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Active Networks

� Traditional passive networks forward packets based on packet headers

� Active networks process capsules containing both code and data

� Code tells the node what to do with the capsule

� Allow new network protocols to be dynamically deployed

� Critical issues:
performance, safety, security, resource management, interoperability

� PAN is a high-performance active network node

� Inspired by Wetherall and Tennenhouse’s ANTS system

� Designed for performance and to allow experimentation
with active network implementation issues
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The Active Overhead

� Prototype active nodes written in Java and running in user-space
tell little about potential performance

� Goal: demonstrate that an active node can obtain high performance
with a low active overhead

� Active overhead is the percentage increase in processing time
between passive and active forwarding:

ActiveOverhead = 100% � (
tactive�tpassive

tpassive

)
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The Baseline Performance Hypothesis
� Baseline Case: a simple “ping” capsule which heads towards a destination

then returns towards a source:

Receive
Capsule

Read Header,
Increment Count Direction?

At Source?

At Dest?

direction = toSource

Update Header
Send Towards

Dest

Update Header
Send Towards

Source

Update Header
Deliver To

Sender

toDest

toSource Yes

No

No

Yes

Capsule:

Capsule Code

Header (dest, src, dir, count)

Payload

� Functionality can be added incrementally to the baseline
with an incremental performance cost

� Performance Hypothesis: In the baseline case, an active node can be made
to process capsules with performance comparable to a traditional passive
node while incurring only a small active overhead.

� Note: comparing against UNIX software router, not specialized hardware
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Obtaining High Performance
� Approach:

� Look at the active processing critical path in the baseline case

� Eliminate potential sources of overhead

� Major sources of overhead:

� Memory copies (bring capsule data into cache)

� Code interpretation, loading, or translation in critical path

� User/kernel boundary crossings

� These overheads can be eliminated through design choices

� Experiments:

� Measure the cost of overhead sources

� Show that overhead sources can be overcome

� PAN points the way towards bridging the performance gap between
a research prototype and a system with practical performance
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Measuring Performance
� Testbed: Three Intel PentiumPro 200’s running Linux 2.0.32

with DEC Tulip-based 100 MBps Ethernet cards

� Network configurations:
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RTTactive
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tpassive =
1

2
� (RTTpassive �RTTnone) For testbed, tpassive = 157�s

tactive =
1

2
� (RTT active �RTTnone)

� Experiments:

� Vary characteristics of Active Node and observe effect on ActiveOverhead

� ActiveOverhead measured using 128 through 1500 byte packets
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Bridging the Performance Gap
� ANTS: prototype designed without performance in mind

� PAN: can be configured with a wide range of performance characteristics

ANTS PAN

Written in... Java C

Mobile code Java Java or Intel native ix86 object code

Runs in... user-space user-space or kernel

Capsule data... is copied can be processed in-kernel without copies

� Starting with low-performance PAN configuration:

PAN

Network

Java Virtual
Machine

Passive
Forwarding Network

User-
Space

Kernel

Key:

Capsule Movement

Packet / Capsule

Memory Buffer

Memory Copy

Code
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Step 1: Dynamic Code Loading and Code Naming
� Rather than having capsules contain code and data,

capsules name code and contain data (done by ANTS and PAN):

Code

Capsule without dynamic loading

Data

Capsule with dynamic loading

Data

Code (dynamically loaded)

Code Name and
Home Address

� Code is named by a crypto hash of the code, resulting in a unique name

� Code is dynamically loaded over network

10% 100% 1000% 10000%1%

~6200%

287%

Active Overhead

without dynamic code loading

with dynamic code loading

(estimated)

(measurements using 1500 byte packets)
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Step 2A: Importance of a Good Mobile Code System

� Current Java “Just-In-Time” (JIT) translators generate code that is much
slower than comparable native code

� Largest costs due to garbage collection and object creation

� Some of this may be intrinsic to the design of the JavaVM

� Comparison of baseline code run time between native ix86 code
generated by gcc and Java code running in Kaffe OpenVM:

ix86 Native Code Version

Java Version Setup Read GC (Amortized)

Write,  Send, Misc

(13 microsecs)

(187 microsecs + 260 microsecs for GC)
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Step 2B: Using Native Code

� Native code demonstrates performance that may be obtained as
safe mobile code systems improve

� Native object code doesn’t provide safety, security, or interoperability!

native ix86 object code

10% 100% 1000% 10000%1%

287%

Active Overhead

java, with amortized GC

java, without amortized GC 203%

83%
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Step 3: Moving into the Kernel
� Eliminates data copies and context switches to/from user-space

PAN

Network
Passive
Forwarding Network
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Space
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Step 4: Eliminating Data Copies With Software Segments
� Interoperability requires OS-independent memory format

� Naive approach: copy data into buffer for capsules to use

� Software segment abstraction wraps buffers

� Baseline can process capsules in-kernel without any copies!
Results: tactive � tpassive = 20�s regardless of capsule size

� Experiment:
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Baseline Performance Hypothesis Verified
� Active overhead decreases with packet size:
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Performance Explanation

� Low (13% to 38%) active overhead for in-kernel processing

� Very little on remaining critical path:

� Capsule environment created and code looked up in code cache

� PAN calls into capsule code

� Capsule code looks at capsule header and calls API to forward capsule
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Conclusions

� Contributions of this work:

� Demonstrates that high performance is obtainable

� Shows ways to get from a prototype to a high-performance active node

� Experimental active network node for implementation research

� Future research:

� Low active overheads with safety and security

� By reducing overall bandwidth consumption, active protocols may
generate overall gains in network performance
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