NATRON: Overlay Routing to Oblivious
Destinations
by
Alexander Siumann Yip

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Masters of Engineering in Computer Science and Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
August 2002
(© Alexander Siumann Yip, MMII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document
in whole or in part.

Department of Electrical Engineering and Computer Science
August 22, 2002

Certified Dyo
Robert T. Morris

Assistant Professor

Thesis Supervisor

Accepted by . ..o
Arthur C. Smith
Chairman, Department Committee on Graduate Students

NATRON: Overlay Routing to Oblivious Destinations
by

Alexander Siumann Yip

Submitted to the Department of Electrical Engineering and Computer Science
on August 22, 2002, in partial fulfillment of the
requirements for the degree of
Masters of Engineering in Computer Science and Engineering

Abstract

This thesis presents NATRON, a system in which an overlay network of nodes cooper-
ates to improve unicast routing to non-participating hosts. Previous overlay systems
have used overlay routing to improve communication between participating hosts;
they were unable to exploit overlay routing to non-participating hosts. NATRON
uses a combination of IP tunneling and network address translation to allow mem-
bers of the overlay to communicate with hosts outside the overlay network via other
overlay members.

In order to estimate the potential performance improvement a system like NA-
TRON might provide, we performed an exhaustive test on a multi-site Internet test-
bed. Our results show that a system that always guesses the best intermediate node
could reduce the average HT'TP transfer time by 18% and reduce the number of
downloads lasting longer than 30 seconds by 16%. We implemented a working NA-
TRON and a heuristic for choosing intermediate overlay nodes, but we find that our
heuristic can only exploit 22% of the potential performance gains. We conclude that
overlay routing to oblivious hosts has good potential for performance enhancement
but further work is needed to develop a path choice heuristic.

Thesis Supervisor: Robert T. Morris
Title: Assistant Professor

Acknowledgments

This thesis could not have been completed without the support and assistance of
many friends and colleagues.

I am particularly indebted to my advisor, Robert Morris, for his persistent guid-
ance and help; somehow, he kept my efforts focused. Without him, this work would
have impossible.

The remaining members of PDOS have been a great help whenever I needed it.
When I had questions about Click, Benjie and Eddie had the answers. When I was
faced with heaps of data, Chuck supplied statistical expertise and finally, when my
desktop was overloaded with windows, Thomer supplied tbiff.

I would like to thank the many volunteers who host the nodes which make up
the RON test-bed and in particular, David Andersen. David maintained the RON
test-bed and provided access to the nodes so that I could collect data. In doing so,
he endured my inadvertent bandwidth abuse of his personal cable modem.

I’m extraordinarily grateful for my family and friends who gave their loving sup-
port along with more than a few healthy distractions from this thesis work.

Finally, I'd like to thank Seanna for her patient understanding and endless supply

of hiccups.

Contents

Introduction

1.1 Motivation oL
1.2 System Architecture,
1.3 Contributions
Background

2.1 Border Gateway Protocol 0o
2.2 Network Address Translation
23 Click e
Motivation

3.1 Problems with BGP
3.2 Detour
3.3 Resilient Overlay Networks
3.4 NATRON e

System Architecture

Alternate Path Performance

5.1 Experimental Setup o L oL oo
5.2 Ideal Performance oL Lo
5.2.1 Distribution of Download Times
5.2.2 Distribution of Download Time Ratios
5.3 Policy Considerations

13
13
15
15

17
17
18
21

23
23
24
24
24

25

5.3.1 Round Trip Time Prediction

5.3.2 SYN Flood

Policy and Performance

6.1 The NATRON Policy
6.1.1 Reducing SYN Probes
6.1.2 Delaying SYN Probes

6.1.3 Algorithm .

6.2 Implementation . .

6.2.1 Client Node

6.2.2 Intermediate Node

6.3 Policy Performance

Related Work

Conclusion

39
39
39
40
40
41
44
44
45

47

49

List of Figures

2-1
2-2

4-1

5-1

5-2

o-4
9-5

6-1
6-2
6-3
6-4

6-6

BGP route announcemento,

Network Address Translation scenario
Overall NATRON architecture

Mean and standard deviation of download times, using the direct In-
ternet path and the fastest of the available paths
CDF comparing direct path download times vs. ideal path download

CDF comparing ratios of Direct/Direct download times to Direct/Ideal
download times.o
Difference in Round Trip Time vs. Difference in Download Time . . .

Incremental time gains achieved by adding intermediate nodes

NATRON software implementation
NATRON client node Click configuration
NATRON intermediate node Click configuration
Mean and standard deviation of download time, using the direct Inter-
net path, NATRON chosen path, and ideal alternate paths
CDF comparing download times using direct Internet route, NATRON
chosen route and ideal route. Lo
CDF comparing the ratios of Direct/Direct, Direct/NATRON and Di-

rect/Ideal download times L.

32

32

34
36
37

41

42

43

45

45

10

List of Tables

2.1 Sample NAT translation table . . .

5.1 Description of nodes in test network

11

12

Chapter 1

Introduction

This thesis presents NATRON, a technique for improving Internet communication
performance between members of an overlay network and hosts outside the overlay.
In NATRON, members of an overlay forward data via their overlay neighbors to alter
the underlying Internet path used by the data. The goal of NATRON is to exploit
situations where the Internet chosen path between two hosts can be improved upon
by forwarding data along an alternate path.

Previous work [19, 3] showed that forwarding data through intermediate hosts can
improve network performance. Overlay networks were built to exploit the potential
but were limited to improving intra-overlay communication. NATRON differs because
it allows overlay members to use intermediate nodes when contacting oblivious hosts

which are outside the overlay network.

1.1 Motivation

Recent work has shown that Internet routing is less than ideal. In [13], Labovitz et
al. find that the Internet routing tables may be unstable causing routing failures on
the order of minutes while the Internet recovers from a link failure. In [15], Paxson
found that 3.3% of the time, routing pathologies such as routing loops and erroneous
routing adversely affected end to end path quality.

Routing oscillations and pathologies are typically confined to small regions of the

13

network because Internet service providers administer their networks independently.
The underlying network topology is a mesh of ISP’s, so there is path redundancy. Fail-
ures can be avoided by using alternate paths through the Internet mesh. Detour[19]

and RON([3] were two studies exploring this property of the Internet.

In the Detour study, Savage et al. used traceroute data to show that routing
packets through intermediate hosts has the potential to have higher performance
than a direct Internet path. They argue that such alternate paths are likely to be
beneficial 30-80% of the time.

RON exploits alternate paths and shows that overlay routing can improve unicast
between overlay members. RON achieves these gains by forwarding network traffic

via intermediate nodes thus changing the underlying Internet route used by the data.

Unfortunately, RON’s usefulness is limited because it only improves communi-
cation between overlay participants. There are two reasons why non-participating
hosts cannot take advantage of the RON. First, non-participating hosts cannot uti-
lize a RON because they are not configured to perform the packet tunneling required
by RON. The second reason is that using RON requires members to participate in
a thorough link measurement protocol. Every member of the RON must measure
round trip time and loss rate to its peers in the RON. The setup cost and overhead of
these measurements makes RON impractical for deployment on large scale systems

such as the world wide web.

For example, if three hosts, A, B and C' make up an overlay network, A can
communicate with B via host C'. However, A cannot effectively communicate with
an outside host such as www.cnn.com via either B or C. One solution is to add
www.cnn.com to the RON; but then it would have to monitor route quality to its
three peers in the overlay. This poses a serious scalability problem if the remaining

web clients want add www.cnn.com to their RONs as well.

14

1.2 System Architecture

The goal of NATRON is to achieve the performance and reliability benefits of RON
when communicating with hosts outside the overlay network. A NATRON overlay
consists of a few Internet hosts scattered around the Internet. When members contact
non-member servers, they have the option of sending their traffic directly to the server
or directing their traffic through an intermediate node in the overlay.

NATRON controls packet routing by tunneling packets from their source to an
intermediate NATRON node. The intermediate node uses network address translation
(NAT) [8] to replace the source address with its own, and forwards packets to their
target destination. The use of NAT causes the destination to send reply packets back
through the same intermediate node, so that NATRON is able to control the routing
of packets in both directions. NATRON’s general architecture is inspired by a system
described by Collins [5].

1.3 Contributions

In this thesis we describe a system architecture which applies overlay routing to
oblivious destinations. We present exhaustive measurements of an Internet test-bed
to show the potential performance improvements a system like NATRON might pro-
vide. We describe a working NATRON system and a policy for choosing intermediate
network nodes. We evaluate our policy and compare it to the potential performance
improvements. We conclude that overlay routing to non-participating hosts has the
potential to improve download performance, but future work is needed to design path
choosing policies.

This thesis is organized as follows: Chapter 2 introduces background information
and Chapter 3 motivates NATRON. Chapter 4 describes the overall architecture of
the system. Chapter 5 explores the potential for improvement over direct Internet
routes and Chapter 6 describes the design, implementation and performance of the

routing policy. We describe related work in Chapter 7 and conclude in Chapter 8.

15

16

Chapter 2

Background

This chapter explains background information important to the NATRON system.
Internet organization and BGP are described to show where NATRON derives per-
formance benefits, followed by an overview of network address translation. Finally,
Click, a modular software router, is described to justify its use in the NATRON

implementation.

2.1 Border Gateway Protocol

The Internet is a mesh composed of many separately managed autonomous systems
(ASes). The largest ASes are Tier 1 Internet service providers (ISP’s) such as AT&T,
BBN and Qwest; they administer large networks which typically have national and
international coverage. Tier 1 ISP’s connect to one another to form the Internet
backbone and carry a large portion of Internet traffic. The smaller Tier 2 ISP’s such
as Comcast and AOL typically purchase connectivity from a Tier 1 ISP and provide
Internet connectivity to end hosts.

Internet routing is organized as a two-level hierarchy to limit routing complexity.
The upper level is BGP [17, 16] which coordinates routing among different ASes. The
lower level consists of one interior routing protocol (such as OSPF or IBGP) per AS
which coordinates internal routing.

Each autonomous system uses BGP to notify its peers which networks it can reach

17

so that ASes know how to reach foreign host addresses. The Internet is designed this
way to limit the amount of routes each AS needs to calculate and know about. Each
AS only needs to know direct routes to the hosts it provides access to. In order to
route to host A outside an AS, the AS only needs to know which AS has a route to A;
it does not need to know further details like which routers it needs to pass through.

BGP is a path vector protocol meaning that each AS announces which networks
it can route to and what route it uses to get there. When an AS receives a route
announcement, it adds the destination to its routing table (being careful to remove
loops) and sends another announcement to its remaining peers. This way, the routing
announcement propagates through the network.

Figure 2-1 illustrates a simplified BGP announcement propagating through the
network. Autonomous system A needs to advertise its route to 18.26.4.0/24 so it
sends an announcement message to its peer B. B then advertises its connection to
18.26.4.0/24 by sending announcements to C' and D. Autonomous system D notifies
E and C that it has a route to 18.26.4.0/24 via B, A. C notifies D of its new route
via B, A.

Since the modern Internet is so large, BGP must control the frequency and prop-
agation of update messages to avoid flooding the network. BGP version 4 controls
updates by delaying and aggregating multiple update messages and by preventing
propagation of fast changing routes [4]. These techniques combined with the dis-
tributed nature of BGP allow it to scale up but sacrifices update speed and conver-

gence time.

2.2 Network Address Translation

NATRON uses network address translation (NAT) [8] to force client traffic to travel
via a particular intermediate node. Performing NAT at the intermediate node makes
network traffic appear to originate at the intermediate node, so a non-member host
would send reply traffic directly to the intermediate node.

Typically, NAT is used to allow multiple hosts on a private network to share a

18

18.26.4.0/24 via A

N

18.26.4.0/24

18.26.4.0/24 via A 18.26.4.0/24 via B,A
T

18.26.4.0/24

18.26.4.0/24 via B,A

18.26.4.0/24 via B,A
18.26.4.0/24 via A 18.26.4.0/24 via C,B,A

18.26.4.0/24 18.26.4.0/24 via D,B,A

18.26.4.0/24 via B,A
18.26.4.0/24 via D,B,A

Figure 2-1: Example BGP announcement. Autonomous system A announces its route
to 18.26.4.0/24. Updates start at A and propagate through the network until the rest
of the ASes hear about the route.

19

I
Internal Network | External Network

Internal Hosts External Hosts

10.0.0.2 128.0.0.2

10.0.0.1

\ ' /
Internet

10.0.0.1 Tran%;lator 4.0.0.4

Figure 2-2: A typical configuration for network address translation. In this case,
two internal nodes, 10.0.0.2 and 10.0.0.3, share a single external IP address, 1.2.3.4.
Packets leaving the internal network are all translated so that their source address is
1.2.3.4. Reply packets are un-translated before they enter the internal network.

common external IP address. NAT is commonly used by home Internet users to share
a single broadband Internet connection among multiple internal hosts. NAT makes it
possible for many Internet clients to share a single external IP address by exploiting

the flow based nature of TCP.

In a typical NAT configuration, internal hosts are assigned local IP addresses
which are not accessible by the Internet. Figure 2-2 shows a sample configuration
with two internal hosts: 10.0.0.2 and 10.0.0.3 in addition to an address translator
acting as the gateway between the internal network and the Internet. The external

IP address being shared is 1.2.3.4.

The translator changes the source address and possibly the source port of packets
leaving the internal network. For example, if host 10.0.0.2 wants to contact host
128.0.0.2, it emits a packet destined for 128.0.0.2. The translator changes the source
address to 1.2.3.4 before sending it out to the Internet. Reply packets from 128.0.0.2
arrive at 1.2.3.4; their destination addresses are un-translated to be 10.0.0.2 and
are emitted on the internal network. To un-translate packets, the translator must
maintain a translation table mapping internal flows to external flows. Table 2.1

illustrates an example translation table.

20

Internal SRC IP Port DST IP Port External SRCIP Port DSTIP Port
10.0.0.2 1676 128.0.0.2 &0 1.2.3.4 4000 128.0.0.2 80
10.0.0.2 1677 128.0.0.2 &0 1.2.3.4 4001 128.0.0.2 80
10.0.0.3 2231 128.0.0.2 &0 1.2.3.4 4002 128.0.0.2 80
10.0.0.3 2232 4.0.04 80 1.2.3.4 4003 4.0.0.4 80

Table 2.1: A sample NAT translation table for Figure 2-2. In this example, the two
internal hosts each have two open sessions.

2.3 Click

Click [14] is an easily configurable software router which runs on commodity hardware.
Complex Click routers are assembled by linking primitive packet processing elements
together; many generic elements are provided with the Click distribution making it
a flexible base platform. Additional functionality can be added by writing custom
elements in C++4. Click can run as a userlevel application to ease development or as
a kernel module for improved performance.

Click provides all of the infrastructure needed for packet processing. Additionally,
most of the packet processing tasks needed by NATRON such as packet classifica-
tion, encapsulation and network address translation [12] are already implemented as
Click elements. The only additional functionally NATRON required was an element
to control path selection. The vast functionality provided by Click and its ease of

development made it an easy choice for the NATRON implementation.

21

22

Chapter 3

Motivation

This chapter describes the motivation for NATRON including some underlying prob-
lems with Internet routing, a study of alternate path routing and a system built to

exploit overlay routes.

3.1 Problems with BGP

As described in the previous chapter, BGP must suppress routing updates to prevent
route flapping and excessive update messages. The cost of such damping is reduced

convergence time and slower route updating.

One problem with BGP is its slow convergence after routing changes. The dis-
tributed path-vector protocol results temporary oscillations in routing tables. Labovitz
et al. describe these oscillations and argue that the Internet may take tens of minutes
to reconverge after a link failure[13]. Although they note that particular implemen-
tations are the cause of some delays, they argue that the distributed path-vector

protocol has fundamental oscillation and delay problems.

In a separate study, Paxson[15] found in 3.3% of the time, routing pathologies
such as outages and route loops stifled end to end communication. Many of those

outages lasted longer than 30 seconds.

23

3.2 Detour

Savage et al. noted that inefficiencies in Internet routing might likely be localized, and
that alternate routes may be available, even if routing pathologies disabled certain
routes. In their Detour study [18] they analyzed data from 15-39 public traceroute
servers to explore the existence of alternate routes that performed better than the
default Internet routes. Using the reported loss rates and round trip times averaged
over long time scales, they concluded that 30-80% of the time, there was an alternate

route which performed better than the default Internet route.

3.3 Resilient Overlay Networks

Andersen et al. showed how to take advantage of alternate routes described above by
building Resilient Overlay Networks [3]. They constructed a multi-host overlay net-
work which utilized overlay routing to improve network performance. By continuously
monitoring the quality of overlay links, RON is able to optimize for latency, band-
width or loss rate. RON proved that overlay routing can be used improve network

performance between members of an overlay network.

3.4 NATRON

NATRON aims to exploit alternate routes as RON does, but loosens the restriction
on the destination host. In RON, both communicating parties must be participating
in the same overlay network for the proper packet forwarding to function. RON works
well in a peer to peer architecture, but does not lend itself to client-server architectures
such as HT'TP where web-servers may be unwilling or unable to participate in RONs.

In contrast, NATRON is designed to work in client-server architectures. NATRON
makes it possible for overlay members to use overlay routing when contacting non-

member hosts.

24

Chapter 4

System Architecture

The overlay consists of a small number of nodes which are scattered around the Inter-
net in diverse locations, and the goal is to use alternate routes through other overlay
members to improve unicast to non-member hosts. Figure 4-1 shows a sample config-
uration where Ny...Ny are members of the overlay and S is a non-participating server.
We call intermediate nodes neighbors; in this example, N; and N, are neighbors of
Ny because Ny can use both N; and N, as intermediate nodes.

In one scenario, Ny needs to open a session to the server S, but the direct path
A between them is congested. Paths B and C are uncongested, so N redirects its
traffic to N; where the traffic exits the overlay, and travels along path C' to the server
S.

We will define the entry point as the node where a flow enters the overlay and the
exit point where the flow leaves. In this example, Ny is the entry point and N; is the
exit point. Note that the exit node can be the same as the entry node if the entry
node chooses to use the direct route to the server host.

Using network address translation (NAT) [8] at the exit point causes S to send
return traffic via Ny, instead of directly to Ny. This gives NATRON a chance to route
around slow paths in either direction.

NATRON'’s use of NAT means that it shares NAT’s limitations. First, if a NA-
TRON node fails, the connections using it as an exit point will fail. Second, only

participating nodes can initiate connections that are routed through NATRON.

25

= = = TCP Unicast

UDP Tunnel

Figure 4-1: Overall NATRON architecture. The direct path from N to S is congested.
Client N, tunnels to N;. N; performs network address translation, and then forwards
traffic to S, bypassing the congestion. Return traffic travels from S to N; and then
back to Ny.

The procedure used to choose the intermediate node is called the policy. The
entry node is responsible for executing the policy and choosing which intermediate
node to use for each flow. The most difficult part of building NATRON is designing
a policy that performs well. The biggest difficulty in designing a routing policy for
our system is that the overlay members do not have prior knowledge of what server
will be contacted next. Although the network may have a few servers that it contacts
often, there will be situations when a new and unexpected server will be contacted.
We will be focusing on the scenario with no prior knowledge.

The problem faced by the policy is that an entry point has no historical informa-
tion about a server if it has never been contacted before. The first time it learns of
the server is through a client’s request. Since the client is waiting for the connection
to complete, the entrance point cannot spend too much time collecting information.
Furthermore, NATRON connections are likely to be short HT'TP transfers, making a

lengthy network measurement phase unattractive.

To evaluate a NATRON policy, we compare it to an ideal policy which always

26

chooses the correct intermediate node. The next chapter explains how we simulated

an ideal policy and summarizes how well it performs.

27

28

Chapter 5

Alternate Path Performance

The goal of this section is to find an upper bound on the performance gains available to
NATRON and to characterize the relationship between round trip time and download
time when using intermediate nodes.

To find the optimal potential gain we performed exhaustive downloads using ev-
ery node in our twelve node test-bed to download documents from over 600 unique
webservers using each of the alternate paths. We collected these measurements from
each of the nodes, and inferred from the data what performance benefits an ideal
routing policy might achieve.

Round trip times were collected while performing the downloads, and were used

to find the relations between round trip time and download time.

5.1 Experimental Setup

We used 12 nodes from the RON test-bed [3] as our experimental network. Five of the
nodes were located at academic institutions in the United States, six were scattered
around the US on commercial networks, and one was located in Korea. The node
locations and connection information are listed in Table 5.1.

Every node in our test network downloaded via every other node, except in the
case of Internet2 nodes. Internet2 nodes were not permitted to use each other as

intermediate hosts because our test network has a disproportionately large number

29

Name Location Access Link
mit Cambridge, MA Ethernet

nyu New York, NY Ethernet
cmu Pittsburgh, PA Ethernet
utah Salt Lake City, UT Ethernet
cornell Ithaca, NY Ethernet
ccicom Salt Lake City, UT Ethernet
mediaone-ma Cambridge, MA Cable Modem
aros Salt Lake City, UT Fractional T3
mazul Cambridge, MA T1

pdi Silicon Valley, CA Ethernet
msanders Foster City, CA T1

kr Korea Ethernet

Table 5.1: Names, locations and connection characteristics of all nodes in the test
network.

of nodes in academic institutions. Using the high performance Internet2 network
would inflate the potential benefits of this system, and would not reveal the true
performance characteristics of the commercial Internet.

To evaluate the real and potential performance benefits of NATRON, we fetched
documents from a large set of Internet web servers. To create a large set of web servers,
we started with a set of URLs collected on January 21, 2002 by an IRCache! [11] web
proxy in Boulder, CO. To avoid over-representing popular servers, we limited the set
of URLs to contain only one URL per server.

The URL domain names were replaced with static IP addresses to ensure that a
single server was used for all fetches of each URL. This prevents different fetches for
the same URL from using servers at different IP addresses.

Each URL in the server set was downloaded once to check if the server was active
and responding. Unresponsive servers were removed from the set. The remaining
URLs were used in the measurements.

To measure the performance of a path from a test client to a webserver, a client
simply downloaded a document from that webserver using the path in question. In

order to compare the available paths from a client to a web server, the client did

!These traces were made available through funding provided by National Science Foundation
grants NCR-9616602 and NCR-9521745, and the Nation Laboratory for Applied Network Research.

30

consecutive downloads of the same document while using the direct path or a different
neighbor each time. We call this a download set. Within a download set, the order
in which paths were tried was chosen randomly because a web server may react
differently to several identical requests depending on the order they get serviced;
randomizing the order should reduce such a bias.

The downloads in each set were started at 500ms intervals regardless of how long
each download took. Forcing the downloads to begin at regular intervals ensures that
all downloads begin within a specified time-span and experience comparable network
conditions.

Successive sets were started at 30 second intervals to avoid overloading the overlay
network. Five sets were taken for a URL and then the client moved on to the next
URL. All of the clients ran this concurrently, but they started 15 minutes apart so
that they would not flood the web servers or the links with many concurrent requests.

If any server returned a Connection Refused error, that set was rejected because
the response time would not signify anything about connection quality.

Download times were capped at 60 seconds. Any download that had not finished
in 60 seconds was assigned a time of 60 seconds. Each set was also checked to make
sure all the downloaded documents were the same size. If the size of the HTTP
response was not equal, the download times could not be compared, so the set was
rejected. The exceptions to this rule were requests that timed out and returned zero
bytes; they were included in the evaluation.

Each client collected from 3,074 to 3,185 download sets, consisting of 625 to 662
unique URLs. In aggregate, the clients collected a total of 37,712 sets taken over an
80 hour period from Jun 19 to Jun 23, 2002.

5.2 Ideal Performance

In examining each set, we compared the download times recorded for each of the
paths used, and chose the smallest as the ideal download time. The intuition is

that the ideal routing policy would choose the path with the shortest download time.

31

Seconds

Download Time Mean Download Time Stddev

Figure 5-1: Mean and standard deviation of download times in seconds, using the
direct Internet path and the fastest of the available paths. Using the fastest of the
available paths would reduce the average download time and standard deviation con-
siderably.

Fraction of Samples
o o
© ©
IS &

) 10 20 30 40 50 60
Download time in seconds

Figure 5-2: Upper 10% of CDF comparing download times using the direct Internet
path and path route for 37,712 samples over all clients. Overall, the ideal policy
performs well at reducing the number of slow download times and reducing the size
of the distribution’s tail.

Table 5-1 shows the mean and standard deviations of the direct and ideal download
times of all sets. Using the ideal policy reduced the average download time by 18%
and the standard deviation by 33%. The drops in download time mean and standard

deviation suggests that overlay routing can significantly improve download times.

5.2.1 Distribution of Download Times

Figure 5-2 shows the upper 10% of the CDF's of the direct and ideal download times.
8% of the sets took longer than two seconds using the direct path, but only 5% needed
that much time when using the best alternate path. Figure 5-2 also shows that 2.4%

32

of the samples took longer than 30 seconds or did not complete at all using the direct
path. Using the best available path, that fraction was reduced to 2%2. In the lower
portion of the CDF's which is not shown, the ideal plot is consistently above the direct
plot until the smallest 2% where the CDFs become indiscernible.

The reduction in slow samples is promising from a performance perspective, but
this figure hides details regarding the individual download sets and does not account
for the different document sizes in each download set. The format of the plots does
not show pairwise comparisons for each download set, and since the document sizes
for each of the download sets may be different, the time values for each set are not

directly comparable.

5.2.2 Distribution of Download Time Ratios

To compare the direct and ideal download times within individual sets, we evaluate the
ratio of the direct download time to the ideal download time. The ratio is appropriate
to compare downloads from the same set because each document in a download set is
the same size. Documents from different sets are different sizes, so the ratio normalizes
across sets with different document sizes.

The ratio of the direct to ideal download times is plotted as the dashed CDF in
Figure 5-3. A ratio greater than one means that the direct path took longer than the
ideal path, therefore points on the right of graph represent samples that would have
gained by using an alternate path.

One of the complications that arise when comparing pairs of download times is
that pairs of downloads using the same path, spaced seconds apart from one another,
typically exhibit differences in completion time. The variation may be mistaken
for gains and losses when a pair of download times is compared even though the
differences are due to variation.

Figure 5-3 contains a plot labeled Direct/Direct showing the CDF of the ratio

2Unresponsive servers cause the two percent of failed downloads. We confirmed that all servers in
our URL set were responsive before we began our experiments, but some servers may have become
unavailable prior to our download measurements.

33

Fraction of Samples

0.2 /
0.1

0.1 1 10
Ratio of Download Times: Direct/Direct and Direct/Ideal

Direct/Direct
Direct/Ideal -------

Figure 5-3: CDF of the ratio of two direct route download times and the ratio of the
direct route time divided by the ideal route time. The upper 30% of Direct/Ideal
reveals that 30% of the download sets could have reduced their download time con-
siderably using an alternate route.

between pairs of downloads in the same set which both used the direct Internet
path. Points where the ratio is near one represent download pairs that had very
similar download times. Points to the left and right signify pairs where one download
completed faster than the other. The Direct/Direct distribution represents the typical

ratios one would observe even without using any alternate path routing.

For each set, one of the direct download times was collected by explicitly using
the direct path. The second download time used to calculate the ratio was measured
in the same download set by an experimental policy which chose the direct path to
perform a download. In 7.7% of the download sets, the experimental policy did not
choose the direct path; these sets are not included in the reference plot. From previous
experiments, we do not expect the removed sets from altering the plot significantly.
However, in the worst case, these removed sets could either compress or expand the
the reference plot by 3.4% at the top and bottom; they would not change the overall

shape or symmetry of the plot.

The significance of the lower portion of the Direct/Ideal plot is that 70% of the
sets showed no benefit from using an alternate path route. In contrast, the upper
portion of the plot reveals that in 30% of the download sets, a download using an
alternate path completed the download in less time than the download which used

the direct path.

34

Figure 5-3 also shows that the direct path download took at least 10% longer than
the ideal path in 24% of sets. In comparison, only 13% of the Direct/Direct ratios
used at least 10% more time than the previous direct download. In 6% of the sets,
the direct path download took more than twice as long than the ideal path download.
On the reference plot, only 4% of the Direct/Direct sets have a ratio of 2 or greater.

The conclusions from Figure 5-3 are that 30% of the download sets could have
benefited by alternate path routing and that those benefits can be distinguished from

the natural variation in the direct path download times.

5.3 Policy Considerations

Data presented in the previous section suggests that using intermediate Internet hops
has the potential to improve download times for cooperating clients. This section
describes a naive policy for choosing intermediate nodes called SYN-Probe and two
reasons why SYN-Probe is impractical for general use.

Previous work in server selection techniques [7, 6] suggests that probing the avail-
able servers and choosing the server with the shortest round trip time is a good
method for deciding which server to download from. It seems reasonable for NA-
TRON to use a similar approach in which it picks the intermediate node that gives
the lowest round trip time to the server. SYN-Probe, a basic version of this idea,
chooses an intermediate node for each new TCP connection. SYN-Probe sends con-
current SYN (TCP connection setup) packets via all available intermediate nodes. It
selects the intermediate node through which it first hears a reply from the server.

There are two problems with SYN-Probe. Round trip time is not always a good
predictor for download time, and it is impractical to send a duplicate SYN for via all

of the nodes in the overlay if the overlay has more than a few members.

5.3.1 Round Trip Time Prediction

The first problem with SYN-Probe is that round trip time is not always strongly

correlated with download time. Figure 5-4 presents the relationship between round

35

One Download Set

e
o

I
&

Direct Download Time - Download time with Shortest RTT (seconds)

-1

0 0.05 0.1 0.15 0.2
Direct RTT - Shortest RTT (seconds)

Figure 5-4: Difference in Round Trip Time vs. Difference in Download Time. Each
point represents a download set. If an alternate path round trip time is shorter than
the direct round trip time by 20ms or more, the alternate path download time is likely
to be shorter as well. If the difference in round trip time is less than 20ms, then the
download time is difficult to predict.

trip time differences and their corresponding download time differences from the above
dataset. Points above the y = 0 line represent sets where the direct download time
was greater than the download performed on the path with the quickest round trip
time. Points below the y = 0 line represent sets where the opposite was true: the
direct path download completed faster than the path with the quickest round trip
time.

The trend of interest in Figure 5-4 is the line with slope two formed by the dense
points. This line begins to drop below the y = 0 line when the difference between the
shortest round trip and the direct round trip drops below 20ms. This drop suggests
that an alternate path round trip time should be at least 20ms lower than the direct

round trip time to justify choosing the alternate path over the direct path.

5.3.2 SYN Flood

An additional problem with the SYN-Probe policy is that it probes all of the available
paths. A practical routing policy cannot probe every path because the server may
experience SYN flooding when many concurrent SYNs are sent at once. Ideally, a
policy should limit the rate at which it sends probes and/or limit the number of

neighbors that it probes.

36

600

T T T T T
Incremental Time Gains

500

400

Time Gain Contribution (seconds)
@
S
3

Intermediate Node

Figure 5-5: Incremental time gains for adding intermediate nodes to client Aros. The
best intermediate nodes 1, 2 and 3 account for 71% of the gains made possible by
alternate paths.

To consider the practicality of limiting the number of SYN probes, we examined
the clients and calculated how much each additional intermediate node would add
to the total time savings of each particular client. Figure 5-5 shows the incremental
time savings each intermediate node would provide for one of our test clients in
Utah named Aros. The left most bar shows the potential time savings provided by
Aros’ best performing intermediate node. Each additional bar to the right shows
how much additional savings neighbor ¢ would provide if used in conjunction with
neighbors 1...; — 1. For Aros, the three best intermediate nodes contributed 71% of
the potential time gains. Further analysis of Aros’ download sets showed that the
direct path would have been ideal in 55% of the download sets, meaning that Aros
could have covered 88% of the ideal paths with only the direct path and its best three
neighbors. This analysis only considers the Aros client, but the results are similar for
the remaining clients.

The high contribution of so few intermediate nodes suggests that a client should
not need to probe all its neighbors when deciding on a intermediate node. Better
performing neighbors should be given more priority when probing alternate paths.
A client’s best three neighbors can be found by running the experiment in 5.1 and

choosing its three highest contributing neighbors.

37

38

Chapter 6

Policy and Performance

This section describes the policy NATRON uses to choose intermediate nodes and
how well NATRON’s policy improves routing performance compared to direct Internet
routing and an ideal policy. We observe that the policy does reap some benefit, but

the gains do not approach those achieved by the ideal policy.

6.1 The NATRON Policy

The NATRON policy is based on the SYN-Probe policy described earlier, but it
addresses the two problems revealed in Section 5.3. It shares the idea of probing
the available paths and picking the path with the shortest round trip time, but it

improves on SYN-Probe using the data presented above.

6.1.1 Reducing SYN Probes

The NATRON policy uses information about its best neighbors to reduce the number
of SYNs it sends out concurrently. NATRON only sends out three concurrent SYNs
at a time, and starts with its three best performing neighbors(defined in Section 5.3.2)
rather than sending a SYN via every neighbor.

One concern in probing three paths at first is that all three paths might be un-

available or under-performing due to network outages or congestion. To address this

39

risk, NATRON cycles through all of the available paths if no acknowledgments are
received.

Another concern in reducing the number of probes is that the fastest path to a
destination is not via one of the best three intermediate nodes. We feel that the risk
is low from our analysis in 5.3.2 and that the impact of excessive probing would make
NATRON impractical. Reducing the number of SYNs is necessary to make NATRON

a viable system.

6.1.2 Delaying SYN Probes

The problem with round trip time prediction is addressed by giving preference to the
direct path when choosing intermediate nodes. An intermediate node is only used
if the round trip time using the intermediate node is much shorter than that of the
direct path. This preference is imposed by giving the SYN on the direct path a head
start. When a client initializes a TCP session, a SYN is sent along the direct path
immediately, but probes are delayed by some time ¢ milliseconds before they are sent
out. The delay time ¢ is chosen as the x intercept in Figure 5-4, marking the minimum
improvement in round trip time that produced an improvement in download time.

The analysis in 5.3.1 led us to use 20ms as our delay time ¢.

6.1.3 Algorithm

The policy is invoked when a client initiates a new TCP session by sending the first
TCP SYN packet. The SYN packet is immediately forwarded along the direct Internet
path to the destination host and a timeout of ¢ milliseconds is scheduled. If at any
time, a SYN-ACK returns to the client, the path it traveled on is chosen to carry out
the session and all other initialized sessions are reset.

After ¢ milliseconds have passed, three SYN probes are then sent out via the best
three neighbors. The best three neighbors are calculated offline using the technique
described in 5.3.2. If no acknowledgment is received and the client retransmits the

SYN, the retransmitted SYN is immediately forwarded along the direct path, and

40

Arbitrary Host

User - Arbitrary Host
NATRON Client(Click)

HTTP Client iE
<—
"] A
A ”'
oy i
’ ;o
[
[

User
NATRON Server(Click)
S o NAT
Kernel Direct TCP'Traffic
= BPF =/ unNAT
ipfw Divert Rule ipfw Divert Rule |< 2
Direct TCP Traffic
[
UDP Tunnel T Translated TCP' Traffic
L= BpF [ipfw Divert Rule] \ BPF T
"
ipfw Divert Rule BpF < Y ipfwDivertRule «+—t—— -V
" 'UDP Tunnel Reply TCP Traffic
NATRON Client NATRON Intermediate Node

Figure 6-1: Illustration of NATRON’s software implementation.

another timeout of ¢ milliseconds is scheduled. If no acknowledgments are received
when the second timeout triggers, NATRON sends three more probes via an arbitrary
three of the remaining nodes. Retransmitted SYNs are handled in this way until a

SYN-ACK is received or the client stops retransmitting SYNs.

6.2 Implementation

The NATRON implementation is designed to facilitate policy design. It is imple-
mented as a custom router configuration for the Click Modular Router [14]. Figure 6-
1 illustrates the traffic flow in our NATRON implementation. Both the client and

the intermediate node runs as a userlevel Click processes on FreeBSD [9] systems.

The architecture is designed to simplify policy development. Implementing most
alternate policies only requires changes to a Click policy element which is written in
C++. The element is given control over all packet interaction between the client and
the destination host and is capable of using any of the available neighbors. All forward
and reverse packets can be observed by the module and the module can utilize all
intermediate hosts for packet indirection. The architecture is flexible and simplifies

policy implementation because the forwarding and NAT machinery is reusable.

41

DivertSocket DivertSocket DivertSocket
Outgoing TCP Incoming TCP Incoming UDP Encap
- - -

| MurkHZHeader | | CheckIIEHeuder || CheckHEHeader |

| SetIPCi:zecksum | | GetIPA:ddress | | GetIPziddress |

ChecklPHeader
GetlPAddress

v
IPClassifier
Neighbor0”

-

StripIPHeader”

IPRewriter
0:(----23)
1:(----01)

l

SetGW

CheckIPHeader"

| GetlPAddress(16)"

v v v
Forward Reply Reply
Direct Inirect’

PolicyRouter

Forward Forward

Reply Direct Indirect”
- -

.

v
| IPFragmenter(1400)" |

EtherEncap

KernelTap

v
| UDPEncap(NeighborOIP)"

SetGW

| SethAdd);(gateway) |

ARP Replies

|
ARPQuerier

<
ToDevice

Figure 6-2: Sample NATRON client node Click configuration. This configuration sup-
ports a single neighbor, Neighbor(. To extend this configuration to support multiple

neighbors, duplicate the starred components.

42

DivertSocket DivertSocket

TCP in UDP TCP in NAT port range
| CheckIPHeader | | CheckIPHeader |
IPClassifier IPReassembler
Neighbor0IP”
| CheckIEHeader |
StripIPHeader”
Strip(8)*
CheckIPHeader"
IPReassembler”

\

v

IPRewriter
0:(pattern NeighborOIP 60000 60499 - - 0 1)
1:drop

/

IPFragmenter(1400)"

UDPEncap”

| SethAddreEs(gateway) |

ARP Replies

ARPQuerier

N
ToDevice

Figure 6-3: Sample NATRON intermediate node Click configuration. This configu-
ration supports a single neihbor, Neighbor(. To extend this configuration to support
multiple neighbors, duplicate the starred components.

43

6.2.1 Client Node

On the client node, a firewall divert rule diverts client TCP traffic into the Click
where packet processing takes place. Figure 6-2 illustrates the Click configuration
on the client node. Outgoing packets are sanity checked and then classified by an
IPRewriter[12]. The IPRewriter patterns ensure that flows originating from the client
are processed by NATRON and that packets originating from other hosts bypass the
NATRON elements. All NATRON traffic passes through the PolicyRouter element.
The PolicyRouter element implements the path choosing policy by sending SYN pack-
ets according to the NATRON policy and by observing returning SYN-ACKSs. The
PolicyRouter selects the intermediate node for each flow and either sends session
packets directly to the destination through a Berkley Packet Filter device, or tunnels
them to a NATRON intermediate node via UDP.

Reply packets come in two forms. For flows using the direct path, TCP packets
return directly to the client. These return packets are taken up by the Incoming TCP
DivertSocket, and enter the PolicyRouter. The PolicyRouter handles SYN-ACKs as
described above; other packets are passed to the operating system through to the
KernelTap element.

For flows using an intermediate node, TCP packets return encapsulated in UDP.
The UDP packets are diverted by a firewall rule and enter Click at the Incoming UDP
Encap DivertSocket. Click strips the IP and UDP headers off the packets and the

PolicyRouter processes them as described in the previous paragraph.

6.2.2 Intermediate Node

The NATRON intermediate node (see Figure 6-3) has a simpler task. It receives
UDP encapsulated packets, removes the UDP/IP header and performs NAT in the
IPRewriter. Translated packets are then emitted on the local network. Reply TCP
packets which match the port range used by IPRewriter are taken by Click via a
divert socket and reverse translated by the IPRewriter. They are then encapsulated

in UDP and sent to the originating NATRON client node.

44

Seconds

L L
Download Time Mean Download Time Stddev

Figure 6-4: Mean and standard deviation of download time in seconds, using the
direct Internet path, NATRON chosen path, and ideal alternate paths. NATRON
improvements are minor compared to potential performance improvements.

"Direct ——
NATRON Policy -
deal -

Fraction of Samples

09 U
0 10 20 30 40 50 60
Download Time (seconds)

Figure 6-5: CDF comparing download times using direct Internet route, NATRON
chosen route and ideal route.

6.3 Policy Performance

To evaluate the NATRON policy, we deployed it on our test network. While col-
lecting the data presented in Section 5.1, we also collected download times using the
NATRON policy router.

The mean and standard deviation for NATRON downloads is presented in Fig-
ure 6-4. The results show that the NATRON policy was able to take advantage of
some performance benefits, but not as much as an ideal policy.

Figure 6-5 presents the CDF of the download times using the NATRON policy
against the CDF for the direct and ideal download times. It is clear from Figure 6-5
that the NATRON policy does not exploit the potential gains from the underlying

overlay network. It does, however, remove a portion of the long and failed downloads.

45

Fraction of Samples

- Direct/Direct y
DirecyNATRON -------
O Direct/ldeal --------

Ratio of Download Times

Figure 6-6: CDF of the ratio of NATRON download time to Direct download time.
The NATRON policy improves download performance in the upper 25% of download
sets.

2.4% of the downloads took longer than 30 seconds to complete using the direct path.
NATRON reduced this fraction to 2.3% which accounts for 25% of the potential
decrease.

Figure 6-6 shows the ratio of the direct path download time to the policy download
time against the ideal policy, and the reference plot. Points to the left of one signify
sets where the policy took more time than the direct path; points to the right show
where the policy downloaded the document faster than the direct path. On the
left hand side, the NATRON plot closely matches the Direct/Direct plot, meaning
that the NATRON did not show more variation than the Internet at large. In the
upper 25% of the graph, the NATRON plot separates from the Direct/Direct plot and
remains between the Direct/Direct plot and the Direct/Ideal plot. The upper 25%
signify that the NATRON policy improved download ratios in roughly 25% of the
download sets, but did not achieve large improvements available to the ideal policy.

Our measurements conclude that NATRON’s current policy for choosing inter-
mediate nodes only achieves a small portion of the potential gains, but it was not
successful at exploiting the full potential of overlay networking. We believe that with
further work, a good policy can be developed to exploit the performance of overlay

routing for oblivious hosts.

46

Chapter 7

Related Work

Labovitz et al. confirmed that BGP does not react to changing network conditions
as quickly as desired. Routing instability and oscillations can occur for minutes at a
time in response to network changes [13]. As a result, link failures, link congestion
and routing anomalies can cause poor performance and low reliability in connections
when using standard Internet routing techniques [15]. NATRON’s goal is to reduce
the symptoms of routing instability by utilizing alternate network paths.

In [18] and [19], Savage et al. examine link quality between sets of 15-39 public
traceroute servers. They analyze the latency and loss rates recorded by the traceroutes
and infer that 30-80% of direct paths had significantly better alternate paths. Our
measurements are unique because they consider network performance from 12 overlay
nodes to more than 600 unique Internet hosts. Furthermore, we have designed a
system to take advantage of the opportunity Savage et al. describe.

Collins describes how to build a system implementing overlay routing in [5], and
analyzes the packet processing overhead incurred by alternate path routing. He goes
on to explain why network address translation should be used where traffic leaves the
overlay and suggests a routing policy based on comparing round trip times. Our work
furthers his. We have designed and implemented a routing policy using measurements
taken on an Internet test-bed, and then evaluated its ability to choose alternate paths
in a deployed system.

Andersen et al. [2, 1, 3] built RON, which exploits routing inefficiency. RON

47

is limited to improving communication within a small group of cooperating hosts.
NATRON allows a similar group of cooperating hosts to exploit the same routing
inefficiency, but is not limited to communicating between participants. NATRON
provides a way for participants to use intermediate Internet hops when communicating
with oblivious destination hosts.

Steinbach [20] chooses between multiple paths by sending probes along each path,
but requires cooperation from the destination host. NATRON differs because it only
needs cooperation from participating hosts. NATRON does not need cooperation
from destination hosts to choose intermediate nodes.

Earlier studies of Internet server selection [7, 6] algorithms show that choices
based on shorter round trip time perform well for choosing among replicated servers.
NATRON differs because it does not select between replicated servers. NATRON
selects between intermediate nodes which control the path a packet travels on to the
destination host.

InterNAP [10] connects directly to backbone providers at sites called P-NAPs.
At P-NAPs, InterNAP routes packets directly to the backbone which services the
packet’s destination host. NATRON differs because it does not necessarily have a
presence in all ISPs and it does not depend on a single sites with connections to
many backbone providers. NATRON also does not need to know which backbone
services a particular IP address to choose intermediate nodes.

X-Bone [21] is a general architecture for deploying and managing overlay networks.

NATRON could use X-Bone as an underlying substrate.

48

Chapter 8

Conclusion

We have described NATRON, a system where an overlay network of hosts can co-
operate to improve routing to arbitrary Internet destinations. The system differs
from previous overlay networks because it allows members to forward traffic through
intermediate nodes on its way to hosts outside the overlay network.

We estimated the potential performance gains a system like NATRON might
achieve. We used a twelve-site geographically diverse test-bed to download docu-
ments from over 600 Internet web servers and compared download times using dif-
ferent nodes as intermediate hops. In our dataset, we found that overlay routing
could have decreased the average transfer time by 18% and reduced the number of
downloads taking longer than 30 seconds by 16%.

We built a working NATRON and designed a path choosing policy. We evaluated
our policy by using it on the same twelve-node test-bed and compared its results to
the potential performance gains. We found that the NATRON policy achieves 22-25%
of the potential, but does not exploit the maximum benefits of the alternate paths.
We believe that with future work, a policy could be designed to exploit more of the

potential gains revealed by our performance measurements.

49

20

Bibliography

1]

2]

3]

[4]

[5]

[6]

[7]

8]

D. Andersen. Resilient overlay networks. Master’s thesis, Massachusetts Institute

of Technology, 2001.

D. Andersen, H. Balakrishnan, M. Kaashoek, and R. Morris. The case for resilient
overlay networks. In Proceedings of the 8th Annual Workshop on Hot Topics in
Operating Systems (HotOSVIII), 2001.

David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris. Re-
silient overlay networks. In Proceedings of the 18th ACM Symposium on Oper-
ating Systems Principles (SOSP), October 2001.

R. Chandra C. Villamizar and R. Govindan. RFC 2439: Bgp route flap damping,
November 1998.

A. Collins. The detour framework for packet rerouting. Master’s thesis, Univer-

sity of Washington, 1998.

Mark Crovella and Robert Carter. Dynamic server selection in the Internet. In
Proceedings of the Third IEEE Workshop on the Architecture and Implementa-
tion of High Performance Communication Subsystems (HPCS ’95), 1995.

Sandra G. Dykes, Kay A. Robbins, and Clinton L. Jeffery. An empirical evalu-
ation of client-side server selection algorithms. In INFOCOM (3), pages 1361
1370, 2000.

K. Egevang and P. Francis. RFC 1631: The ip network address translator (nat),
May 1994.

o1

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

FreeBSD. http://www.freebsd.org.
InterNAP. http://www.internap.com.
IRCache. http://www.ircache.net.

Eddie Kohler, Robert Morris, and Massimiliano Poletto. Modular components for
network address translation. Technical report, MIT LCS Click Project, December
2000. http://www.pdos.lcs.mit.edu/papers/click-rewriter/.

Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam Jahanian. Delayed
internet routing convergence. In SIGCOMM, pages 175-187, 2000.

Robert Morris, Eddie Kohler, John Jannotti, and M. Frans Kaashoek. The click
modular router. In Symposium on Operating Systems Principles, pages 217231,

1999.

Vern Paxson. End-to-end routing behavior in the Internet. IEEE/ACM Trans-
actions on Networking, 5(5):601-615, 1997.

Y. Rekhter and P. Gross. RFC 1772: Application of the Border Gateway Protocol
in the Internet, March 1995.

Y. Rekhter and T. Li. RFC 1771: A Border Gateway Protocol 4 (BGP-4), March
1995.

S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell, A. Collins, E. Hoff-
man, J. Snell, A. Vahdat, G. Voelker, and J. Zahorjan. Detour: a case for
informed internet routing and transport. IEEE Micro, 19(1):50-59, 1998.

Stefan Savage, Andy Collins, Eric Hoffman, John Snell, and Thomas E. Ander-
son. The end-to-end effects of internet path selection. In SIGCOMM, pages
289-299, 1999.

Eckehard G. Steinbach, Yi J. Liang, and Bernd Girod. Packet path
diversity for tcp file transfer and media transport on the internet.

http://wsl.stanford.edu/projects/Retreat /steinbach.pdf.

52

[21] J. Touch and S. Hotz. The x-bone. In Globecom, pages 75-83, 1998.

93

