
The Design and Implementation of a

High-Performance Active Network Node

by

Erik L. Nygren

Submitted to the Department of

Electrical Engineering and Computer Science

in partial ful�llment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1998

c
 Massachusetts Institute of Technology 1998. All rights reserved.

Author .

Department of Electrical Engineering and Computer Science

February 4, 1998

Certi�ed by. .

M. Frans Kaashoek

Associate Professor

Thesis Supervisor

Accepted by .

Arthur C. Smith

Chairman, Department Committee on Graduate Theses

The Design and Implementation of a High-Performance

Active Network Node

by

Erik L. Nygren

Submitted to the Department of Electrical Engineering and Computer Science

on February 4, 1998, in partial ful�llment of the

requirements for the degree of

Master of Engineering in Computer Science and Engineering

Abstract

A capsule-oriented active network transports capsules containing code to be executed

on the network nodes that they pass through. This approach makes networks more

extensible by allowing new networking protocols to be deployed and used without any

changes to the underlying network infrastructure. This thesis project describes the

design, implementation, and evaluation of a high-performance practical active net-

work node that can serve as a testbed for research into active network performance

and resource management issues. Nodes provide resources to executing capsules con-

taining Intel ix86 object code. Although the current implementation does not yet

provide safety or interoperability, the results of experiments performed on the system

implemented for this thesis indicate that an active network architecture may be able

to provide signi�cant
exibility while only incurring a small performance overhead

relative to traditional networks.

Thesis Supervisor: M. Frans Kaashoek

Title: Associate Professor

2

Acknowledgments

I would like to thank the members of the MIT Student Information Processing Board

and the members of the PDOS and SDS groups of the MIT Lab for Computer Science

for providing invaluable suggestions and comments since the start of this project. I'm

particularly indebted to my thesis advisor, M. Frans Kaashoek, David Wetherall,

John Guttag, Li-wei Lehman, Greg Ganger, Dawson Engler, Butler Lampson, John

Jannotti, Costa Sapuntzakis, Katy King, my parents John and Karen Nygren, and

many others for their helpful suggestions, words of encouragement, and occasional

vehement disagreement. This thesis would also have never been completed on time

if it wasn't for the contributions of the free software community | the developers of

such wonderful tools as Linux, GNU Emacs, gcc, Perl, gdb, and tgif. Metro Link,

Incorporated's contribution of a module loader to XFree86 4.0 also proved critical to

the success of this project.

3

Contents

1 Introduction 9

1.1 Background . 9

1.2 PAN | a step towards addressing the challenges facing active networks 10

1.3 Contributions of this work . 12

1.4 Structure of this document . 13

2 Related Work 14

3 Goals of PAN 17

3.1 Active networks: a moving target . 17

3.2 Obtaining high-performance . 18

3.3 Providing a testbed for experimentation 19

3.4 Design for future interoperability . 21

3.5 Design for future safety and security 22

3.5.1 Node safety and security . 22

3.5.2 Trust no one: network-wide safety and security 23

4 Design and Implementation 26

4.1 Architecture overview . 26

4.2 Overview of a PAN node . 28

4.3 Node implementation overview . 30

4.4 Code object and application interfaces to nodes 31

4.5 Code objects . 32

4

4.5.1 Code object naming . 33

4.5.2 Code object dependencies and symbol resolution 33

4.5.3 Code object distribution and loading 34

4.5.4 Current implementation of code objects 35

4.5.5 Code objects as data abstractions and guardians 37

4.6 Capsules . 38

4.6.1 Capsule anatomy: headers and bodies 38

4.6.2 Capsule execution environments 39

4.7 Memory management within PAN . 40

4.7.1 Keeping track of software segments 41

4.7.2 Why not just use sandboxing? 44

4.7.3 Software segment streams . 45

4.7.4 panSerGen: a serializer generator 45

4.7.5 Soft state, persistent software segments, and containers 46

4.7.6 Unsolved problem: safe sharing in a multi-threaded environment 48

4.8 Application links . 49

4.8.1 Application interface to application links 49

4.8.2 Code object interface to application links 49

4.8.3 Using a portmapper ... 51

4.8.4 ... or not using a portmapper 53

4.8.5 Implementation of application links 53

4.9 Network links . 54

4.9.1 Node addresses . 54

4.9.2 Code object interface to network links 55

4.9.3 Implementation of network links 56

4.10 Miscellaneous utility functions . 58

4.11 Di�erences between PAN and ANTS 58

4.11.1 Protocols as collections of code objects 58

4.11.2 Minimal requirements on capsule contents 60

4.11.3 No uni�ed soft state cache . 61

5

4.11.4 More
exible interface to application links 62

5 Experimental Procedures and Results 63

5.1 Experimental setup . 64

5.2 Measuring latency . 68

5.2.1 Latency results . 68

5.3 Measuring throughput . 74

5.3.1 Throughput results . 77

6 Future Work 78

6.1 Further experiments and optimizations 78

6.2 A bytecode language for safety and interoperability 79

6.3 Safety and security . 80

6.4 Resource management . 81

6.5 Applications and programming models 81

7 Conclusions 83

6

List of Figures

4-1 The architecture of a PAN node. 29

4-2 Format used to transmit code objects. 35

4-3 PAN capsule format. 38

4-4 A software segment header and a software segment stream. 41

5-1 Testbed network con�gurations. 65

5-2 End-to-end ping round trip times. 69

5-3 Latency per capsule incurred by forwarding node. 70

5-4 Overhead (in microseconds) for forwarding each capsule, relative to

passive or C forwarder. 71

5-5 Percent overhead for forwarding, relative to passive forwarder. 72

5-6 Flood throughput in capsules per second. 75

5-7 Flood throughput in megabits per second. 76

7

List of Tables

4.1 Code Object Interfaces . 36

4.2 Software Segment Interfaces . 42

4.3 Software Segment Stream Interfaces 43

4.4 Hash Table Software Segment Container Interfaces 47

4.5 Application Link Interfaces . 50

4.6 Portmapper Interfaces . 52

4.7 Network Link and Node Address Interfaces 55

4.8 Miscellaneous Utility Functions . 59

8

Chapter 1

Introduction

Active networks make the network infrastructure much more dynamic by allowing

code to be executing within the network. However, a number of challenges lie in

the way of creating a practical active network architecture. This thesis work focuses

on the design, implementation, and evaluation of PAN, a high-performance active

networking system that provides a foundation for building a practical active network

while demonstrating that the high degree of
exibility provided by active networks

can be obtained with very little performance overhead.

1.1 Background

The current network infrastructure is essentially static. Although active code may

be sent from servers to clients (such as web applets) and from clients to servers

(such as OO database queries), internal network nodes (such as routers) passively

switch packets. This infrastructure is standardized using monolithic protocols such

as IP[27]. Adding functionality to these core network protocols is performed by adding

complexity to the protocols through a lengthy process of prototyping, standardizing,

developing, and deploying. The result is that although the core protocols become

bloated, they are still incapable of incorporating all of the functionality within the

network (such as convergecasts or data caching) that applications may desire. Until

now, the only solution other than adapting protocols has been to place specialized

9

servers within the network to perform tasks such as multicast tunneling, web caching,

and network monitoring.

By allowing computation to happen within the network as data passes through

nodes, active networks[30] provide a di�erent solution to these problems. Rather

than standardizing on a protocol that describes how nodes should forward packets,

an active network standardizes on an execution environment that is provided to the

capsules that pass through network nodes. A capsule contains both data and a ref-

erence to code to execute at each node the capsule passes through. In a traditional

network, routers look at packet headers and decide where to forward the packets. In

an active network, routers execute the code referred to by capsules, and this code

tells the router where to forward the capsule.

This active networking approach would allow network protocols to evolve much

more rapidly. In an active network, protocols can be written and immediately de-

ployed without any need for an extensive standardization process. Because new pro-

tocols can be written (or existing protocols can be modi�ed) to provide exactly the

functionality that is needed by applications, the large bloat associated with mono-

lithic protocols can be avoided. Active networks take the end-to-end argument[24] to

the extreme by allowing applications and protocols to do exactly what they need to do

exactly where they need to do it. Utilizing active networks may make it much easier to

implement and deploy new protocols for tasks such as multicasting, convergecasting,

data caching, network monitoring, and dynamic data distribution.

1.2 PAN | a step towards addressing the chal-

lenges facing active networks

Unfortunately, active networks may not come without costs. In order to become

practical, they must be able to overcome the hurdles of performance, safety and

security, and interoperability. Active networks must be able to achieve performance

comparable to existing networks. They must be able to provide safety, security, and

10

robustness equaling or exceeding that of existing networks | a di�cult challenge for a

system designed to allow code to execute and migrate within a huge distributed system

encompassing many administrative domains. Finally, due to the highly heterogeneous

nature of an internetwork, an active network must have the same high degree of

interoperability that a traditional network has. Unless all three of these challenges

can be addressed, an active networking infrastructure will remain impractical.

As my thesis project, I have designed and implemented PAN, an active network

node that takes the �rst step towards the realization of a \Practical Active Network."

One of the primary goals of PAN is to answer the performance question: in the base

case of simply routing packets to their destination, can an active network node achieve

performance comparable to a traditional network? After implementing and testing

PAN, it appears that this hypothesis may be valid. Tests running on a 200MHz Intel

PentiumPro running Linux have demonstrated that PAN is able to forward at least

100Mbps worth of data, and, when compared to the same Linux machine acting as a

traditional router, incurrs a �xed overhead on the order of only 20 microseconds per

capsule.

Although PAN is designed with the safety, security, and interoperability issues

in mind, the current implementation does not fully address those issues directly.

Instead, the current implementation focuses primarily on validating the performance

hypothesis. However, it should be possible to add safety, security, and interoperability

to PAN without any major redesigns of the system and without signi�cantly a�ecting

peformance.

Surprisingly, it doesn't take too much e�ort to achieve reasonable performance

in an active network node. PAN achieves high performance in four ways: through

processing capsules in the kernel, by minimizing data copies, through executing in-

structions native to the processor on the node, and through a design philosophy of

providing capsules with maximum
exibility.

By processing capsules in the kernel, rather than in a user-space process, the

node avoids having to copy data between kernel-space and user-space. Additionally,

interference from the scheduler is greatly reduced.

11

PAN provides a uniform memory management system that allows handles to re-

gions of memory to be passed around the system. In the base case of simply forwarding

capsules, this eliminates the need for the node to copy or even touch the data body

of capsules.

By caching native executable code that corresponds to the code that capsules

refer to, nodes only incur the cost of loading and/or compilation on the �rst time

that a new type of capsule is used. All subsequent capsules of the same type can be

immediately evaluated without the need for interpretation or additional compilation.

Consistent with the overall philosophy of active networks, PAN provides capsules

with a great deal of
exibility over what they can do. By allowing capsules to only do

what they need to do and to do things in the way most appropriate to what they are

doing, capsules can be written to work with abstractions rather than �ghting against

them.

1.3 Contributions of this work

This thesis makes a number of contributions. First, people designing and implement-

ing active network systems should hopefully be able to learn from the lessons learned

during the design and implementation of PAN. Second, PAN demonstrates that ac-

tive networks can provide a high degree of
exibility at only a small �xed cost in the

base case. As a result, this thesis demonstrates that performance may not be one

of the signi�cant challenges facing the acceptance of the active networking approach.

Third, this thesis provides a functional active network implementation that can be

used for developing active network applications and for experimenting with active

network resource management, safety and security, and interoperability issues.

A public release of PAN will be made available sometime during 1998. This will

allow other people to write applications for the system and to experiment with it.

This release will be made available at:

http://www.mit.edu/people/nygren/pan/

12

1.4 Structure of this document

Chapter 2 contains a summary of other work that is related to this thesis. Chapter 3

discusses some of goals and philosophies associated with the design of PAN and

provides some background into active networking issues. Chapter 4 presents the

details of the design and implementation of the PAN system. Chapter 5 describes the

experimental setup used to test the performance hypothesis and provides the results

of these experiments. Chapter 6 discusses future directions which PAN my take.

Finally, Chapter 7 presents some conclusions drawn from the results of this thesis.

13

Chapter 2

Related Work

The trend towards extensible systems is hardly new. Operating system architectures

such as Exokernels[11] and SPIN[4] allow user applications to extend the operating

system's functionality. Languages environments such as Java[14] allow web browsers

and other end applications to be dynamically extended to run applets.

Possibly the �rst programmable network was a programmable packet radio net-

work called Softnet[39] that was developed in Sweden in the early 1980s.

The current wave of active network development is fairly recent, having gotten o�

in 1996 with [30] and [28]. Much of the work in the area has been focused on either

developing long term technologies or on developing prototype or proof-of-concept

systems. A fairly complete survey of ongoing active network research was recently

published[29].

Two somewhat di�erent approaches have been taken to active networking: the

capsule-based (or integrated) approach, which is what PAN uses, and the programmable

switch (or discrete) approach. The integrated approach revolves around program-

ming in the messenger paradigm[8] | capsules containing both code and data move

around the network and are executed on the nodes they pass through. In the discrete

approach, functionality can be added to nodes out-of-band from the packets being

processed by the node.

The design of integrated approach systems, such as PAN, makes them much better

suited to packet-oriented networks (such as IP) than to connection-oriented networks

14

(e.g. ATM). This is because code is executed for each packet that has associated

code. The discrete approach is much better suited to connection-oriented networks

than the integrated approach.

A number of projects at MIT have been making good progress towards demon-

strating the usefulness of active networks. The active IP Option [36] project em-

bedded small Tcl programs in the option �elds of IPv4 packets. The ANTS system

[35] allows for the rapid prototyping of active network ideas and applications through

a capsule-based active network system written in Java. A number of sample active

network applications have been developed using ANTS [35] [21]. This thesis project

draws heavily on many of the ideas and application ideas developed through the

ANTS work.

A group at U. Penn and Bell Communications has been working on developing a

programmable switch and on developing Caml and SML-based programming language

technologies that may be used in future active networks [25]. They have implemented

and tested an active bridge[2] written in Caml that runs in user-space under Linux.

However, their performance measurements are substantially slower that the results

measured with the PAN system.

The University of Arizona's Liquid Software[15] project is developing technologies

for the high-performance compilation of mobile code. The project is also looking at

mobile search applications.

The x-kernel [16], also developed at University of Arizona, is a network-oriented

operating system that provides a consistent interface for constructing and composing

network protocol stacks that can be con�gured into the kernel at compile-time.

The BBN Smart Packets project[17] is looking into lightweight, but still expressive,

capsule-based active networks. After having evaluated existing languages, they are

developing a highly compact bytecode language for their active networking system.

Many aspects of their system are similar to what was developed in this thesis project.

The most signi�cant di�erence is their focus on network management and diagno-

sis applications, which have stronger security requirements and weaker performance

requirements than PAN.

15

The Netscript[38] project at Columbia University is developing a language, pro-

gramming model, and run-time environment for a discrete approach active network

where agents set up packet data
ow structures and allocate resources. The Netscript

system provides a \universal" abstraction of a programmable network device and a

\dynamic" \data
ow" language.

A project at GeorgiaTech [5] is developing a programmable switch approach active

network. They are investigating using active networks as a tool for dealing with

network congestion problems.

In addition, work at CMU is investigating \Application Aware Networks" and

issues of resource allocation in networks.

16

Chapter 3

Goals of PAN

PAN is designed to provide a testbed for active network research while demonstrating

that active networks can achieve acceptably high performance. By doing so, PAN

provides a good �rst step towards the implementation of a practical active network.

In order to be practical, an active network must address three primary but con-

icting goals: safety, interoperability, and performance. Although techniques are

available to address each one of these issues individually, there are still a large num-

ber of unknowns regarding how to address all three issues simultaneously in the

context of active networks. This chapter not only explains the goals that the current

implementation of PAN is designed to achieve, but also discusses practical active net-

work requirements that have not yet been solved but which signi�cantly in
uence the

design of PAN.

3.1 Active networks: a moving target

Because the uses for active networks are still being determined, the degree to which

performance, safety, and interoperability must be addressed is still unclear. The

applications that run on top of the system will have a substanial e�ect on all three of

these requirements. For example, the requirements on performance are substantially

di�erent for a network management system than for a system that handles all of the

data tra�c within a network.

17

The best solution to this problem is to develop an active network system for

experimenting with both applications and implementation issues. This is exactly

what PAN does.

3.2 Obtaining high-performance

Routers are expected to provide high performance, both in latency and through-

put. As a result, a practical active networking system must have a low performance

overhead. However, the performance requirements of an active network are also de-

termined by the applications that run on top of the active network. Even if active

nodes never replace backbone routers, a future network architecture may contain ac-

tive nodes distributed throughout the network, allowing protocols to use them as data

caches, multicast routers, and network monitoring stations. The level of performance

that active networks are capable of achieving will have a signi�cant e�ect on the

applications for which they are employed.

PAN is designed to address the performance issue by demonstrating that active

networks can, in fact, achieve high performance. Ideally, an active network should

achieve performance comparable to a traditional network. For example, an active

node processing capsules containing the code:

if (capsule_at_destination) then deliver_to_app();

else route_to_next_node();

should obtain performance (in bandwidth and latency) comparable to a traditional

hard-coded network node that simply routes packets to their destinations or delivers

them locally. Although the active node incurs a small �xed cost per capsule that the

traditional node does not incur, this cost should be small relative to the overall cost of

processing the capsule. With the active networking solution, additional functionality

(such as keeping track of the nodes the packet passes through or caching the packet at

each traversed node for faster error recovery) should add only a small incremental cost

over the small �xed cost of the base case. Although PAN does not yet fully provide

18

safety or interoperability, experiments performed on PAN (described in Chapter 5)

appear to validate this performance hypothesis.

In addition to providing high performance in the base case, PAN is also designed

to provide good performance for protocols with additional functionality. As a result,

there should not be a signi�cant performance penalty if a capsule modi�es its contents

or caches data in a node. PAN is able to achieve this through its
exible memory

management architecture.

By providing a high-performance active network implementation, PAN should also

prove useful to researchers developing applications and protocols for active networks.

By being able to test out active networking protocols in a system comparable in

performance to a more traditional network, it is possible to directly compare new

active protocols to their traditional counterparts.

PAN runs on top of existing workstation operating systems such as UNIX and

is designed to achieve performance as similar as possible to a traditional networking

implementation on such a machine. In reality, many intermediate network nodes

use specialized hardware that provides superior performance to intermediate nodes

running on workstation operating systems. As a result, PAN may have signi�cantly

lower performance than traditional specialized hardware solutions (this has not yet

been experimentally veri�ed). However, it will provide much more functionality. Once

active networks are demonstrated to be worthwhile, specialized network hardware

may eventually contain hardware to execute active networking capsules. In order to

both provide high performance, and to integratable into specialized hardware at some

point, the PAN system is designed to be as light weight as possible without sacri�cing

functionality. This is one reason why a large mobile code system, such as Java, is not

used in the current implementation.

3.3 Providing a testbed for experimentation

PAN is designed to be both
exible and powerful, allowing it to be used for proto-

typing active network technologies. Many of the active networking ideas used in this

19

project come from the ANTS project[35], a prototype active network that is being

used at MIT for experimenting with active networking ideas and applications. In or-

der to allow applications designed on ANTS to be easily implemented on PAN, PAN

uses capsule programming paradigms and node interfaces similar to those provided

by ANTS. In a number of cases, however, PAN provides interfaces that are more

powerful or more
exible than those provided in ANTS. In these cases, an attempt is

made to provide a mechanism whereby the interface provided in ANTS can be easily

implemented using the interfaces provided in PAN. See Section 4.11 for a description

of the signi�cant di�erences between the interfaces o�ered by PAN and ANTS.

In addition to acting as a testbed for applications, PAN can also be used as a

testbed for experimenting with various resource management and active networking

issues. Experimenting with these issues is beyond the scope of this thesis, and ex-

perimenting with some mechanisms may require substantial changes to the existing

design. Resource management issues that might be explored using the PAN system

include memory and CPU management schemes (how much memory should capsules

be provided and how should their run-time be bounded), network utilization issues

(how much bandwidth should capsules be able to use), soft state cache management

and keying schemes, and protected node resource access policies (e.g., who should

have access to modify routing tables). All of these should be looked at both for

individual capsules and across
ows of capsules.

Other design and implementation issues that might be explored using PAN include

how to do memory management (reference counting software segments or a full-

blown garbage collector), how to e�ciently provide memory protection (sandboxing

or software segments or some other scheme), how to bound code run-time (timers or

calculating execution cost prior to run-time), how to allow packets to suspend their

execution, whether to interpret or compile bytecode or simply use native executables,

the amount of load-time optimization to perform on bytecode, whether to include code

names or executable code in capsules, and how to provide safety and security within

a node (code veri�cation and/or code signing). Because it is easier to automatically

insert checks and code into a simple bytecode than into native object code, it may be

20

easier to address some of these issues with a later version of PAN that uses a bytecode

instruction set.

3.4 Design for future interoperability

Any real network consists of a large number of heterogeneous devices running di�erent

operating systems on di�erent types of hardware. As a result, any practical active

networking system must address interoperability and code mobility issues. There are

two aspects to interoperability: providing consistent node interfaces and providing

for code mobility.

The current implementation of PAN provides consistent interfaces and a consistent

view of a network node to code executing on the node. As a result, nodes appear

identical to capsules regardless of the operating system they are running on top of and

even regardless of the node address family that they are using. The current interfaces

even provide mechanisms for accessing capsule data independent of the byte ordering

of the node's host hardware.

Any executable code designed for use within active network must somehow be

mobile, meaning that it does not depend on any speci�c processor or operating system.

Most existing mobile code systems (such as Java[14], Perl, ML and LISP variants,

Safe-Tcl, and PCC) are either too general, too speci�c, or too heavy-weight to be the

ideal solution for a practical active networking system[17].

PAN does not yet fully address the code mobility problem. The current implemen-

tation distributes code objects that contain Intel ix86 object code in either an ELF or

a.out format. Although this allows code objects to be used on almost any node run-

ning on a machine with an Intel ix86 processor, a bytecode will need to be developed

in order to provide full interoperability. This project aims to provide insight into

what is a good level for an active networking bytecode so that maximum
exibility is

provided without sacri�cing performance.

The design of the current implementation of PAN takes a great deal of care to

ensure that it will be easy to replace the current binary object code loader with a

21

just-in-time bytecode compiler or a bytecode interpreter. In order to not generate

performance results that wouldn't carry over to a bytecode-based system, the current

implementation performs many of the same checks (such as run-time bounds checking

on memory accesses) that compiled bytecode would also need to perform. As a result,

a bytecode-based system should be able to achieve performance comparable to the

existing system.

3.5 Design for future safety and security

PAN does not yet provide any safety or security guarantees. However, safety and

security are not afterthoughts to the PAN design | the current design keeps them

in mind and provides mechanisms whereby they can readily added to future versions.

Safety protects a node and a network from programming or design errors, isolates

related faults and prevents related denials of service, and prevents the system from

taking undesirable actions, such as inadvertently releasing private data. Security is a

subset of safety and aims at preventing intentional or malicious attacks against the

system. Ideally, a system that provides safety also provides security. Because high

reliability is important to network nodes, providing safety and fault-tolerance is just

as important as providing safety.

An active network must provide security and safety at both individual nodes and

across the entire network. These are two fairly di�erent problems that will require

di�erent approaches to solve.

3.5.1 Node safety and security

A practical active network must prohibit itself from being used as a channel for

gaining unauthorized access to system resources (such as access to the disk or to

unauthorized portions of system memory). In addition, a node must protect against

denial of service by an attacker or by malfunctioning code. For example, code runtime

and memory utilization must be limited.

A degree of security (but not safety) can be provided by cryptographically signing

22

code using a public key system. This can allow a node to only accept code signed by

a trusted party. Unfortunately, this doesn't prevent against programming errors and

thus doesn't provide safety. In addition, the concept of a \trusted party" doesn't scale

to a global internet. If di�erent administrative domains only allow code from di�erent

trusted parties, interoperability will su�er. However, cryptographic signatures may

be useful within active networks. For example, they may be used to securely bind

protocols together or may authorize capsules to access protected node resources such

as routing tables. In addition, code signing may be used in testbed networks to

prevent an attacker from breaking into a testbed by injecting malicious capsules into

the network.

By using a type-safe bytecode rather than native object code, it should be much

easier to provide safety. Load-time checks can be performed on the bytecode, insuring

that it accesses node resources safely. The security and resource management model

designed into the current implementation of PAN assumes that a type-safe bytecode

will eventually be used. As a result, mechanisms such as name-space control and

unforgeable handles to objects are used to maintain control over resources. Note that

although these mechanisms provide guidelines to existing ix86 object code regarding

what it is allowed to do, they do do not prohibit the code from violating the con-

straints. In the remainder of this thesis document, references are occasionally made

to unforgeable handles and name space control. Realize that these are references to

design decisions that will allow security to be added when bytecodes are in place and

are not mechanisms that currently provide security.

3.5.2 Trust no one: network-wide safety and security

As PAN is designed to run over a large internetwork that spans multiple adminis-

trative domains, it is crucial that authors of code objects and users of the system

remember that an active network is not only subject to the same security problems

as a more traditional network, but that new security concerns may also become evi-

dent. Any active network designed for deployment in an internetwork should at least

have a security model where all nodes and network links are untrusted. Users and

23

programmers should assume that an attacker would be able to insert a capsule with

arbitrary contents at any point in the network. Attackers may also be able to view

or modify capsules at any point in the network.

The current implementation of PAN fails to be secure under these conditions.

However, any design decisions that have been made about security take this stringent

security model into account. Much more work will need to be done to allow PAN to

be safely usable in such an insecure network however.

Two clear challenges to providing global security and safety within an active net-

work are preventing denial of service attacks and providing end-to-end encryption

and accountability.

The most obvious potential denial of service attacks are those that could be waged

by worm-like capsules that would rapidly spread to all nodes of a network and would

maintain a network-wide broadcast storm, thereby consuming all network capacity.

One of the challenges in preventing this sort of attack is being able to distinguish

desirable behaviors (such as multicasting the video stream from a Mars probe to

a million subscribers) from undesirable behaviors (such as a worm that replicates

itself a million times). This can be especially hard to do when trying to determine

whether to allow an activity from the viewpoint of a single node without any global

knowledge. Some approaches, such as time-to-live (TTL) �elds on capsules, may solve

the problem in the short term but do not scale to an active global internetwork.

Another network-wide security problem is providing encryption, authorization,

accountability, and security in a network where nodes are not necessarily trusted.

End-to-end encryption of entire capsules will not be possible if capsule contents need

to be accessed by nodes along the capsule's route. In addition, it may be hard to

distinguish an action being taken by a capsule on behalf of a trusted application from

an action taken by a compromised node that is \pretending" to process a capsule.

In the extreme, the only solution to this problem may be to deploy a complicated

distributed system security scheme similar to the one used in Taos[37]. Because this

may place a heavy performance burden in places where it is not needed, it may be

more appropriate to apply the end-to-end argument by providing encryption and

24

authentication tools (and possibly even a key distribution architecture) to capsules,

but without dictating how the capsules use the tools.

25

Chapter 4

Design and Implementation

This chapter describes the design of the PAN system and provides information about

the current PAN implementation. Section 4.1 provides an overview of the architecture

of the PAN, Section 4.2 presents an overview of the design of PAN nodes, Section 4.3

brie
y describes the two existing PAN node implementations, Section 4.4 explains

how code objects and applications interface to nodes, Section 4.5 provides more in-

formation about code objects and protocols, Section 4.6 contains information about

the format of capsules, Section 4.7 explains how memory is managed within a PAN

node, and sections 4.8 and 4.9 give information about the details of application and

network links, respectively. Finally, Section 4.10 describes some miscellaneous util-

ity functions that PAN nodes provide to code objects, and Section 4.11 explains the

motivation behind the some of the interface di�erences between PAN and ANTS.

4.1 Architecture overview

The PAN system uses an active network architecture similar to that used in the

ANTS [35] system. A PAN network consists of a number of nodes interconnected

with each other across unreliable network links, such that any node can potentially

communicate with any other node (except in the case of network failures) by sending

a capsule across one or more network links. As these capsules pass across the network,

they may be processed by any or all of the nodes that they pass through. Many of

26

the leaf nodes of the network are connected to applications by application links. The

general goal of the network is to allow applications to either communicate with each

other or to allow them to obtain information about the state of the network itself.

The primary means of communication within the network is a capsule. Abstractly,

a capsule contains both the data it is transporting as well as a reference to a code

object. A code object is primarily a block of instructions that is evaluated at each

node that the capsule passes through. The instructions specify what the node should

do with the capsule. These instructions could ask the node to pass the capsule

towards a destination node, modify the contents of the capsule, pass the capsule to an

application, access state within the node, or just about anything else, within certain

constraints. If a capsule references a code object which is not yet available in a node,

demand loading is used to retrieve the code object and its dependencies from some

other node. A code object is similar to a \class" in the object oriented programming

paradigm, with capsules being instantiations of the class. At each node the capsule

passes through, the accept method of the capsule's code object is evaluated. Some

code objects may even depend on other code objects by call methods in them. A

group of code objects which are designed to work together is collectively referred to

as a protocol.

Nodes may also contain some state which may be accessed by the capsules which

they are processing. In non-leaf nodes, this state is always soft state, meaning that

capsules must not rely on the persistence of data stored within the network. Nodes

may be periodically restarted, the network topology may be dynamically rearranged,

and the fact that storage space within nodes is �nite means that nodes must contin-

uously
ush old data as capsules add new data to the node. Because of this, it makes

sense to think of the mechanism for storing state within nodes as a soft state cache

rather than as a persistent store.

In an example use of PAN, an application might send a capsule across an appli-

cation link and into a node as the �rst step of sending data from that application to

another application elsewhere in the network. Once in the node, the accept method

of the code object associated with the capsule is executed by the node. This method

27

might compare the current node address with the destination address stored within

the capsule's data body. On determining that the capsule is not yet at its destination,

the capsule requests that the node send it across a network link towards its destina-

tion. This process continues at the nodes along the way until the capsule reaches its

destination. At that point, the evaluating capsule checks in the node's state whether

a local application is associated with the capsule's code object. If there is such an

application, the capsule asks the node to send the capsule across the application link

to the application, thus completing the capsule's journey and delivering the data.

4.2 Overview of a PAN node

The primary purpose of a PAN node is to process the capsules that arrive and to

manage the resources that are needed for this task. The existing implementation

of PAN is designed to be portable, e�cient, and eventually safe and secure. Nodes

process capsules by evaluating them to completion in an environment. Through

the environment, capsules' code objects are provided with access to node resources

through a fairly simple interface layer called the PAN Node Interface (or PNI). See

Figure 4-1 for a diagram of the node architecture.

By providing simple and consistent interfaces, code objects are able to run on PAN

nodes on a wide range of platforms, thus providing portability and code mobility. The

only current restriction is that the platforms must have the ability to run Intel x86

object code. As discussed later, future versions may not even have this restriction.

Memory within a PAN node is managed through a software segment interface.

This memory management system provides a consistent interface to code objects,

minimizes data copies, allows data to be shared between code objects, and provides

bu�er-management functionality similar to that found in many modern operating

systems.

When a capsule arrives at a node, an environment is created in which to evaluate it.

The environment contains information about the source of the capsule, the capsule's

status (ready to run or waiting on a code object), and about resources that the

28

Misc OS Interfaces
(timers, error logging, etc.) (routing tabe and routines for sending and

receiving IP or UDP packets)

Underlying OS Network Link Layer OS-dependent User Application Interface
(socket interface)

Network

Local User
Application

Local User
Application

Local User
Application

PAN Node

PAN Node Interface API
(provides a universal interface to a network nodes resources)

Capsule Execution Environment

Executing Capsule

Software
Segment Pool

Code Object Cache

Code Object
Loader

Utility Routines
(high-speed primitives
for checksums, memory
copies and compares,
software segment
management, etc.)

Code Object

Code Object

Code Object

Figure 4-1: The architecture of a PAN node. An API provides the code objects of

executing capsules with a consistent universal interface to the node's resources.

29

capsule is using. The latter is maintained so that the resources can be reclaimed

when the capsule �nishes its execution. In the current implementation, the node may

only evaluate one capsule at a time.1 Similar to the processing of traditional network

packets, capsules which arrive when a capsule is already being evaluated have their

execution environments queued up and are processed when the node is done with the

current capsule.

4.3 Node implementation overview

Two PAN node implementations currently exist and share most of their code. One

version runs as a user-space process on a UNIX-like operating system. Communica-

tion with applications is performed via UNIX domain sockets while messages are sent

to other nodes using UDP/IP packets. The other version is implemented as a load-

able kernel module for the Linux 2.0 operating system. The kernel implementation

communicates with applications using a special socket type and communicates with

other nodes using a protocol layered on top of IP. It should be relatively straightfor-

ward to add additional implementations (for example within a BSD-derivative such

as FreeBSD or even within WindowsNT or on top of an Exokernel). The Linux ker-

nel implementation used only existing kernel interfaces and required no changes to

or recompilation of a stock Linux 2.0.32 kernel (however, a single line of code will

need to be added in order to allow nodes acting as routers to intercept and process

capsules that are not destined to them).

Code within the PAN node implementation is either platform-independent code

that is used on all platforms, or is platform-dependent code that is only used in one

implementation. As a result, a single source tree is used for all platforms, making the

system much more maintainable.

1This is to prevent two capsules from simultaneously trying to access some shared resource in an

unsafe manner | PAN does not yet contain a mechanism to force executing code to access resources

in a synchronized manner or to force code to obey volatile resource access permissions that may

change at any time. As long as capsule execution time is bounded and nodes only have a single

processor, evaluating only one capsule at a time does not present many problems.

30

The platform-independent code has routines for managing and accessing memory

and node resources through a uni�ed software segments mechanism, for loading and

processing code objects and making them ready to run, for maintaining a cache of

code objects, for creating capsule environments, and for evaluating capsules within

their environments. The platform-dependent code contains the routines for handling

node addresses, for communicating with applications, for communicating across the

network, and for dispatching capsules as they are received.

4.4 Code object and application interfaces to nodes

Code objects, and thus capsules, are presented with a uniform interface to a node

called the PAN Node Interface or PNI. This interface presents a set of data types and

functions that code objects can use for accessing memory and other node resources.

The interface also contains routines for inserting code objects into nodes, for logging

status information, and for sending capsules across the network or to applications.

Other utility functions also provided to perform functions such as accessing the local

node time or for performing checksum or cryptographic operations. The interface

also provides a few container data types (such as a hash table) that may be useful to

code objects for storing information in a node's soft state.

A library called the PAN Application Library or PAL is presented to applications

which would like to be able to send and receive capsules. The library contains rou-

tines for connecting to nodes, inserting capsules into them, and for receiving data

from them. The library also contains the same uniform memory creation and access

routines (software segments and software segment streams) that are present within

node code and within the PNI, so as to simplify writing applications. Note that many

of the functions listed in the tables of code object interfaces presented in this chapter

are also available from within applications and are also available and used extensively

within the existing node implementation.

31

4.5 Code objects

Within the PAN system, sequences of executable instructions and associated data are

grouped together into code objects. A code object is roughly equivalent to an object

(.o) �le or an object-oriented class, containing both static data and methods (also

called \functions"). All code objects also have a unique code object name by which

they are referred to.

Each PAN node also maintains a code cache, keyed by code object name, that

contains all of the code objects that have been loaded into the node. Each code

object also contains information about its status (e.g., is it linked and ready to process

capsules). The code cache keeps track of dependencies between code objects and of

how often code objects are used. As the code cache �lls up, it may periodically evict

infrequently or unrecently used code objects from the cache.

Each code object maintains its own soft state | data that capsules can leave at

nodes for other capsules to later access. Soft state can be used for keeping track of

protocol state variables, storing capsule data for retransmission, maintaining multi-

cast routing tables, maintaining mappings from port numbers to application links, or

just about anything else that a code object may need to maintain state between cap-

sules for. As discussed later in subsection 4.7.5, the node monitors how much memory

each code object is using and periodically instructs code objects on how much data

they must free, but decisions on which data to release are left up to code objects.

All capsules begin with the name of the code object that should be used for

processing them. On arrival, the code object is looked up in the code cache and

either a request is sent to load the code object or the code object's accept method is

applied to the capsule.

In addition to an accept method that is evaluated on capsule reception, code

objects may also have init and �nalize methods that are called when the code object

is loaded and unloaded (see Table 4.1). This allows code objects to set up and clean

up their soft state as appropriate.

32

4.5.1 Code object naming

Code objects are named with a cryptographic hash (such as SHA-1[12] or MD5[23]) of

the code object's code. This allows code objects to be uniquely identi�ed. This scheme

eliminates the need for a centralized code naming system, guarantees that capsules

are executed using the code objects they asked to be executed with (assuming that

the capsule wasn't modi�ed on the wire and assuming that the node has not been

compromised), eliminates code versioning problems, and guarantees that code objects

that reference other code objects are actually referencing the code objects (of the

correct version) that they are trying to reference. In addition, capsules enter nodes

with a pre-computed hash that can be used to rapidly look up their code objects in

a hash table. The only times that hashes need to be computed is when new code

objects are received by a node and when code objects are initially being compiled.

However, this scheme does impose the restriction that the code object dependency

graph can't have any cycles (i.e., two code objects can not both name each other).

Note that all of these \guarantees" are only probabilistic and are dependent on the

strength of the cryptographic hash. Although SHA-1 is currently used, code object

names start with a description of the type of hash function used to generate them.

This would allow other hash functions, such as MD5, to be used as well.

4.5.2 Code object dependencies and symbol resolution

Code objects may also depend on other code objects, allowing a code object to call

functions or access variables in another code object on which it depends. This en-

courages modular programming and code reuse.

When code objects are loaded into a node, the node �rst waits for all dependencies

to also be loaded. Once this happens, the code object is linked into the node and

all unresolved symbols (i.e., references to functions and variables) are resolved. Each

code object has a symbol table containing all of the symbols that it exports. An

unresolved symbol is �rst looked for in all of a code object's dependencies. The �rst

matching symbol found there is used. If the symbol isn't in any of the dependencies,

33

the code object loader looks up the symbol in the node's symbol table which contains

entries for all of the functions exported by the node to capsules through the PAN

Node Interface. If any of the symbols in a code object are unresolvable, the code

object fails to load.

4.5.3 Code object distribution and loading

Code distribution is performed using a scheme discussed in [35]. When a capsule is

received by a node that doesn't recognize its code object name, the node sends a

capsule requesting the named code object back to the code object home speci�ed in

the capsule header. Along the way, nodes may have cached the code object, and if so

they reply with the cached code object. If none of them have cached the code object,

the node that originated the capsule replies. If the needed code object doesn't arrive

within a reasonable amount of time, the capsule is dropped. Once a code object and

its dependencies are loaded and linked, any capsules waiting on it are executed.

In order to provide maximum
exibility with the minimum number of di�erent

mechanisms, code object demand loading is done within the PAN system by a dy-

namicload code object that is available at all nodes. The PNI provides functions for

both loading a code object from a software segment into a node and for retrieving

a software segment containing a code object. These mechanisms are also used by

the insertco code object to enable applications to load new code objects into nodes.

Because there is nothing magic or special about the dynamicload and insertco code

objects, it is possible to write code objects that do things like preparing the way for

a capsule by traversing a network path and preloading a code object into all of the

nodes along the way.

If a code object fails to load and link due to a problem such as unresolved symbols

or an invalid format, the code object header remains in the code cache but has its

status set to indicate that it failed to load. Any future attempts to load a code object

with the same name into the node will also be rejected, as they would also fail to load.

In addition, any code objects which claim to depend on a failed code object also fail

to load, and any capsules using the code object are rejected. By caching failures, the

34

PAN Code Object Format

Magic Number

Code Object Name (24 bytes)

Code Type Code Version

Section 1 Body (Data specific to section body;
e.g., binary code, symbolic name,
or list of dependencies)

API Type API Version

of Sections Reserved

(SHA-1 or MD5 hash of remainder of code object)

(Currently "PAN\001")

Section 1 Type Section 1 Length

Section N Body (Data specific to section body;
e.g., binary code, symbolic name,
or list of dependencies)

Section N Type Section N Length

Figure 4-2: Format used to transmit code objects.

system prevents a denial of service attack from being launched by sending invalid code

objects. This is important because the linking of code objects can potentially take a

relatively long time relative to other operations that the node typically performs.

4.5.4 Current implementation of code objects

Code objects are transferred across the network as a header followed by a number

of sections (see Figure 4-2). The header contains a magic number, the name of the

code object (i.e., a cryptographic hash of everything following the name in the code

object), type and version information for both the code object and the node API used

by the code object, and the number of sections that follow the header.

Each section contains �elds for the type and length of the section. This is followed

35

Code Object (PNI) Interface to Code Objects

pniCodeobj load

loads the code object starting at the cur-

rent position of a pniStream into a node

(used by insertco and dynamicload)

pniCodeobj lookup

looks up a code object by name in a

node's code cache and returns a soft-

ware segment containing the code object

(used by dynamicload)

pniCodeobjName read
reads a code object name from a

pniStream

pniCodeobjName write
writes a code object name to a

pniStream

Interfaces Code Objects May Export To Node

accept
passed a capsule for the code object to

process

init
called by the node when the code object

is done loading into the node

finalize
called before a code object is expunged

from a node's code cache

Application Interfaces To Code Objects

panAppCodeobj load
loads a code object from a �le; searches

the PAN CODEOBJ PATH

panAppCodeobj insertIntoNode
uses insertco to insert a code object

across an application link and into a

node

panAppCodeobj getCodeobjName
returns the code object name of a code

object

Table 4.1: Code Object Interfaces

36

by the section body. Current sections include a section containing a list of the code

object's dependencies, a section containing the symbolic name of the code object for

debugging purposes, and a section containing the executable instructions.

In the current implementation of PAN, the executable instructions contained in

code objects are Intel ix86 object �les (.o �les) in either an ELF or a.out format.

The node links these together and resolves symbols using a binary object code loader

derived from the loadable module loader written by Metro Link that will be included

in XFree86 4.0. Using this system, code objects compiled on almost any Intel ix86

platform can be loaded into a node running on any type of Intel ix86 platform. In

addition, because the PAN Node Interface remains consistent across platforms and

between di�erent types of nodes (such as user-space and kernel nodes), code objects

can be used anywhere without recompilation.

Because no checks are performed on the object �les, it's possible that a malformed

code object could corrupt node state, cause the system to crash, or access \protected"

state. In order to provide safety and security, a future version of the system will use

cryptographically signed code objects and a type-safe bytecode language. By using a

bytecode language, the system will also achieve code mobility.

4.5.5 Code objects as data abstractions and guardians

Because code objects can control which symbols they export (by declaring variables

and functions as extern rather than static), it is possible for a code object to

export a narrow interface to code objects which depend on it while keeping some

state information private. Since soft state is maintained within code objects rather

than in a global and uni�ed soft state cache, it is possible for a code object to act

as a way for multiple code objects to safely share data. Code objects which perform

this task, called guardians, can maintain shared state, such as routing tables, while

requiring that all code objects use a set of abstractions to access the state. These

abstractions can perform access checks as appropriate. In the current system where

code object instructions can do anything they want, this mechanism is not terribly

e�ective. However, this mechanism should be e�ective in a future version of the

37

Capsule Prefix Codeobj Name Capsule Data Body
(SHA-1 hash of code object) (syntax and semantics determined

by capsule code)
(system type and version,
TTL, etc.)

Datalink Header
(header for underlying
networking layers)

Codeobj Home
(address of node where code
object can be found)

Capsule

Figure 4-3: A PAN capsule contains the name and home address of a code object

followed by some arbitrary data. During transmission, capsules are pre�xed with a

datalink header and a capsule pre�x.

system which uses a type-safe bytecode language.

4.6 Capsules

Capsules are the primary means of communication within PAN. At an abstract level,

they contain a reference to a code object in addition to some arbitrary data. On

arriving at a node, an environment is created for the capsule, and the capsule is

evaluated within the environment using instructions from the code object that the

capsule refers to.

4.6.1 Capsule anatomy: headers and bodies

Unlike most traditional protocols, PAN takes a very minimal approach to the basic

required contents of a capsule. In the current implementation, a capsule contains only

the name of a code object (a cryptographic hash), and the address of a node on which

the code object itself my be found. During transmission, capsules are pre�xed with

a link-level header (containing the next hop destination, the length of the capsule,

and any other link-level information). In addition, the capsule header may also be

pre�xed with the version of the PAN system it corresponds to and information used

for network resource management (such as a TTL �eld) 2. This minimal header is

followed by an arbitrary data body. See Figure 4-3 for an example.

2This is not implemented yet, but will be implemented before a distribution is released.

38

It is up to applications and code objects to decide what information goes into

the data body of the capsule. A portion of the data body may be static information

that doesn't vary during the capsule's traversal of the network. Other portions of

the data body may be modi�ed (and the capsule may even be extended in length) as

the capsule passes through nodes. Capsule code is also be responsible for generating

and verifying checksums of regions that require them, as appropriate. This approach

to giving capsules control over how to utilize a uniform data space follows from the

end-to-end argument [24] and from the extensible systems approach of providing a

minimal set of core functionality in order to give maximum
exibility to application

developers.

4.6.2 Capsule execution environments

When a capsule is received at a node, an environment is created for it. The environ-

ment provides a context in which the capsule executes. Interfaces to node resources

can use this context for access checks or for aborting the capsule in the case of prob-

lems.

Using a software segment ring (see subsection 4.7.1), the environment keeps track

of all of the resources that a capsule is using. This allows a capsule's resources to be

freed when the capsule completes.

The environment also contains a jump point that allows the execution of code to

be aborted by unwinding the stack. This is used to abort execution in the case where

an operation fails or in the case that a code object tries to do something blatantly

illegal.

In addition, the environment contains information about where a capsule is from.

This provides a secure way of being able to tell if a capsule was inserted by an

application linked to the node or if it was received over the network.

In the future, capsule environments may also contain information used for resource

policy management. For example, the environment could contain information about

a capsule's TTL value.

39

4.7 Memory management within PAN

PAN nodes, code objects, and applications all reference regions of memory containing

data through a consistent software segment interface. The networking layers of most

modern UNIX-like operating systems provide some sort of bu�er-management system

in order to e�ciently utilize memory and in order to minimize the number of times

data needs to be copied or touched (for example, mbufs within BSD[20] and sk bu�s

within Linux[3]).

Software segments provide a bu�er management system for PAN that is able to

encapsulate the bu�er management systems of di�erent operating systems, allowing

code objects to run e�ciently without knowing anything about the underlying oper-

ating system. For example, within the Linux kernel implementation, a capsule can

be received by PAN and then sent out across the network without any need to copy

the contents of the entire capsule. Additionally, no copies are needed when a capsule

places its contents into a node's soft state for future retransmission. This allows cap-

sules to be speculatively placed into a soft state cache with almost no performance

overhead.

The software segment scheme also provides a uniform resource tracking and refer-

ence counting system (e.g., as discussed later, handles to application links are a type

of software segment). This allows a node to keep track of which resources a capsule

or code object is using such that they can be unreferenced when a capsule terminates

or a code object is unloaded.

A software segment contains a default header, optional additional header �elds,

and any associated resources. By default, a software segment header (see Figure 4-

4) is �ve words long and contains a pointer to a region of data (the \contents" of

the software segment), the length of the data, the type of the software segment, a

reference count, a pointer to the next software segment in a chain, and a method

for �nalizing the software segment. The data pointer and the length must both have

properly word-aligned values. The �nalizer method is invoked when the software

segment is freed and allows the software segment to free or dereference any resources

40

Software Segment Stream

Position Pointer

Bytes Remaining

Current Software Segment

(Current position; where next read
or write will take occur)

(Bytes remaining before the end of
the current software segment)

(Swseg that the pos
pointer points into)

Software Segment Header

Data Pointer

Length

Type NumRef

Next

Finalize

Type-Specific Header

(Pointer to the data body
of the software segment)

(Length of the software
segment’s data body)

(Type of swseg: malloced,
sk_buff, container, etc.)

(Reference count
for GCing)

(Pointer to next software
segment in a chain)

(Method to invoke when reference count reaches zero;
frees up software segment and related resources)

(Data specific to type of swseg;
e.g., pointer to sk_buff header)

Figure 4-4: A software segment header and a software segment stream.

it may be using.

Software segments also allow capsules to be rapidly constructed by splicing to-

gether discontiguous regions of memory. By chaining together two or more software

segments using the \next" �eld, code accessing the software segments can view the

data regions in the software segments as being a single contiguous region of memory.

Di�erent types of software segments may add additional �elds to this header or

may point the data pointer at di�erent types of memory. Software segment types

within PAN currently include software segments containing regions of malloced or

kmalloced memory, software segments that overlay portions of some other software

segment, software segments containing mmaped �les (useful for writing applications),

software segments that keep track of references to application links, software segments

that act as containers for other software segments, and software segments that contain

kernel sk bu�s.

4.7.1 Keeping track of software segments

Software segments are currently tracked using reference counting. When the refcount

on a software segment reaches zero, its �nalizer is called, freeing the software segment

and unreferencing any software segments that it references. Although some checks

are performed to prevent the creation of cycles, it is up to application writers to never

41

Code Object (PNI) Interfaces To Software Segments

pniSwseg createByMalloc
creates a new software segment contain-

ing a block of memory of a requested size

pniSwseg overlay

creates a new software segment (or soft-

ware segment chain) that overlays a

portion of an existing software segment

chain

pniSwseg chain

chains two software segments together,

making their contents appear as a single,

contiguous region

pniSwseg getChainLength
returns the number of software segments

in a chain

pniSwseg getBytesInChain
returns the length, in bytes, of a software

segment chain

pniSwseg getSize
returns the size of a single software seg-

ment

pniSwseg ref
increases the reference count on a soft-

ware segment

pniSwseg unref

decreases the reference count on a soft-

ware segment and �nalizes the software

segment if the reference count reaches

zero

pniSwseg makePersistent

makes a software segment persistent by

referencing it and adding it to the soft-

ware segment ring of the calling code ob-

ject

pniSwseg releasePersistent

unreferences a software segment and re-

moves it from the software segment ring

of the calling code object

Table 4.2: Software Segment Interfaces

42

Code Object (PNI) Interfaces To pniStreams

pniStream init
initializes a pniStream to the speci�ed

position in a software segment chain

pniStream seekFwd
seeks a pniStream forward by a speci�ed

o�set

pniStream dup duplicates the state of a pniStream

pniStream eofP
returns whether there is still data avail-

able in a pniStream

pniStream getBytesRemaining
returns the number of bytes remaining

before the end of a pniStream

pniStream getState
returns the software segment that a

pniStream is currently accessing

pniStream copy
copies data from one pniStream to an-

other

pniStream read
copies a speci�ed amount of data from a

pniStream into a bu�er

pniStream read
copies a speci�ed amount of data from a

pniStream into a bu�er

pniStream write
copies a speci�ed amount of data from a

bu�er into a pniStream

pniStream read net uint32
reads an unsigned 32 bit value from a

pniStream in network byte order

pniStream write net uint32
writes an unsigned 32 bit value to a

pniStream in network byte order

...

similar functions exist for reading and

writing both signed and unsigned 8, 16,

and 32 bit values in network, little en-

dian, and big endian byte orders

Table 4.3: Software Segment Stream Interfaces

43

create cyclical references. Given that reference-counting is used by such widely-used

languages as Perl[32], it shouldn't place too many constraints on application-writers.

In addition, reference-counting reduces the complexity and real-time problems some-

times associated with garbage collectors. However, it may be eventually necessary to

have a garbage collector that occasionally runs and attempts to �nd memory leaks.

Capsule environments and code objects both need to be able to keep track of the

software segments that they're referencing. This is performed through a common

mechanism called a software segment ring. Each capsule environment has an asso-

ciated software segment ring that keeps track of the software segment that capsule

is referencing. Software segment rings are implemented as regions of memory that

contain a combined list of software segments and a list of free slots in the ring. As

software segments are added, the ring grows in size if there are no available slots.

When a capsule �nishes execution or a code object is removed from the code cache,

they can easily unreference all of their associated software segments by destroying the

software segment ring.

4.7.2 Why not just use sandboxing?

Some people have suggested that PAN could simply use sandboxing[31] (rewriting

code to prevent memory accesses outside of a con�ned region) or create a single

protected region of memory for each capsule to execute in. This has the problem that

many PAN capsules need to share data (by either placing their contents into a node's

soft state or by retrieving data from the soft state of a node). The number of copies

this would require could place a substantial performance burden on the system. In

addition, being able to perform sandboxing in the �rst place might either require

substantial changes to an operating system's existing networking and bu�ering code,

or might require all capsules to be copied into the protected memory region prior to

evaluation due to memory alignment constraints.

44

4.7.3 Software segment streams

Because dealing with accesses to the discontiguous regions of memory encapsulated

by software segments can get tedious, PAN provides software segment streams, also

called panStreams, to simplify the common tasks of reading and writing sequential

items to and from a chain of software segments. A panStream contains a pointer into

a software segment's data region, a count of the number of bytes remaining in the

data region, and a pointer to the current software segment (see Figure 4-4). Reading

from or writing to a panStream results in the advancement of the stream position.

Provided routines also perform bounds checking in order to know when to advance

to the next software segment in a chain and in order to prevent illegally accessing

memory. Because bounds checking is already done, adding a bytecode language with

panStream-like primitives could only increase performance by allowing optimizations

to be done. See Table 4.3 for a listing of the panStream interfaces used throughout

PAN.

Functionality currently provided to code objects, nodes, and applications include

routines for seeking forward in streams, copying data between streams, reading and

writing arrays of bytes, performing checksum and cryptographic checksums on regions

of memory, and reading and writing multi-byte data types in a platform-independent

fashion (performing byte-swaps and conversions as needed). Routines are also pro-

vided for reading and writing commonly used data types, such as node addresses and

code object names.

4.7.4 panSerGen: a serializer generator

Because writing code to serialize data structures into and out of panStreams can

be tedious and error-prone, the PAN system provides panSerGen, a serializer code

generator. Written in object-oriented Perl 5[32] and using a Perl version of Berkeley

YACC, the serializer generator is a compiler that takes a �le containing the description

of a structure and outputs one or more �les containing C structures and C code to read

the structure contents from a panStream (performing any byte-swaps needed) or to

45

write the structure to a panStream (again performing any necessary byte-swapping).

The description read by panSerGen can contain information about the ways in which

various �elds are accessed by various users of the generated code. For example, the

same description �le could be used to generate code for both an application and a

code object. If the code object doesn't need to change (or even look at) some of the

�elds in the structure, panSerGen can generate code that skips over and does not

bother to read in portions of the stream.

Although not yet implemented, the serializer generator could also perform some

optimizations. For example, it could inline many of the panStream routines and

eliminate bounds checks in the common case of reading from or writing to a single

contiguous region or memory. It might also be possible to make panSerGen generate

code to interleave message processing steps (such as performing checksums) along

with the reads or writes[33].

4.7.5 Soft state, persistent software segments, and containers

It is often desirable or neccessary for protocols to keep a degree of state within nodes

in the network. Although this state is soft state (meaning that it may disappear

at any time as the network is recon�gured, as nodes fail, or as nodes expunge re-

sources), it can still be very useful for maintaining protocol variables, capsule data

for retransmission, multicast subscription tables, or just about anything else.

All soft state stored in a node is associated with a code object. Code objects

can store small amounts of state (such as protocol variables) in static variables that

persist for the code object's lifetime in the node.

In order to retain software segments beyond the lifetime of a capsule environment,

a code object can ask the node to make a software segment persistent. This places

the software segment in the code object's software segment ring. The code object can

then safely place a pointer to the software segment in a static variable.

To easily allow data structures and collections of software segments to be stored in

a node, PAN provides container software segments. A container software segment is a

software segment that does not contain data, but rather contains references to other

46

Code Object (PNI) Interface to Hash Table Containers

pniHashTab create

creates a new container software seg-

ment as a hash table with a speci�ed size

and hashing function

pniHashTab lookup
looks up a key in a hash table and re-

turns the associated value

pniHashTab remove
looks up a key in a hash table and re-

moves the associated value

pniHashTab insert

associates a key with a value in a hash

table, replacing any previously existing

mapping

Table 4.4: Hash Table Software Segment Container Interfaces

software segments. The data portion can be laid out as a stack, a heap, a hash table,

or as anything else that may be appropriate. Each container software segment has

pointers to methods for getting the size of all the software segments in the container,

�nalizing the contents of the container, and for releasing a certain amount of data

from the container.

The only type of container currently provided is a hash table (see Table 4.4 for

a list of interfaces). This is used by the portmapper (described in subsection 4.8.3)

and by applications wishing to associate data with separate
ows of capsules. In the

future, other types of container software segments will be written to simplify the job

of writing some types of code objects. However, there's nothing to keep a code object

from implementing its own types of container software segments.

Although not yet fully implemented, nodes will eventually keep track of the

amount of data stored within the persistent software segments of code objects. Code

objects will be able to notify the node of their memory requirements: how much they

minimally need to operate, how much they would ideally have access to, and the

most they'd ever need. When the node becomes tight on memory, it will compare

the amount of memory being used by code objects to the amount of memory they

had requested. The node could then ask some code objects to free data from their

47

persistent state. Code objects would then be able to select which data to free from

their persistent state in a manner that was appropriate to the type of data being

stored. Code objects that did not free up enough persistent state would be punished

by the node. This mechanism is similar to those used in the Exokernel[11]. In both

systems, the desire is the same: to give applications or code objects as much control

as possible over the management of their own resources.

4.7.6 Unsolved problem: safe sharing in a multi-threaded

environment

One problem that has not yet been solved in PAN is how to safely share data in a

multi-threaded environment. The \easy" solution would be to always copy data and

to never share anything. Unfortunately, this could have a negative and substantial

performance impact. There are two types of sharing that may happen within PAN:

�rst, sharing between multiple capsules running simultaneously; second, sharing of

data that has been sent out once already, and is being processed by the underlying

network layer, but which is also still being used by the sender or by other capsules.

To get around the �rst problem, PAN is never within more than one capsule

environment at a time and always processes capsules to completion (i.e., the node

does not switch between multiple running capsules as this situation never arises).

This may not be a good permanent solution, however, as it means that the system

can't take advantage of multiprocessors.

It may turn out that this is one of the harder challenges to overcome in the

creation of a safe and secure active network node. In order to ensure safe sharing, a

safe language system would also need to enforce synchronized access to data, prevent

race conditions, and prevent deadlock. It may not even be possible to do all of these.

As a result, it may be necessary to instead develop schemes for limiting the problems

resulting from code that doesn't correctly share data.

To get around the second problem, PAN relies on the authors of code objects

to respect the invariant that once a capsule has been submitted to the node for

48

transmission across a node link, it should both be treated as read-only and should

never be submitted to the node again for transmission across a node link. Although

not yet been implemented, it should be possible to remove the second restriction by

keeping track of when a software segment is being processed by the network layer and

making a copy of it before transmission when this is in fact the case.

4.8 Application links

At the leaf nodes of a PAN network, applications use application links (abbreviated

as applinks) to communicate with the nodes that they are connected to. Applications

can use applinks to insert capsules into nodes for evaluation. Capsules can also use

applinks to send data back to applications.

4.8.1 Application interface to application links

Applications link against a PAN Application Library (PAL) that provides routines for

connecting to a node and for communicating with the node. In addition to providing

routines that are common throughout PAN (such as software segment routines), the

library provides the routines listed in Table 4.5.

This very minimal set of routines may be additionally supplemented in the future

by utility libraries that provide demultiplexing services. In addition, utility routines

for use by applications are provided with most code objects to make their use easier.

4.8.2 Code object interface to application links

The PAN Node Interface provides a minimal set of routines to code objects to allow

them to send data to applications. The pniAppLink getSender routine refers a han-

dle to a pniAppLink, the pniAppLink deliverData routine allows a capsule to deliver

data to an application using a pniAppLink handle, and the pniAppLink isConnected

function indicates whether an application is still connected to the other side of a

pniAppLink. See Table 4.5 for a summary of these interfaces.

49

Application Interface to Application Links

panNodeLink create
connects to node and returns a handle

for communicating with it

panNodeLink send
inserts a capsule into a node for evalua-

tion

panNodeLink retr
retrieves an entire capsule from a node,

optionally blocking until one is received

panNodeLink read
reads data from a node into a panStream

panNodeLink getLocalAddr gets the network address of the node

panNodeLink getSockFD
returns a UNIX �le descriptor for calling

select on

panAppCodeobj load
bootstraps code loading by using

insertco to insert a code object into a

node

Code Object (PNI) Interface to Application Links

pniAppLink getSender
returns a handle to the pniAppLink that

inserted the capsule

pniAppLink isConnected
returns whether a pniAppLink is still

valid

pniAppLink deliverData

passes data of a speci�ed length from

a panStream to an application across a

pniAppLink

Table 4.5: Application Link Interfaces

50

A pniAppLink is a reference-only software segment that provides an unforgeable

handle allowing a code object to communicate with a node. The only way for a code

object to get ahold of a pniAppLink is to be running from a capsule that was inserted

into the node through the applink. By storing the pniAppLink handle into the code

object's state, the code object can use the handle later on to deliver capsules to the

application. Because pniAppLinks can't be forged and because code objects can have

control over who can access the handle, applications can have control over which code

objects are able to send data to them.

4.8.3 Using a portmapper ...

Although the provided applink interface to code objects is minimal and
exible, it

doesn't directly provide the same port multiplexing functionality that ANTS pro-

vides or that UNIX programmers are used to using (this is because there may be

cases where port multiplexing is not needed and would just get in the way). To pro-

vide this functionality, a simple portmapper code object is provided with the PAN

distribution along with a library of utility functions for applications (see Table 4.6 for

a listing of the interfaces to the portmapper). There's nothing special about this par-

ticular portmapper | anyone could easily implement their own code object that did

something similar but which provided semantics more appropriate to some particular

application.

The provided portmapper code object acts as a guardian for a mapping of integer

port numbers to pniAppLinks. An application can send a portmapper capsule into

the node with a \bind" request. The capsule would then create a binding from a port

number to the application that inserted it and would then return the port number to

the application. An application wishing to act as a server could just request to listen

on a particular globally-known port number.

Capsules arriving at a node with data to deliver to an application at the node

would use code objects that depended on portmapper and would pass a port number to

function within the portmapper, which would then return the pniAppLink associated

with that port number.

51

Application Interface to the Portmapper Code Object

palPortmap bind

inserts a capsule into the node to create

a mapping between an application link

and a speci�c integer port numer or to

the next free port number

palPortmap release

inserts a capsule into the node to release

the binding between an application link

and a port number

Code Object Interface to the Portmapper Code Object

pcoPortmap bindPortnumToApplink
creates a mapping from a port number

to the pniAppLink that inserted the cur-

rently running capsule

pcoPortmap mapPortnumToApplink
takes a port number and returns the cor-

responding pniAppLink

pcoPortmap deletePortnumMapping deletes a mapping between a port num-

ber and a pniAppLink

Table 4.6: Portmapper Interfaces

52

4.8.4 ... or not using a portmapper

Note that protocols might not always use a portmapper. For example, a service like

DNS might never have more than one server application per node. When the server

starts up, it could send a capsule into the node to bind a pniAppLink within a code

object used by the protocol to deliver data to the application. Rather than having to

do any sort of port demultiplexing on capsule reception, the code object at the server

node would immediately have a pniAppLink handle available to which to deliver data.

An advantage to using pniAppLinks this way is that it not only controls who can send

data to an application, but it also reduces name space con
icts by implicitly using

the code object's name as a port number for demultiplexing packets.

4.8.5 Implementation of application links

The UNIX user-space node and the Linux 2.0 kernel node implementations di�er in

how they implement application links, although the interfaces are the same to both of

them. Abstraction layers hide the implementations from both applications and code

objects.

Applications communicate to user-space nodes across UNIX domain stream

sockets[26]. Capsules are sent as a word indicating the length of the capsule fol-

lowed by the capsule data. The writev call is used for sending chains of software

segments, allowing the fragmented data to be sent with a single system call and to

only be copied once when the kernel reassembles it into a bu�er.

Applications communicate to Linux 2.0 kernel nodes using the new AF PAN socket

family. The application library connects to nodes by just using the socket function

call. This returns a �le handle that can be used just like any other �le handle (e.g.,

it can be passed to select). The getsockname call is even used on it to �nd out the

network address of the node. Capsules are inserted into the node using the writev

system call and data is read back by using read and ioctl(FIONREAD). The kernel

side of applinks uses code derived from the implementation of UNIX domain sockets

that's present in the Linux 2.0 kernel. When the node kernel module is inserted into

53

the Linux kernel, it automatically registers the new socket protocol family. Because

the kernel implementation has control over what happens on both sides of the system

call, it was actually almost easier to implement it in order to get the right semantics.3

4.9 Network links

Nodes within a PAN network communicate with each other by sending capsules across

stateless (and possibly unreliable) network links (sometimes abbreviated as netlinks).

All nodes within a PAN network are identi�ed by unique node addresses. Di�erent

underlying implementations are used for the network links, depending on whether

the network is made up of user space nodes (which communicate by sending UDP

packets to each other) or of kernel nodes (which communicate by using a special PAN

protocol layered on top of IP.

4.9.1 Node addresses

Node addresses have di�erent formats depending on the underlying type of network

being used. However, all addresses within PAN are 128 bits (16 bytes) long. This is

done to make it easy to integrate IPv6 into the system, primarily by ensuring that

code is written that treats network addresses as blocks of memory rather than as

single words.

For user space nodes, the node address contains the 32-bit IP address of the host

on which the node resides, followed by the 16-bit port number of the UDP socket at

which the node is listening for capsules. Both numbers are in network byte order and

the rest of the address is padded with zeros. By including a port number in the node

address, multiple user space nodes are able to run simultaneously on the same host.

This allows entire networks to be simulated on only one machine (although using more

3Writing this code made me realize that quite a bit of the code in the Linux kernel is fairly

readable. If the man pages are unclear about the semantics of a system call, it may just be easier

to read the kernel source in order to �gure out what's going wrong. Since then I've applied this

approach and have suggested it to a few others and have discovered that it can actually be easier

and faster to look at the kernel source than to write test cases!

54

Code Object (PNI) Interface to Network Links

pniNetwork sendCapsule
sends a capsule of a speci�ed size to a

single destination

pniNodeAddr read
reads a pniNodeAddr from a pniStream

pniNodeAddr write writes a pniNodeAddr to a pniStream

pniNodeAddr compare
compares two pniNodeAddrs to see if

they're equal

pniNodeAddr getLocalAddr returns the address of the current node

pniNodeAddr dup duplicates a node address

Table 4.7: Network Link and Node Address Interfaces

works as well). This allows code objects and applications to be easily prototyped.

However, it does not lend itself well to being used for measuring performance.

For kernel space nodes, the node address contains just the 32-bit IP address (in

network byte order) of the host on which the node resides. In machines with multiple

interfaces with di�erent addresses, only one of them is used as the node's address.

4.9.2 Code object interface to network links

When capsules are received by a node, either across a network link or an applica-

tion link, the accept method of the capsule's code object is called. It is passed a

panStream pointing to the start of the capsule along with an integer indicating the

length of the capsule.

To send a capsule out towards another node, a code object calls the

pniNetwork sendCapsule function and passes it the destination node address, a

panStream pointing to the start of the capsule, and an integer indicating the length

of the capsule (see Table 4.7). The capsule is then sent out towards the destination

node address. If there is a route to the destination address, the capsule travels there

and is evaluated when it arrives. If any of the routers located along the route support

55

PAN, they also evaluate the capsule. If the node has a routing table listing active

nodes, the node may decide to send the capsule to some active node that is along the

route (but possibly one or two hops o� of it) rather than sending the capsule directly

to the destination. Although not yet fully implemented, this will allow active nodes

to be placed near high-performance internetwork routers so as to be able to take

advantage of active protocols (such as data caching or multicast) without requiring

that high-performance internetwork routers know about or be able to specially handle

PAN capsules.

There is currently no support for multicasting or broadcasting capsules to multiple

nodes, although this hopefully will be added to a later version.

4.9.3 Implementation of network links

The UNIX user space implementation uses UDP sockets to send capsules between

nodes. Each node listens at a particular port, sends capsules with sendmsg, and

receives capsules with recvmsg. By using iovecs with sendmsg, a chain of software

segments can be sent, avoiding any need to copy the data to a separate bu�er before

passing it into kernel space. Using recvmsg allows capsules to be received into a

chain of software segments, allowing a minimum amount of memory to be used to

hold the capsule without needing any a priori knowledge of the size of the capsule

that is being received. Each node con�gures itself and builds up a routing table from

a con�guration �le written in the Scheme[6] programming language and parsed using

the SIOD embeddable Scheme interpreter. The routing table is inserted from the

con�guration �le into the node with a single Scheme function call. Scheme is used so

that reasonable sized test-beds of nodes can be con�gured using a single con�guration

�le which contains a description of the network topology along with some Scheme code

to generate routing tables for each node.

The Linux 2.0 kernel implementation sends capsules between nodes using a special

PAN protocol that is layered on top of IP (i.e., at the same layer as TCP, UDP, and

IPIP encapsulation for IP tunneling). This allows IP to be used to transport packets

between nodes without either interfering with other IP-based protocols and without

56

having the additional overhead that would be imposed by having an existing protocol,

such as UDP, encapsulate capsules. The Linux kernel also provides a clean interface

to this level of the networking stack, allowing new IP protocols to be dynamically

registered and unregistered.

Capsules are received by handling IP packets received using this new protocol

type. PAN creates a sk bu� software segment that encapsulates the capsule data

of the packet's sk bu�, provided by the kernel's networking layer, and passes this

software segment into the capsule's code object. If this same software segment is

passed back to the node to be transmitted somewhere else (as happens in the common

case of capsules just looking at their contents and sending themselves on towards

their destinations), the node uses the sk bu� already contained within the software

segment for retransmission. The software segment is only copied into a new sk bu�

if the software segment is a new one that was allocated by the capsule, or if the

sk bu� is in the process of being transmitted by the kernel's networking layer. This

minimizes the number of times that capsule data needs to be copied.

In the common case of a capsule that �ts within an unfragmented IP packet and

which only forwards itself on, the data in the capsule is never copied between being

received by the network interface and being sent back out through another network

interface. For some network drivers, untouched capsule data may never even be

brought into the CPU or any caches.

Nodes send capsules to the network by appending an appropriate IP header to

them before calling the ip forward function exported by the kernel. Note that PAN

nodes let the IP layer deal with fragmenting and unfragmenting packets that are

larger than the maximum size that the underlying network interface can handle. The

maximum capsule size is constrained by the maximum size of an IP packet, however.

At some point it may make sense to allow code objects to query the node as to the

largest size capsule that may be sent without fragmentation occurring, allowing them

to perform fragmentation when appropriate in order to improve performance | PAN

capsules need to be reassembled and fragmented at each node they travel though,

while IP routers don't typically do this unless they need to in order to apply �rewall

57

rules.

4.10 Miscellaneous utility functions

In addition to all of the other interfaces that nodes provide to code objects, nodes also

export a number of miscellaneous utility functions. These interfaces include routines

for logging error messages, data structures for a few software segment container types,

and routines for obtaining and working with time stamps. The time stamping routines

are particularly useful for writing benchmarks as they allow for much more accurate

calculations of the times at which capsules depart and arrive at nodes. See Table 4.8

for a listing of some of the provided utility functions.

4.11 Di�erences between PAN and ANTS

In order to make it easier to port ANTS applications to PAN, the two systems use the

same capsule-oriented programming paradigm and have similar interfaces. However,

a number of ANTS primitives do not exist in PAN. Instead, lower-level primitives

that are more
exible are provided. In all of these cases, the ANTS primitive can be

implemented in terms of the comparable PAN primitive. This follows from the PAN

design philosophy of providing the maximum
exibility to code objects in order to

allow them to do exactly what they need to do.

There are four primary di�erences between the interfaces provided by PAN and

ANTS: PAN has a more
exible system for assembling protocols from collections of

code objects, has fewer required elements in the header of capsules, does not have a

global soft state cache, and provides a simpler and more
exible interface for allowing

capsules to deliver data to applications.

4.11.1 Protocols as collections of code objects

In ANTS, a protocol is a collection of classes that are bound together, and access

privileges are granted to entire protocols rather than to individual classes. This

58

Code Object (PNI) Interface to Time Stamps

pniTimestamp getCurrent
gets the current time and stores it into

a pniTimestamp

pniTimestamp getResolution
returns the approximate resolution of

the node's time stamping functionality

pniTimestamp read
reads a pniTimestamp from a pniStream

pniTimestamp write writes a pniTimestamp to a pniStream

pniTimestamp compare

compares two pniTimestamps and re-

turns whether one is greater than the

other or if they are equal

pniTimestamp subtract

calculates the di�erence between two

pniTimestamps and stores the result

into a third pniTimestamp

pniTimestamp dup duplicates a pniTimestamp

Code Object (PNI) Interface to Logging Functions

pniLog debug logs a string at the debug priority level

pniLog msg
logs a string at the message priority level

pniLog warn logs a string at the error priority level

pniLog error
logs a string at the warning priority level

Table 4.8: Miscellaneous Utility Functions

59

arti�cial abstraction limits what can be done with the system by making it di�cult

for multiple protocols to share data or otherwise interact.

Within PAN, protocols have no tightly de�ned boundaries. A protocol is simply

a collection of code objects that chose to work together. Because access to soft state

is on the granularity of code objects rather than protocols, two protocols can share

data by simply sharing a code object in common to act as a guardian for the shared

state.

Although not yet implemented, a code object will eventually be able to have

control over which other code objects can depend on it. This will be implemented

by providing a mechanism where by code objects can be signed using the secret key

of a public key pair. By distributing a list of public keys along with a code object,

the code object will be able to verify that the signature on some other code object

matches one of the public keys before along the other code object to depend on it, and

therefore access symbols from it. Using this mechanism, it will be possible to create

cryptographically sealed protocols and groups of protocols that can be dynamically

extended and that allow for secure data sharing between protocols.

4.11.2 Minimal requirements on capsule contents

ANTS capsule headers contain information such as the original source of the capsule

and the destination of the capsule by default. Putting an original source �eld in

the header may be useful for debugging, but it isn't terribly useful for implementing

security policies.4

PAN uses a code object home address in capsules rather than using the capsule's

source address as the home address. In the simple case where they are the same, the

4It is hard to guarantee that the source address has not been spoofed. If we had guarantees

about the source address, we might be able to use it for access control. In order to provide such

guarantees, the source node would have to sign the capsule with its public key. This would have the

side e�ect that capsules either could not modify their contents or that each intermediate node would

have to verify the signature on reception and then resign the modi�ed packet on dispatch. There

may also be other possible schemes to provide partial security, such as having the source node only

sign a timestamp in the header. The danger with the latter approach is that it could lead to a false

sense of security.

60

same functionality is provided. However, using a code object home address allows

code objects to be retrieved from a location other than the originator of the capsule.

For example, this may be desirable in cases where the capsule originator is separated

from the rest of the network by a very low-bandwidth link.

In addition, PAN does not require that a destination address be contained in

capsule headers. This is because some protocols, such as those for multicast, may not

involve the concept of a single destination.

4.11.3 No uni�ed soft state cache

Unlike ANTS[35], PAN has no single, uni�ed soft state cache. This is because of

the realization that di�erent code objects have very di�erent needs and requirements

for how they store data within a node's soft state. Some code objects may want

to store capsules in a cache for retransmission, others may just need to keep a few

protocol state variables around, others may want to keep a list of capsule fragments,

and others may want to keep lists of multicast subscribers. The requirements for

how these objects are keyed in the cache, how long items stay in the cache, and how

objects are selected for removal may vary greatly between di�erent code objects (or

even within a single code object). In order to keep PAN as
exible as possible, the

system allows code objects to make software segments \persistent," meaning that

they become associated with a code object so that they outlive the lifetime of a single

capsule (i.e., they are placed into the code object's software segment ring). For very

small amounts of state global to a code object, the code object can even store the

data in a static (or global) variable. In fact, code objects usually store the pointers

to persistent container software segments in static variables. Note that \persistent"

state is still soft state as code objects are periodically forced to free up some of their

memory usage.

To provide functionality similar to the soft state cache provided by ANTS, PAN

provides a type of container software segment that acts as a hash table. However, code

objects can have control over the hashing and cache replacement functions utilized

by this container.

61

4.11.4 More
exible interface to application links

ANTS demultiplexes data destined for applications using integer port numbers in a

fashion similar to that employed by TCP and UDP sockets. As described in Sec-

tion 4.8, PAN provides the much simpler interface of requiring that handles to appli-

cation links be used by code objects for passing data to applications. The only way

for a code object to obtain a handle to an application link is through a capsule that

was inserted into the node by the application. This allows applications to maintain

tight control over which protocols can deliver data to them. It also allows protocols

to use whatever capsule demultiplexing scheme is most appropriate to them.

To provide compatability with ANTS, a portmapper code object is provided along

with a library of functions for use by applications.

62

Chapter 5

Experimental Procedures and

Results

The performance of active network nodes, both in throughput and latency, is likely

to have a signi�cant impact on the practicality of active networks. Ideally, an active

network node should be able to handle the base case of processing a capsule that

simply asks to be forwarded to a destination with as little overhead as possible when

compared to a traditional network node that simply routes packets on towards a

destination.

This chapter analyzes the performance of two implementations of a PAN node:

a user-space node that encapsulates capsules within UDP packets and a loadable

Linux kernel module that encapsulates capsules within IP packets. The performance

characteristics of both nodes are measured and are compared against the performance

characteristics of a Linux workstation acting as a router. Measurements are taken of

both the latency incurred by the active networking system and of the total throughput

of the system.

These experiments clearly demonstrate that avoiding data copies, using compiled

code objects, and implementing the node within the kernel are all critical to achieving

high performance.

63

5.1 Experimental setup

All experiments were performed on a testbed network consisting of three Linux work-

stations connected together with dedicated 100 Mbps Fast Ethernet network links.

The testbed consists of two end nodes, called sender and receiver, that may either be

connected together either directly or through a third node called middle, depending

on the experiment being performed.

Each machine contains a 200MHz Intel PentiumPro processor, an ISA/PCI moth-

erboard with a 440FX chipset, and 64MB of RAM. The sender and receiver nodes

each contain a single DEC DS21140 Tulip-based SMC EtherPower 10/100 network

card running in 100 Mbs half-duplex mode. The middle node contains two of these

Tulip network cards. In addition, each machine has a PCI video card, PCI NCR SCSI

controller, and an ISA SMC EtherEZ 10 Mbps network card (used for accessing the

machine from remote). The machines are connected together using either of two Intel

Express 100BaseTX hubs.

Each workstation is running the RedHat 4.2 distribution of Linux using an unmod-

i�ed Linux 2.0.32 kernel from the kernel-2.0.32-1 package distributed by RedHat.

Version 0.79 of Donald Becker's tulip driver is used with the Fast Ethernet cards.

Depending on its role in the experiment being performed, each node runs either

the PAN Linux kernel implementation, the user-space PAN implementation, a simple

UDP packet forwarder written in C, or is just using Linux's IP forwarding function-

ality. In all experiments, a client application runs on the sender node and sends

capsules towards the receiver node which evaluates the capsules and optionally sends

back a response depending on the experiment being performed.

Seven di�erent testbed con�gurations are used during the tests of PAN (see Fig-

ure 5-1). In the kernel/active con�guration, all three nodes are running the PAN

kernel implementation, and capsules sent between the sender and receiver are pro-

cessed by the middle node. In the kernel/passive con�guration, the sender and receiver

nodes are running the PAN kernel implementation but the middle node is just using

the Linux kernel's IP forwarding to forward packets between the sender and receiver.

64

user / cforw
Test App

100 Mbps
ENet Hub

100 Mbps
ENet Hub

sender middle receiver

Linux Kernel
Linux Kernel

Linux Kernel

PAN
User Node

Simple C UDP Packet
Fowarder

PAN
User Node

user / passive
Test App

100 Mbps
ENet Hub

100 Mbps
ENet HubLinux Kernel

sender middle receiver

Linux Kernel
Linux Kernel

PAN
User Node

PAN
User Node

kernel / none
Test App

PAN Kernel Node PAN Kernel Node100 Mbps
ENet Hub

sender receiver

kernel / passive
Test App

PAN Kernel Node PAN Kernel Node100 Mbps
ENet Hub

100 Mbps
ENet HubLinux Kernel

sender middle receiver

kernel / active
Test App

PAN Kernel Node PAN Kernel Node PAN Kernel Node100 Mbps
ENet Hub

100 Mbps
ENet Hub

sender middle receiver

sender receiver

user / none
Test App

100 Mbps
ENet Hub

Test App

Linux Kernel

PAN
User Node

Linux Kernel

PAN
User Node

sender middle receiver

user / active
Test App

100 Mbps
ENet Hub

100 Mbps
ENet Hub

Linux Kernel
Linux Kernel

Linux Kernel

PAN
User Node

PAN
User Node

PAN
User Node

Figure 5-1: Seven di�erent testbed network con�gurations are used for measuring the

performance of the user-space and kernel-space PAN implementation.

65

The kernel/none con�guration does not contain a middle node and directly connects

the sender and receiver node, both of which are running the PAN kernel implementa-

tion. The user/active, user/passive, and user/none con�gurations are identical to the

corresponding kernel node con�gurations, but use the user-space PAN implementa-

tion rather than the kernel implementation. Finally, the user/cforw con�guration has

user-space PAN nodes running on the sender and receiver and has a simple user-space

UDP forwarder written in C running on the middle node. In this con�guration, all

tra�c between the sender and the receiver pass through the UDP forwarder. Com-

paring results between the di�erent con�gurations provides insight into where various

overheads are coming from.

The UDP forwarder uses the same system calls as the user-space PAN implemen-

tation, but doesn't do any active processing. This con�guration gives insight into how

much of the cost of user-space PAN is due to active processing as opposed to how

much of the cost is due to the overhead of transferring data to and from user-space.

The PAN kernel implementation uses most of the same code path as Linux IP

forwarding, but adds hooks in to perform active processing of the capsule, allowing

it to take actions other than just forwarding itself on towards a destination. As a

result, the base case performance of PAN will always have slightly lower performance

than standard IP forwarding.

In addition to the seven basic con�gurations, latency experiments are also run in

a kernel/activecopy con�guration that is identical to the kernel/active con�guration

except for using a slightly modi�ed PAN kernel node for the middle node only. Nor-

mally, PAN doesn't need to copy or touch the contents of capsules, except for capsule

headers. The middle node used in the kernel/activecopy con�guration copies all data

before sending it in order to see how much is actually gained by PAN's memory

management system.

To see how packet size e�ects performance, all experiments are run across a range

of packet sizes:

66

Packet Sizes Used In Experiments

128 bytes 1504 bytes

256 bytes 2048 bytes

512 bytes 4096 bytes

1024 bytes 8192 bytes

1500 bytes

In experiments with the kernel implementation of PAN, these sizes include the 20

byte IP header. In experiments with the user-space implementation, these sizes in-

clude both the 20 byte IP header and the 8 byte UDP header. This is done to avoid

overly penalizing the user-space implementation for having a larger header size. Be-

cause 1500 bytes is the MTU of Ethernet, the kernel's IP layer fragments and later

reassembles any packets larger than 1500 bytes. Measurements are taken with both

1500 and 1504 byte packets in order to better see the discontinuity caused by packet

fragmentation. Note that the Linux kernel needs to copy packet data in order to

fragment packets.

The current implementation of PAN is essentially untuned. It should be possible to

achieve substantial performance gains by analyzing and reducing existing performance

bottlenecks.

The current implementation of PAN doesn't provide safety guarantees or interop-

erability across di�erent types of processors. However, the current PAN implemen-

tation performs many of run-time bounds checks that a bytecode system would need

to perform. As a result, the performance of a safe and interoperable node that uses a

load-time compiled bytecode shouldn't be signi�cantly worse than the performance of

the existing system. The computation involved in loading code objects and compiling

bytecode only happens the �rst time that a node sees a new type of capsule. As a

result, this computation isn't likely to be in the critical path.

67

5.2 Measuring latency

Latency is measured by using an active ping application which was written explicitly

for this purpose. The active ping application behaves similarly to the UNIX ping

utility that uses ICMP ECHO responses to measure round-trip times. Active ping

works by sending a ping capsule from a sender to a receiver. On reaching the receiver,

the ping capsule sets a state variable indicating that it has reached its destination and

then sends itself back towards the source. When it reaches the source, the capsule

uses the portmapper code object to deliver the ping response back to the application.

In order to obtain more accurate measurements with lower variances, the ping capsule

time stamps itself within the sender node and then calculates the round trip time on

arriving back at the sender node. Each ping capsule consists of a 100 byte header

followed by a data body that �lls up the rest of the packet.

In addition to being a benchmark, this active ping application demonstrates how

an active network can provide functionality that is special-cased in traditional net-

works (ICMP ECHO responses) without requiring any special support in the network

infrastructure.

For each testbed con�guration and packet size, 10,000 ping capsules are sent and

their round trip times are averaged. These experiments are repeated three times

each, the median of the three trials is taken and used. Before any experiments are

performed, the code objects needed by ping are loaded into all of the network nodes.

5.2.1 Latency results

Figure 5-2 shows the end-to-end round trip times of ping capsules under di�erent

network con�gurations. The discontinuity between 1500 and 1504 bytes is due to

packets being fragmented.

In Figure 5-3, the per-capsule latency incurred by the middle forwarding node is

shown. This latency is calculated by halving the di�erence between the round trip

times for the none con�gurations and the corresponding active and passive con�gura-

tions. With 128 byte packets, just passive IP forwarding takes about 50 microseconds.

68

100 200 500 1000 2000 5000 10000
Packet Size (in bytes, including IP/UDP header)

200

500

1000

2000

5000

R
ou

nd
 T

rip
 T

im
e

(in
 m

ic
ro

se
co

nd
s)

Ping Round Trip Times

 kernel/active

 kernel/passive

 kernel/none

 user/active

 user/passive

 user/none

 user/cforw

Figure 5-2: End-to-end ping round trip times. Both axes use a logarithmic scale.

69

100 200 500 1000 2000 5000 10000
Packet Size (in bytes, including IP/UDP header)

0

200

400

600

800

1000

1200

F
or

w
ar

di
ng

 N
od

e
La

te
nc

y
(in

 m
ic

ro
se

co
nd

s)

Forwarding Node Latency

 kernel/active

 kernel/passive

 user/active

 user/passive

 user/cforw

Figure 5-3: Latency per capsule incurred by forwarding node. The horizontal axis

uses a logarithmic scale. The di�erence between kernel/passive and user/passive is

due to noise in the measurements since both are measuring the same quantity.

70

100 200 500 1000 2000 5000 10000
Packet Size (in bytes, including IP/UDP header)

0

50

100

150

200

250

300

P
ro

ce
ss

in
g

O
ve

rh
ea

d
(in

 m
ic

ro
se

co
nd

s)

Processing Time (in microseconds)

 kern: active vs passive

 user: active vs passive

 user: active vs cforw

 user: cforw vs passive

 kern: activecopy vs passive

Figure 5-4: Overhead (in microseconds) for forwarding each capsule, relative to pas-

sive or C forwarder. The horizontal axis uses a logarithmic scale.

71

100 200 500 1000 2000 5000 10000
Packet Size (in bytes, including IP/UDP header)

2

5

10

20

50

100

200

O
ve

rh
ea

d
(in

 p
er

ce
nt

)

Active Node Overhead In Base Case

 kernel−space PAN

 user−space PAN

 user−space C forwarder

 kernel−space PAN w/copy

Figure 5-5: Percent overhead for forwarding, relative to passive forwarder. Both axes

use a logarithmic scale.

72

For 1500 byte packets the passive forwarding time increases to about 160 microsec-

onds.

Figure 5-4 shows the overheads incurred by various con�gurations relative to either

the passive or cforw con�guration. Because the PAN kernel implementation doesn't

touch the contents of capsules, the overhead of kernel/active relative to kernel/passive

remains around a constant 20 microseconds, regardless of packet size.

This can be contrasted to the kernel/activecopy con�guration which has an over-

head that grows with packet size. For 1500 byte packets, the overhead of activecopy

relative to passive forwarding grows to over 45 microseconds. Thus, the cost of just

copying a packet (about 25 microseconds for a 1500 byte packet) is larger than the

entire overhead of active capsule processing. The cost of copying data actually drops

for packets larger than the MTU because the overheads are computed relative to the

passive forwarding node which is incurring the cost of dealing with IP fragmentation.

The user-space PAN implementation has a higher overhead than the kernel imple-

mentation, especially for large packet sizes. Because of the need to copy each packet

to and from userspace, the shape of the curves for the user-space implementation's

overhead and the UDP forwarder's overhead are similar to the shape of the curve in

the kernel/activecopy implementation. For 128 byte packets, the user-space imple-

mentation has an overhead relative to the IP forwarder of about 87 microseconds, or

over four times the overhead of the kernel implementation. For 1500 byte packets,

this overhead increases to almost 140 microseconds, or seven times the overhead of the

kernel implementation. Even when compared against the user-space UDP forwarder,

the user-space implementation still has a considerably higher overhead than the PAN

kernel implementation. It is not immediately clear why this is the case.

Finally, Figure 5-5 shows the overheads as percentages relative to the passive IP

forwarder. This shows that the relative cost of using an active network drops substan-

tially as packet size grows. This happens because the passive IP forwarding latency

increases with packet size while the active processing latency remains constant. At

its worst, the kernel node has an overhead of 38 percent for 128 byte packets. For

1500 byte packets, the kernel-space node is only incurring a 13 percent overhead. For

73

8192 byte packets, this overhead drops to only 3 percent.

5.3 Measuring throughput

The throughput of PAN nodes is measured using an active
ood application that

pushes capsules across the network as rapidly as possible. The
ood application �rst

inserts a
ood capsule into the source node with an indicator that marks it as the

start of a
ow. This capsule forwards itself to the receiver node where it creates

an entry for the
ow in soft state, keyed by the address and port number of the

originating application. In this entry, the capsule places the starting time of the
ow.

The
ood application continues to send capsules towards the receiver where each of

them accesses the soft state entry for the
ow and increases the count of received

capsules. At intervals speci�ed in the starting capsule, status capsules are sent from

the receiver towards the source that contain the elapsed time since the start of the
ow

along with the number of capsules received since that time. Only periodic updates

are sent to minimize the e�ect these replies have on measurements being made. Each

ood capsule contains a 100 byte header followed by a data body that �lls up the rest

of the packet. This application is another good demonstration of how active networks

make it easy to write network applications and protocols that would otherwise require

extending protocols or deploying servers.

Because
ow control and reliable communications protocols have not yet been im-

plemented on top of PAN, measuring throughput can become di�cult due to packet

loss. Experiments were performed by sending as many packets as could be sent

without experiencing signi�cant amounts of packet loss that interfered with the mea-

surements. Measurements were taken three times for each network con�guration and

for each packet size. The median of these three measurements was then taken and

used. So that code object load time isn't a factor, all code objects needed for the

tests are loaded into all of the nodes before running the experiments.

74

100 200 500 1000 2000 5000 10000
Packet Size (in bytes, including IP/UDP header)

0

5000

10000

15000

20000

E
nd

−t
o−

E
nd

 T
hr

ou
gh

pu
t (

ca
ps

ul
es

/s
ec

on
d)

Network Capsule Throughput

 kernel/active

 kernel/passive

 kernel/none

 user/active

 user/passive

 user/none

 user/cforw

Figure 5-6: Flood throughput in capsules per second. The horizontal axis uses a

logarithmic scale.

75

100 200 500 1000 2000 5000 10000
Packet Size (in bytes, including IP/UDP header)

0

10

20

30

40

50

60

70

80

90

100

E
nd

−t
o−

E
nd

 T
hr

ou
gh

pu
t (

M
bp

s)

Network Data Throughput

 kernel/active

 kernel/passive

 kernel/none

 user/active

 user/passive

 user/none

 user/cforw

Figure 5-7: Flood throughput in megabits per second. The horizontal axis uses a

logarithmic scale.

76

5.3.1 Throughput results

Figure 5-6 shows the throughput measurements in capsules per second while Figure 5-

7 shows the throughput measurements in megabits per second.

For smaller packets, the measurements of the user-space implementation are lim-

ited by the rate at which the sender was able to insert capsules into the network

and therefore does not provide a good indication of the potential throughput of the

middle forwarding node. This is indicated by the measurements showing that the

user/passive and kernel/passive con�gurations had signi�cantly di�erent throughputs

for packets smaller than about 4096 bytes. In a system where end nodes and network

collisions are not limiting factors, both should have had the same throughputs.

For both the kernel and user-space nodes, throughput for small capsules is limited

by the processing time required for the node to process the capsules. For the kernel

node, these processing times are on the same order as those measured in the latency

experiments in the previous section. For capsules larger than about 800 bytes, the

throughput of over 90 Mbps is high enough to e�ectively saturate the Fast Ethernet

network. Prior to this saturation, a small performance di�erence of under 8 percent

can be seen between the throughput of the PAN node and the IP forwarding through-

put. After the network saturates, both con�gurations have very similar throughputs.

77

Chapter 6

Future Work

As the �eld of active networks is still fairly new, there is a huge amount of work that

needs to be done before an active network infrastructure can be globally deployed.

Even in the much shorter term, there are many things that can be done with and

to PAN to both better understand its performance characteristics and to enhance its

functionality.

6.1 Further experiments and optimizations

The current implementation of PAN is still untuned. By performing microbench-

marks and pro�ling on various subsystems of PAN, it should be possible to �nd out

the sources of current performance bottlenecks. In addition, some of these bottle-

necks may give insight into what aspects of PAN are causing the current performance

overheads. For example, by modifying the serializer generator to generate code that is

better optimized for the common case, it should be possible to eliminate a substantial

number of function calls and bounds checks.

This thesis also does not analyze the performance of the object code loader and

linker. However, current benchmarks seem to indicate that loading a code object

into the node takes on the order of one or two milliseconds. Further analysis still

needs to be performed on the overhead that code object loading has on the overall

performance of the system.

78

It would also be worthwhile to compare the performance of PAN and ANTS using

the same experimental setup for both systems. Preliminary measurements indicate

that the PAN kernel implementation is considerably faster than ANTS. However,

controlled experiments have not yet been performed to compare the performance of

the systems.

The reliability of the throughput benchmarks presented in this thesis is somewhat

limited by the fact that only one sender was available for pushing packets through

the middle node. At some point it would be worthwhile to run the experiments in an

environment that provided more reliable measurements of the sources of throughput

limitations.

6.2 A bytecode language for safety and interoper-

ability

PAN's use of Intel ix86 object code inhibits code object interoperability and safe

execution. The current system is designed so that a safe bytecode language could

be added to the system without substantial redesign. However, any intermediate

bytecode used should be capable of high performance. In the context of PAN, this

means that the bytecode must be rapidly translatable to executable code for a variety

of hardware architectures, the system must be small and simple enough to �t into an

operating system kernel, and the system must be able to create protected execution

environments quickly with very little overhead. In addition, it must be able to manage

memory in a way that allows packets to be received, shared, and sent without requiring

their entire contents to be copied or touched. The system must also be able manage

memory in a way that both works in a real-time environment and is e�cient in a very

high throughput environment where memory regions are being rapidly created and

released. Non-asynchronous garbage collectors will not work in the PAN environment

because of the latency they would add to capsules trying to pass through a node while

it was garbage collecting.

79

Although the Java Virtual Machine (JavaVM) is popular and trendy, it is a large

system (the book that informally speci�es it is over 450 pages) that may be hard to

�t easily into an operating system kernel. In addition, it is not as easy to verify as

some other systems and it has a number of security problems inherent to its design[7].

It may also not be possible to achieve many of the active network performance re-

quirements within Java. On the other hand, using the JavaVM bytecode would not

only increase PAN's compatibility with ANTS, but could greatly increase the size of

PAN's audience. There are also a large number of development tools already available

for working with JavaVM bytecode.

There are a large number of other possible mobile code systems, such as Juice[13]

[18], that might be useful, if only for inspiration. Other mobile code and dynamic

code generation technologies that may be useful include OmniWare[1], Proof-Carrying

Code[22], Sandboxing[31], and vcode[9]. These are compared in a number of active

networking papers including [34] and [29].

In the end, the best solution may be to design a mobile code system designed

speci�cally to be simple,
exible, and fast in an active network environment.

6.3 Safety and security

The current implementation of PAN does not yet provide either node or global net-

work safety or security. It is critical that this be added at some point. Using a safe

bytecode system for interoperability will also provide node safety and security. In

addition, cryptographic signing of code objects may be used to provide a degree of

security. In particular, it will allow the creation of securely sealed protocols.

Providing global network security is a much harder challenge. In particular, being

able to distinguish bad behavior from good behavior can be very challenging when

only provided with a local view of a single node. A number of approaches are under

examination, including using an extension of the concept of a time-to-live (TTL)

�eld. The problem with this is allowing valid protocols to scale without also allowing

worms to scale as well, whether they are maliciously written or just the result of

80

buggy coding.

6.4 Resource management

The current implementation of PAN does not manage resources terribly well. Some

of this is because it is not entirely clear what the best ways of performing some

sorts of resource management are. In particular, the code cache needs a replacement

algorithm that periodically evicts unused code objects. The memory management

system for evicting data from soft state, described in subsection 4.7.5 also needs to

be implemented and experimented with.

In order to allow capsules to be processed in parallel on SMP machines, a system

needs to be developed for forcing code objects to safely share data in a synchronized

fashion (for example, setting appropriate locks and avoiding deadlock conditions).

In addition to memory management, nodes need to a way of managing network

bandwidth. Some system of
ow control needs to be implemented to deal with the

case where an application is inserting capsules faster than they can be sent out across

the network. A system also needs to be implemented to handle capsules that arrive

faster than they can be processed. Ideally, PAN would allow code objects to have

control over how to handle capsules, code objects, and application links in these

situations. This would allow code objects to take actions such as dropping certain

frames of video sequences but not others.

CPU utilization also needs to be bounded in some way, either by having timers

abort code objects that have been running for too long or by having the safe code

system check how long it has been running whenever a backward jump or costly

operation is performed.

6.5 Applications and programming models

Before active networks can be successful, they need applications. PAN provides a

good testbed for developing new active network protocols. It should be possible to

81

write a wide range of new protocols on top of PAN for applications ranging from

multicast to convergecast to network management to data caching. Some of these

applications may demonstrate de�ciencies in the existing system.

Over the years, much research has been performed about improving performance

at end nodes by providing extensible network layers[33][10]. Some of these have

demonstrated substantial performance gains over existing systems. It may be possible

to achieve similar performance gains by using active network protocols.

Active networks should also be useful for implementing easily customizable re-

placements for existing protocols. For example, it should be possible to implement

a reliable communications protocol similar to TCP using PAN. Applications could

then modify or extend this protocol to suit their needs. It might be interesting to

see what sorts of performance gains could be obtained by integrating HTTP with a

reliable protocol optimized for the characteristics of HTTP.

It may turn out that one approach to writing PAN protocols is to take fully-

functional modular protocols and then to modify them to suit a particular application

by removing, modifying, and replacing functionality. Rather than just writing large

monolithic code objects in C, it may make sense to write code objects in a language

such as Prolac[19] that is designed speci�cally for the purpose of writing and extending

protocols in a modular fashion.

Although active networks allow new protocols to be deployed dynamically, the

current system is designed around tightly associating applications with a protocol or

a small collection of protocols. However, many factors may contribute to the most

appropriate protocol to use. It might be interesting to develop a system that would

allow parts of protocols supplied by clients, servers, and intermediary nodes to be

dynamically integrated within the network. This may be necessary in order to allow

active networks to be used for applications such as enabling mobile networking and for

making it easier for protocols to work over very high latency or very low bandwidth

links (such as satellite or wireless links).

82

Chapter 7

Conclusions

The current PAN implementation only performs minimal resource management and

does not yet fully address the safety, security, and interoperability issues. Bearing

that in mind, the results of experiments performed on PAN indicate than an active

network may be able to provide signi�cant
exibility with only a small performance

overhead over a traditional network node. The untuned kernel implementation of

PAN is able to saturate a 100 Mbps Fast Ethernet with 1500 byte capsules while

having an overhead of less than 15 percent when compared to the time it takes a

traditional network node to process capsules.

Achieving high performance in an active networking node isn't at all hard and

doesn't require fancy tricks. The implementation just needs to run within the kernel,

not copy or touch capsule data whenever possible, and evaluate capsules using code

objects that have been converted into native executable code at load time.

Active networking nodes should also be designed with the end-to-end argument

in mind: applications should have as much control as possible over what happens to

their data within the network. This means providing a simple but powerful interface

to nodes that provides code objects with as much
exibility as possible. In theory, this

should eventually be able to improve end-to-end performance by allowing protocols

to do exactly what they need to do within the network and no more.

There are still quite a few signi�cant challenges facing active networks, however.

Interoperability must be provided, possibly through a bytecode system. Resource

83

management problems must be solved in a way that doesn't overly constrain the

exibility of the system. Safety and security guarantees must be provided, both at the

node and network-wide levels. Eventually, a standard will need to be implemented and

widely deployed. Possibly the greatest challenge will come at this point: preventing

the very creeping featurism in active networking standards that active networks are

themselves supposed to avoid.

If these challenges can be addressed, and if processing power scales along with

network capacity demands, there doesn't seem to be an immediate reason why active

networks shouldn't be a practical solution for making the future network infrastruc-

ture far more
exible.

84

Bibliography

[1] Ali-Reza Adl-Tabatabai, Geo� Langdale, Steven Lucco, and Robert Wahbe. E�-

cient and Language-Independent Mobile Programs. In PLDI '96, pages 127{136,

Philadephia, Pennsylvania, May 1996.

[2] D. Scott Alexander, Marianne Shaw, Scott M. Nettles, and Jonathan M. Smith.

Active Bridging. In Proceedings of the ACM SIGCOMM'97 Conference on Com-

munication Architectures, Protocols, and Applications, Cannes, France, Septem-

ber 1997.

[3] Michael Beck, Harald B�ohme, Mirko Dziadzka, Ulrich Kunitz, Robert Magnus,

and Dirk Verworner. Linux Kernel Internals. Addison-Wesley, Harlow, England,

second edition, 1998.

[4] Brian N. Bershad, Stefan Savage, Przemys law Pardyak, Emin G�un Sirer, Marc

Fiuczynski, David Becker, Susan Eggers, and Craig Chambers. Extensibility,

Safety and Performance in the SPIN Operating System. In Proceedings of the

Fifteenth ACM Symposium on Operating Systems Principles (SOSP), pages 267{

284, Copper Mountain Resort, Colorado, December 1995.

[5] Samrat Bhattacharjee, Kenneth L. Calvert, and Ellen W. Zegura. Implementa-

tion of an Active Networking Architecture. Networking and Telecommunications

Group, College of Computing, Georgia Tech, White paper presented at Gigabit

Switch Technology Workshop, Washington University, St. Louis, July 1996.

[6] William Clinger, Jonathan Reese, et al. Revised4 Report on the Algorithmic

Language Scheme. ACM Lisp Pointers IV, 4(3):1{55, July{September 1991.

85

[7] Drew Dean, Edward W. Felten, and Dan S. Wallach. Java Security: From

HotJava to Netscape and Beyond. In Proceedings of the 1996 IEEE Symposium

on Security and Privacy, pages 190{200, Oakland, California, May 1996.

[8] Giovanna DiMarzo, Murhimanya Muhugusa, Christian Tschudin, and J�urgen

Harms. The Messenger Paradigm and its Implications on Distributed Systems.

In Proceedings of the ICC'95 Workshop on Intelligent Computer Communication,

pages 79{94, June 1995.

[9] Dawson R. Engler. vcode: A Retargetable, Extensible, Very Fast Dynamic

Code Generation System. In Proceedings of the 23rd Annual ACM Conference

on Programming Language Design and Implementation, pages 160{170, Philade-

phia, Pennsylvania, May 1996.

[10] Dawson R. Engler and M. Frans Kaashoek. DPF: Fast, Flexible Message De-

multiplexing using Dynamic Code Generation. In Proceedings of the ACM SIG-

COMM'96 Conference on Communication Architectures, Protocols, and Appli-

cations, pages 53{59, Stanford, California, August 1996.

[11] Dawson R. Engler, M. Frans Kaashoek, and James O'Toole, Jr. Exokernel: An

Operating System Architecture for Application-Level Resource Management. In

Proceedings of the Fifteenth ACM Symposium on Operating Systems Principles

(SOSP), pages 251{266, Copper Mountain Resort, Colorado, December 1995.

[12] FIPS 180-1. Secure Hash Standard. U.S. Department of Commerce/N.I.S.T.,

National Technical Information Service, Spring�eld, Virgnia, April 1995.

[13] Michael Franz. Code-Generation On-the-Fly: A Key for Portable Software. PhD

thesis, Institute for Computer Systems, ETH Zurich, 1994.

[14] James Gosling and Henry McGilton. The Java Language Environment (White

Paper). October 1995.

86

[15] John Hartman, Udi Manber, Larry Peterson, and Todd Proebsting. Liquid Soft-

ware: A New Paradigm for Networked Systems. Technical Report TR 96-11,

The University of Arizona Department of Computer Science, November 1996.

[16] Norman C. Hutchinson and Larry L. Peterson. The x-Kernel: An Architecture for

Implementing Network Protocols. IEEE Transactions on Software Engineering,

17(1):64{67, January 1991.

[17] Alden W. Jackson and Craig Partridge. Smart Packets, A DARPA-Funded Re-

search Project. Slides from 2nd Active Nets Workshop, March 1997.

[18] T. Kistler and M. Franz. A Tree-Based Alternative to Java Byte-Codes. In

Proceedings of the International Workshop on Security and E�ciency Aspects of

Java '97, Eilat, Israel, January 1997. Also in UC Irvine Technical Report No.

96-58.

[19] Eddie Kohler. Prolac: A Language for Protocol Compilation. Master's thesis,

Massachusetts Institute of Technology, August 1997.

[20] Samuel J. Le�er, Marshall Kirk McKusick, Michael J. Karels, and John S. Quar-

terman. The Design and Implementation of the 4.3BSD UNIX Operating System.

Addison-Wesley Publishing Company, Reading, Massachusetts, 1989.

[21] Li-Wei H. Lehman. Active Reliable Multicast. Draft Paper, Telemedia Networks

and Systems Group, MIT Laboratory for Computer Science, December 1996.

[22] George C. Necula and Peter Lee. Safe Kernel Extensions Without Run-Time

Checking. In Second Symposium on Operating Systems Design and Implementa-

tion (OSDI '96), pages 229{243, Seattle, Washington, October 1996.

[23] Ron Rivest. The MD5 Message-Digest Algorithm. Network Working Group

Request for Comments, April 1992. Internet RFC 1321.

[24] Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-end Arguments in

System Design. ACM Transactions on Computer Systems, 2(2):277{286, Novem-

ber 1984.

87

[25] J. M. Smith, D. J. Farber, C. A. Gunter, S. M. Nettles, D. C. Feldmeier, and

W. D. Sincoskie. SwitchWare: Accelerating Network Evolution (White Paper).

June 1996.

[26] W. Richard Stevens. UNIX Network Programming. P. T. R. Prentice Hall,

Englewood Cli�s, New Jersey, 1990.

[27] W. Richard Stevens. TCP/IP Illustrated, Volume 1. Addison-Wesley Publishing

Company, Reading, Massachusetts, 1994.

[28] D. L. Tennenhouse, S. J. Garland, L. Shrira, and M. F. Kaashoek. From Internet

to ActiveNet. MIT Laboratory for Computer Science, Request for Comments,

January 1996.

[29] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David J.

Wetherall, and Gary J. Minden. A Survey of Active Network Research. IEEE

Communications Magazine, 35(1):80{86, January 1997.

[30] David L. Tennenhouse and David J. Wetherall. Towards an Active Network

Architecture. Computer Communication Review, 26(2):5{18, April 1996.

[31] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham.

E�cient Software-Based Fault Isolation. In Proceedings of the Fourteenth ACM

Symposium on Operating Systems Principles (SOSP), pages 203{216, Asheville,

North Carolina, December 1993.

[32] Larry Wall, Tom Christiansen, and Randal L. Schwartz. Programming Perl.

O'Reilly & Associates, Inc., Sebastopol, California, second edition, 1996.

[33] Deborah A. Wallach, Dawson R. Engler, and M. Frans Kaashoek. ASHs:

Application-Speci�c Handlers for High-Performance Messaging. In Proceedings

of the ACM SIGCOMM'96 Conference on Communication Architectures, Proto-

cols, and Applications, Stanford, California, August 1996.

88

[34] David Wetherall. Safety Mechanisms for Mobile Code. Area Exam Paper, MIT

Laboratory for Computer Science, November 1995.

[35] David J. Wetherall, John V. Guttag, and David L. Tennenhouse. ANTS: A

Toolkit for Building and Dynamically Deploying Network Protocols. In IEEE

OPENARCH'98, San Francisco, California, April 1998.

[36] David J. Wetherall and David L. Tennenhouse. The active IP Option. In

Proceedings of the 7th ACM SIGOPS European Workshop, Connemara, Ireland,

September 1996.

[37] Edward Wobber, Mart�in Abadi, Michael Burrows, and Butler Lampson. Au-

thentication in the Taos Operating System. ACM Transactions on Computer

Systems, 12(1):3{32, February 1994.

[38] Yechiam Yemini and Sushil da Silva. Towards Programmable Networks (White

Paper). In IFIP/IEEE International Workshop on Distributed Systems: Opera-

tions and Management, L'Aquila, Italy, October 1996.

[39] Zander and Forchheimer. Softnet: An Approach to High-Level Packet Commu-

nication. In ARRL 2nd Computer Networking Conference, 1983.

89

