
PAN: A High-Performance Active Network Node
Supporting Multiple Mobile Code Systems

Erik Nygren, Stephen Garland, and M. Frans Kaashoek
MIT Laboratory for Computer Science

IEEE OpenArch 1999
New York, New York

March 27, 1999

http://www.pdos.lcs.mit.edu/˜nygren/pan/

Page 1

Active Networks

� Traditional passive networks forward packets based on packet headers

� Active networks process capsules containing both code and data

� Code tells the node what to do with the capsule

� Allow new network protocols to be dynamically deployed

� Critical issues:
performance, safety, security, resource management, interoperability

� PAN is a high-performance active network node

� Inspired by Wetherall and Tennenhouse’s ANTS system

� Designed for performance and to allow experimentation
with active network implementation issues

Page 2

The Active Overhead

� Prototype active nodes written in Java and running in user-space
tell little about potential performance

� Goal: demonstrate that an active node can obtain high performance
with a low active overhead

� Active overhead is the percentage increase in processing time
between passive and active forwarding:

ActiveOverhead = 100% � (
tactive�tpassive

tpassive

)
Passive Node

Passive Fwd

Network Network

tpassive

Active Node

Passive Fwd

Network Network

tactive

Active
Processing

Page 3

The Baseline Performance Hypothesis
� Baseline Case: a simple “ping” capsule which heads towards a destination

then returns towards a source:

Receive
Capsule

Read Header,
Increment Count Direction?

At Source?

At Dest?

direction = toSource

Update Header
Send Towards

Dest

Update Header
Send Towards

Source

Update Header
Deliver To

Sender

toDest

toSource Yes

No

No

Yes

Capsule:

Capsule Code

Header (dest, src, dir, count)

Payload

� Functionality can be added incrementally to the baseline
with an incremental performance cost

� Performance Hypothesis: In the baseline case, an active node can be made
to process capsules with performance comparable to a traditional passive
node while incurring only a small active overhead.

� Note: comparing against UNIX software router, not specialized hardware

Page 4

Obtaining High Performance
� Approach:

� Look at the active processing critical path in the baseline case

� Eliminate potential sources of overhead

� Major sources of overhead:

� Memory copies (bring capsule data into cache)

� Code interpretation, loading, or translation in critical path

� User/kernel boundary crossings

� These overheads can be eliminated through design choices

� Experiments:

� Measure the cost of overhead sources

� Show that overhead sources can be overcome

� PAN points the way towards bridging the performance gap between
a research prototype and a system with practical performance

Page 5

Measuring Performance
� Testbed: Three Intel PentiumPro 200’s running Linux 2.0.32

with DEC Tulip-based 100 MBps Ethernet cards

� Network configurations:

Active
Sender

Passive
Node NetNet

ping
RTTpassive

tpassive

Active
Node NetNet

ping
RTTactive

tactive

Net

ping
RTTnone

Active
Receiver

Active
Sender

Active
Receiver

Active
Sender

Active
Receiver

tpassive =
1

2
� (RTTpassive �RTTnone) For testbed, tpassive = 157�s

tactive =
1

2
� (RTT active �RTTnone)

� Experiments:

� Vary characteristics of Active Node and observe effect on ActiveOverhead

� ActiveOverhead measured using 128 through 1500 byte packets

Page 6

Bridging the Performance Gap
� ANTS: prototype designed without performance in mind

� PAN: can be configured with a wide range of performance characteristics

ANTS PAN

Written in... Java C

Mobile code Java Java or Intel native ix86 object code

Runs in... user-space user-space or kernel

Capsule data... is copied can be processed in-kernel without copies

� Starting with low-performance PAN configuration:

PAN

Network

Java Virtual
Machine

Passive
Forwarding Network

User-
Space

Kernel

Key:

Capsule Movement

Packet / Capsule

Memory Buffer

Memory Copy

Code

Page 7

Step 1: Dynamic Code Loading and Code Naming
� Rather than having capsules contain code and data,

capsules name code and contain data (done by ANTS and PAN):

Code

Capsule without dynamic loading

Data

Capsule with dynamic loading

Data

Code (dynamically loaded)

Code Name and
Home Address

� Code is named by a crypto hash of the code, resulting in a unique name

� Code is dynamically loaded over network

10% 100% 1000% 10000%1%

~6200%

287%

Active Overhead

without dynamic code loading

with dynamic code loading

(estimated)

(measurements using 1500 byte packets)

Page 8

Step 2A: Importance of a Good Mobile Code System

� Current Java “Just-In-Time” (JIT) translators generate code that is much
slower than comparable native code

� Largest costs due to garbage collection and object creation

� Some of this may be intrinsic to the design of the JavaVM

� Comparison of baseline code run time between native ix86 code
generated by gcc and Java code running in Kaffe OpenVM:

ix86 Native Code Version

Java Version Setup Read GC (Amortized)

Write, Send, Misc

(13 microsecs)

(187 microsecs + 260 microsecs for GC)

Page 9

Step 2B: Using Native Code

� Native code demonstrates performance that may be obtained as
safe mobile code systems improve

� Native object code doesn’t provide safety, security, or interoperability!

native ix86 object code

10% 100% 1000% 10000%1%

287%

Active Overhead

java, with amortized GC

java, without amortized GC 203%

83%

Page 10

Step 3: Moving into the Kernel
� Eliminates data copies and context switches to/from user-space

PAN

Network
Passive
Forwarding Network

User-
Space

Kernel

Code

Network
Passive
Forwarding Network

User-Space

Kernel PAN
Code

Active:
User-
Space

Active:
In-Kernel

10% 100% 1000% 10000%1% Active Overhead

83%

13%in-kernel, native code

user-space, native code

Page 11

Step 4: Eliminating Data Copies With Software Segments
� Interoperability requires OS-independent memory format

� Naive approach: copy data into buffer for capsules to use

� Software segment abstraction wraps buffers

� Baseline can process capsules in-kernel without any copies!
Results: tactive � tpassive = 20�s regardless of capsule size

� Experiment:

Network
Passive
Forwarding Network

User-Space

Kernel
PAN

In-Kernel
With
Extra
Copy

Network
Passive
Forwarding Network

User-Space

Kernel
PAN

In-Kernel
Without
Extra
CopyCode Code

SW Seg SW Seg

10% 100% 1000% 10000%1% Active Overhead

30%

13%in-kernel, no copies

in-kernel, with extra copy

Page 12

Baseline Performance Hypothesis Verified
� Active overhead decreases with packet size:

128 256 512 1024 1500

Packet Size (in bytes, including IP/UDP header)

10

100

1000

A
ct

iv
e

O
ve

rh
ea

d
(in

 p
er

ce
nt

)

Active Overhead For Baseline Capsules

user-space, java with GC

user-space, native code

in-kernel, native code, with copy

in-kernel, native code, no copies

38%

13%

30%

170%

83%

800%

287%

Page 13

Performance Explanation

� Low (13% to 38%) active overhead for in-kernel processing

� Very little on remaining critical path:

� Capsule environment created and code looked up in code cache

� PAN calls into capsule code

� Capsule code looks at capsule header and calls API to forward capsule

Page 14

Conclusions

� Contributions of this work:

� Demonstrates that high performance is obtainable

� Shows ways to get from a prototype to a high-performance active node

� Experimental active network node for implementation research

� Future research:

� Low active overheads with safety and security

� By reducing overall bandwidth consumption, active protocols may
generate overall gains in network performance

Page 15

