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Abstract

Pastwatch is a version control system that acts like a tra-
ditional client-server system when users are connected
to the network; users can see each other’s changes im-
mediately after the changes are committed. When a user
is not connected, Pastwatch also allows users to read re-
visions from the repository, commit new revisions and
share modifications directly between users, all without
access to the central repository. In contrast, most existing
version control systems require connectivity to a central-
ized server in order to read or update the repository.

Each Pastwatch user’s host keeps its own writable
replica of the repository, including historical revisions.
Users can synchronize their local replicas with each other
or with one or more servers. Synchronization must han-
dle inconsistency between replicas because users may
commit concurrent and conflicting changes to their lo-
cal replicas. Pastwatch represents its repository as a
“revtree” data structure which tracks the relationships
among these conflicting changes, including any recon-
ciliation. The revtree also ensures that the replicas even-
tually converge to identical images after sufficient syn-
chronization.

We have implemented Pastwatch and evaluate it in a
setting distributed over North America. We have been
using it actively for more than a year. We show that
the system is scalable beyond 190 users per project and
that commit and update operations only take 2-4 seconds.
Currently, five users and six different projects regularly
use the system; they find that the system is easy to use
and that the system’s replication has masked several net-
work and storage failures.

1 Introduction

Many software development teams rely on a version con-
trol system (VCS) to manage concurrent editing of their
project’s source code. Existing tools like CVS[7] and

Subversion[22] use a client-server model, where a repos-
itory server stores a single master copy of the version
history and the clients contact the server to read exist-
ing revisions and commit new modifications. This model
works well when the users can contact the server, but
as portable computers gain popularity, the client-server
model becomes less attractive. Not only can network
partitions and server failures block access to the reposi-
tory, but two clients that cannot contact the server cannot
share changes with each other even if they can commu-
nicate directly.

One approach to solving this problem is to optimisti-
cally replicate the repository on each team member’s
computer. This would allow users to both modify the
replica when they are disconnected and to share changes
with each other without any central server. The chal-
lenge in this approach is how to reconcile the write-write
conflicts that occur when two users independently mod-
ify their replicas while disconnected. Conflicts can oc-
cur at two levels. First, the repository itself is a complex
data structure that describes the revision history of a set
of files; after synchronizing, the repository must contain
all the concurrent modifications and the system’s inter-
nal invariants must be maintained so that the VCS can
still function. The second level is the source code itself
which also contains interdependencies. The VCS should
present the modification history as a linear sequence of
changes when possible but if two writes conflict, the sys-
tem should keep them separate until a user verifies that
they do not break interdependencies in the source code.

Pastwatch is a VCS that optimistically replicates its
repository on each team member’s computer. To manage
concurrent modifications, Pastwatch formats the repos-
itory history as a revtree. A revtree is a data structure
that represents the repository as a set of immutable key-
value pairs. Each revision has a unique key and the value
of each pair represents one specific revision of all the
source code files. Each revision also contains the key
of the parent revision it was derived from. Each time a



user modifies the revtree, he adds a new revision to the
revtree without altering the existing entries. Revtrees are
suitable for optimistic replication because two indepen-
dently modified replicas can always be synchronized by
taking the union of all their key-value pairs. The result-
ing set of pairs is guaranteed to be a valid revtree that
contains all the modifications from both replicas. If two
users commit changes while one or both is disconnected,
and then synchronize their replicas, the resulting revtree
will represent the conflicting changes as a fork; two revi-
sions will share the same parent. Pastwatch presents the
fork to the users who examine the concurrent changes
and explicitly reconcile them.

Although Pastwatch users can synchronize their repli-
cas with each other directly, a more efficient way to
distribute updates is for users to synchronize against
a single rendezvous service. In a client-server VCS,
the repository server functions as the rendezvous but
it must enforce single copy consistency for the repos-
itory. The consistency requirement makes it challeng-
ing to maintain a hot spare of repository for fail-over
because a server and a spare may not see the same up-
dates. Revtrees, however, support optimistic replication
of the repository, so Pastwatch can easily support backup
rendezvous servers with imperfect synchronization be-
tween servers. Pastwatch exploits the revtree’s tolerance
for inconsistency and uses a public distributed hash ta-
ble that makes no guarantees about data consistency as a
rendezvous service.

This paper makes three contributions. First, it de-
scribes the revtree data structure which makes divergent
replicas easy to synchronize. Second, it shows how
revtrees can handle many classes of failure and present
them all to the users as forks. Finally, it describes Past-
watch, a distributed version control system that uses a
replicated revtree to provide availability despite system
failures, network failures and disconnected users.

We have implemented Pastwatch and have been using
it actively for more than a year. We show that the system
scales beyond 190 members per project and that commit
and update operations only take 2-4 seconds. Currently,
five users and six projects use the system, including this
research paper and the Pastwatch software itself. The
system has performed without interruption during this
time despite repeated down-time of rendezvous nodes.
During the same time, our CVS server experienced three
days with extended down-time.

The remainder of this paper is organized as follows:
Section 2 motivates Pastwatch and gives concrete re-
quirements for its design. Section 3 discusses revtrees
and section 4 describes how Pastwatch presents opti-
mistic replication to its users. Sections 5 and 6 describe
implementation details and system performance. Section
7 describes related work and Section 8 concludes.

2 Design Requirements

The task of a VCS is to store historic revisions of
a project’s files and to help programmers share new
changes with each other. Ideally, a VCS would be able to
accomplish these goals despite network disconnections,
network failures and server failures. We outline the re-
quirements of such a VCS below.

Conventional Revision Control: Any VCS should
provide conventional features like checking out an ini-
tial copy of the source code files, displaying differences
between file revisions and committing new revisions to
the repository. In most cases, users will expect the sys-
tem to have a single latest copy of the source code files,
so when possible the VCS should enforce a linear history
of file modifications.

At times, one or more project members may choose
to fork to keep their modifications separate from other
users. A fork is a divergence in the change history where
two different revisions are derived from the same parent
revision. A branch is a sequence of changes from the
root revision to one of the current leaf revisions. After
a fork, each of the two branches will maintain a sepa-
rate sequential history and they will not share changes
until they are explicitly reconciled. Forking is a common
practice in software projects; for example, many projects
use a main development branch and fork at each major
release to create a maintenance branch. Some projects
even use separate branches for each individual bug fix.
This way, a programmer can make intermediate commits
for the bug fix in her own branch without interfering with
other programmers.

Disconnected Repository Operations: A VCS should
support as many functions as possible even if it is dis-
connected from the network, for example when a user is
traveling. The ability to retrieve old revisions from a lo-
cal replica of the repository while disconnected is useful
and easy to support. Being able to commit new revisions
to the repository while disconnected is also useful, be-
cause programmers often commit changes several times
a day.

For example, we will show in Section 6.1.1 that the
average developer in the Gaim open-source project com-
mits an average of 3 times per day when he is active and
on the busiest day, a single user made 33 commits. Fre-
quent commits are encouraged in software projects like
PHP and libtool; their coding standards encourage pro-
grammers to make several smaller commits rather than a
single large commit because it simplifies debugging.

A VCS that allows disconnected commits must han-
dle conflicting commits. When two disconnected users
commit changes, they do so without knowledge of the
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Figure 1: Flexible sharing of updates. Clients in one
partition can share new revisions directly, without any
servers.

other person’s changes. This means that they may com-
mit changes that conflict at a semantic level in the source
code. In one example, two users may independently im-
plement a sqrt function in a math library while discon-
nected. When they reconnect, the VCS could reconcile
their changes automatically by including both sqrt im-
plementations, but then the math library would fail to
compile because the semantics of the resulting source
code are invalid. Although concurrent modifications may
not always conflict in this way, it is best to avoid situa-
tions where the repository revision does not compile or
contains inconsistencies. Since it is difficult to automati-
cally determine if concurrent changes will cause a source
code inconsistency, the VCS should record the conflict
and allow a human to make the distinction when conve-
nient.

Flexible Update Sharing: A VCS should allow users
to share their changes with each other whenever their
computers can communicate. This includes scenarios
where two users are sitting next to each other on an air-
plane; they are able to connect to each other but not to
the VCS server or the other client hosts (see Figure 1b).
They should be able to commit changes and share them
with each other via the VCS, even though the repository
server is not reachable.

Server Failures: Another scenario that the VCS
should handle gracefully is a server failure. If a VCS
server fails, the system should be able to switch to a
backup server seamlessly. The event that motivated the
Pastwatch project was a power failure in our laboratory
one day before a conference submission deadline; the
failure disabled our CVS server. We were able to cre-
ate a new CVS repository off-site, but our history was
unavailable and there was no simple way to reconcile the
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Figure 2: (a) Inheritance graph. Letters depict revisions.
(b) Example revtree. Each box is a revision; it specifies
one version of every file in the project. Nodes D and E

are leaves and node B is a fork point.

change history between the old and new repositories after
the power was restored. Ideally, the VCS would be able
to manage update consistency between replicas so that
switching between repository replicas would be easy.

3 Revtrees

Pastwatch supports disconnected operation by storing a
full repository replica on each member’s computer. If
two users concurrently modify their repository replicas,
there is a risk that the modifications will conflict when
the users attempt to synchronize their replicas. Pastwatch
ensures that neither modification is lost and that all repli-
cas eventually reflect both modifications. That is, Past-
watch applies an optimistic replication strategy [25] to
the repository.

Construction: The fundamental task of a repository
is to store past revisions of the project files. Pastwatch
stores these revisions in a revtree data structure that ex-
ploits the inheritance between immutable revisions to
help it provide optimistic replication.

Each revision logically contains one version of every
file in the project. Revisions are related through inheri-
tance: normally a project member starts with an existing
revision, edits some of the files, and then commits a new
revision to the repository. This means each revision ex-
cept the first one is a descendant of an earlier revision.
Figure 2a illustrates this inheritance relationship between
revisions A through E. The dashed arrow from A to B

indicates that a user modified some files from revision A

to produce revision B.
Pastwatch stores the repository as a revtree modeled

after the inheritance graph. A revtree is a directed acyclic



graph, where each node contains a revision. Each re-
vision is immutable and has a unique revision identifier
called an RID. Each revision contains a parent pointer:
the RID of the revision from which it was derived (see
Figure 2b).

When a user commits a change to the repository, Past-
watch creates a new revision, adds it to the revtree in
the user’s local repository replica and finally synchro-
nizes with the other replicas to share the new revision.
If users commit new revisions one at a time, each based
on the latest revision acquired via synchronization, then
the revtree will be a linear revision history.

Handling Network Partitions: Users may not be able
to synchronize their replicas due to lack of network con-
nectivity. They may still commit new revisions, but these
revisions will often not be derived from the globally most
recent revision. These concurrent updates pose two prob-
lems: the overall revision history will no longer be linear,
and the various repository replicas will diverge in a way
that leaves no single most up-to-date replica.

When two users with divergent repositories finally
synchronize, Pastwatch must reconcile their differences.
Its goal is to produce a new revtree that reflects all
changes in both users’ revtrees, and to ensure that, after
sufficient pair-wise synchronizations, all replicas end up
identical. Each repository can be viewed as a set of revi-
sions, each named by an RID. Revisions are immutable,
so two divergent revtrees can only differ in new revi-
sions. This rule holds even for new revisions that share
the same parent, since the parent revision is not modi-
fied when a new child is added. Pastwatch chooses RIDs
that are guaranteed to be globally unique, so parent ref-
erences cannot be ambiguous and two copies of the same
revision will always have the same RID no matter how
many times the replicas are synchronized. These proper-
ties allow Pastwatch to synchronize two revtrees simply
by forming the union of their revisions. Any synchro-
nization topology, as long as it connects all users, will
eventually result in identical repository replicas.

Revtrees gain several advantages by using the union
operation to synchronize replicas. First, partially dam-
aged revtrees can be synchronized to reconstruct a valid
and complete replica. Second, the synchronization pro-
cess can be interrupted and restarted without harming the
revtrees. Finally, the synchronization system does not
need internal knowledge of the revtree data structure;
Section 5.2 describes how Pastwatch uses this property
to store a replica in a distributed hash table.

Managing Forks: The usual result of commits while
disconnected is that multiple users create revisions with
the same parent revision. After synchronization, users
will see a fork in the revtree: a non-linear revision history
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Figure 3: Forking Examples. (a) Two divergent revtree
replicas. (b) The two divergent replicas from (a) are syn-
chronized and the resulting revtree contains a fork.

in which one revision has multiple successors. Figure 3
illustrates the formation of a fork, caused by two discon-
nected users both creating revisions (C and D) based on
revision B. Now the revtree has two leaves; the path
from each leaf to the root node is called a branch.

A fork correctly reflects the existence of potentially
incompatible updates to the project files, which can only
be be resolved by user intervention. If nothing is done,
the repository will remain forked, and users will have to
decide which branch they wish to follow. This may be
appropriate if the concurrent updates reflect some deeper
divergence in the evolution of the project. However, it
will often be the case that the users will wish to return
to a state in which there is a single most recent revision.
To reconcile two branches, a user creates a new revision,
with the help of Pastwatch, that incorporates the changes
in both branches and contains two parent pointers, refer-
ring to each of the two branch leaves. Ideally, the user
should reconcile when he is connected to the network so
that the reconcile is available to other users immediately;
this avoids having other users repeat the reconcile un-
necessarily. Figure 4a illustrates two branches, C and D,
that are reconciled by revision E.

As with any commit, a disconnected user may commit
a new child to revision C before he sees E. The result-
ing revtree is illustrated in Figure 4b. Once again, the
revtree has two leaves: F and E. To reconcile these two
branches a user proceeds as before. He commits a new
revision G with parents E and F . The final branch tree
is shown in Figure 4c. Two members can also reconcile
the same two branches concurrently, but this is unlikely
because Pastwatch will detect a fork when the diverging
replicas first synchronize and suggest that the user rec-
oncile it immediately.
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Figure 4: Reconciling Branches. (a) Revision E recon-
ciles the fork and joins C and D. (b) Revision F creates
a new fork and reuses C. (c) Revision G reconciles the
new fork.

Synchronization Patterns: Pastwatch users may syn-
chronize pairs of replicas in whatever patterns they pre-
fer. One reasonable pattern is to mimic a centralized sys-
tem: for every replica to synchronize against the same
designated “rendezvous” replica. This pattern makes
it easy for all users to keep up to date with the lat-
est generally-available revision. Another pattern is ad-
hoc synchronization which helps when users are isolated
from the Internet but can talk to each other. Figure 5
illustrates both rendezvous and ad-hoc synchronization.

Revtree Benefits: Revtrees provide a number of key
benefits to Pastwatch. First, revtrees provide flexibility
in creating and maintaining replicas because they guar-
antee that the replicas will converge to be identical. For
example, if a project’s rendezvous service is not reliable,
its users can fall back to ad-hoc mode. Alternatively, the
users could also start or find a replacement rendezvous
service and synchronize one of the user’s local repli-
cas with it, immediately producing a new working ren-
dezvous replica.

Revtrees also aid with data corruption and data trans-
fer. If two replicas are missing a disjoint set of revisions,
they can synchronize with each other to produce a com-
plete replica. Also, the new revisions are always easy to
identify in a revtree, so synchronization uses very little
bandwidth.

Revtrees handle several types of failure, using the fork
mechanism for all of them. For example, if a rendezvous
loses a leaf revision due to a disk failure, then another
user could inadvertently commit without seeing the lost
revision. After repairing the rendezvous, the visible ev-
idence of the failure would be an implicit fork. Simi-
larly, network partitions and network failures can result
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Figure 5: User-visible Model. Local repository replicas,
rendezvous replica and working copies.

in forks. The revtree’s eventual consistency ensures that
the only impact of such failures is a fork. Users only
need to learn one technique (reconciling forks) in order
to deal with a wide range of underlying problems and as
we show in Section 4, reconciling forks is not difficult,
so using forks to handle failures is convenient for users.

4 User-Visible Semantics

This section explains the user’s view of how Pastwatch
works. To the extent possible, Pastwatch’s behavior
mimics that of CVS.

Working Copy: A Pastwatch user edits a working
copy of the project files, stored as ordinary files in the
user’s directory. A user creates a working copy by
checking out a base revision from the repository. The
checkout command copies the files from the base re-
vision into the working copy and remembers the working
copy’s base revision.

Tracking New Revisions: In order to see other users’
new revisions, a user will periodically update her work-
ing copy. The update command first fetches new revi-
sions from the rendezvous replica. It then checks if the
working copy’s base revision has any new children. If
the base revision has just one child, Pastwatch will apply
changes from the child to the working directory. Past-
watch will follow single children, merging them into the
working directory with 3-way diff[6], until it reaches a
revision with either zero or more than one child. Past-
watch changes the working directory’s record of the base
revision to reflect this last revision.

Committing New Revisions: In most cases, a linear
history of changes is desirable, so Pastwatch will not cre-
ate a fork if it can avoid it. When a user tries to com-
mit new changes stored in the working copy, Pastwatch
first tries to synchronize the local revtree against the ren-
dezvous. It then checks whether the working copy’s base



revision has any descendants. If the base revision does
have new descendants, Pastwatch will refuse to create a
new revision until the user updates his working copy.

There is a potential race between reading the base revi-
sion and appending a new revision. As an optimization,
Pastwatch uses a best-effort leasing scheme to prevent
this race from causing unnecessary forks. Pastwatch tries
to acquire a lease on the repository before fetching the
base revision and releases it after synchronizing the new
revision with the rendezvous replica. When the user can
contact the rendezvous service, Pastwatch uses the ren-
dezvous service to store the lease. The lease is only an
optimization. If Pastwatch did not implement the lease,
the worst case outcome is an unnecessary fork when two
connected users commit at exactly the same time. If the
rendezvous is unavailable, Pastwatch proceeds without a
lease.

Implicit Forks: If two disconnected users indepen-
dently commit new revisions, an implicit fork will ap-
pear when synchronization first brings their revisions to-
gether. A user will typically encounter an unreconciled
fork when updating her working copy. If there is an un-
reconciled fork below the user’s base revision, Pastwatch
warns the user and asks her to specify which of the fork’s
branches to follow. Pastwatch allows the user to con-
tinue working along one branch and does not force her
to resolve the fork. This allows project members to con-
tinue working without interruption until someone recon-
ciles the fork.

Explicit Forks: Pastwatch users can fork explicitly to
create a new branch so that they can keep their changes
separate from other members of the project. To explicitly
fork, a user commits a new revision in the revtree with
an explicit branch tag. Pastwatch ignores any explicitly
tagged revisions when other users update.

Reconciling Forks: Both implicit and explicit
branches can be reconciled in the same way. Rec-
onciling forks is no more difficult than updating and
committing in CVS. Figures 6 and 7 illustrate the
process.

Forks first appear after two divergent replicas syn-
chronize. In the examples, Alice synchronizes her local
replica during an update and Pastwatch reports a new
fork because both Alice and Bob made changes while Al-
ice was disconnected from the network. To reconcile the
fork, Alice first issues a reconcile command which
applies the changes from Bob’s branch into Alice’s work-
ing copy.

In Figure 6, there were no textual conflicts while ap-
plying Bob’s changes to Alice’s working copy, so Alice

alice% past update
Tracking branch: init, alice:3
Branch "init" has forked.
current branches are:
branch "init": head is alice:3
branch "init": head is bob:2

alice% past -i reconcile -t bob:2
Tracking branch: init, alice:3
updating .
Reconciling main.c
M main.c: different from alice:3

alice% past -i -k bob:2 commit -m "Reconcile branches"
Tracking branch: init, alice:3
checking for updates and conflicts
updating .
M main.c
committing in .
committing main.c
Built snapshot for revision: alice:4

Figure 6: Reconciling a fork without source code con-
flicts.

can just commit a new revision that is a child of both
Alice’s and Bob’s revisions as shown in Figure 4a. In
contrast, Figure 7 shows what Alice must do if the fork
created a source code conflict. Pastwatch notifies Alice
during the reconcile and inserts both conflicting lines
into her working copy the way CVS reports conflicts dur-
ing an update. After Alice resolves the conflict she can
commit the final revision.

5 Implementation

The Pastwatch software is written in C++ and runs
on Linux, FreeBSD and MacOS X. It uses the SFS
tool-kit[18] for event-driven programming and RPC li-
braries. It uses the GNU diff and patch libraries
to compare different revisions of a file and perform
three-way reconciliation. Pastwatch is available at:
http://pdos.csail.mit.edu/pastwatch.

5.1 Storage Formats

Pastwatch stores the entire local replica in a key-value
store implemented by a BerkeleyDB database for conve-
nience. All the replica data structures are composed of
key-value pairs or blocks. Immutable blocks are keyed
by the SHA-1[11] hash of their content.

For the sake of storage and communication efficiency,
each revision in the revtree only contains the difference
from the parent revision rather than an entire copy of the
source code files. The internal representation of a re-
vision is a combination of a revision record and delta
blocks, all of which are immutable blocks. Delta blocks
contain the changes made to the parent revision in the
GNU diff format. Figure 8 illustrates the structure of a
revision record. The RID of a revision equals the SHA-1



alice% past update
Tracking branch: init, alice:3
Branch "init" has forked.
current branches are:
branch "init": head is alice:3
branch "init": head is bob:2

alice% past -i reconcile -t bob:2
Tracking branch: init, alice:3
updating .
Reconciling main.c
C main.c: conflicts with alice:3

alice% grep -A4 "<<<" main.c
<<<<<<< alice:3

int increase (int x) { return x + 1; }
=======

void increase (int &x) { x++; }
>>>>>>> bob:2

< Alice reconciles conflicting edits with a text editor >

alice% past -i -k bob:2 commit -m "Reconcile branches"
Tracking branch: init, alice:3
checking for updates and conflicts
updating .
M main.c
committing in .
committing main.c
Built snapshot for revision: alice:4

Figure 7: Reconciling a fork with a source code conflict.

hash of the revision record block. parent contains the
RID of the parent revision. previous contains the key
of the previous entry in the member log described in Sec-
tion 5.2. The remainder of the revision record contains
references to delta blocks. The revision record includes
the first few delta blocks; if there are more deltas, Past-
watch will use single and double indirect blocks to ref-
erence the deltas. The arrangement of delta blocks was
inspired by the UNIX file system’s[19] handling of file
blocks.

Pastwatch keeps a local snapshot of each revision’s
files and directories so that it can retrieve old revisions
quickly. Pastwatch saves the snapshots locally in a
CFS[9] like file system that reuses unchanged blocks to
conserve storage space. Since revision records only con-
tain deltas, Pastwatch constructs the snapshots by apply-
ing deltas starting at the root of the revtree. Since Past-
watch keeps all the snapshots, it only needs to construct
snapshots incrementally when it retrieves new revisions.
Snapshots are stored in the local key-value store.

5.2 Rendezvous Services

We have implemented two different rendezvous services
for Pastwatch. First, we implemented a single server ren-
dezvous service where all users synchronize their repli-
cas with the single server. This service is fully functional,
but if the server becomes unavailable, the users will prob-
ably need to use ad hoc synchronization to share changes
which can be slow to propagate new changes. It is possi-
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Figure 8: Revision record data structure with delta
blocks.

ble to implement a hot spare replica for the single server
but instead, we constructed a resilient rendezvous service
using a distributed hash table(DHT)[27][10][17][33].

DHTs promise abundant, reliable storage and the ar-
rival of public storage DHTs like OpenDHT[13][26]
make them an attractive choice for a Pastwatch ren-
dezvous service. Many different projects can all share the
same DHT as their rendezvous service and since DHTs
are highly scalable, one could build a large repository
hosting service like Sourceforge[5] based on a DHT.

Revtrees are compatible with DHTs because a DHT is
a key-value storage service and revtrees can tolerate the
imperfect consistency guarantees of DHT storage. As
shown in Section 3, revtrees handle network partitions,
missing blocks and slow update propagation, so a storage
inconsistency in a rendezvous DHT will at worst cause a
fork in the revtree. The only additional requirement of
the DHT is that it must support mutable data blocks so
that Pastwatch can discover new revisions.

Pastwatch uses mutable blocks and one extra data
structure when using a DHT in order to discover new
revisions; this is because the put/get DHT interface
requires a client to present a key to get the correspond-
ing data block. Each revtree arc point upwards, towards
a revision’s parent; the revtree does not contain point-
ers to the newest revisions, so Pastwatch must provide a
way to discover the keys for new revisions. Pastwatch
accomplishes this by storing the revisions in a per-user
log structure that coexists with the revtree; the structure
is rooted by a mutable DHT block. The address of the
mutable block is an unchanging repository ID. Pastwatch
can find the new revisions as long as it has the repository
ID, thus it can find all revisions in the revtree.

Figure 9 illustrates the revtree DHT structures. In this
example, the project has two developers, Alice and Bob.
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Figure 9a shows the repository’s revtree including who
created each revision. Figure 9b shows how the revtree
is stored in the DHT.

Each user has their own log that contains every revi-
sion they created. Each user maintains a pointer to their
newest revision in a mutable block called a headpointer.
The project’s membership list contains a pointer to each
of the users’ headpointers. All the blocks in the DHT
structure are immutable except the headpointers and the
membership list.

It is efficient to synchronize replicas because finding
the newest revisions is efficient. Pastwatch only needs
to scan the membership list and traverse each user’s log
until it encounters an RID it has encountered in the past
because the newest revisions are at the front of the log.
Since the revisions are immutable, Pastwatch can be sure
that the remainder of the log has been processed at an
earlier time.

5.3 DHT Implementation

At the time of writing, OpenDHT is the only public
DHT storage service we are aware of that implements
the put/get interface. Although OpenDHT provides
the correct interface, it will purge a data block after stor-
ing it for a week unless the block is inserted again. Past-
watch cannot use OpenDHT because Pastwatch reads old
blocks during a fresh checkout and a checkout from the
DHT replica will fail if a block is unavailable. We imple-
mented our own DHT that provides long-term storage,
but Pastwatch can be modified to use a suitable public
storage DHT if one becomes available.

The Pastwatch DHT rendezvous service is derived
from Dhash[9][10]. Immutable blocks are stored under

the SHA-1 hash of their content. Each mutable block has
a single writer and the DHT only allows mutations that
are signed by a private key owned by the writer. Each
mutable block has a constant identifier equal to the hash
of the owner’s public key. Each mutable block contains
a version number and the owner’s public key along with
the block’s payload. Each time an owner updates his mu-
table block, he increases the version number and signs
the block with his private key. The DHT stores the block
along with the signature and will only overwrite an ex-
isting mutable block if the new block’s version number
is higher than the existing block and the signature is cor-
rect.

5.4 Data Durability

The Pastwatch DHT uses the IDA coding algorithm [23]
to provide data durability. For each block, the DHT
stores 5 fragments on different physical nodes and re-
quires 2 fragments to reconstruct the block. The DHT
also actively re-replicates blocks if 2 of the fragments
become unavailable. Data loss is unlikely because the
nodes are well maintained server machines, but if the
DHT does experience a catastrophic, corollated failure,
any user with an up-to-date local replica can perform a
repair by synchronizing his local replica with the ren-
dezvous service. Alternatively, he could easily create
a new single server rendezvous service. In either case,
synchronizing his local replica will completely repopu-
late the empty rendezvous service. A corrupt replica on
the rendezvous services can also be repaired by synchro-
nizing with a valid local replica and in some cases, two
corrupt replicas can repair each other simply by synchro-
nizing with each other.

In practice, each Pastwatch project must evaluate its
own data durability requirements. If a project has many
active members who keep their local replicas up-to-date,
then the members may elect to forgo any additional
backup strategy. On the other hand, a project with only
one member may choose to keep regular backups of the
member’s local replica.

6 Evaluation

This section evaluates the usability and performance of
Pastwatch. First, we analyze a number of open-source
projects and find that real users frequently commit 5 or
more times a day, enough that they would want discon-
nected commits during a long plane flight. We also find
that in a real 26-person team, 5 or fewer team mem-
bers commit in the same day 97% of the time which
suggests that even a day-long network partition will not
overwhelm a Pastwatch project with implicit forks. We



then share experiences from a small initial user commu-
nity which has been using Pastwatch for more than a
year. In that time, Pastwatch has been easy to use and
survived a number of network and storage failures. In
the same time period our CVS server experienced signif-
icant down-time.

We then show that Pastwatch has reasonable perfor-
mance. Common operations in our experimental work-
load, like commit, take 1.1 seconds with CVS and 3.6
seconds with Pastwatch. Pastwatch can also support
many members per project; increasing the number of
members from 2 to 200 increases the update time from
2.3 seconds to 4.2 seconds on a wide-area network. We
also show that retrieving many old revisions is not ex-
pensive; pulling 40 new revisions from the rendezvous
replica and processing the revisions locally takes less
than 11 seconds.

6.1 Usability Evaluation

6.1.1 Disconnected Operations:

To evaluate the usefulness of the ability to commit while
disconnected, we analyze the per-member commit fre-
quency of real open-source projects. We find that it is
common for a single project member to commit several
new revisions in a single day and conclude that the abil-
ity to commit while disconnected more than a few hours
would be useful.

We analyzed the CVS commit history from three
of the more active open source projects hosted on the
Sourceforge[5] repository service: Gaim, Mailman and
Gallery. Figure 10 characterizes the daily commit ac-
tivity for all members in each project for days that con-
tain commits. The plot shows that the median number
of commits is relatively low at only 2 commits, but there
is a significant fraction of days in which a single user
commits 5 or more times. In 18% of the active days,
a single Gallery member made 5 or more commits in a
single day. In 22% of the active days, a single Mailman
member made 7 or more commits in a single day.

Considering that most users will be programming
fewer than 16 hours in a day, the high daily commit
counts suggest that even a disconnection period of 3-5
hours would interrupt a user’s normal work-flow and so
disconnected commits could be useful for these projects.

6.1.2 Commit Concurrency:

Pastwatch users are able to commit while disconnected
or partitioned so there is a risk that many project mem-
bers will commit concurrently and create a large number
of implicit forks. To evaluate how often disconnected
commits would actually result in an implicit fork, we
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Figure 10: Cumulative distribution of per user, daily
commit counts. In 18% of the active days, a single
Gallery member made 5 or more commits in a single day.
In 22% of the active days, a single Mailman members
made 7 or more commits in a single day.

analyzed the temporal proximity of commits by differ-
ent project members in real open-source projects. We
found that different project members do commit at simi-
lar times, but the level of concurrency should not cause a
large number of forks.

The number of forks that may result from a network
partition is limited to the number of partitions because
replicas in the same partition can always synchronize
with each other and they should not accidentally create
a fork within their partition. The worst case occurs when
every member in a project commits a new revision while
they are all partitioned from each other. This scenario
results in a separate branch for each member. To evalu-
ate the likelihood of the worst case forking scenario, we
analyzed the CVS logs for the same three open-source
projects used in Section 6.1.1.

The Gaim, Mailman and Gallery projects have 31, 26
and 21 active members respectively, so the worst case
number of branches is quite high. The highest number
of unique committers in a single day, however, was only
9, 6 and 5 respectively. Even if all the members in each
project were partitioned into individual partitions for a 24
hour period and they made the same commits they made
while connected, the number of resulting forks in each
project would still be quite low and significantly fewer
than the total number of members in the project.

The low number of concurrent commits on the high-
est concurrency day already suggests that the number of
implicit forks will be manageable, but to better under-
stand the common case, we consider the distribution of
unique committers. Figure 11 shows the distribution
of the number of unique users who commit in a calen-
dar day. Mailman sees three or fewer unique committers
99% of the time and Gaim sees five or fewer unique com-
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Figure 11: Cumulative distribution of unique committers
per day. Mailman sees three or fewer unique commit-
ters 99% of the time and Gaim sees five or fewer unique
committers 97% of the time.

mitters 97% of the time.
The distribution suggests that the number of concur-

rent committers is normally low with respect to the num-
ber of project members. The low frequency of concurrent
commits combined with the ease of reconciling forks de-
scribed in Figure 6 suggests that implicit forks will be
manageable in practice.

6.1.3 Practical Experience:

Pastwatch currently has a user community of five peo-
ple and six projects: three documents and three software
projects including this research paper and the Pastwatch
software itself. All Pastwatch users agree that the system
is as usable and convenient as CVS.

The Pastwatch users primarily use connected mode
and the system has behaved like a traditional centralized
VCS. On occasion, the users also use disconnected reads
and commits. For example, this paper’s repository has
been active for 202 days. During that time, it has served
816 repository operations including updates, commits,
checkouts and diffs; 25 of those operations were per-
formed while the client was disconnected from the net-
work. Out of the 816 operations, there were 181 com-
mits; seven of those commits were performed while the
client was disconnected from the network.

All Pastwatch projects use the Pastwatch DHT as their
rendezvous service, and it has proven to be robust. In the
past year, our research group’s main file server experi-
enced three days with extended down-time. Since many
people store their CVS repositories on the file server,
they could not commit changes or read old revisions from
the repository during the down-time. Pastwatch users
were able to read and write to their local replicas while
the file server was unavailable.

6.2 Performance Evaluation

6.2.1 Experiment Setup:

The following experiments though Section 6.2.5 are
based on the following setup: CVS is configured with
a single CVS server in Cambridge, Massachusetts. It
has two different client hosts; one is in New York, New
York and the other is in Salt Lake City, Utah. The client
in New York has a 1.1 GHz CPU and a 4.3 MB/s bi-
directional bottleneck bandwidth to the CVS server with
a 6ms round trip latency. The host in Utah has a 1.7 GHz
CPU and 0.5 MB/s bottleneck bandwidth to the CVS
server and a 55ms round trip latency.

Pastwatch uses the same two client hosts and an 8 node
DHT. The client host in New York accesses the DHT
through a node with a 6ms round trip latency. The client
host in Utah connects to a nearby DHT node with a 13ms
round trip latency. Four of the DHT nodes are spread
over North America and the other four are located in
Cambridge. The New York client and many of the DHT
nodes are on the Internet2 research network but the Utah
client is not, so the New York client has higher through-
put links to the DHT than the Utah client.

The base workload for each experiment is a trace from
the CVS log of the SFS open-source software project.
The trace begins with 681 files and directories and in-
cludes 40 commit operations. On average, each commit
changes 4.8 files, the median is 3, and the highest is 51.
Together, the 40 commit operations modify roughly 4330
lines in the source-code and add 6 new files. Each data
point is the median of 10 trials and for each trial, Past-
watch used a different repository ID and different head-
pointer blocks.

6.2.2 Basic Performance:

This section compares the performance of basic VCS
operations like import, checkout, update and
commit in Pastwatch and CVS. Their times are com-
parable, but round trip times and bottleneck bandwidths
affect them differently.

In each experiment, the primary client host creates the
project and imports the project files. Each client then
checks out the project. Afterwards, the primary client
performs the 40 commits. After each commit, the sec-
ondary client updates its replica and working copy to re-
trieve the new changes. The experiment was run once
with the New York client as primary and again with the
Utah client as primary. The Pastwatch project has two
members.

Table 1 reports the costs (in seconds) of the import op-
eration, the checkout operation, and the average costs of
the commit and update operations for each client running
the workload.



New York Client Utah Client
import checkout mean commit mean update import checkout mean commit mean update

CVS 5.4 5.8 1.1 2.9 13.0 10.5 2.2 3.8
Pastwatch 167.4 16.3 3.6 3.0 161.4 25.9 3.9 2.4

Table 1: Runtime, in seconds, of Pastwatch and CVS import, checkout, commit, and update commands. Each value is
the median of running the workload 10 times. The update and commit times are the median over 10 trials of the mean
time for the 40 operations in each workload.

Since Pastwatch creates a local repository replica dur-
ing import and checking out a working copy from a com-
plete replica is trivial, the checkout time for the client
that imported is not reported here. Instead, we report the
checkout time on the client that did not import.

Initially importing a large project into CVS takes
much less time than with Pastwatch because CVS stores
a single copy of the data while the Pastwatch DHT repli-
cates each data block on 5 different DHT nodes. In prac-
tice, a project is only imported once, so import perfor-
mance is not very significant.

Pastwatch has a slower checkout time than CVS be-
cause it must process the repository files twice. Once to
create the replica snapshot and once to update the work-
ing directory. The Utah Pastwatch client has a slower
checkout time than the New York Pastwatch client be-
cause it has lower bottleneck bandwidths to many of the
DHT nodes.

Commit performance is comparable for Pastwatch and
CVS. The difference is at most 2.5 seconds per operation.
Pastwatch commits are slower than CVS because insert-
ing data into the DHT replica is more expensive than into
a single server and acquiring the lease takes additional
time.

Update performance for the New York client is simi-
lar for CVS and Pastwatch. CVS update is slower at the
Utah client than the New York client because the Utah
client has a longer round trip time to the server and CVS
uses many round trips during an update. Pastwatch up-
dates at the Utah client are faster than at the New York
client because the update operation is CPU intensive and
the Utah client has a faster CPU.

6.2.3 Storage Cost:

A revtree contains every historical revision of a project;
this could have resulted in a heavy storage burden, but
Pastwatch stores revisions efficiently by only storing the
modifications rather than entire file revisions, so the stor-
age burden on the client replica is manageable.

After running the workload, each client database con-
tained 7.7 megabytes of data in 4,534 blocks. 3,192 of
the blocks were used to store the revtree replica. The
remaining blocks were used to store the snapshots. On

disk, the BerkeleyDB database was 31 megabytes, be-
cause BerkeleyDB adds overhead for tables and a trans-
action log. The transaction log makes up most of the
overhead but its size is bounded. In comparison, the CVS
repository was 5.2 megabytes not including any replica-
tion.

The storage burden on the DHT is not very high. Af-
ter running the workload described in Section 6.2.1, the
resulting revtree was 4.7 megabytes in size. This means
that the DHT was storing 24 megabytes of revtree data
because each mutable blocks in the DHT is replicated 5
times and immutable blocks are split into 5 fragments
(most of the immutable blocks are small, so each frag-
ment is roughly the same size as the original block). Each
of the 8 DHT nodes held 3 megabytes each. Again, the
BerkeleyDB database adds storage overhead, so the size
of the entire database on each node was 15 megabytes.

6.2.4 Many Project Members:

This section examines how Pastwatch scales with the
number of project members. Pastwatch checks for new
revisions at the rendezvous before most operations, so it
regularly fetches each member’s headpointer. This im-
poses an O(n) cost per project operation where n is the
number of project members. This experiment uses the
same setup and workload as Section 6.2.1, except the
number of project members increases for each experi-
ment. In this experiment, the New York client performs
the commits and the Utah client performs an update after
each commit.

Pastwatch can fetch the headpointers in parallel be-
cause it has all the headpointer addresses after retriev-
ing the member list. Since the headpointers are small
and the number of network round trips necessary to re-
trieve them does not depend on the number of project
members, large numbers of members do not greatly af-
fect Pastwatch operation times. Figure 12 shows that the
median costs of commit and update operations increase
as the number of project members increases but even at
200 members, twice as large as the most active project
in Sourceforge, commits take only 1.7 seconds more and
updates take 1.9 seconds more than a 2 member project.
The standard deviation is between 0.4 and 0.9 seconds
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Figure 12: Median costs of commit and update in a work-
load for each user as the number of project members in-
creases. Each value is the median of running the work-
load 10 times. The error bars are standard deviations.

and is due to varying network conditions. Ultimately,
scanning the membership list is not a significant expense.

For a fixed number of new revisions, increasing the
number of members who committed a revision reduces
the time to retrieve the revisions because Pastwatch can
retrieve revisions from different members in parallel.
The worst case performance for retrieving a fixed num-
ber of new revisions occurs when a single member com-
mits all the new revisions because Pastwatch must re-
quest them sequentially.

6.2.5 Retrieving Many Changes:

This section examines the cost of updating a user’s work-
ing copy after another user has committed many new re-
visions. To bring a revtree up-to-date, Pastwatch needs to
fetch all the new revisions which could be expensive in
cases where a user has not updated her replica for some
time.

These experiments use the same setup and workload as
Section 6.2.1, except that only the New York client com-
mits changes and it commits several changes before the
Utah client updates its revtree and working copy. The
number of commits per update varies for each experi-
ment.

Figure 13 reports the cost of one update operation as
the number of commits per update increases. The bot-
tom curve in the figure shows only the time spent fetch-
ing headpointers. The middle curve adds the time spent
fetching new revisions and delta blocks. Finally, the top
curve adds in the cost of local processing to build snap-
shots and modify the working copy.

The top curve shows that the total cost of an update
operation increases linearly with the number of revision
records it needs to fetch. Decomposing the update time
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Figure 13: Median time to complete one update opera-
tion as the number of commits per update operation in-
creases.

reveals that the linear increase is due to Pastwatch spend-
ing more time fetching revision records and delta blocks
and building new snapshots. The widening gaps between
the three plots illustrates that these two operations in-
crease the runtime linearly.

7 Related Work

Version Control Systems: There are many existing
VCSs but most do not attempt to support disconnected
commits and ad-hoc synchronization.

Most existing VCSs are based on a client-server ar-
chitecture. CVS[7], Subversion[22], Perforce[32] and
Clearcase[31] all rely on a single repository server to
store and manage different revisions of the project data.
They do not support disconnected commits. Similarly, if
the server becomes unavailable, no user can access the
repository. Two users who are connected to each other
cannot share changes with each other through the system
when the server is unavailable.

Bitkeeper[1] uses a hierarchy of repositories to cope
with server failures; it divides users into subgroups. Each
subgroup commits changes to a sub-repository and prop-
agates changes to a parent repository when they are
ready to share them. A user may also have her own
sub-repository, so she can read and write the repository
while disconnected from the other repositories. After
she reconnects, she commits locally saved changes to
the parent repository. The local repository supports dis-
connected commits, but users in different groups cannot
share changes if a parent is unavailable.

Coven[8] uses lightweight forks to support discon-
nected commits. When Coven users cannot contact their
repository, they commit to a local lightweight fork which
resembles a log. Later, when they can communicate with



the repository, they commit the lightweight fork back
into the repository. Coven can support a disconnected
user’s commits, but directly connected users cannot share
changes if the repository is unreachable.

The Monotone[4] repository resembles a revtree in-
ternally. Its repository tolerates the same kinds of in-
consistencies that Pastwatch does. Monotone provides
authentication by having each committer sign each re-
vision separately whereas Pastwatch authenticates revi-
sions with a hash tree based on a single signed reference
for each writer. The hash tree makes it possible for Past-
watch to find the newest revisions when storing data in
a DHT. Monotone was developed concurrently and inde-
pendently from Pastwatch. In the past year, Mercurial[3]
and GIT[2], have been developed based on the ideas
found in Monotone and Pastwatch. We are encouraged
by the use of revtree concepts in these systems.

Optimistic Replication: In addition to Pastwatch,
there are many other optimistic concurrency systems
that use a variety of techniques for detecting write con-
flicts. Using version vectors[21][24] is one common
technique along with its newer variant, concise version
vectors[16]. These techniques use logical clocks on each
replica to impose a partial order on shared object modi-
fications. The systems tag the shared objects with logi-
cal timestamps, which allow the systems to detect when
a write-write conflict appears. Systems like Locus[30],
Pangaea[28] and Ficus[20][25] use these optimistic con-
currency techniques to implement optimistically repli-
cated file systems.

Other systems, such as Bayou[29], use application
specific checker functions to detect write-write conflicts.
For every write, a checker verifies that a specific precon-
dition holds before modifying the object. This ensures
that the write will not damage or create a conflict with an
existing object.

Coda[14][15] detects write-write conflicts by tagging
each file with a unique identifier every time it is mod-
ified. When a disconnected client reconnects and syn-
chronizes a remotely modified file, it will detect a write-
write conflict because the file’s tag on the server will have
changed. Coda can use this technique because its file
server is the ultimate authority for the file; all changes
must go back to the server. Pastwatch cannot use this
method because it has no central authority for its reposi-
tory.

Hash histories[12] also detect write-write conflicts and
resemble revtrees, but their focus is to understand how
much history to maintain while still being able to detect
conflicts. Pastwatch intentionally keeps all history be-
cause the version control application needs it.

All these optimistic concurrency systems provide a
way to detect write-write conflicts on a shared object, but

the version control application needs more than conflict
detection. It also needs the contents of all past revisions
and the inheritance links between them.

It may be possible to combine version vectors with
write logging to get both conflict detection and revision
history, but revtrees perform both tasks simultaneously
without the limitations of version vectors; revtrees do not
need logical clocks and they readily support adding and
removing replicas from the system.

It may also be possible to use an optimistic concur-
rency system to replicate an entire repository as a single
shared object containing all the revision history. This ap-
proach is difficult because most existing version control
systems are not designed for concurrent access and con-
flict resolution. The version control system’s data struc-
tures must be consistent for it to function properly, but
the data structures in the repository and working copies
often contain interdependencies. This means the con-
flict resolver will need to repair the repository replicas
and the working copies or else the VCS will not func-
tion properly. Although it may be possible to construct
an automatic conflict resolver for an existing VCS, Past-
watch shows that a separate conflict resolver is unneces-
sary if the data structures are designed for concurrency.
The revtree requires no active conflict resolution for its
data structures and the Pastwatch working copies do not
need to be repaired after concurrent writes.

8 Conclusion

We have presented Pastwatch, a distributed version con-
trol system. Under normal circumstances, Pastwatch
appears like a typical client-server VCS, but Pastwatch
optimistically replicates its repository on each users’
computer so that each user may commit modifications
while partitioned from servers and other members of the
project. A user can directly synchronize his replica with
other user’s replicas or a rendezvous service in any pat-
tern. All users in a given network partition can always
exchange new modifications with each other.

Pastwatch supports optimistic replication and flexible
synchronization between replicas because it represents
the repository as a revtree data structure. Revtrees pro-
vide eventual consistency regardless of synchronization
order and they detect repository level write-write con-
flicts using forks. Reconciling these forks is easy be-
cause they only appear at the source code level, not in
the data structures of the repository and working copies.

We analyzed real-world software projects to show that
disconnected commits are likely to be useful to their de-
velopers. We also showed that handling concurrent com-
mits with forking is not a burden, even for active projects.

We implemented Pastwatch and have an initial user
community with more than a year of experience using



the system. Although Pastwatch is more complex than
a client-server system, the implementation successfully
hides those details from the users. The users have found
Pastwatch to be very usable and the system has masked
a number of actual failures, in contrast to the VCS it re-
placed.
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