queuing in the system provides 

regularity in request serving.  
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Figure 15: Data copies in request serving.  Each arrow in a chain represents a data copy.  (a) shows 

the copies in httpd.  The copy path for uhttpd is shown in (b).   Uhttpd requires an additional copy in 
each operation. 
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7 Conclusions and Future Work 

7.1 Summary 

The scaling tests performed on the mux indicate that the mux scales well up to 

hundreds of clients and over a hundred servers.  These results lead us to conclude that the 

mux implementation is correct and demonstrates the feasibility of the message passing 

design of the mux. 

The tests performed on the user-threaded web server indicate that the mux 

implementation of asynchronous I/O performs comparably with the standard I/O 

interface.  These results demonstrate the feasibility of using the mux to provide 

asynchronous I/O.  The performance benefits of overlapping processing with device 

operations are not immediately apparent from the tests we performed, but we note that 

the performance of httpd is largely independent of the kernel scheduling policy.  Any 

ready thread that the kernel chooses to schedule will contribute to the overall throughput 

numbers.  This observation leads us to conclude that an application that requires a more 

complicated or different scheduling policy than the one employed by the kernel may 

show performance improvements by using the mux interface.   

By providing asynchronous I/O, the mux interface allows fine-grained control over 

user-level thread scheduling.  This control gives programmers the freedom to design 

applications that rely on more advanced scheduling algorithms than previously possible.  
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7.2 Future Work 

Future work involves moving the user-level mux library into the Plan 9 kernel.  

Running in the kernel should improve the efficiency of the interface by eliminating the 

need to export 9P access to devices to the user level.  The kernel implementation of the 

mux would present a single 9P connection to the user-level client.  The implementation 

would still require a user-level library to provide functions for sending and receiving 9P 

messages that block at the user-level. 

In the meantime, future work involves improving efficiency of the user-level mux 

interface.  In particular, eliminating user-level copies of data would improve performance 

of the uhttpd implementation.  As orthogonal issue to the work presented in this thesis, 

future work could also involve making the underlying httpd web server code more 

efficient.  The number of copies on the data path could be reduced by employing zero-

copy I/O techniques [8].  Eliminating the copying overhead would make the context-

switching overheads more apparent and should demonstrate better performance of uhttpd 

on disk bound workloads relative to httpd. 

The mux interface provides greater functionality to user threads by allowing 

blocked threads to be scheduled at the user level.  A final avenue for future work involves 

exploring the benefits of application-specific user-level thread scheduling.   
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Appendix - 9P 

Plan 9’s network file protocol, 9P, provides a client with an asynchronous interface 
to files served by a 9P server.  A client sends a T-message (request) to a server and 
receives an R-messages (responses) from the server.  A request and its corresponding 
response constitute a transaction. 

Each request contains a 16-bit tag, which clients choose to uniquely identify 
transactions.  The server echoes a request’s tag in the corresponding response.  To 
guarantee uniqueness, a client must not send a request with the same tag as an 
outstanding request.  Most request types contain a fid, a 32-bit unsigned integer used by 
the client to reference a file on the server.  Clients choose fids and must guarantee their 
uniqueness.  Several response types transmit a qid to the client.  Assigned by the server, 
the thirteen-byte qid field uniquely specifies a file in the server’s file hierarchy.  The first 
byte of the qid, the type, conveys information about the file, such as whether it is a 
directory, append-only, etc.  The next eight bytes, the path, uniquely identify the file on 
the server.  The final four bytes, the version, contain a version number for the file.  
Typically, the server increments the version field on each file modification. 

In all, 9P has 13 message type pairs (T-message and corresponding R-message) and 
one unpaired response, an error message, for notifying the client when a request results 
in an error.  Figure 16 summarizes these message types. 

A 9P message may have one of two formats.  The first, called an Fcall, is a C 
structure used for message processing.  A 9P message in an Fcall gets converted into a 
machine-independent byte stream for transmission over a 9P connection. 

 

Message Description 
Tversion tag msize version 
 
Rversion tag msize version 

Establishes the version of the 9P protocol 
(version) and the maximum message size (msize) 
that will be used. 

Tauth tag afid uname aname 
 
Rauth tag aqid 

Used for authentication.  Afid is a fid used to 
authenticate the user named by uname to the file 
tree specified by aname.  Returns the qid (aqid) for 
the file to be used to carry out an authentication 
protocol. 

Tattach tag fid afid uname 
aname 
 
Rattach tag qid 

Attaches fid to the root of the file tree specified by 
aname on behalf of a user (uname).  The afid is 
previously established with an auth transaction.  
Returns the qid of the root of the file tree. 

Twalk tag fid newfid 
nwname nwname*(wname) 
 
Rwalk tag nwqid 
nwqid*(wqid) 

Walks a fid (newfid) through nwname path 
elements (the wnames) in the file hierarchy starting 
at the file pointed to by fid.  Returns a list of 
visited qids (the wqids) 
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Topen tag fid mode 
 
Ropen tag qid iounit 

Prepares fid for I/O and specifies the type of I/O 
(mode) that will be performed.  Returns the qid of 
the file and the maximum size to be read/written 
without breaking the message up (iounit). 

Tcreate tag fid name perm 
mode 
 
Rcreate tag qid iounit 

Creates a file (name) with specified permissions 
(perm) and opens for specified type of I/O (mode) in 
the directory pointed to by fid.  Returns the qid of 
the new file and iounit as in open. 

Tread tag fid offset count 
 
Rread tag count 
data[count] 

Reads count bytes of data at offset from the file 
pointed to by fid.  Returns the data and number of 
bytes actually read (count). 

Twrite tag fid offset 
count data[count] 
 
Rwrite tag count 

Write count bytes from data to offset in the file 
pointed to by fid.  Returns number of bytes 
actually written (count). 

Tflush tag oldtag 
 
Rflush tag 

Abort an outstanding message specified by oldtag.  
When the client receives an Rflush, it may reuse 
oldtag. 

Tclunk tag fid 
 
Rclunk tag 

Informs the server that fid is no longer needed.  
After receiving an Rclunk, the client may reuse 
fid. 

Tremove tag fid 
 
Rremove tag 

Remove the file pointed to by fid.  Also clunks fid. 

Tstat tag fid 
 
Rstat tag stat 

Return a structure (stat) containing file attributes 
for the file pointed to by fid. 

Twstat tag fid stat 
 
Rwstat tag 

Write file attributes (stat) for the file pointed to by 
fid. 

Rerror tag ename 
Returns an error string (ename) on an unsuccessful 
request. 

Figure 16: 9P message types. 

 


