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Abstract—A capsule-basedactive networktransports capsulescontaining
code to be executed on network nodes through which they pass. Active net-
works facilitate the deployment of new protocols, which can be used with-
out any changes to the underlying network infrastructure. This paper de-
scribes the design, implementation, and evaluation of a high-performance
active network node which supports multiple mobile code systems. Exper-
iments, using capsules executing unsafe native Intel ix86 object code, indi-
cate that active networks may be able to provide significant flexibility rel-
ative to traditional networks with only a small performance overhead (as
little as 13% for 1500 byte packets). However, capsules executing JavaVM
code performed far worse (with over three times the performance overhead
of native code for 128 byte packets), indicating that mobile code system per-
formance is critical to overall node performance.
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I. I NTRODUCTION

P
AN IS A NEW ACTIVE NETWORK SYSTEM that pro-
vides a foundation for building practical active networks.

PAN’s eventual goal is to provide performance comparable to
existing passive networks while providing a safe execution en-
vironment for mobile code. Experience with PAN indicates that
the high degree of flexibility provided by capsule-based active
networks can be obtained with little performance overhead.

By allowing application-specific computation within the net-
work, active networks[1] enable new protocols to be deployed
quickly, without the need for a lengthy standardization process
or for the installation of new hardware. Rather than standard-
izing protocols that describe how nodes should forward pack-
ets, an active network standardizes an execution environment
for capsulesthat pass through network nodes. A capsule con-
tains both data and a reference to code to execute when it passes
through a node. In a traditional network, routers examine packet
headers and decide where to forward the packets. In a capsule-
based active network, routers execute the code referenced by
capsules, and this code tells the router where to forward the cap-
sules.

The implementation of a practical active network poses sev-
eral challenges. Its performance must be comparable to that of
existing networks. It must be at least as safe, secure, and ro-
bust as existing networks — a difficult challenge when code can
migrate and execute within a huge distributed system encom-
passing many administrative domains. Finally, due to the highly
heterogeneous nature of an internetwork, it must have the same
high degree of interoperability as a traditional network.

Because the uses for active networks are still being deter-
mined, the degree to which performance, safety, and interop-
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erability must be addressed is still unclear. The applications that
run on top of the system will have a substantial effect on all
three of these requirements. For example, the requirements on
performance are substantially different for a network manage-
ment system than for a system that handles all of the data traffic
within a network.

PAN is an active network system that takes a first step to-
wards realizing a “practical” capsule-based active network. It
is designed to run mobile code in the network node with per-
formance comparable to existing passive networks. Although
full safety is not yet provided, it should be possible to obtain
this through an appropriate safe mobile code system. PAN is
able to obtain performance despite executing mobile code for
every capsule that passes through the node. PAN achieves per-
formance in four ways: by processing capsules in the kernel, by
minimizing data copies, by caching code for immediate execu-
tion, and by providing capsules with a flexible execution envi-
ronment.

By processing capsules in the kernel, rather than in a user pro-
cess, a PAN node avoids copying data between kernel-space and
user-space, and it greatly reduces interference from the sched-
uler. By providing a uniform memory management system,
which allows handles to regions of memory to be passed around
the system, PAN eliminates the need for a node to copy or even
touch the data body of capsules that are simply being forwarded.
By caching native executable or JIT capsule code, a PAN node
only incurs the cost of loading and/or compilation the first time
a new type of capsule is used. By providing a flexible execution
environment, PAN enables capsules to do just what they need
to do, to do it in the most appropriate way, and to work with
abstractions rather than fight against them.

PAN provides an encouraging answer to a fundamental per-
formance question: in the base case, in which packets are sim-
ply forwarded to their destination, can an active network node
achieve performance comparable (in bandwidth and latency) to
a traditional network? Tests conducted on a 200MHz Intel Pen-
tiumPro running Linux show that when using native object code
(which does not provide safety, security, or interoperability),
PAN can forward at least 100Mbps of data; furthermore, com-
pared to a traditional router running on the same Linux machine,
PAN incurs a fixed overhead of roughly only 20 microseconds
per capsule (13% for 1500 byte packets).

Further tests conducted on the same machine have demon-
strated that when using Java bytecodes (which provide interop-
erability and some safety), capsule processing times increase
substantially. The active overhead for 128 byte packets being
processed by the JavaVM in user-space is over three times the
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active overhead for capsules executing native code in user-space.
This indicates that high-performance mobile code systems will
be crucial to high-performance active network nodes that pro-
vide safety, security, and interoperability.

The flexibility and performance of PAN make it a powerful
tool for experimenting with active network technology. The
architecture of a PAN node is relatively simple, flexible, and
portable — the current PAN implementation supports multiple
node operating system environments (within a Linux kernel and
as a UNIX user-space process) and provides support for multi-
ple mobile code systems. Almost no changes are required in the
majority of the shared code base when adding support for other
operating system environments or mobile code techniques. A
public release of PAN will be made available later this year.

Section II summarizes other work related to this paper, Sec-
tion III describes the design and implementation of PAN, Sec-
tion IV presents performance results, and Section V presents our
conclusions.

II. RELATED WORK

Interest in active networks is fairly recent, having started in
1996 [1]. Surveys of active network research [2] distinguish
two approaches to active networking: thecapsule-based(or in-
tegrated) approach, used by PAN, and theprogrammable switch
(or discrete) approach. The integrated approach uses themes-
senger paradigm[3]: capsules containing both code and data
move through the network and are executed on the nodes they
encounter. The discrete approach adds functionality to nodes
out-of-band from the packets being processed by the node.

Several projects at MIT have been exploring the construction
and use of active networks. TheACTIVE IP Option [4] embeds
small Tcl programs in the option fields of IPv4 packets. The
ANTS system [5] supports rapid prototyping and application-
specific in-network processing through a capsule-based system
written in Java. Several sample applications have been devel-
oped using ANTS [5], [6], [7]. The development of PAN drew
heavily on many of the ideas developed in the work on ANTS.
Unlike ANTS, however, PAN is designed for performance so
that it can be used for real applications. PAN introduces the
ideas of software segments and panStreams, has a more flex-
ible system for assembling protocols from collections of code
objects, has fewer required elements in the header of capsules,
does not have a global soft state cache, and provides a simpler
and more flexible interface for allowing capsules to deliver data
to applications. PAN also supports multiple mobile code sys-
tems and optionally runs inside operating system kernels.

The BBN Smart Packets project [8] is exploring lightweight,
but still expressive, capsule-based active networks. Many as-
pects of Smart Packets are similar to PAN. However, the focus
of BBN’s work is on network management and diagnosis, which
has stronger security requirements and weaker performance re-
quirements than PAN.

Georgia Tech is both developing a programmable switch [9]
and investigating the use of active networks to reduce network
congestion. The University of Pennsylvania and Bell Commu-
nications are developing a programmable switch that uses Caml
and SML-based programming language technologies [10]. The
University of Pennsylvania has also developed PLAN [11], a

programming language for writing safe and resource-bounded
capsule code. PLAN acts as a scripting language by allowing
lightweight programs to use the functionality of more powerful
services.

The PRONTO [12] system from AT&T Research is a discrete-
approach active networking system that uses control-on-demand
for achieving performance. Control-on-demand provides for
different degrees of programmability, ranging from allowing
packets to flow through the node without interference to per-
forming active processing on all packets. However, PAN
demonstrates that it may not be necessary to make this tradeoff
for packet-oriented networks if the overhead of executing active
code for every capsule is low enough.

Joust [13], developed at the University of Arizona, is a
communication-oriented platform for building “Liquid Soft-
ware” [14] systems such as active networks. Built on top of the
Scout [15] operating system, Joust provides a high-performance
Java runtime system. Experiments [13] have shown that ANTS
runs substantially faster under Joust than under the combination
of Linux and Sun’s JavaVM.

In addition to the Liquid Software project, CMU’s Proof-
Carrying Code [16] and Sun Microsystems’ HotSpot [17] tech-
nology both aim to develop high-performance mobile code sys-
tems. As this paper demonstrates, these technologies will be
essential to high-performance active network nodes.

III. D ESIGN AND IMPLEMENTATION

This section describes the design of PAN and provides in-
formation about its current implementation; full details can be
found in Nygren’s Master’s thesis [18].

A. PAN architecture

PAN uses an active network architecture similar to that of
ANTS [5]. In PAN, nodesare connected by unreliablenetwork
links. Any node can communicate potentially with any other
node (except in the case of network failures) by sending acap-
suleacross one or more network links. As capsules pass through
the network, they may be processed by any or all of the nodes
they encounter. Leaf nodes of the network can be connected to
applicationsby application links.

Abstractly, a capsule contains both the data it transports and
a reference to acode object, which contains instructions to be
evaluated at each node through which the capsule passes. These
instructions can direct the node to pass the capsule towards a
destination node, modify the contents of the capsule, pass the
capsule to an application, or access state within the node. If
a code object is not yet available in a node,demand loading
retrieves it from some other node. Aprotocolis a group of code
objects that are designed to work together.

Nodes also maintain state that can be accessed by the capsules
they process. In non-leaf nodes, this state is alwayssoft state, so
that capsules cannot rely on the persistence of data stored within
the network. Nodes may be restarted periodically, the network
topology may be rearranged dynamically, and old data stored
within nodes may be flushed when capsules attempt to add new
data.
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Fig. 1. The architecture of a PAN node.

B. Overview of a PAN node

A PAN node evaluates capsule code to completion in anenvi-
ronmentthat provides access to node resources through the PAN
Node Interface (PNI). Figure 1 illustrates the node architecture,
which provides a simple and consistent interface that enables
code objects to run on PAN nodes on a wide range of platforms.
Uniform interfaces provide portability and code mobility across
different node operating systems, and they allow multiple mo-
bile code systems to operate simultaneously within a PAN node.

Memory within a PAN node is managed through asoft-
ware segmentinterface, which provides a consistent interface
to code objects, minimizes data copies, allows data to be shared
among code objects, and provides buffer-management function-
ality similar to that found in many modern operating systems.
The memory management abstraction also allows multiple mo-
bile code systems to coexist and share the bulk of the underlying
node implementation.

When a capsule arrives at a node, an environment is created
in which to evaluate it. The environment contains information
about the origin of the capsule (so that a node can determine re-
liably whether the capsule was inserted by an application at the
node or received over the network), the capsule’s status (ready
to run or waiting for a code object), and the resources the cap-
sule is using (so that they can be freed when the capsule finishes
its execution). In the current implementation, a PAN node only
evaluates one capsule at a time; as in traditional networks, cap-
sules that arrive when a capsule is being evaluated are queued
for later processing.

The PAN architecture supports multiple mobile code systems,
which can coexist within a node. The current PAN implemen-
tation supports both a simple (and completely insecure) system
for dynamically loading Intel ix86 object code and an interface
to any Java Virtual Machine [19] that supports the Java Native
Interface (JNI) [20]. Java is supported currently only in user-
space nodes due to the lack of an in-kernel JavaVM; work is
in progress on making the Kaffe OpenVM JavaVM work inside

the kernel.

C. PAN interfaces

The PAN Node Interface(PNI) presents code objects, and
hence capsules, with a uniform interface to data types (e.g., hash
tables) and routines for use in accessing memory and other node
resources, for inserting code objects into nodes, for logging sta-
tus information, for sending capsules to other nodes or applica-
tions, for determining the local node time, and for performing
checksum or cryptographic operations. The Java implementa-
tion of the interface was constructed by wrapping the native im-
plementation and providing finalization routines to free storage
allocated by that implementation.

The PAN Application Library(PAL) enables applications to
send and receive capsules. It contains routines for connect-
ing to nodes, inserting capsules into nodes, and receiving data
from nodes. It also provides the same uniform memory creation
and access routines (software segments and software segment
streams) as does PNI. Aportmappercode object and associated
PAL routine support the development of port-oriented protocols.

The PNI also provides routines that constrain the interaction
between capsules and applications. One method allows capsule
code to obtain an unforgeable reference to the application link
that injected the capsule into the network. This reference can
be stored in the persistent state of a code object and used by
later capsules to deliver data back to the application. Indeed,
this is the only way for capsules to deliver data to applications.
Thus applications can control which code objects can pass data
to them, and simple capsules (and some types of server applica-
tions) can send data rapidly to an application without any need
for looking up a port mapping.

D. Code objects

PAN code objects contain executable instructions and data,
which can be accessed through method or function calls. Code
objects specify the type of code they contain and the API the
code uses (e.g., PAN or ANTS). For the Intel ix86 mobile object
code system, each code object contains a single ELF or a.out
object (“.o”) file. Nodes link code objects together and resolve
symbols using a binary object code loader derived from a Metro
Link module loader to be included in XFree86 4.0. This mo-
bile code system provides no safety or security, although al-
though limited security could be added for some applications
using cryptographic signatures. For the Java mobile code sys-
tem, each code object contains a collection of Java class files
that are loaded into the node using an instance of a PAN Class-
Loader created for that code object.

Each code object has a uniquecode object name, which con-
sists of a cryptographic hash (e.g., SHA-1 [21] or MD5 [22])
of the code object’s code. This scheme eliminates the need for
a centralized code naming system, guarantees that capsules are
executed using the code objects they specify (assuming that the
capsule wasn’t modified on the wire and that the node has not
been compromised), eliminates code versioning problems, and
guarantees that code objects that reference other code objects
actually use (the correct version of) those code objects. In addi-
tion, capsules enter nodes with a pre-computed hash that can be
used to rapidly look up their code objects in a hash table.
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Each PAN node maintains acode cache, keyed by code object
name, that contains all code objects loaded into the node. Each
capsule begins with the name of the code object that should be
used to process it. On arrival, a capsule’s code object is looked
up in the code cache; if necessary, the code object is loaded dy-
namically from some node on the path to a home node specified
in the capsule header [5]. Then the code object’sacceptmethod
is applied to the capsule. In addition to theacceptmethod, code
objects may also haveinit andfinalizemethods that, if present,
are called when the code object is loaded and unloaded.

Code objects maydependon other code objects, allowing a
code object to call functions or access variables or classes in
another code object on which it depends, thereby facilitating
modular programming and code reuse. Unresolved symbols or
classes within a code object are resolved using the code objects
on which the code object directly depends.

Each code object maintains its ownsoft state— data that cap-
sules leave at nodes for other capsules to access later. Soft state
can be used, for example, to keep track of protocol state vari-
ables, to store capsule data for retransmission, to maintain mul-
ticast routing tables, or to maintain mappings from port numbers
to application links.

Because code objects can control which symbols they ex-
port (e.g., by declaring variables and functions asextern
rather thanstatic or by declaring classes and methods as
private ), it is possible for a code object to export a narrow
interface to code objects that depend on it while keeping some
state information private. Since soft state is maintained within
code objects rather than in a global and unified soft state cache,
code objects, calledguardians, can safely maintain shared state,
such as routing tables, and require other code objects to use
proper abstractions to access the state.

E. Capsules

Capsules provide the means of communication between
nodes in PAN. They contain the name of a code object (a cryp-
tographic hash), the address of a node on which the code object
can be found, and an arbitrary data body. It is up to applica-
tions and code objects to decide what information goes into a
capsule’s data body, what needs to be checksummed, and what
needs to be encrypted. Such a minimal format for capsules is
motivated by the end-to-end argument [23] and by extensible
systems that provide minimal core functionality in order to give
maximum flexibility to application developers.

The current PAN implementation prefixes capsules with a
link-level header, which contains the next hop destination, the
length of the capsule, and any other link-level information re-
quired by the underlying network.

F. Memory management

PAN nodes, code objects, and applications reference regions
of memory through a consistentsoftware segmentinterface,
which hides platform-dependent data structures from code ob-
jects and from the platform-independent parts of the system.
Software segments also provide a uniform mechanism to track
resources through reference counting. Unlike schemes for soft-
ware fault isolation [24], software segments allow data to be

transferred and shared between different parts of the system
without any need for data copies or virtual addressing tricks.

A software segment contains a default header and optional ad-
ditional header fields, which may contain pointers to associated
resources. The default header is five words long. It contains a
pointer to a region of data (the “contents” of the software seg-
ment), the length of the data, the (half-word) type of the soft-
ware segment, a (half-word) reference count, a pointer to the
next software segment in a chain, and a method for finalizing
the software segment and freeing any resources associated with
it.

The networking layers of most modern UNIX-like operating
systems provide a buffer-management system in order to utilize
memory efficiently and to minimize the number of times data
is copied or touched (e.g., BSD mbufs [25] and Linux skbuffs
[26]). Software segments provide a buffer management system
for PAN that is able to encapsulate the buffer management sys-
tems of different operating systems, thereby allowing code ob-
jects to run efficiently without knowing anything about the un-
derlying operating system. For example, within the Linux kernel
implementation, a capsule can be received by a PAN node and
sent out across the network without copying its contents. Addi-
tionally, no copies are needed when a capsule places its contents
into a node’s soft state for future retransmission. Hence capsules
can be placed speculatively in a soft state cache with almost no
performance overhead.

Software segments allow capsules to be constructed rapidly
by splicing together noncontiguous regions of memory. By
chaining together two or more software segments using the
“next” field, code accessing the software segments can view the
data regions in software segments as being a single contiguous
region of memory.

PAN software segments currently can contain regions of mal-
loced or kmalloced memory, memory mapped files, and kernel
sk buffs. They can also keep track of references to application
links, overlay portions of some other software segment, and act
as containers for other software segments. Different types of
software segments may add fields to the default header (e.g.,
pointers to skbuff headers).

Growablesoftware segment ringsassociated with each cap-
sule environment or code object keep track of the software seg-
ments they reference. They enable software segments to be freed
at once when a capsule terminates or a code object is released
from the code cache.

Because accessing the noncontiguous regions of memory en-
capsulated by software segments can be tedious, PAN provides
software segment streams, also calledpanStreams, to simplify
the common tasks of reading and writing sequential items to
and from a chain of software segments. A panStream contains a
pointer to the current software segment, a pointer into that seg-
ment’s data region, and a count of the number of bytes remaining
in the data region. Operations on panStreams support seeking
forward in streams, copying data between streams, reading and
writing arrays of bytes, performing checksum and cryptographic
checksums on regions of memory, reading and writing multi-
byte data types in a platform-independent fashion (performing
byte-swaps and conversions as needed), and reading and writ-
ing commonly used data types, such as node addresses and code
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object names. A serializer stub generator generates C code for
reading and writing data structures from and to panStreams.

Reading from or writing to a panStream results in a run-time
bounds check. Because of this bounds check, adding panStream
primitives to a bytecode language could increase performance
by allowing the elimination of redundant bounds checks.

G. Soft state

All soft state stored in a node is associated with individual
code objects. Code objects can store small amounts of state
(such as protocol variables) in static variables or static class
fields, which persist for the code object’s lifetime in the node.
The Intel ix86 mobile object code system requires explicit calls
to make software segments persistent by placing them in a code
object’s software segment ring; when container software seg-
ments (such as hash tables) are made persistent, the software
segment resources they contain also become persistent. The
Java mobile code system simply uses Java’s garbage collection
system to prevent software segments stored in fields or objects
from being freed.

H. Node implementation

There are currently two PAN node implementations, which
share most of their code. One runs as a user-space process on a
UNIX-like operating system; communication with applications
uses UNIX domain stream sockets, and messages are sent to
other nodes using UDP/IP packets. The other is implemented
as a loadable kernel module for the Linux 2.0 operating system;
communication with applications uses a special socket type, and
messages are sent to other nodes using a protocol layered on top
of IP. The Linux kernel implementation uses only existing ker-
nel interfaces and requires almost no changes to a stock Linux
2.0.32 kernel. It should be relatively straightforward to add ad-
ditional implementations (for example within a BSD-derivative
such as FreeBSD or even within WindowsNT or on top of an
Exokernel [27]).

Code within the PAN node implementation can be platform
independent or platform dependent. The platform-independent
code manages and accesses memory and node resources through
the unified software segment mechanism, loads and processes
code objects, maintains a cache of code objects, creates capsule
environments, and evaluates capsules within their environments.
The platform-dependent code handles node addresses, commu-
nicates with applications and across the network, and dispatches
capsules as they are received.

I. Network links

Nodes within a PAN network communicate with each other
by sending capsules across stateless (and possibly unreliable)
network links (callednetlinks). All nodes in a PAN network are
identified by unique 128-bitnode addresses. Different underly-
ing implementations are used for the network links, depending
on whether the network is made up of user-space nodes (which
communicate using UDP packets) or kernel nodes (which com-
municate using a special PAN protocol layered on top of IP).
Since PAN doesn’t yet support IPv6, only 48 bits (a 32 bit IP
address plus a 16 bit UDP port number) of the node address are
actually used.

When a node receives a capsule, across a network or appli-
cation link, it calls theaccept method of the capsule’s code
object, passing the capsule encapsulated as a panStream. When
a code object sends a capsule to another node, it uses an inter-
face that sends data starting at the current position of a software
segment. These mechanisms avoid extraneous data copies.

The UNIX user-space implementation uses UDP sockets
to send capsules between nodes using thesendmsg and
recvmsg system calls. By usingiovecs , chains of software
segments can be sent and received, without the need to copy data
to a separate buffer before passing it into kernel-space.

The Linux 2.0 kernel implementation sends capsules between
nodes using a special PAN protocol layered on top of IP. This
avoids both interference with other IP-based protocols and the
overhead of having an existing protocol, such as UDP, encap-
sulate capsules. PAN wraps the skbuffs that contain arriving
packets with software segments, thereby giving code objects ac-
cess to arriving data without copying it. If a code object wishes
to pass a software segment back to the node for transmission
(as happens in the common case when capsules just send them-
selves on towards their destinations), the node uses the skbuff
already contained within the software segment for retransmis-
sion. The software segment is copied into a new skbuff only if
it is newly allocated by the capsule, or if its skbuff is in the pro-
cess of being transmitted by the kernel’s networking layer. This
greatly minimizes the number of times that capsule data needs
to be copied.

In the common case when a capsule fits within an unfrag-
mented IP packet and only forwards itself, the data in the cap-
sule is never copied between its receipt by the network interface
and its retransmission through another network interface. For
some network drivers, untouched capsule data may never even
be brought into the CPU or any caches.

Nodes send capsules to the network by prepending an appro-
priate IP header before calling the kernelip forward func-
tion. PAN nodes let the IP layer deal with fragmenting and un-
fragmenting packets that are larger than the maximum size the
underlying network interface can handle. However, the max-
imum capsule size is constrained by the maximum size of an
IP packet. At some point it may make sense to allow code ob-
jects to query nodes as to the largest size capsule that can be sent
without fragmentation. This would allow code objects to control
capsule sizes in order to improve performance—PAN capsules
need to be reassembled and fragmented at each node they travel
through, while IP routers don’t typically incur this cost unless
they need to apply firewall rules.

IV. EXPERIMENTAL RESULTS

Experiments were conducted to compare the performance of
the two implementations of a PAN node (in user-space and
kernel-space) with each other and with a Linux workstation act-
ing as a router. Both the latency incurred by the active network
system and the total throughput of the system were measured.
The experiments demonstrate that an in-kernel active network
node executing native object code can forward capsules fast
enough to saturate a 100Mbps Fast Ethernet network with 1500
byte packets while taking only 13 percent longer than a tradi-
tional node to process each packet.
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Fig. 2. Seven different testbed network configurations are used for measuring
the performance of the user-space and kernel-space PAN implementation.
During the latency experiments, the user-space configuration is used with
both the native ix86 object code and Java mobile code systems.

The experiments using native Intel ix86 object code provide
a good upperbound on performance, since the code is native to
the processor and provides little safety; as a result, it incurs little
interpretation, compilation, safety, and security overhead. Ad-
ditional experiments performed by using a JavaVM to evaluate
capsules indicate the sorts of performance costs that can be in-
curred by a mobile code system.

A. Experimental setup

All experiments were performed on a testbed network con-
sisting of three Linux workstations connected by dedicated 100
Mbps Fast Ethernet network links. In all experiments, a client
application runs on asendernode and sends capsules towards a
receivernode, which evaluates the capsules and optionally sends
back a response. The sender and receiver may be connected di-
rectly or through a thirdmiddlenode.

Each machine contains a 200MHz Intel PentiumPro proces-
sor, an ISA/PCI motherboard with a 440FX chipset, and 64MB
of RAM. The sender and receiver nodes each contain a single
DEC DS21140 Tulip-based SMC EtherPower 10/100 network
card running in 100 Mbs half-duplex mode. The middle node
contains two Tulip network cards. The machines are connected
by two Intel Express 100BaseTX hubs. Each machine runs the
RedHat 4.2 distribution of Linux using an unmodified kernel
from the kernel-2.0.32-1 package and Version 0.79 of
Donald Becker’s Tulip ethernet driver.

Seven different testbed configurations are used for the tests
(see Figure 2). In the threekernel/� configurations, the sender
and receiver nodes run the PAN kernel implementation using na-
tive ix86 code objects; in the fouruser/� configurations, they run
the user-space PAN implementation, also using native ix86 code
objects. In the�/activeconfigurations, the middle node runs the
same PAN implementation as the sender and receiver, and it pro-
cesses all capsules sent between the sender and receiver. In the
�/passiveconfigurations, the middle node uses the kernel’s IP

forwarding to forward packets between the sender and receiver.
The�/noneconfigurations do not contain a middle node and di-
rectly connect the sender and receiver. Finally, in theuser/cforw
configuration, the middle node runs a simple user-space UDP
forwarder written in C. Comparing the performance of the dif-
ferent configurations provides insight into where various over-
heads come from.

The UDP forwarder uses the same system calls as the user-
space PAN implementation, but doesn’t do any active process-
ing. This configuration gives insight into how much of the cost
of user-space PAN is due to active processing as opposed to how
much is due to the overhead of transferring data to and from
user-space.

The PAN kernel implementation uses most of the same code
path as Linux IP forwarding, but adds hooks for capsules to per-
form active processing, which allow them to take actions other
than just forwarding themselves towards a destination. As a re-
sult, the base case performance of PAN will always have slightly
lower performance than standard IP forwarding.

All user/� configurations were also tested using a JavaVM
to execute code objects. The JavaVM used was a 1998.12.29
snapshot of Transvirtual’s Kaffe OpenVM that was configured
to perform JIT translation of JavaVM bytecode.

In addition to the seven basic configurations, latency experi-
ments were also run in akernel/activecopyconfiguration that is
identical to thekernel/activeconfiguration except that it uses a
slightly modified PAN kernel node for the middle node alone.
Normally, PAN doesn’t need to copy or touch the contents of
capsules, except for capsule headers. The middle node in the
kernel/activecopyconfiguration copies all data before sending
it in order to measure how much is actually gained by PAN’s
memory management system.

To see how packet size affects performance, all experiments
were run using packets that contain 128, 156, 512, 1024, 1500,
1504, 2048, and 8192 bytes. In experiments with the PAN ker-
nel implementation, these sizes include the 20 byte IP header. In
experiments with the user-space implementation, they include
both the 20 byte IP header and the 8 byte UDP header. This
avoids overly penalizing the user-space implementation for hav-
ing a larger header size. Because 1500 bytes is the MTU of Eth-
ernet, the kernel’s IP layer fragments and later reassembles any
packets larger than 1500 bytes. Measurements were taken with
both 1500 and 1504 byte packets in order to better see the dis-
continuity caused by packet fragmentation. Note that the Linux
kernel needs to copy packet data in order to fragment packets.

The current implementation of PAN is essentially untuned. It
should be possible to achieve substantial performance gains by
analyzing and reducing existing performance bottlenecks.

B. Measuring latency

Measuring and comparing the latencies between PAN nodes
in different configurations provides insight into the sources of
performance gains. By comparing the times of the�/activeand
�/passiveconfigurations, it is possible to determine how much
more time is spent performing active processing than simple IP
forwarding. The various�/activeconfigurations show how par-
ticular design decisions affect performance: thekernel/active
configuration provides a baseline for what can be achieved, the



IN PROCEEDINGSIEEE OPENARCH’99, MARCH 1999 106

kernel/activecopyconfiguration demonstrates the cost of per-
forming copies within the kernel, theuser/cforwconfiguration
helps demonstrate the cost of bringing data into user-space,
theuser/activeconfiguration demonstrates the cost of running a
node in user-space, and thejava-�/activeconfigurations demon-
strate the additional cost of using a Java mobile code system
rather than native ix86 object code.

Latency was measured for an active ping application, which
behaves similarly to the UNIXping utility that uses ICMP
ECHO responses to measure round-trip times. Active ping
works by sending a ping capsule from a sender to a receiver.
On reaching the receiver, the ping capsule sets a state variable
indicating that it has reached its destination and then sends itself
back towards the sender. When it reaches the source, the capsule
uses theportmappercode object to deliver the ping response
back to the application. In order to obtain more accurate mea-
surements with lower variances, the ping capsule timestamps
itself within the sender node and then calculates the round trip
time on arriving back at the sender node. Each ping capsule con-
sists of a 100 byte header followed by a data body that fills up the
rest of the packet. Thejava-�/� experiments run in user-space
and useping andportmappercode objects that were translated
by hand from their C counterparts.

In addition to being a benchmark, the active ping application
shows how an active network can provide functionality that is
special-cased in traditional networks (ICMP ECHO responses)
without requiring any special support in the network infrastruc-
ture.

For each testbed configuration and packet size, 10,000 ping
capsules were sent and their round trip times averaged. These
experiments were repeated three times each, and the median of
the three trials was taken and used. Before any measurements
were taken, the code objects needed by ping were loaded into all
of the network nodes.

Figure 3 shows the end-to-end round trip times of ping cap-
sules under different network configurations. The discontinu-
ity between 1500 and 1504 bytes is due to packets being frag-
mented.

In Figure 4, the per-capsule latency incurred by the middle
forwarding node is shown. This latency is calculated by halving
the difference between the round trip times for thenoneconfigu-
rations and the correspondingactiveandpassiveconfigurations.
With 128 byte packets, just passive IP forwarding takes about
50 microseconds. For 1500 byte packets the passive forwarding
time increases to about 160 microseconds.

Figure 5 shows the processing overhead incurred by various
configurations relative to either thepassiveor cforw configu-
ration. Because the PAN kernel implementation doesn’t touch
the contents of capsules, the overhead ofkernel/activerelative
to kernel/passiveremains around a constant 20 microseconds,
regardless of packet size.

This can be contrasted to thekernel/activecopyconfigura-
tion which has an overhead that grows with packet size. For
1500 byte packets, the overhead ofactivecopyrelative to pas-
sive forwarding grows to over 45 microseconds. Thus, the cost
of just copying a packet (about 25 microseconds for a 1500 byte
packet) is larger than the entire overhead of active capsule pro-
cessing. The cost of copying data actually drops for packets

larger than the MTU because the overheads are computed rela-
tive to the passive forwarding node which is incurring the cost
of dealing with IP fragmentation.

The user-space PAN implementation has a higher overhead
than the kernel implementation, especially for large packet sizes.
Because packets are copied to and from user-space, the shape
of the overhead curves for the user-space implementation and
the UDP forwarder are similar to the shape of the curve for
the kernel/activecopyconfiguration. For 128 byte packets, the
user-space implementation has an overhead relative to the IP
forwarder of about 83 microseconds, or over four times the over-
head of the kernel implementation. For 1500 byte packets, this
overhead increases to almost 130 microseconds, or six times the
overhead of the kernel implementation. Even when compared
against the user-space UDP forwarder, the user-space imple-
mentation still has a considerably higher overhead than the PAN
kernel implementation. It is not immediately clear why this is
the case.

The performance overhead imposed by using a JavaVM to
process capsules is substantial and dwarfs the overhead caused
by copying capsule data across the kernel boundary. For 128
byte packets, the user-space implementation has an overhead
relative to the IP forwarder of about 398 microseconds, which
is 4.8 times that of the native code user-space version and over
21 times the overhead of the kernel-space version. Much of this
cost seems to be coming from Java’s memory management —
the garbage collector halts capsule processing for hundreds of
microseconds each time it runs. The cost of garbage collection
is amortized into thejava-GC-user/� numbers shown in the fig-
ures. Thejava-noGC-user/� numbers do not include the cost
of the garbage collector running (capsules with round-trip-times
of over 150ms are ignored when generating averages since it
is likely that the garbage collector ran while the capsules were
being processed). Even with the cost of garbage collection fac-
tored out, the processing time for 128 byte packets is still 266
microseconds (or over three times that of the native code user-
space version).

To better understand the cost of using the Java mobile code
system, timing instructions were hand-inserted to profile where
time was being spent during capsule execution on the middle
node. This makes it possible to directly compare the cost of ex-
ecuting capsules in two mobile code systems while ignoring the
costs of crossing into user-space. The inserted timing instruc-
tions return the state of the processor’s cycle counter. This set of
experiments was performed using 1500 byte packets. Whereas
only about 13 microseconds are spent in user-space setting up
the environment for and executing the native ix86 capsule code,
187 microseconds are spent doing the same for the Java cap-
sule code. Of this, 45 microseconds are spent creating the cap-
sule’s execution environment (which primarily involves creating
a number of wrapper objects), 72 microseconds are spent read-
ing in the capsule’s header (which involves creating a number of
objects), 29 microseconds are spent writing out modifications to
the capsule header, and 11 microseconds are spent in user-space
during the method call to forward the capsule towards its des-
tination. Other parts of the capsule code run in a total of 30
microseconds. For reference, the instantiation of a single Ob-
ject in Java takes about 5.5 microseconds. That it takes more
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time for three object creations than for the execution of the en-
tire native ix86 capsule code (13 microseconds) indicates that
substantial improvements are needed in the performance of Java
mobile code systems.

Further evaluation is needed to fully understand the impact
that various aspects of the Java mobile code system have on the
performance of PAN. Additionally, it is possible that other Java
virtual machines may offer better performance than the Kaffe
virtual machine used for these experiments. A number of Java
virtual machines are compared using microbenchmarks in [13].
Unfortunately, these microbenchmarks don’t compare the costs
of object creation or garbage collection, both of which have a
significant effect on the performance of capsules running within
PAN.

Finally, Figure 6 shows the active overheads as percentages
relative to the passive IP forwarder. It shows that the relative
cost of using an active network drops substantially as packet
size grows. This happens because the passive IP forwarding
latency increases with packet size while the active processing
latency remains constant. At its worst, the kernel node has a
38% overhead for 128 byte packets. For 1500 byte packets, the
kernel-space node incurs only a 13% overhead. For 8192 byte
packets, this overhead drops to 3%.

C. Measuring throughput

The throughput of PAN nodes was measured using an ac-
tive flood application that pushes capsules across the network
as rapidly as possible. The flood application first inserts aflood
capsule into the source node with an indicator marking it as the
start of a flow. This capsule forwards itself to the receiver node,
where it creates an entry for the flow in soft state, keyed by
the address and port number of the originating application, and
containing the starting time of the flow. The flood application
continues to send capsules towards the receiver, where they in-
crement the count of received capsules in the soft state entry for
the flow. At intervals specified in the starting capsule, the re-
ceiver sends status capsules to the source with the elapsed time
since the start of the flow and the number of capsules received
since that time. Updates are sent only periodically to minimize
their effect on measurements. Each flood capsule contains a 100
byte header followed by a data body that fills up the rest of the
packet.

Because flow control and reliable communications proto-
cols have not yet been implemented on top of PAN, measur-
ing throughput required care to avoid packet loss. Experiments
were performed by sending as many packets as could be sent
without experiencing significant packet loss, which would have
interfered with the measurements. As for latency, the median of
three measurements was taken for each network configuration
and packet size. Also, to eliminate code object load time as a
factor, all code objects were loaded into all nodes before taking
any measurements.

Figures 7 and 8 show the measured throughput in both cap-
sules per second and megabits per second.

For smaller packets, the measurements of the user-space im-
plementation are limited by the rate at which the sender was able
to insert capsules into the network. Therefore it does not provide
a good indication of the potential throughput of the middle for-

warding node. This is indicated by the measurements showing
that theuser/passiveandkernel/passiveconfigurations had sig-
nificantly different throughputs for packets smaller than about
4096 bytes. In a system in which end nodes and network col-
lisions are not limiting factors, both should have had the same
throughputs.

For both the kernel and user-space nodes, throughput for
small capsules is limited by the time required for the node to pro-
cess the capsules. For the kernel node, these processing times
are on the same order as those measured in the latency experi-
ments. For capsules larger than about 800 bytes, the throughput
of over 90 Mbps is high enough to effectively saturate a Fast
Ethernet network. Prior to this saturation, a small performance
difference of under 8% can be seen between the throughput of
the PAN node and IP forwarding. After the network saturates,
both configurations have very similar throughputs.

V. CONCLUSIONS

The current PAN implementation achieves high performance
and interoperability, but performs only minimal resource man-
agement and does not yet fully address the safety and security is-
sues. Experiments performed with PAN indicate that a capsule-
based active network can provide significant flexibility with only
a small performance overhead compared to a traditional network
node. The untuned kernel implementation of PAN is able to sat-
urate a 100 Mbps Fast Ethernet with 1500 byte capsules with
an overhead of 13% compared to the time a traditional network
node takes to process capsules.

The most significant challenge to simultaneously providing
high performance, safety, security, and interoperability in an ac-
tive network is the lack of lightweight and embeddable high-
performance mobile code systems. It may be worthwhile to de-
velop a mobile code system just for this purpose — many of the
features of the Java virtual machine, such as inheritance, are not
required for implementing active network code objects.

Given a mobile code system capable of generating high-
quality native code, achieving high performance is a matter of
careful design. The most important aspects of the implemen-
tation involve running within the kernel, not copying or touch-
ing capsule data whenever possible, and evaluating capsules us-
ing code objects that have been converted into native executable
code at load time.

Active networks also have the potential to improve overall
network performance by minimizing redundant or superfluous
network traffic. The flexible nature of PAN should help improve
end-to-end performance by giving applications as much control
as possible over what happens to their data within the network.
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