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Abstract

Distributed Hash Tables (DHTs) are useful tools for building large scale distributed
systems. DHTs provide a hash-table-like interface to applications by routing a
key to its responsible node among the current set of participating nodes. DHT
deployments are characterized by churn, a continuous process of nodes joining
and leaving the network.

Lookup latency is important to applications that use DHTs to locate data. In
order to achieve low latency lookups, each node needs to consume bandwidth to
keep its routing tables up to date under churn. A robust DHT should use band-
width sparingly and avoid overloading the network when the the deployment
scenario deviates from design assumptions. Ultimately, DHT designers are inter-
ested in obtaining best latency lookups using a bounded amount of bandwidth
across a wide range of operating environments. This thesis presents a new DHT
protocol, Accordion, that achieves this goal.

Accordion bounds its overhead traffic according to a user specified bandwidth
budget and chooses a routing table size that minimizes lookup latency, balancing
the need for both low lookup hop-count and low timeout probability. Accordion
employs a unique design for managing routing tables. Nodes acquire new rout-
ing entries opportunistically through application lookup traffic. Large bandwidth
budgets lead to big routing table and low lookup hop-count. Nodes evict entries
that are likely dead based on past statistics of node lifetimes. Short node life-
times lead to high eviction rates and a small routing table with low maintenance
overhead. The routing table size is determined by the equilibrium of the neighbor
acquisition and eviction processes. Accordion’s automatic table size adjustment
allows it to bound its bandwidth use and achieve latencies similar or better than
existing manually tuned protocols across a wide range of operating environments.

Thesis Supervisor: Robert Morris
Title: Associate Professor
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Chapter 1

Introduction

Distributed systems operate in complex and changing environments. System de-
signers strive to build robust systems that work correctly across a wide range
of operating conditions and gracefully degrade their performance in unexpected
environments [26]. One major environmental factor that is the most difficult to
predict in the design stage is the ultimate size of the system. Many systems start
out small but become extremely popular quickly. For example, the Usenet [40]
bulletin board system has sustained nearly exponential growth over the last two
decades [63]. From 1983 to 1984, the number of Usenet sites doubled from 63,000
to 110,000 [1]. A more recent example is the peer-to-peer Internet telephony ser-
vice Skype [3], which grew to have over two million active users in the year and
a half since its introduction in August 2003 [80]. Rapid growth exposes systems
to risks such as network overload since the communication overhead grows with
system size.

The common paradigm of systems design is to assume a certain deployment
scenario and optimize operations for that scenario. As a result, there is often a
spectrum of designs: some that work best with millions of nodes but sacrifice
performance when the system is small, and others that optimize for a small system
but sacrifice robustness when the system grows too large. System builders face the
dilemma of choosing one design from the spectrum, sacrificing either performance
or scalability.

Given the unpredictable nature of system growth, an ideal design would not
force system builders to assume a certain deployment environment a priori. The
system would automatically adapt itself to achieve the best performance when
its size is small but should scale to millions of nodes without overloading the
network. This thesis investigates how one can design and build such an adaptive
system in the context of one type of distributed protocol, the Distributed Hash
Table (DHT), that is widely used to build peer-to-peer applications.

Peer-to-peer networks are a distributed system design in which nodes self-
organize into an overlay network and communicate with each other without spe-
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Public infrastructure distributed storage DHash [18],
service OceanStore [44]

content distribution network Coral [22]
domain name server CoDoNS [64]
distributed digital library OverCite [78,79]
cooperative Usenet service UsenetDHT [75]
decentralized web cache Squirrel [37]

Enterprise serverless email service ePost [60]
application cooperative backup Backup [14,74]

distributed file system CFS [17], PAST [73]
Internet identity based Internet routing UIP [21]
architecture delegation oriented architecture DOA [85]

reference resolution SFR [84]
Internet indirection service I3 [76]

Table 1.1: Some examples of peer-to-peer applications that use a Distributed Hash
Table to locate data or resource among the participating nodes.

cially designated servers. When more peer nodes join the system, they contribute
more network and storage resources, increasing the aggregate system capacity. As
a result, peer-to-peer applications can potentially scale to many millions of nodes
quickly as there is no need to invest in more powerful server infrastructure as
the system grows. Examples of commercial peer-to-peer applications include file
sharing applications such as Gnutella [32], Kazaa [28] and BitTorrent [8], and
Internet telephony applications such as Skype [3].

A major challenge in peer-to-peer systems is the problem of efficiently locating
data or resources among the numerous participating nodes. Distributed Hash Ta-
bles (DHTs) organize the peer-to-peer network in a structured manner to provide
a hash-table-like lookup interface [19]. DHTs allow distributed applications to
store and locate data items among a large number of participating nodes. DHTs’
simple and useful interface makes them a powerful building block for peer-to-peer
applications. Table 1 lists a subset of recently developed research applications that
are built on top of a DHT. These applications range from public infrastructure ser-
vices such as distributed storage infrastructure and content distribution networks,
to enterprise applications like email and backup, to novel Internet architectures
such as identity based Internet routing.

Given the wide-spread use of DHTs in peer-to-peer applications, it is impor-
tant that the DHTs themselves are robust and work well across a wide range of
deployment scenarios. In order to be robust against rapid network growth or
surges in failures, DHTs must bound their communication overhead within the
network capacity. This thesis provides a fundamental understanding of the design
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tradeoffs of DHTs and develops Accordion, a robust DHT that can adapt itself to
offer best performance across a wide range of operating conditions with bounded
bandwidth consumption.

1.1 DHT background

A DHT lookup protocol aims to consistently route any arbitrary key, typically
through multiple intermediate nodes, to the node responsible for the key. Figure 1-
1 shows the overall architecture of DHT-based applications. The DHT lookup
protocol runs on all participating nodes in the system. A DHT-based application
queries the underlying DHT service using a lookup key from a flat identifier space.
The DHT nodes cooperate to route the query to the node responsible for the
lookup key who replies to the query originator with its IP address. The querying
node can then publish the data item associated with the key at the responsible
node. Subsequently, any node that knows the key can retrieve the data by routing
to the same responsible node.

Figure 1-1: Applications use distributed hash tables (DHTs) to route any key to its
responsible node among the current set of participating nodes. Data producers in the
distributed applications publish data items associated with a known key at the responsible
node. Consumers route lookups to the responsible node to retrieve the published data
with the same lookup key.

Each DHT node has a unique node key (or node identifier) and all nodes in the
system self-organize into an overlay network. An overlay is a network that runs on
top of the Internet where a link between two nodes corresponds to an underlying
Internet path connecting them. In order to make forwarding decisions, each DHT

13



(a) (b)

Figure 1-2: An example of DHT routing with a Plaxton tree routing geometry. In this
example, each DHT node maintains a routing table that contains log(n) neighbors, one
for each possible prefix of length k (k = 0...log(n)) of the node’s own identifier. A solid
arrow linking two nodes (e.g.010 → 100) shows that node 010 contains a routing entry
for node 100. The routing tables of all nodes form a Plaxton tree in the identifier space.
The graph omits certain links for clarity and only includes those necessary to route any
key from node 010. The lookup path for key 111 is shown as dotted links with arrows.
Lookups are routed through multiple intermediate nodes based on the routing tables,
each hop matching one more prefix digit with the lookup key, to reach the node whose
identifier is the same as the key. Figure (a) shows the logical view of the DHT overlay
and Figure (b) is the corresponding physical view of how lookups might be routed in the
underlying Internet.
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node keeps a routing table that contains the identities of some other nodes in the
system. If node x appears in node y’s routing table, we refer to x as y’s neighbor.
Typically, a node forwards a lookup to the neighbor that allows the lookup key
to make the most progress in the identifier space based on the neighbor’s node
identifier. For example, in some DHT protocols, a lookup message is forwarded
to the neighbor whose node identifier has the most number of matching prefix
digits with the key.

If we view the overlay network formed by all routing tables as a static graph,
a desirable property is for the graph to have a low diameter so all lookups can
finish with few hops. Existing DHTs base their routing structures on a variety
of inter-connection graphs such as the Plaxton tree [88], Butterfly networks [56],
de Bruijn graph [39], hypercube [66] etc. Figure 1-2(a) shows a logical view of
the connections between some nodes which form a Plaxton tree in the identifier
space. Each node’s routing table has log(n) entries and each lookup can be routed
to its responsible node in log(n) hops, each hop’s node identifier matching one
more digit of the lookup key. Figure 1-2(b) shows the corresponding geographic
layout of nodes in the underlying Internet. Nodes close to each other in identifier
space might be far apart geographically. Therefore, even though lookups finish in
only log(n) hops, each hop may take as long as the average roundtrip time on the
Internet.

The latency of a DHT lookup is the time taken to route a message to the
responsible node for the key and receive a reply back. Low lookup latency is
crucial for building fast DHT-based applications. For example, a UsenetDHT [75]
node issues DHT lookups to locate articles stored among many hundreds of nodes
distributed over the Internet. The faster DHT lookups can be resolved, the smaller
the overall read latency of Usenet articles are. Most existing work on optimizing
DHT performance focuses on achieving low latency in static networks. In static
networks, lookup latency is determined by the number of lookup hops and the
underlying network delay incurred at each hop. Two common strategies are in
use to reduce lookup latency; proximity routing and large routing tables. With
proximity routing, a node chooses each of its neighbors to be the one with the
lowest network delay among a set of qualified nodes. The actual network delay
of each hop is reduced even though the number of hops remains the same. An
alternative is to increase the per-node routing table size. Intuitively, the more
neighbors each node knows about, the fewer hops are required during lookups.
For example, each Kelips [34] node has a routing table with O(

√
n) table entries

and can finish any lookup in 2 hops. In the extreme, each OneHop [33] node
knows all participating nodes in the system and routes a lookup to its responsible
node in 1 hop, the lowest achievable static lookup latency. However, these low
latencies only apply in a static network when there are no nodes joining or leaving.
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Figure 1-3: Existing DHTs have a fixed routing table size vs. lookup hopcount tradeoffs.
n is the total number of nodes in the system. Different DHTs differ mainly on their
underlying routing geometry.

1.2 DHT lookups under churn

Real peer-to-peer systems experience churn: nodes continuously join and leave the
system. Studies of file sharing networks [65] [32] observe that the median time
a node stays in the system is on the order of tens of minutes to an hour. Churn
poses two problems for DHT routing. First, it causes routing tables to become
out of date and to contain stale entries that point to neighbors that are dead or
have already left the system. Stale entries result in expensive lookup timeouts as
it takes multiple round-trip time for a node to detect a lost lookup message and
re-route it through a different neighbor. In static networks, the number of lookup
hops and the network delay at each hop determine the end-to-end lookup latency.
Under churn, timeouts dominate latency. Second, as new nodes join the system
and stale routing entries are deleted, nodes need a way to replenish their routing
tables with new entries.

There are many ways to reduce lookup timeouts and bring routing tables
close to their ideal state under churn. All techniques to cope with churn incur
communication costs in order to evaluate the liveness of existing neighbors and
learn about new neighbors. Intuitively, bandwidth consumption increases with
the size of a DHT’s routing table and the churn rate in the network.

One common cause for a distributed system to break down under rapid growth
is when the communication overhead overloads the underlying network to the
point of collapse. Examples of such collapse include the wellknown 1986 Internet
congestion collapse [38]. Recently, Rhea et. al. [68] have found that certain mech-
anisms of reacting to failures cause some DHTs to overload the network, albeit
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temporarily, with protocol messages and suffer from drastic performance degrada-
tion as a result. In order to be robust in scenarios when the networks and failures
increase quickly, DHTs must bound their bandwidth use to avoid overloading the
network. Furthermore, DHTs should optimize the lookup performance using the
bounded bandwidth, adapting to the current deployment environment.

The DHTs proposed in the literature all have a fixed routing table size versus
lookup hopcount tradeoff. Figure 1-3 shows the existing DHTs along a spectrum
of per-node routing table sizes. As a result, existing DHTs are optimized for a
certain deployment scenario. If the available bandwidth is plentiful relative to
the churn and size of the network, applications should use protocols with large
routing tables like OneHop for best achievable lookup latency. However, to avoid
overloading the network when the system grows to millions of nodes or suffers
from large degrees of churn, the total bandwidth consumption of the system can
not exceed the underlying network’s capacity. As a result, applications might
prefer protocols with logarithmic routing tables like Chord [77] or Tapestry [88]
for scalable performance.

The ideal DHT protocol should be able to adapt its routing table size to provide
the best performance using bounded communication overhead. In addition to
deciding on the best table size, a DHT should choose the most efficient way of
spending bandwidth to keep routing tables up to date under churn. For example,
a node could periodically ping each routing entry to check its liveness and search
for a replacement entry if an existing neighbor is found to be dead. Chord and
Pastry [72] rely on periodic liveness checking. Intuitively, the faster a node pings,
the less likely it is that lookups will encounter timeouts. However, periodic pinging
generates overhead messages. The more a node pings, the less bandwidth it has
for other uses. For example, to reduce lookup timeouts, a node can issue parallel
lookup messages to multiple next hop nodes so that one copy of the lookup can
make progress even if another is waiting in timeout. The more parallel lookups a
node issues, the less likely it is that lookups will be affected by timeouts. Again,
redundant parallel lookup messages result in communication overhead. In fact,
all techniques to cope with churn require extra communication bandwidth. In
other words, churn is a challenge because nodes can only use a finite amount of
bandwidth resource. Therefore, the goal of a DHT is not to simply achieve low
lookup latency under churn, but to achieve low latency efficiently with bounded
bandwidth overhead. In other words, we are interested in the latency reduction
per byte of communication overhead, also referred to as a DHT’s latency versus
bandwidth tradeoff.
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1.3 Evaluating DHT designs with PVC

In order to design a DHT with best lookup latency while consuming only a
bounded amount of bandwidth, we need to understand how to efficiently keep
routing tables up to date under churn. This thesis develops PVC, a performance vs.
cost framework, that helps DHT designers evaluate and compare the efficiencies
of different DHTs and design choices. A example of a question that PVC can
help answer is whether periodic pinging to check routing entry liveness is a more
efficient use of bandwidth than sending parallel lookups.

The main issue that complicates evaluation is the presence of a large number
of protocol parameters. A straightforward (but wrong) approach is to first run a
DHT with default parameters and record its bandwidth consumption and lookup
latency, and then to perform two other experiments: one experiment with nodes
issuing more parallel lookups and the other with nodes pinging neighbors more
often. It is tempting to conclude that periodic pinging is more efficient than parallel
lookups if the second experiment yields more latency reduction per each extra
byte of communication overhead. This approach is incorrect because different
conclusions might be reached with different initial choices of parameter values. A
key challenge is to eliminate differences due solely to parameter choices, so that
remaining performance differences reflect fundamental design choices rather than
accidental parameter settings.

PVC systematically explores the entire parameter space for a given DHT and
plots a family of latency vs. bandwidth tradeoff points, one for each unique
parameter setting. The best latency vs. bandwidth tradeoff is not unique: there
is a lowest potential lookup latency for each bandwidth consumption. The set
of best latency vs. bandwidth tradeoffs can be characterized by a curve. PVC
extrapolates the best tradeoff curve by computing the overall convex hull segment
that lies beneath all tradeoff points. The convex hull segment reveals a DHT’s
bandwidth efficiency; for any bandwidth consumption x, the corresponding point
on the convex hull shows the minimal lookup latency y found after exhaustively
exploring a DHT’s parameter space. To compare the efficiencies of different DHTs,
one needs to examine the relative positions of their corresponding convex hulls. If
one convex hull lies completely beneath the other, its corresponding DHT is more
efficient. If two convex hulls cross, one DHT is more efficient than the other when
limited to low bandwidth use while the other is more efficient if allowed high
bandwidth use. In addition to evaluating the efficiencies of entire DHT protocols,
PVC can also help DHT designers compare different design choices within a DHT.
For example, DHT designers can use PVC to analyze whether parallel lookup uses
bandwidth more efficiently than periodic pinging or vice versa.
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1.4 Accordion

Accordion is a new DHT protocol that bounds its communication overhead ac-
cording to a user-specified bandwidth budget and automatically adapts itself to
achieve the best lookup latency across a wide range of operating environments.
Because Accordion bounds its overhead to avoid overloading the network, it is
robust against rapid system growth or unexpectedly high levels of churn.

Accordion’s design draws on insights gained from applying PVC analysis to
evaluate the efficiencies of existing DHTs and their churn handling techniques.
Instead of using a fixed routing table size, Accordion dynamically tunes its table
size to achieve the best lookup performance. It maintains a large routing table for
best lookup performance when the system is small and relatively stable. When the
system grows too large or suffers from high churn, Accordion shrinks its routing
table for lower communication overhead.

The problems that Accordion must solve in order to tune itself are how to arrive
at the best routing table size in light of the budget and the stability of the node
population, how to choose the most effective neighbors to place in the routing
table, and how to divide the maintenance budget between acquiring new neighbors
and checking the liveness of existing neighbors. Accordion solves these problems
in a unique way. Unlike other protocols, it is not based on a rigid data structure
such as a de Bruijn graph or hypercube that constrains the number and choice of
neighbors. Instead, each node learns of new neighbors as a side-effect of ordinary
lookups, but biases the learning so that the density of its neighbors is inversely
proportional to their distance in ID space from the node. This distribution allows
Accordion to vary the table size along a continuum while still providing the same
worst-case guarantees as traditional O(logn)-hop lookup protocols.

A node’s bandwidth budget determines the rate at which a node learns. Bigger
bandwidth budgets lead to bigger routing tables. Each Accordion node limits
its routing table size by evicting neighbors that it judges likely to have failed. It
preferentially retains those neighbors that either have been up for a long time or
have recently been heard from. Therefore, high churn leads to a high eviction
rate. The equilibrium between the learning and eviction processes determines the
table size. Compared to existing DHTs, Accordion requires no manual parameter
settings. It automatically provides the best lookup performance in a robust way,
eliminating the danger of overloading the network as the deployment environment
changes.

Performance evaluations show that Accordion keeps its maintenance traffic
within the budget over a wide range of operating conditions. When bandwidth is
plentiful, Accordion provides lookup latencies and maintenance overhead similar
to that of OneHop [33]. When bandwidth is scarce, Accordion has lower lookup
latency and less maintenance overhead than Chord [18, 77], even when Chord
incorporates proximity and has been tuned for the specific workload.
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1.5 Contributions

The contributions of this thesis are:

� A framework for understanding the relationship between communication
costs incurred by DHTs and the resulting performance benefits.

� A packet-level simulator, p2psim [2], that implements a wide variety of pop-
ular DHTs including their performance optimization features under churn.

� A comparative performance study of a variety of different DHTs and an
evaluation of the relative efficiencies of different design choices techniques.
Some of the main findings include:

1. A node should expand its routing table to efficiently use extra band-
width.

2. Parallelizing lookups is more efficient than periodic pinging of routing
tables at reducing the effects of timeouts.

3. Learning opportunistically from lookup traffic is the most efficient way
of acquiring new routing entries.

4. A node should bound the staleness of its routing entries to reduce
lookup timeouts.

� A new DHT protocol, Accordion, which is built on the insights gained
from our performance study of existing designs. Accordion is the first DHT
protocol that achieves all of the following properties:

1. bounded bandwidth overhead.

2. elimination of manual tuning of parameters.

3. automatic adaptation to churn and workload.

4. use of systematic efficiency analysis in the protocol design.

� A working implementation of Accordion and an evaluation of the imple-
mentation using wide area network emulations.

Apart from the above technical contributions, this thesis presents a different style
of designing distributed protocols. We argue that a distributed protocol should
be conscious of its communication overhead in order to stay robust across a wide
range of operating environments. We demonstrate how to design such a cost
aware DHT that uses the bandwidth resource sparingly and efficiently.
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1.6 Thesis Organization

The thesis is organized as follows: the first chapter describes the motivation and
goal of the thesis. Chapter 2 introduces the PVC evaluation framework and
explains how PVC explores the parameter space to find a DHT’s latency vs. band-
width tradeoff and compare the efficiencies of different design choices. Chapter 3
and 4 provide an extensive simulation study of existing DHT protocols using
PVC. We simulate five well-known protocols (Tapestry, Chord, Kelips, Kademlia
and OneHop) in p2psim. We use PVC to evaluate how efficiently different design
choices use additional bandwidth for better lookup performance.

Chapter 5 and 6 describe the design and implementation of the Accordion
lookup protocol. We explain the design principles of Accordion’s routing table
maintenance algorithm followed by the actual protocol details. We also present an
C++ implementation of Accordion that is integrated in the DHash [18] distributed
hash table software distribution. Chapter 7 evaluates Accordion and compares it
to existing DHTs both in simulation and with real implementations.

Chapter 8 summarizes related work and Chapter 9 concludes.
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Chapter 2

The PVC Framework

In order to design a DHT with best lookup performance, we need to understand
how to use a bounded amount of bandwidth most efficiently. The efficiency of a
DHT measures its ability to turn each extra byte of maintenance communication
into reduced lookup latency. How does one evaluate and compare the efficiencies
of different existing DHTs? Which churn-handling technique offers the most
efficient use of bandwidth? This chapter develops a performance vs. cost analysis
framework (PVC) that helps DHT designers answer these questions.

2.1 Challenges

Two challenges exist in evaluating DHT lookup protocols. First, most protocols
can be tuned to have low lookup latency by including features such as aggressive
membership maintenance, faster routing table liveness checking, parallel lookups,
or a more thorough exploration of the network to find low delay neighbors. Any
evaluation that examines how a DHT performs along one dimension of either cost
(in terms of bandwidth consumed) or performance (in terms of lookup latency) is
flawed, since a DHT can “cheat” by performing extremely well on the axis being
measured but terribly on the other. Thus a comparison of DHT lookup proto-
cols must consider their performance and cost simultaneously, i.e. the efficiency
with which they exploit bandwidth to reduce latency. A DHT’s efficiency can be
characterized by a performance vs. cost tradeoff curve: at any given bandwidth,
there is one best achievable latency. However, the efficiency of a DHT cannot be
measured by a single number summarizing the ratio between a protocol’s band-
width consumption and its lookup latency, as the tradeoffs between performance
and cost does not necessary follow a linear relationship. Nevertheless, one wants
to be able to compare the efficiency of one protocol to another.

The second challenge is to cope with each protocol’s set of tunable parameters
(e.g., liveness checking interval, lookup parallelism etc.). The best parameter
values for a given workload are often hard to predict, so there is a danger that a
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performance evaluation might reflect the evaluator’s parameter choices more than
it reflects the underlying algorithm. In addition, parameters often correspond to
a given protocol feature. A good framework should allow designers to judge the
extent to which each parameter (and thus each feature) contributes to a DHT’s
overall bandwidth efficiency.

2.2 The PVC Approach

In response to these two challenges, we propose PVC, a performance vs. cost
framework and evaluation methodology for assessing DHT lookup protocols,
comparing different design choices and evaluating new features. The PVC tech-
niques are general enough to be used in all types of DHT evaluations. However,
as the analysis often involves many hundreds or even thousands of different ex-
periments in exploring a DHT’s parameter space, it is much more convenient to
evaluate DHTs using packet-level simulations.

PVC uses the average number of bytes sent per node per unit time as the cost
metric. This cost accounts for all messages sent by a node, including periodic
routing table pinging traffic, lookup traffic, and node join messages. PVC ignores
routing table storage costs because communication is typically far more expensive
than storage. The main cost of routing state is often the communication cost
necessary to keep the state up to date under churn.

PVC uses two metrics to characterize a DHT’s performance: the average la-
tency of successful lookups and percentage of failed lookups. PVC only incor-
porates lookup hop-count indirectly, to the extent that it contributes to latency.
Thus, our evaluations can easily incorporate latency optimization techniques like
proximity neighbor selection (PNS [29]) where nodes preferentially choose low
delay nodes as neighbors. Similarly, PVC does not explicitly account for lookup
timeouts. Timeouts contribute to increased lookup latency as it requires multiples
of roundtrip time for a node to detect a lost lookup packet sent to a dead neighbor.

2.2.1 Overall Convex Hulls

How to extract a DHT’s performance vs. cost tradeoff curve while avoiding the
danger of arbitrary parameter settings? How does one compare different DHTs?

PVC systematically simulates a DHT with different combinations of parameter
values. For each parameter combination, PVC plots the performance and cost
measured from the experiment on a graph with total bandwidth usage on the
x-axis and average lookup latency or failure rate on the y-axis. For example, in
Figure 2-1, each of the many hundred points corresponds to a different parameter
combination for Kelips under a particular workload. A point that lies to the lower
left of another point is more efficient as its corresponding parameter combination
results in both lower lookup latency and lower bandwidth consumption.
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Figure 2-1: The best performance vs. cost tradeoffs in Kelips under a specific workload.
Each point represents the average lookup latency of successful lookups vs. the commu-
nication cost achieved for a unique set of parameter values. The convex hull (solid line)
represents the best achievable performance/cost combinations.

To characterize the efficiency of a DHT, we need to find the best set of perfor-
mance vs. cost tradeoff points that correspond to the optimal parameter settings.
As can be seen in Figure 2-1, there is no single best performance vs. cost tradeoff
point. Instead, there is a set of best points: for each cost, there is a smallest achiev-
able lookup latency, and for each lookup latency, there is a smallest achievable
communication cost. The curve connecting these best points is the overall convex
hull segment (shown by the solid line in Figure 2-1) that lies beneath and to the
left of all points. A convex hull segment always goes up to the left of the graph
as bandwidth decreases. This means that there is no parameter combination that
simultaneously produces both low latency and low bandwidth consumption. Fig-
ure 2-1 also shows that the ratio of latency to bandwidth does remain constant but
decreases as bandwidth increases. Therefore, we cannot use a single ratio value,
but have to resort to the entire overall convex hull, to represent the efficiency of a
DHT.

The relative positions of overall convex hulls can be used to compare different
DHTs. A convex hull segment that lies to the lower left of another segment
corresponds to a more efficient DHT as it achieves lower latency at any given
bandwidth. In the example shown in Figure 2-2, one can conclude that Kelips is
more efficient than Kademlia since Kelips’ convex hull segment lies beneath the
overall hull of Kademlia.

The convex hull in Figure 2-1 and Figure 2-2 only outlines the most efficient
parameter combinations found by PVC. It is possible that better combinations
exist but that PVC fails to find them. In addition, the convex hull in Figure 2-1
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Figure 2-2: The overall convex hulls of Kelips and Kademlia under a specific workload.
Kelips is more bandwidth efficient thatn Kademlia as its overall convex hull lies to the
lower left of that of Kademlia’s.

is only for a specific workload and churn scenario being simulated. The best
parameter values (thus the overall convex hulls) might change as workloads or the
churn rates change. Therefore, the convex hull only outlines a DHT’s maximal
efficiency in theory. A DHT operator would have to adjust the protocol parameters
manually under known workload and churn scenario in the absence of a self-tuning
protocol [10,71].

2.2.2 Parameter Convex Hulls

Figure 2-1 shows the combined effect of many parameters. What are the actual
parameter values that correspond to points on the convex hull? How sensitive
is the overall convex hull to the different values of each parameter? In other
words, how important is it to tune each parameter to achieve the best efficiency?
To answer these questions, we calculate a set of parameter convex hulls, one for
each value of the parameter under study. Each parameter convex hull is generated
by fixing the parameter of interest and varying all others. Each parameter hull
represents the best possible performance vs. cost tradeoffs for a fixed parameter
value.

Figure 2-3 and Figure 2-4 present two sets of parameter convex hulls for two
different parameters, each compared with the overall convex hull. Each parameter
convex hull in Figure 2-3 shows the best latency vs. bandwidth tradeoffs found
by fixing param1 to a specific value while exploring all other parameters. The
parameter convex hull for param1 = 32 matches the overall convex hull well
which means that param1 has a single best value for this workload and does not
need to be tuned. In comparison, among the set of parameter convex hulls in
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Figure 2-3: Overall convex hull and the parameter convex hulls for two values of param1.
Parameter hulls for other values of param1 are omitted for clarity. Overall convex hull
always lies to the bottom left of all parameter hulls, however, it is well approximated by
the parameter convex hull for param1 = 32.

Figure 2-4 for param2, no one parameter hull lies entirely along the overall hull;
rather, the overall hull is made up of segments from different parameter hulls.
This suggests that param2 should be tuned to different values depending on the
desired latency or bandwidth consumption.

Figure 2-3 and Figure 2-4 show how to use the positions of parameter convex
hulls relative to the overall convex hull to find the relative “importance” of a
parameter visually: is it necessary to tune the parameter to different values in
order to achieve the maximal efficiency as outlined by the overall convex hull?
To automate the above visual process to identify relative parameter importance,
we calculate the area between the parameter’s hulls and the overall convex hull
over a fixed range of the x-axis (the cost range of interest). Figure 2-5 shows an
example. The smaller the area, the more closely a parameter hull approximates
the best overall hull. The minimum area over all of a parameter’s values indicates
how important it is to tune the parameter. The bigger the minimum area, the
more important the parameter since there is a larger potential for inefficiency by
setting the parameter to a single value. Figure 2-3 corresponds to a parameter
with nearly zero minimum area, while Figure 2-4 shows a parameter with a large
minimum area. Hence, it is relatively more important to tune the latter.

There is a relationship between this notion of parameter importance and the
efficiency of DHT mechanisms. Suppose that an important parameter affects how
much network bandwidth a particular DHT mechanism consumes; for example,
the parameter might control how often a DHT pings its routing table entries.
If more network capacity becomes available, then any re-tuning of the DHT’s
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Figure 2-4: Overall convex hull and the parameter convex hulls for two values of param2.
Parameter hulls for other values of param2 are omitted for clarity. Unlike Figure 2-3, the
overall convex hull cannot be approximated well by any of the parameter convex hulls.
Rather, different parameter hulls make up for different portions of the overall convex hull.

parameters to make best use of the new capacity will likely require tuning this
important parameter. That is, important parameters have the most effect on the
DHT’s ability to use extra communication bandwidth to achieve low latency, and
in that sense important parameters correspond to efficient DHT mechanisms.
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Chapter 3

Evaluation Methods

We use simulations to study the bandwidth efficiencies of existing DHT lookup
protocols. As part of the thesis, we developed p2psim, a discrete-event packet-
level simulator. We choose to study five existing DHTs: Tapestry [88], Chord [77],
Kelips [34], Kademlia [58] and OneHop [33]. Together, these protocols cover a
wide range of design choices such as a directed identifier space, parallel lookups,
pro-active flooding of membership changes, periodic pinging of routing entries
and a spectrum of routing table sizes ranging from O(log n), to O(

√
n), to O(n).

This chapter provides an overview of different DHT lookup protocols, identifying
the protocol parameters and relating them to the different design choices. We also
describe the p2psim software and experimental setup for the performance study
in Chapter 4.

3.1 Protocol Overview

A DHT lookup protocol aims to route lookups to the node responsible for the
desired key. We are only concerned about lookups, ignoring the actual data fetch
from the responsible node. In this section, we describe the five DHTs as they
are implemented in p2psim. For each DHT, we explicitly identify the protocol
parameters and list the range of parameter values explored by the simulation
experiments.

� Tapestry

The ID space in Tapestry is structured as a Plaxton tree. A Tapestry node
ID can be viewed as a sequence of l base-b digits. The node with the maximum
number of matching prefix digits with the lookup key is responsible for the key.

A Tapestry node’s routing table contains approximately logb(n) levels, each
with b distinct ID prefixes. Routing entries in the mth level share a prefix of length
m− 1 digits with the node’s own identifier, but differ in the mth digit. Each entry
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Parameter Range
Base b 2 – 128
Stabilization interval tstab 18 sec – 19 min
Number of backup nodes nredun 1 – 8
Number of nodes contacted nrepair 1 – 10
during repair

Table 3.1: Tapestry parameters

may contain up to nredun nodes, sorted by network delay. The most proximate of
these nodes is the entry’s primary neighbor; the others serve as backup neighbors.
Tapestry also uses a nearest neighbor algorithm [36] to populate its routing table
entries with physically nearby nodes.

Nodes forward a lookup by resolving successive digits in the lookup key (prefix-
based routing). When no more digits can be resolved, an algorithm known as
surrogate routing determines exactly which node is responsible for the key [88].
Routing in Tapestry is recursive: each intermediate node is in charge of forwarding
a lookup to the next hop, retransmitting lost lookups if necessary. A lookup
terminates at its responsible node who directly replies to the lookup originator
with its own identity.

In a static network, each base-b Tapestry node has a routing table of (b − 1) ·
logb(n) · nredun entries and can finish any lookup in O(logb n) hops.

For lookups to be correct, at least one neighbor in each routing prefix must
be alive. Tapestry’s stabilization process pings each primary neighbor every tstab

seconds. If the node is found to be dead, the next closest backup in that entry (if
one exists) becomes the primary. When a node declares a primary neighbor dead,
it contacts some number of other neighbors (nrepair) asking for a replacement.
Table 3.1 lists the Tapestry parameters varied in our simulations.

�
Chord

Chord structures its identifier space as a clockwise circle. The node responsible
for a key y is its successor (i.e., the first node whose ID is equal to y, or follows
y in the ID space) using consistent hashing [41]. In Chord, a lookup for a key
terminates at the key’s predecessor, the node whose ID most closely precedes the
key. The predecessor returns the identity of the key’s successor to the originator
node.

A Chord node keeps two types of neighbors: successors and fingers. Each
node keeps nsucc successors that immediately follow a node’s own identifier on the
ring. A node also keeps fingers whose IDs lie at exponentially increasing fractions
of the ID space away from itself. Chord uses the Proximity Neighbor Selection
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Parameter Range
Base b 2 – 128
Finger stabilization interval tfinger 18 sec – 19 min
Number of successors nsucc 8,16,32
Successor stabilization interval tsucc 18 sec – 4.8 min

Table 3.2: Chord parameters

(PNS) method discussed in [18, 29, 72]. To obtain each ith PNS finger, a node
looks up the node with ID ( b−1

b
)i+1 away from itself to retrieve its successor list

and chooses the neighbor with the lowest network delay to itself as the ith PNS
finger. Chord can route either iteratively or recursively [77]; this thesis presents
results for the latter.

In a static network, each base-b Chord node has a routing table of (b−1)·logb(n)
fingers and nsucc successors and can resolve all lookups in O(logb n) hops.

A Chord node stabilizes its successors and fingers separately. Each node peri-
odically (tsucc seconds) retrieves its immediate successor’s successor list and merges
with its own. As a separate process, each node also pings all fingers every tfinger

seconds. For each finger found dead, the node issues a lookup to find a replacement
PNS finger. Table 3.2 lists the Chord parameters that we vary in our simulations.

� Kelips

Kelips divides the identifier space into g ≈ √n groups. A node’s group is its
ID modulo g. Each node’s routing table contains an entry for each other node
in its own group, and ncontact “contact” nodes from each of the foreign groups.
Kelips does not define an explicit mapping of a given lookup key to its responsible
node. Instead, Kelips replicates key/value pairs among all nodes within a key’s
group. Lookups that have values stored under the keys terminate when it reaches
a node storing the corresponding key/value pair. However, since there is no
responsible node for a key, lookups for non-existent keys have higher latency
as they cannot terminate properly. For this reason, the variant of Kelips in this
thesis defines lookups only for IDs of node that are currently in the network. The
originating node executes a lookup by asking a contact in the lookup key’s group
for the identity of the node whose identifier matches the key, and then (iteratively)
contacting that node. If that fails, the originator tries routing the lookup through
other contacts for that group, and then through randomly chosen routing table
entries.

In a static network, a Kelips node’s routing table contains
√

n+ncontact ·(
√

n−1)
neighbors and can finish all lookups within two hops.

Nodes gossip periodically every tgossip seconds. A node chooses one random
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Parameter Range
Gossip interval tgossip 10 sec – 19 min
Group ration rgroup 8, 16, 32
Contact ration rcontact 8, 16, 32
Contacts per group ncontact 2, 8, 16, 32
Routing entry timeout tout 6, 18, 30 min

Table 3.3: Kelips parameters

Parameter Range
Nodes per entry k 2 – 32
Parallel lookups α 1 – 32
Number of IDs returned ntell 2 – 32
Stabilization interval tstab 4 – 19 min

Table 3.4: Kademlia parameters

contact and one neighbor within the same group to send a random list of rgroup

neighbors from its own group and rcontact contact nodes. Routing table entries
that have not been refreshed for tout seconds expire. Nodes learn round trip times
(RTTs) and liveness information from each RPC, and preferentially route lookups
through low RTT contacts. Table 3.3 lists the parameters we use for Kelips. We
use g =

√
1024 = 32 in our Kelips simulations using a network of 1024 nodes.

� Kademlia

Kademlia structures its ID space as a tree. The distance between two keys in
ID space is their exclusive or, interpreted as an integer. The k nodes whose IDs
are closest to a key y store a replica of of the key/value pair for y. Each node has
log2 n routing buckets that each stores up to k node IDs sharing the same binary
prefix of a certain length.

In a static network, each Kademlia node has a routing table containing log2(n)·
k entries and can resolve all lookups in O(log2 n) hops.

Kademlia performs iterative lookups: a node x starts a lookup for key y by
sending parallel lookup RPCs to the α neighbors in x’s routing table whose IDs
are closest to y. A node replies to a lookup RPC by sending back a list of the
ntell entries that are closest to y in ID space from its routing table. With each
lookup RPC, a node learns RTT information for existing neighbors or previously
unknown nodes to be stored in its routing bucket. The lookup originator x always
tries to keep α outstanding RPCs. A lookup terminates when a replica replies with

34



Parameter Range
Slices nslices 3,5,8
Units nunits 3,5,8
Ping/Aggregation interval tstab 4 sec – 64 sec

Table 3.5: OneHop parameters

the value for key y, or until the last k nodes whose IDs are closest to y did not
return any new node ID closer to y. Like Kelips, Kademlia also does not have an
explicit mapping of a key to its responsible node, therefore terminating lookups
for non-existent keys requires extra communication with the last k nodes. For
this reason, we also use node IDs as lookup keys in Kademlia experiments and the
last step in a lookup is an RPC to the target node. Our Kademlia implementation
favors communication with proximate nodes.

A node periodically (tstab) examines all routing buckets and performs a lookup
for each bucket’s binary prefix if there has not been a lookup through it since the
past tstab seconds. Kademlia’s stabilization only ensures that at least one entry
in each bucket was alive in the past tstab seconds and a node may still forward
lookups through a neighbor that has not been contacted with tstab seconds. In
contrast, Tapestry and Chord’s ensure all routing entries were alive in the past tstab

(tfinger) seconds and hence there exist no routing entries older than tstab. Table 3.4
summarizes the parameters varied in our Kademlia simulations.

�
OneHop

Similar to Chord, OneHop [33] assigns a key to its successor node on the ID
circle using consistent hashing [41]. Each OneHop node knows about every other
node in the network and forwards a lookup to its apparent successor node among
all routing table entries.

In a static network, each OneHop node has a routing table of size n and all
lookups terminate in one hop.

The ID space is divided into nslice slices and each slice is further divided into
nunit units. Each unit and slice has a corresponding leader. OneHop pro-actively
disseminates information regarding all join and leave events to all nodes in the
system through the hierarchy of slice leaders and unit leaders. A node periodically
(tstab) pings its successor and predecessor and notifies its slice leader of the death of
successor or predecessor. A newly joined node sends a join notification event to its
slice leader. A slice leader aggregates notifications within its slice and periodically
(tstab) informs all other slice leaders about notifications since the last update. A
slice leader disseminates notifications from within its slice and from other slices
to each unit leader in its own slice. Notifications are further propagated to all
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Design Choices Tapestry Chord Kademlia Kelips OneHop
Separate lookup
correctness from performance - tsucc - - -
Vary routing table size b, nredun b k ncontact -
Bound routing entry freshness tstab tfinger tstab? tout? -
Parallelize lookups - - α, ntell - -
Learn new nodes from lookups - - yes - yes

Table 3.6: Design choices and their corresponding parameters. We put a question mark
next to tstab and tout because Kademlia and Kelips nodes still may forward lookups to
neighbors that have not been heard for more than tstab and tout seconds even though the
two parameters have some effects on the routing entry freshness.

nodes within a unit through piggybacking on each node’s ping messages. Table 3.5
shows the range of OneHop’s parameters varied in simulations.

3.2 Summary of Design Choices

Table 3.6 summarizes the correspondence between different design choices and
the parameters for all the protocols.

There are a number of common design choices among the DHTs in Table 3.6.
First, most protocols (except OneHop) have some flexibility in the size of the
per-node routing table. A bigger routing table results in fewer lookup hops at the
cost of extra routing table maintenance bandwidth. Chord and Tapestry use the
base parameter (b) to adjust the number of neighbors as well as the portions of ID
space these extra neighbors are sampled from. In contrast, Kademlia and Kelips
just vary its per-node routing table size by keeping more candidate neighbors for
each routing entry using k and ncontact respectively. Second, most protocols control
the freshness of routing entries implicitly or explicitly with some threshold time
intervals. Chord and Tapestry check the liveness of each neighbor every tfinger or
tstab seconds. Therefore, no neighbors exist in routing tables who have not been
heard in the last tfinger (or tstab) seconds. Kelips nodes evict neighbors after tout

seconds of inactivity. However, since a routing entry has already aged in another
node’s routing table before it is propagated to the current node, the corresponding
neighbor can endure a period of inactivity longer than tout seconds before it is
evicted. Therefore, unlike tfinger and tstab in Chord/Tapestry, Kelips’ tout affects
but does not bound routing entry freshness. Kademlia tries to ensure at least one
neighbor was heard within the last tstab seconds in each bucket, but it may still
use an older entry if it points to a more proximate neighbor. Unlike all other
protocols, OneHop does not expire neighbors based on timeout threshold. A
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OneHop node relies on explicit leave event notifications to evict routing entries.
As notification events are delayed or lost, routing entries may be stale and point
to neighbors that are dead.

Table 3.6 also shows a number of unique design choices in some DHTs. For
example, Chord separates routing entries into those that ensure correctness of
lookups (successors) and those that can speed up lookups (fingers). Kademlia
parallelizes lookup RPCs if α > 1 to reduce the effect of lookup timeouts. A
Kademlia lookup originator also learns ntell entries for each lookup message it
sends. OneHop learns from lookups differently: the lookup originator regenerates
a leave event for each lookup timeout it incurs and a join event for each additional
lookup hops it takes. These newly generated events will be propagated to all other
nodes as the originator assumes the original events have been lost.

3.3 Simulation Software: p2psim

To fairly evaluate and compare existing DHTs under a common framework, we
have developed a discrete event packet level simulator, p2psim. Because p2psim
uses cooperative user-level threads to pass control between protocol executions
at different nodes, DHT implementations in p2psim resemble their algorithm
pseudo-code, which makes them easy to understand. We have implemented six
existing DHT protocols in p2psim: Chord, Tapestry, Kademlia, Kelips, OneHop
and Koorde. Tapestry, OneHop and Koorde are written by their original protocol
designers.

To complete one simulation run in p2psim, there should be three input configu-
ration files; a protocol parameter file, a topology configuration and a churn/workload
specification. The protocol parameter file describes the value of each tunable pa-
rameter for the DHT under study. The topology configuration file specifies the
pair wise node delay matrix in the system. The churn/workload file describes the
sequence of node join and leave events (or node lifetime distribution) and how
frequently each node issues a lookup message.

p2psim records the start and completion time of each lookup to calculate its
latency, the time required to route a message to a key’s responsible node and back.
Lookup hopcount, link propagation delay and timeouts are the only factors that
contribute to the measured latency. In particular, p2psim does not simulate link
capacity nor queuing delay as DHT lookups involve only key lookups as opposed
to data retrieval. In the interest of a fair comparison, all DHTs implemented in
p2psim follow a few common guidelines for dealing with lookup timeouts. All
DHTs recover from timeouts by retrying the lookup through an alternate neighbor.
In p2psim, all protocols time out individual messages after an interval of three
times the round-trip time to the target node, though more sophisticated techniques
are possible [10,18,68,89]. Following the conclusions of previous studies [10,68],
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a node encountering a timeout to a particular neighbor proceeds to an alternate
node if one exists, but the neighbor is only declared failed after five consecutive
RPC timeouts occur.

When a lookup originator receives a reply from the responsible node, it checks
the correctness of the identity of the responsible node against p2psim’s global
knowledge of the current set of live nodes. A lookup is considered failed if it
returns the wrong node among the current set of participating nodes (i.e. those
that have completed the join procedure correctly) at the time the sender receives
the lookup reply, or if the sender receives no reply within some timeout window.
Rhea et. al. [68] proposes to check the consistency of a lookup by performing ten
lookups for the same key from different originating nodes. If there is a majority
of results in the ten lookups, all nodes in the majority are considered as seeing
consistent results. The definition of a correct lookup in p2psim has stronger
guarantees than Rhea’s definition of lookup consistency: a correct lookup in
p2psim is always consistent, but the converse is not true.

3.4 Simulation Environment

We explore the parameter space of existing protocols in simulation using all com-
binations of parameter values within the range specified in Section 3.1.

The simulated network, unless otherwise noted, consists of 1024 nodes. For
realistic inter-node latencies, we use the measured pairwise latencies between 1024
wide area DNS servers. We “trick” two unmodified recursive DNS servers to
report the latency between them using King method [31]. A recursive DNS server
y resolves a domain name served by y′ by directly sending a DNS lookup message
to server y′. In our measurement experiments, we issue a DNS lookup from our
local machine x to y, resolving a domain name belonging to server y ′ and record
the latency (delay(y′)) required. We then separately measure the latency to server
y (delay(y)) by issuing it a DNS query in its own domain. The difference between
the two latencies (delay(y′)− delay(y)) is the estimated roundtrip time between y
and y′.

The median round-trip delay between node pairs in our dataset is 156 ms and
the average is 178 ms. Since each lookup for a random key must terminate at a
specific, random node in the network, the mean latency of the topology serves as
a lower bound for the mean DHT lookup latency.

The amount a protocol must communicate to keep routing tables up to date de-
pends on how frequently nodes join and crash (the churn rate). For the most part,
the total bandwidth consumed by a protocol is a balance between routing table
maintenance traffic and lookup traffic, so the main characteristic of a workload is
the relationship between lookup rate and churn rate. This thesis investigates two
workloads, one that is churn intensive and one that is lookup intensive. In both
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workloads, each node alternately crashes and re-joins the network; the interval
between successive events for each node is exponentially distributed with a mean
of one hour. The choice of mean session time is consistent with past studies of
peer-to-peer networks [32]. Each time a node joins, it uses a different IP address
and DHT identifier. In the churn intensive workload, each node issues lookups for
random keys at intervals exponentially distributed with a mean of 600 seconds. In
the lookup intensive workload, the average lookup interval is 9 seconds. Unless
otherwise noted, all figures are for simulations done in the churn intensive work-
load. Each simulation runs for six hours of simulated time; statistics are collected
only during the second half of the simulation.

PVC analysis requires explicitly plotting a protocol’s bandwidth consumption
on the x-axis. We calculate the total number of bytes sent by all nodes during
the second half of the simulation experiment divided by the sum of the seconds
that all nodes were up. This is the normalized bandwidth consumption per node
over the entire experiment and node population and is shown on the x-axis. The
bandwidth consumption includes all messages sent by nodes, such as lookup,
node join and routing table maintenance traffic. The size in bytes of a message is
counted as 20 bytes (for packet overhead) plus 4 bytes for each IP address or node
identifier mentioned in the message. The y-axis indicates lookup performance
either in the average latency of successful lookups or failure rate.
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Chapter 4

A Study of DHT Design Choices

This chapter presents the results of applying PVC analysis in the simulation study
of five existing DHTs. We compare DHTs against each other using their over-
all convex hulls and analyze how effective each churn-handling technique is at
improving a DHT’s overall bandwidth efficiency.

4.1 Overall comparison

Figures 4-1 and 4-2 present the overall convex hulls for failure rate and the average
latency of successful lookups, respectively. Each convex hull is calculated from
hundreds or thousands of points derived by simulating all combinations of the
parameter values listed in Section 3.1 for each DHT. Each convex hull outlines a
DHT’s best achievable performance vs. cost tradeoffs with the optimal parameter
settings. All convex hulls have similar overall characteristics: latencies go up with
smaller bandwidth consumption meaning that there is no combination of param-
eter values that results in both low lookup latency (or low failure rate) and low
bandwidth consumption. The convex hulls go down at higher bandwidth because
there are parameter values that improve lookup latency (or failure rate) at the cost
of increased bandwidth consumption. The average round trip time (178ms) be-
tween two nodes in the simulated network lower-bounds the best possible lookup
latency since a lookup is issued for a randomly chosen key and hence is routed to
a random node in the network.

The convex hulls of different DHTs can be far apart; at any given bandwidth,
the best achievable failure rates or latencies of different DHTs can differ signifi-
cantly. For example, at 20 bytes/node/s, OneHop achieves 200ms average lookup
latency and Kademlia achieves 420ms with the best parameter settings. A con-
vex hull that lies to the bottom left of another hull indicates better bandwidth
efficiency for its corresponding DHT. Therefore, roughly speaking, the order of
protocols in terms of their failure rate vs. bandwidth tradeoffs from better to
worse is: OneHop, Chord, Kelips, Tapestry and Kademlia. Similarly, the order of
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Figure 4-1: Overall convex hulls showing failure rate vs. bandwidth tradeoffs of all
DHTs, under the churn intensive workload. The failure rate for OneHop is less than
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hull indicates that its corresponding DHT can be tuned to have lower failure rate while
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Figure 4-2: Overall convex hulls showing the average latency of successful lookups vs.
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protocols in terms of better lookup latency vs. bandwidth tradeoffs is: OneHop,
Tapestry, Chord, Kelips, Kademlia. However, there are some caveats. Firstly, not
all convex hulls have the same minimal bandwidth use. For example, apart from
Chord, all DHTs consume more than 7 bytes/node/s in Figure 4-2. This suggests
that Chord is more efficient than others at using a small amount of bandwidth
to handle churn. Secondly, some convex hulls cross each other. For example in
Figure 4-2, the convex hull of Chord crosses that of Kelips at 50 bytes/node/s.
This crossing suggests that Chord is more efficient than Kelips at small bandwidth
but the converse is true at large bandwidth. The next section will investigate the
efficiencies of different design choices in each protocol that lead these differences
in their performance vs. cost tradeoffs.

4.2 PVC Parameter Analysis

None of the existing DHT lookup protocols explicitly controls its performance
vs. cost tradeoffs as outlined by Figure 4-1 and 4-2. The various bandwidth
consumptions and lookup performance are the indirect consequence of setting a
DHT’s many parameters to different values. That is, the convex hulls in Figures 4-
1 and 4-2 are the result of an exhaustive search for the best parameter values.
What parameter values produced the best tradeoffs that make up the convex hull?
More importantly, if the available bandwidth changes, what are the parameters
that need to be re-adjusted to optimize lookup performance?

Each parameter in a DHT corresponds to a design choice. Different design
choices compete with each other in using extra bandwidth to improve lookup per-
formance. For example in Chord, setting a bigger base (b) or a smaller stabilization
interval (tfinger) can both lower lookup latency at the cost of increased bandwidth
consumption. Therefore, measuring the performance benefits by adjusting a single
parameter in isolation can be misleading as it ignores other competitive choices
of using bandwidth. We solve this problem with PVC parameter convex hull
analysis. Instead of measuring the performance benefits of adjusting the param-
eter of interest, we examine the efficiency loss from not adjusting the parameter
under study and exploring all other parameters. A parameter convex hull (see
Section 2.2.2 for its definition) outlines the bandwidth efficiency achieved under
a fixed value for the parameter under study while exploring all other parameters.
There exist a set of parameter hulls, one for each value of the parameter under
study. Since a DHT’s overall convex hull always lies beneath all parameter hulls,
the area between a parameter hull and the overall convex hull denotes the amount
of lost efficiency due to setting the parameter to that fixed value. Therefore, if one
had to set the parameter to one specific value, one should choose the value that
corresponds to the parameter hull with the minimum area difference (Amin). In-
tuitively, Amin reflects the efficiency loss of not tuning a parameter that cannot be
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Tapestry Chord Kelips Kademlia OneHop
param Amin val param Amin val param Amin val param Amin val param Amin val

1 tstab 1.71 72s tsucc 0.46 36s tgossip 0.79 72s ntell 1.00 4 tstab 0.01 16s
2 nredun 0.38 2 tfinger 0.12 288s ncontact 0.05 8 k 0.76 4 nunit 0.00 5
3 nrepair 0.10 3 b 0.07 2 tout 0.03720s α 0.32 4 nslice 0.00 3
4 b 0.05 4 nsucc 0.04 8 rcontact 0.01 2 tstab 0.00 1152s
5 rgroup 0.00 2

Figure 4-3: Rankings of the importance of re-adjusting parameters to achieve the best failure rate vs. bandwidth tradeoffs
in different bandwidth regions. Each row corresponds to one parameter and rows are ranked from the most important
parameter to the least important. For each parameter under study, a set of parameter convex hulls is calculated, one for
each specific value of that parameter while exploring optimal settings for other parameters. The Amin column denotes
the minimum area difference between any parameter hull and a DHT’s overall convex hull over the bandwidth range 1-80
bytes/node/s. The val column shows the parameter value that produces the parameter hull with the minimum area difference
Amin. A large Amin corresponds to a parameter with no one good “default” value; the best parameter setting changes in
different bandwidth regions and fixing the parameter to any specific value results in reduced bandwidth efficiency. The
parameters within a DHT are ordered according to decreasing Amin.

Tapestry Chord Kelips Kademlia OneHop
param Amin val param Amin val param Amin val param Amin val param Amin val

1 b 306 16 b 1271 32 tgossip 517 18s ntell 5783 8 tstab 1186 8s
2 tstab 298 36s tfinger 581 144s ncontact 153 16 α 1139 16 nunit 186 3
3 nredun 177 3 tsucc 404 72s rcontact 140 16 k 546 8 nslice 0 3
4 nrepair 49 5 nsucc 186 8 tout 133 360s tstab 46 1152s
5 rgroup 43 2

Figure 4-4: Rankings of the importance of re-adjusting parameters to achieve the best lookup latency vs. bandwidth
tradeoffs in different bandwidth regions. This table has the same format as table 4-3 but uses the average lookup latency
(in ms) of successful lookups as the performance metric.
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compensated by optimally adjusting other competitive ways of using bandwidth.
Thus, Amin measures the importance of re-adjusting the parameter in different
bandwidth regions to achieve a DHT’s maximal bandwidth efficiency. A small
minimum area suggests that there exists one best default value for the parame-
ter under study. A large minimum area indicates it is important to re-adjust the
parameter to optimize performance.

Tables 4-3 and 4-4 show the rankings of parameters according to their re-
spective Amin in all DHTs. The tables also list the actual parameter value that
corresponds to the parameter hull with the minimum area difference for each
parameter. The first row corresponds to the parameter most in need of tuning in
each DHT. For example, Table 4-3 shows that the most important parameter to
re-adjust in Tapestry is tstab in order to achieve the lowest failure rates at different
bandwidth regions. From Table 4-3, we can see that fixing tstab to be its best
value of 72 seconds across the bandwidth range from 1 to 80 bytes/node/s results
in the largest amount of efficiency loss (as indicated by the largest corresponding
Amin = 1.71). In contrast, setting the base parameter b to its best value of 4
causes the least efficiency loss (Amin = 0.05) in terms of Tapestry’s failure rate vs.
bandwidth tradeoffs.

4.3 Understanding DHT design choices

The rankings of parameters shown in Table 4-3 and 4-4 reflect the relative band-
width efficiencies of different design choices in a DHT. Since different DHTs
consist of different sets of design choices, understanding the relative efficiencies
of individual design choices help us explain why some DHTs are more efficient at
handling churn than others in Figure 4-1 and 4-2. This section presents a number
of insights on DHT designs based on the PVC parameter analysis of the design
choices using Table 4-3 and 4-4.

4.3.1 When To Use Full State Routing Table

OneHop is the only DHT with no flexibility in the size of its per-node routing
table. All nodes always aim to keep a full routing table containing all other nodes.
Figures 4-1 and 4-2 show that OneHop has the most efficient convex hull for
the most part. When bandwidth is greater than 7 bytes/node/s, OneHop’s best
achievable failure rate is close to 0% and its lookup latency is about 199ms which is
higher than its static performance. In a static network, each lookup takes exactly
one hop to reach its responsible node with latency equal to the average network
RTT (178ms). In networks with churn, join/leave notifications take time to reach
all nodes in the system, causing lookup timeouts or additional hops and hence
higher lookup latency.
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Although OneHop has no flexibility in its routing table size, it can trade
off the freshness of the routing entries with extra bandwidth consumption by
adjusting tstab, the delay period during which join/leave events are aggregated
before dissemination. According to Table 4-3 and 4-4, tstab is the most important
parameter to tune in order to achieve best failure rates and lookup latencies at
different bandwidth regions. To optimally consume 8 bytes/node/s of bandwidth,
one should set tstab to 32s for lowest lookup latency and tstab should be re-adjusted
to 4s for best latency at 40 bytes/node/s. Smaller tstab causes OneHop to consume
more bandwidth and disseminate events more promptly so lookups are less likely
to incur timeouts or additional hops due to delayed event propagation. However,
the converse is not always true, i.e. OneHop’s bandwidth consumption does not
always decrease with bigger values of tstab. Since OneHop expects full routing
tables, nodes treat each lookup timeout or additional hop as exceptions and
assume that the original join/leave event has been lost. The lookup originator
re-generates and propagates a join/leave event to be disseminated for each timeout
or additional hop encountered. Therefore, setting tstab to 64s from 16s causes
OneHop to consume more bandwidth but also results in much worse lookup
latency due to timeouts.

Because tstab can not be set to arbitrarily big values, OneHop has a mini-
mum bandwidth consumption of 7 bytes/node/s, which is bigger than Chord’s 2
bytes/node/s. Intuitively, OneHop’s minimal bandwidth reflects the bandwidth
necessary to propagate all events to all nodes to maintain complete routing state.
Unfortunately, this minimal bandwidth consumption scales proportionally with
the size of the network and the churn rate. We evaluate OneHop in a network of
3000 nodes1 and show the resulting overall convex hulls in Figure 4-5.

Figure 4-5 shows that OneHop’s minimum bandwidth consumption (the left-
most point of the OneHop curve) is approximately 20 bytes/node/s for 3000-node
networks. The threefold increase in the number of nodes triples the total number
of join/leave events that must be delivered to every node in the network, causing
OneHop to triple its minimum bandwidth consumption from 7 to 20 bytes/node/s.
For comparison, we also include Chord in Figure 4-5. The per-node routing table
size in Chord scales as O(log n) and hence the convex hull of the 3000-node Chord
network is shifted from the one for the 1024-node network by only a small amount
towards the upper right. Therefore, while a full routing table can produce better
performance when bandwidth is plentiful, it also weakens a node’s ability to limit
its bandwidth consumption under varying network sizes and churn and therefore
is primarily attractive in small or low-churn systems.

Another aspect of OneHop’s performance is that slice and unit leaders use
about 8 to 10 times more network bandwidth than the average. Chord, Ke-

1As we do not have King data for our 3000 node topology, we derive our 3000-node pair-wise
latencies from the distance between two random points in a Euclidean square. The mean RTT is
the same as that of our 1024-node network.
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Figure 4-5: Overall convex hulls for Chord and OneHop in 1024- and 3000-node
networks, under a churn intensive workload.

lips, Tapestry and Kademlia, on the other hand, have more uniform bandwidth
consumption: the 95th-percentile node uses no more than twice the average band-
width. Therefore, if no node in the network can handle the bandwidth required
of slice or unit leaders, one would prefer a symmetric protocol to OneHop.

Since OneHop doesn’t allow significant tuning of the performance vs. cost
tradeoffs, we do not include this protocol in the rest of our analysis.

4.3.2 Separation of Lookup Correctness from Performance

Figure 4-1 shows that Chord can be tuned to have a lower failure rate than
other protocols using only a small amount of bandwidth ( < 8 bytes/node/s). The
following PVC parameter analysis explains why.

Table 4-3 shows that the Chord parameter most in need of tuning is tsucc. Chord
separates a node’s routing table entries into those that ensure lookup correctness
(successors) and those that provide fast routing (fingers). tsucc governs how often
a node pings its successor and thus determines how quickly a node can realize
that its successor is dead and should be replaced with the next live node from
its successor list. The correctness of a Chord lookup depends only on nodes’
successor entries and not fingers, therefore it is enough to only stabilize successors
more frequently for lower failure rates.

The other protocols (except OneHop which uses the same successor stabiliza-
tion mechanism as Chord) do not separate lookup correctness from performance.
Therefore, if a low failure rate is desired, the entire routing table must be checked
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frequently. Table 4-3 shows that the most important Tapestry parameter is tstab

which determines how fast a node checks the liveness of its entire routing table.
As the number of successors tends to be only a small fraction of the entire rout-
ing table, Chord’s successor stabilization leads to more attractive failure rate vs.
bandwidth tradeoffs than Tapestry.

4.3.3 Coping with Non-transitive Networks

DHT protocols typically have explicit provisions for dealing with node failure.
These provisions usually handle network partitions in a reasonable way: the
nodes in each partition agree with each other that they are alive, and agree that
nodes in the other partitions are dead. Anomalous network failures that are not
partitions are harder to handle, since they cause nodes to disagree on which nodes
are alive. For example, if node A can reach B, and B can reach C, but A cannot
reach C, then they will probably disagree on how to divide the key ID space among
the nodes. A network that behaves in this manner is said to be non-transitive.
Non-transitivity is a common source of lookup failures of the DHT deployments
on the Planetlab testbed [23,67].

In order to measure the effects of this kind of network failure on DHTs, we
created a topology exhibiting non-transitivity by discarding all packets between
5% of the node pairs in our standard 1024-node topology, in a manner consistent
with the observed 4% of broken pairs [25] on PlanetLab [5]. The existence of
PlanetLab nodes that can communicate on only one of the commercial Internet
and Internet-2, combined with nodes that can communicate on both networks,
produces non-transitive connectivity between nodes. We ran both Chord and
Tapestry churn intensive experiments using this topology, and measured the re-
sulting failure rates of the protocols. Both protocols employ recursive lookup, and
thus nodes always communicate with a relatively stable set of neighbors, elimi-
nating the problem that occurs in iterative routing (e.g., Kelips, Kademlia and
OneHop) in which a node hears about a next hop from another node, but cannot
communicate with that next hop.

We disable the standard join algorithms for both Chord and Tapestry in these
tests, and replace them with an oracle algorithm that immediately and correctly
initializes the state of all nodes in the network whenever a new node joins. Without
this modification, nodes often fail to join at all in a non-transitive network. Our
goal is to start by investigating the effect of non-transitivity on lookups, leaving
the effect on join for future work. This modification changes the bandwidth
consumption of the protocols, so these results are not directly comparable to
Figure 4-1.

Figure 4-6 shows the effect of non-transitivity on the failure rates of Tapestry
and Chord. Chord’s failure rate increases more than Tapestry’s with non-transitivity;
we can use PVC parameter analysis to shed light on how Tapestry handles non-
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Figure 4-6: Overall convex hulls for lookup failure rates for Chord and Tapestry under
connected and non-transitive networks, under the churn intensive workload.

transitivity. As Table 4-3 shows, in a fully-connected network, base (b) was the
least important parameter for Tapestry, in terms of failure rate vs. bandwidth
tradeoff. However, Table 4.1 shows that in the non-transitive network, base (b)
becomes a much more important parameter, ranking second behind stabilization
interval (which is still necessary to cope with churn). For Chord, however, base
(b) remains an unimportant parameter.

We can explain this phenomenon by examining the way in which the two
protocols terminate lookups according the structure of their routing tables. The
Chord lookup algorithm assumes that the ring structure of the network is correct.
If a Chord node n1 cannot talk to its correct successor n2 but can talk to the next
node n3, then n1 may return n3 for lookups that really should have found n2. This
error can arise if network connectivity is broken between even a single node pair.

Tapestry’s surrogate routing, on the other hand, allows for a degree of leniency
during the last few hops of routing. Strict progress according to the prefix-
matching distance metric is not well defined once the lookup reaches a node with
the largest matching prefix in the network. This means that even if the most direct
path to the owner of a key is broken due to non-transitivity, surrogate routing may
find another, more circuitous, path to the owner. This option is not available in
Chord’s strict linked-list structure, which only allows keys to be approached from
one direction around the ring in ID space. Tapestry does suffer some failures,
however. If a lookup reaches a node that knows of no other nodes matching a
prefix of the same size with the key as itself, it will declare itself the owner, despite
the existence of an unreachable owner somewhere else in the network. A bigger
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Tapestry Chord
param Amin val param Amin val

1 tstab 0.43 36s tsucc 0.20 18s
2 b 0.11 8 tfinger 0.13 1152s
3 nredun 0.07 6 nsucc 0.07 32
4 nrepair 0.04 1 b 0.00 2

Table 4.1: The ranking of parameters in need of tuning in Tapestry and Chord according
to the minimum area (Amin) between the parameter hulls and the overall convex hull.
This table has the same format as that in Table 4-3 except the experiments are done in a
non-transitive network.

base results in more entries matching the key with the same largest matching prefix
and hence gives more opportunity to surrogate routing to route around broken
network connectivity.

In summary, while existing DHT designs are not specifically designed to cope
with non-transitivity, some protocols are better at handling it than others. Fu-
ture techniques to circumvent broken connectivity may be adapted from existing
algorithms.

4.3.4 Bigger Routing Table for Lower Latency

In Table 4-4, both Tapestry and Chord have base (b) as the parameter that is
most in need of tuning for best lookup latency. Base controls the number of
routing entries each node keeps and bigger bases lead to bigger routing tables with
(b− 1) logb(n) entries. Figure 4-7 shows Chord’s overall convex hull as well as its
parameter hulls for different base values. At the left side of the graph, where the
bandwidth consumption is small, the parameter hull for b = 2 lies on the overall
convex hull which means smaller bases should be used to reduce stabilization
traffic at the expense of higher lookup latency. When more bandwidth can be
consumed, larger bases lower the latency by decreasing the lookup hop-count.

The highest ranking of the base parameter (b) suggests that expanding a node’s
routing table is more efficient than other alternatives at using additional band-
width. For example, one competitive use of extra bandwidth is to check for the
liveness of routing entries more frequently as doing so would decrease the like-
lihood of lookup timeouts. However, when routing entries are “fresh enough”,
spending extra bandwidth to further reduce the already very low lookup timeout
probability has little impact on the overall latency. Instead, when the routing table
is fairly fresh, a node should seek to reduce lookup latency by using additional
bandwidth to expand its routing table for fewer lookup hops. This explains why
base (b) ranks above stabilization intervals (tstab and tfinger) as the parameter to
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Figure 4-7: Chord, under the churn intensive workload. Each line traces the convex hull
of all experiments with a fixed base b value while varying all other parameters.
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Figure 4-8: Kelips, under the churn intensive workload. Each line traces the convex hull
of all experiments with a fixed ncontact value while varying all other parameters.
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tune at different bandwidth regions.

In contrast to Chord and Tapestry, the Kelips parameter (ncontact) that controls
its routing table size does not appear to require much tuning. Instead, the gossip
interval (tgossip) is the most important parameter (see Table 4-4). Figure 4-8 shows
the parameter convex hulls for different values of ncontact in Kelips. The parameter
hull for ncontact = 16 approaches the overall convex hull over the entire bandwidth
range, while a smaller or bigger ncontact results in worse performance/cost trade-
offs. In Chord/Tapestry, base (b) governs the routing table size exactly as the
stabilization process actively explores the network to find all (b − 1) logb(n) en-
tries. In contrast, ncontact in Kelips determines only the amount of allowed state,
the actual amount of state acquired by each node is determined by how fast nodes
gossip (tgossip) which is the most important parameter in Kelips. It is always ben-
eficial to maximize the amount of allowed state so a node can keep any piece of
routing information it has learnt and use it later during lookups. Hence, Kelips
should allow many contacts for each foreign group as a particular contact is no
more or less important than others. This explains why the Kelips parameter hull
for ncontact = 16 is more efficient than that of ncontact = 2.

A bigger ncontact is not always better in Kelips. In Figure 4-8, the efficiency of
the parameter hull for ncontact = 32 is worse than that of ncontact = 16. We find
that changing ncontact from 16 to 32 results in more lookup timeouts and hence
higher latency for Kelips. Unlike Chord and Tapestry which directly communicate
with all neighbors, Kelips acquire new routing entries indirectly from a third node
through gossips. Ensuring the freshness of routing entries is harder in the face of
gossip as a newly acquired entry does not always reflect more recent information
than existing information about the same neighbor. As Kelips does not explicitly
account for the time interval a routing entry remains un-contacted before it has
been gossiped to other nodes, many entries point to neighbors that have not been
heard for more than tout seconds even though Kelips expires routing entries after
tout seconds of inactivity. Therefore tout is in-effective at bounding the staleness of
routing entries. This is in contrast to Chord or Tapestry whose parameters tfinger

(or tstab) bounds the maximum age of all routing entries as a node always seeks
to directly communicate with each of its neighbors every tfinger (or tstab) seconds.
Therefore, a bigger ncontacts may result in worse efficiency in Kelips because the
more contacts are kept at each node, the less fresh the routing entries tend to be.

PVC analysis has shown that expanding routing table is necessary to efficiently
use extra bandwidth, given the routing entries can be kept relatively fresh. This
observation also explains why in Figure 4-2 OneHop’s overall convex hull is more
efficient than all other protocols at large bandwidth. This is because OneHop
keeps a complete routing table which is the more efficient at high bandwidth than
O(log n) routing table kept by Chord, Tapestry and Kademlia.
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Figure 4-9: Chord, under the churn intensive workload. Each line traces the convex hull
of all experiments with a fixed tfinger value while varying all other parameters.

4.3.5 Bounding Routing Entries Staleness

Section 4.3.4 suggests that a node should expand its routing table when the ex-
isting routing entries are already fresh. What is a good freshness threshold for
routing tables? In Chord and Tapestry, routing entries’ staleness is bounded by
the stabilization interval (tfinger and tstab). Table 4-4 shows that the best default
value of stabilization interval for Chord is tfinger = 144s. Figure 4-9 shows the
parameter hulls for three stabilization values (tfinger = 18, 144, 1152 seconds) as
well as Chord’s overall convex hull. The best value for tfinger (144s) corresponds
to a parameter hull that approximates the entire overall convex hull. Since pa-
rameter hulls are computed by exploring all other parameters including base (b),
a less attractive parameter hull indicates the efficiency loss by setting tfinger to a
wrong value. Making routing entries fresher than necessary (tfinger = 18s) results
in a less efficient parameter hull as the extra bandwidth is wasted on checking the
already sufficiently up-to-date routing entries as opposed to expanding a node’s
routing table. Allowing routing entries to become too stale (tfinger = 1152 s) also
dramatically decreases the efficiency of the convex hull as stale routing entries lead
to too many timeouts which can not be compensated by routing via fewer hops
with a larger routing table.

The lesson here is that it is important to provide some guarantees for rout-
ing entry freshness and there seems to be one best freshness threshold under a
given churn rate. In our experiments where nodes’ mean lifetime is 1 hour, the
optimal freshness threshold for Chord is about 144s (tfinger = 144 s). Since node
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lifetimes are exponentially distributed and a node pings each routing entry every
tfinger = 144 seconds, the probability that any entry points to a departed neighbor
is Pr lifetime < 144 = exp−

144

3600 = 0.96, i.e. lookup times occur as infrequently as
4% at each lookup hop. Further reducing the already per-hop timeout probability
is not as cost efficient as expanding a node’s routing table for fewer lookup hops.
On the other hand, if timeout probability is significantly higher, as in the case
with tfinger = 1152s, lookup latency increases as there are too many timeouts.
A Chord node directly communicates with all its fingers and hence the pinging
interval (tfinger) determines its routing table freshness. If a node acquires new
routing entries indirectly from its existing neighbors such as the case in Kelips and
Kademlia, it should also take into account the amount of time a routing entry has
aged in other nodes’ routing tables in judging its freshness.

4.3.6 Parallel Lookup Is More Efficient than Stabilization

Kademlia has the choice of using bandwidth for either stabilization or parallel
lookups. Both approaches reduce the effect of timeouts: stabilization by pro-
actively eliminating stale routing table entries, and parallel lookups by overlapping
activity on some paths with timeouts on others.

Table 4-4 shows that not only Kademlia’s stabilization interval does not need
to be tuned, but that its best setting is always the maximum interval (1152s).
This implies that stabilization is an inefficient way of using bandwidth to improve
latency. In contrast, Table 4-4 shows that ntell and α, which control the degree
of lookup parallelism, are the important parameters that determine Kademlia’s
overall latency vs. bandwidth tradeoffs. Larger values of α keep more lookups
in flight, which decreases the likelihood that all progress is blocked by timeouts.
Larger values of ntell cause each lookup step to return more potential next hops and
thus cause more opportunities for future lookup parallelism. It is no surprise that
parallelizing lookups improves lookup performance, however, it is rather counter-
intuitive that instead of being wasteful, parallelizing lookups turns out to be a more
efficient use of bandwidth than stabilization. The reason for parallel lookup’s
efficiency is twofold. First, rather than pro-actively checking the freshness of
each routing entry as in stabilization, parallelizing lookups deal with the staleness
of routing entries only when the entries are being used in lookups. Second, in
addition to learning about the liveness of existing routing entries as in stabilization,
Kademlia nodes also learn new entries from redundant parallel lookup traffic to
help expand their routing tables.

4.3.7 Learning from Lookups Can Replace Stabilization

Kademlia relies on lookup traffic to learn about new neighbors: a node learns
up to ntell new neighbors from each lookup hop. This turns out to be a more
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Kademlia (no learn)
param Amin val

1 tstab 4.97 576s
2 α 0.84 4
3 ntell 0.16 4
4 k 0.00 2

Table 4.2: The importance rankings of Kademlia’s parameters that should be tuned to
achieve the best failure rate vs. cost tradeoff, with learning disabled.

Tapestry Chord Kelips Kademlia OneHop
param Amin val param Amin val param Amin val param Amin val param Aminval

1 tstab 241 36s b 177 32 tgossip 2328 36s α 1281 4 tstab 82 4s
2 b 170 32 tfinger 99 72s ncontact 73 32 k 695 4 nunit 0 5
3 nredun 22 4 tsucc 73 36s tout 52 360s ntell 666 4 nslice 0 5
4 nrepair 11 5 tstab 0 1152s
5

Table 4.3: The relative importance of tuning each parameter to achieve the best lookup
latency vs. bandwidth tradeoffs in different bandwidth regions. This table has the same
format as table 4-4 but are obtained from experiments with a lookup intensive workload.

efficient way to acquire new routing entries than explicit exploration. As shown
in Table 4-3, ntell is the parameter that determines Kademlia’s best failure rate vs.
bandwidth tradeoffs. In contrast, stabilization (tstab) does not affect Kademlia’s
bandwidth efficiency much at all and hence is the lowest ranked parameter in
Table 4-3 and is best set to the largest value (1152s). However, with learning
disabled, Table 4.2 shows that tstab becomes the most important parameter whose
value should be adjusted to achieve the best failure rate vs. bandwidth tradeoffs:
a faster stabilization rate is required for a low lookup failure. This shows that
learning from lookups can replace explicit exploration as the most bandwidth-
efficient way of acquiring new entries.

4.3.8 Effect of a Lookup-intensive Workload

The lookup intensive workload involves each node issuing a lookup request every
9 seconds, almost 67 times the rate of the churn intensive workload used in the
previous sections. As a result, the lookup traffic dominates the total bandwidth
consumption. Figure 4-10 shows the overall latency convex hulls of all protocols
under the lookup intensive workload.

Compared with Figure 4-2, Chord and Tapestry’s convex hulls in Figure 4-
10 are relatively flat. Table 4.3 shows the relative importance of tuning each
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Figure 4-10: Overall convex hulls for the average latency of successful lookups for all
DHTs, under the lookup intensive workload.

parameter to achieve the best lookup latency vs. bandwidth tradeoffs under the
lookup intensive workload. Compared to the parameter rankings in a churn
intensive workload (Table 4-4), there is a decrease in the importance of tuning
Tapestry’s base parameter (b). Furthermore, a large base (32) corresponds to
the best parameter setting for both Chord and Tapestry. In the lookup intensive
workload, each node issues and forwards much more lookup messages during
its lifetime and hence the amount of churn is relatively low. Thus, it is more
efficient to keep a larger routing table for fewer lookup hops when the amount of
stabilization traffic is low compared to the amount of lookup traffic. Furthermore,
fewer lookup hops translate into a large decrease in forwarded lookup traffic, given
the large number of lookups.

For Kademlia, α becomes the most important parameter to tune. Furthermore,
compared with Table 4-4, there is a significant decrease in the best α value from
16 to 4. α = 4 obtains the best tradeoff in the lookup intensive workload, as
opposed to the larger α of 16 which is the best parameter setting for the churn
intensive workload. Since Kademlia’s stabilization process does not actively check
the liveness of each routing table entry, stabilization is ineffective at bounding
routing entries’ staleness to ensure few lookup timeouts. Therefore, in order to
avoid excess timeouts, some amount of lookup parallelism (i.e., α > 1) is still
needed. However, as lookup traffic dominates in the lookup intensive workload,
lookup parallelism is quite expensive as it multiplies the already large amounts
of lookup traffic. This partially explains why, in Figure 4-10, the overall convex
hull of Kademlia is significantly worst than that of other protocols in the lookup
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intensive workload.

4.4 Summary of Insights

Table 4.4 summarizes the insights from the preceding sections. The best use
for extra available bandwidth is for a node to expand its routing table. It is
important to bound the staleness of routing entries and there seems to be a best
freshness threshold under a given churn rate. Compared with periodic pinging to
check the liveness of existing routing entries and active exploration of new entries,
parallelizing lookups and learning opportunistically through lookup traffic are
more efficient at using bandwidth to reduce lookup timeouts and acquire new
entries. These results taken together demonstrate the value of PVC as a tool to
design and evaluate DHT protocols.
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Section Insights
4.1 Minimizing lookup latency requires complex workload-dependent pa-

rameter tuning.
4.3.1 The ability of a protocol to control its bandwidth usage has a direct

impact on its scalability and performance under different network sizes.
4.3.2 DHTs that distinguish between state used for the correctness of lookups

and state used for lookup performance can more efficiently achieve low
lookup failure rates under churn.

4.3.3 The strictness of a DHT protocol’s routing distance metric, while use-
ful for ensuring progress during lookups, limits the number of possible
paths, causing poor performance under pathological network condi-
tions such as non-transitive connectivity.

4.3.4,4.3.5 Increasing routing table size to reduce the number of expected lookup
hops is a more cost-efficient way to consume additional bandwidth
than pinging existing entries more often. However, it is crucial to
bound the staleness of routing entries. In a fixed churn rate, there seems
to be some “good enough” freshness threshold for routing entries.

4.3.6 Issuing copies of a lookup along many paths in parallel is more effective
at reducing lookup latency due to timeouts than more frequent pinging
under a churn intensive workload.

4.3.7 Learning about new nodes during the lookup process can essentially
eliminate the need for actively searching for new entries.

4.3.8 Increasing the rate of lookups in the workload, relative to the rate of
churn, favors all design choices that reduce the overall lookup traf-
fic. For example, one should use extra state to reduce lookup hops
(and hence forwarded lookup traffic). Less lookup parallelism is also
preferred as it generates less redundant lookup traffic.

Table 4.4: Insights obtained by using PVC to evaluate the design choices embedded
in five existing protocols: Chord, Kademlia, Kelips, OneHop and Tapestry.
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Chapter 5

Accordion Design

With existing designs, a DHT user is forced into choosing a fixed routing table
size. A O(log n)-state DHT like Chord consumes a small amount of bandwidth,
but has a relatively high lookup latency, thus is suitable for large networks with
frequent churn. A O(n)-state DHT like OneHop has best lookup latency, but
it incurs high communication costs which might exceed the underlying network
capacity when the system grows too large or suffers from high churn. Existing
DHTs are designed to work well under a certain deployment scenario, which
results in either non-optimal lookup performance or the risk of overloading the
network with overhead traffic when the current operating environment does not
match design assumptions.

Instead of choosing a fixed design that work well under certain assumptions
of the operating environment, robust systems seek to adapt itself to have good
performance across a wide range of different operating conditions and fail grace-
fully in an unexpected environment [26]. To have good performance, a DHT
node should seek to maintain a large routing table. To be robust against changing
deployment environments, a DHT should be able to bound its overhead traffic.
The key to designing a robust DHT that also has good performance is to be able
to adjust a node’s routing table size on the fly. Such a DHT would maintain a
large routing table to perform one hop lookup when the bandwidth is plentiful
relative to the network size and churn, and shrink its routing table to perform
multi-hop lookups when the bandwidth is limited. In this chapter, we present
Accordion, a DHT lookup protocol that automatically adapts its routing table
size according to the current deployment environment. In order to achieve best
lookup performance, the design of Accordion draws from many lessons learnt in
Chapter 4.
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5.1 Challenges

A robust DHT has bounded bandwidth overhead, in particular, a DHT’s routing
table maintenance traffic must fit within the nodes’ access link capacities. Most
existing designs do not try to live within this physical constraint. Instead, the
amount of maintenance traffic they consume is determined as a side effect of the
total number of nodes, the rate of churn and workload. To ensure robustness,
the first design decision is for Accordion to take into account a user-specified
bandwidth budget and bound its bandwidth consumption accordingly. A DHT
node that controls its own bandwidth usage can choose what packets not to send
as opposed to the network dropping indiscriminately at times of overload. Thus,
such a DHT design is robust against changing operating environments and can
degrade its performance more gracefully when the network grows rapidly or the
churn surges.

The presence of a bandwidth budget poses several unique challenges. First, an
Accordion node needs to bound its bandwidth use according to this user-specified
budget. Ideally, it should be able to limit all of its outgoing traffic. However, since
a node must initiate and forward application lookup traffic, the amount of which
is not under a DHT’s control, it really has control only over the portion of leftover
budget after sending out all the required lookups. Therefore, to operate within
budget, an Accordion node needs to adjust its routing table maintenance traffic to
fill up the leftover budget.

Second, in order to optimize lookup latency while observing its budgetary
constraint, an Accordion node needs to adjust its routing table size dynamically.
The right choice of routing table size depends on both the budget and the amount
of churn. Intuitively, when the bandwidth budget is plentiful relative to the level
of churn in the system, Accordion should use a large or complete routing table like
OneHop. When the converse is true, Accordion should tune itself to use a small
routing table like that of Chord, consuming little bandwidth. Furthermore, the
fact that the bandwidth is a budgeted resource forces Accordion to consciously
use the most bandwidth efficient churn handling technique to maintain its routing
table. In designing Accordion, we apply many lessons on efficient design choices
from Chapter 4.

Using a variable routing table size brings up two technical issues. First, we
need a routing structure that allows nodes to expand and contract its routing table
along a continuum and yet still guarantees a small number of lookup hops for all
sizes. Second, an Accordion node must figure out which table size is the best one
to use. It could calculate the best table size, but that would require it to explicitly
measure the current churn rate and workload. Instead, Accordion’s routing table
maintenance process has two sub-processes: routing state acquisition and eviction.
The state acquisition process learns about new neighbors; the bigger the budget,
the faster a node learns, resulting in a bigger table size. This reflects the insight
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from the previous chapter that a node should always seek to expand its routing
table to consume extra bandwidth. The state eviction process deletes routing table
entries that are likely to cause lookup timeouts; the higher the churn, the faster a
node evicts state. This corresponds to the lesson from the previous chapter that
a node should bound the staleness of its routing entries and the best freshness
threshold depends on the churn rate. Accordion’s routing table size is the result
of the equilibrium between the two processes. If the eviction process evicts entries
at the right speed, Accordion will reach a good equilibrium with the optimal table
size.

5.2 Overview

Accordion uses consistent hashing [41] in a circular identifier space to map a key
to its responsible node, same as that in Chord and OneHop. A key is mapped to
its successor node whose identifier immediately follows the key on the clockwise
identifier ring. Accordion routes a lookup to the key’s predecessor node who
returns the identity of the key’s successor to the lookup originator.

In order to ensure correct lookup termination, each node needs to keep O(log n)
successor entries whose identifiers immediately follow its own. An Accordion
node uses the same technique as that in Chord to keep its successor list up to
date under churn. Each node periodically obtains the successor list from its
current successor and merges this latest information with its existing successor
list. In order to provide speedy lookups, Accordion also needs to maintain a
routing table with information about many other neighbors. Chapter 4 shows
that the bandwidth overhead needed to maintain the routing state needed for
correct lookup termination can be much smaller than the bandwidth required to
keep the rest of the table up to date. Therefore, we focus the design discussion
on how to efficiently maintain those majority of routing entries needed for fast
lookups.

New nodes join an existing Accordion network via a set of well-known nodes.
The new node looks up its own node identifier to learn the identities of its current
set of successors. After an Accordion node has successfully joined the network, it
starts to obtain routing entries needed for fast lookups and keep those entries up
to date, a process we referred to as the routing table maintenance. The essence
of the Accordion protocol is the design of a bandwidth efficient routing table
maintenance process that also observes a user-specified bandwidth budget.

We address the following questions in designing Accordion’s routing table
maintenance process:

1. How do nodes choose neighbors for inclusion in the routing table in order
to guarantee at most O(log n) lookups with a small routing table?
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2. How do nodes choose between active exploration and opportunistic learning
(perhaps using parallel lookups) to learn about new neighbors in the most
efficient way?

3. How aggressively should a node evict stale entries to ensure that the equi-
librium reached by the state acquisition and eviction processes will optimize
latency? How should nodes efficiently gather the information required to
make good eviction decisions?

5.3 Routing State Distribution

In order to route lookups quickly in ID space, Accordion needs to populate its
routing table from different regions of the identifier space according to a routing
structure. The ideal routing structure is both scalable and flexible. With a scalable
routing structure, even a very small routing table can route lookups in a few hops.
With a flexible routing structure, a node can include any other node in its routing
table and use it to route lookups. Furthermore, a node is able to expand and
contract its routing table along a continuum to tradeoff lookup hops for routing
table sizes. However, as currently defined, most DHT routing structures are not
flexible and require a node to only include neighbors from specific regions of ID
space. For example, a Tapestry node with a 160-bit identifier of base b maintains
a routing table with 160

log2 b
levels, each of which contains b− 1 entries. The routing

table size is fixed at (b − 1) logb n in a network of n nodes and a node does not
augment its table with new information if the levels are already full. Furthermore,
The parameter base (b) controls the table size, but it can only take values that are
powers of 2, making it difficult to adjust the table size smoothly.

Let the ID distance between two nodes be the clockwise ID interval between
them. We can relax a rigid routing table structure by specifying only the desired
distribution of ID distances between a node and its neighbors. Viewing routing
structure as a probabilistic distribution gives a node the flexibility to include any
node (from the probability distribution) in its routing table and to adjust its routing
table size smoothly. For example, to increase the routing table size by one, a node
simply looks up a neighbor near a random ID sampled from the distribution. To
reduce the table size by one, a node just evicts any existing routing entry.

Accordion uses a 1
x

distribution to choose its neighbors: the probability of
a node selecting a neighbor with distance x in the identifier space from itself is
proportional to 1

x
. This distribution causes a node to prefer neighbors that are

closer to itself in ID space, ensuring that as a lookup gets closer to the target key
there is always likely to be a helpful routing table entry. This 1

x
distribution is the

same as the “small-world” distribution originally proposed by Kleinberg [43] and
is also used by other DHTs such as Symphony [57] and Mercury [7].
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The small world distribution results in an average lookup hop of O( log n·log log n

log s
)

if each node’s routing table contains s entries. We prove this result using techniques
shown by Kleinberg [43]. For simplicity of analysis, we assume that total ID ring
length is n for a network of n nodes and all nodes are at equal ID distance (= 1)
apart from each other.

Let y be the node current node to forward a lookup with key k. We say that
a lookup is in phase j if node y is at ID distance d(y, k) away from the key k,
where zj < d(y, k) < zj+1 for some constant z. Therefore, a lookup requires
O( log n

log z
) phases to reach its predecessor node at 1 unit of ID distance away from

the key. What is the expected number of hops required for a lookup to successfully
transition from any phase j to the next phase j − 1?

Let U denote the set of nodes whose ID distance to the key is at most zj. There
are zj nodes in U , each at distance at most zj+1 away from node y. If node y
picks any node from U as its neighbor, the lookup will transition into phase j− 1.
Because y chooses neighbors from a small world distribution, a node at distance
d away from y has a probability 1

d
· 1

Pn
i=1

1

i

> 1
d
· 1

ln n
of being chosen as y’s routing

entry. Thus, the probability of at least one node in U being chosen as node y’s
neighbor is approximately zj · 1

zj+1
·lnn

= 1
z·lnn

. Since y needs to choose s routing
entries, the overall probability of y having at least one neighbor from U is s

z·lnn
.

Therefore, the average number of hops required to transition from phase j to j−1
is O( z·lnn

s
).

Since a lookup requires O( log n

log z
) phases to complete, the total number of lookup

hops is O( z·lnn
s
· log n

log z
). Setting z = s

log n
, we obtain the total number of lookup hops

as O( log n

log s−log log n
) which can be approximated by O( log n log log n

log s
) if log log n > 1 and

s > log n.
The small world distribution provides Accordion with a routing structure that

is both scalable and flexible. It is scalable because even when each node has a
small routing table, lookups can be routed in O(logn · log log n) hops. It is flexible
since a node can include any node from the distribution to expand its routing table
to trade off for fewer lookup hops.

Not all probability distributions offer scalable lookups as the small world
distribution. Intuitively, with a small world distribution, nodes can continue
to make good forwarding progress in ID space as a lookup gets closer to its
key because nodes preferentially knows more routing entries close to itself than
far away in ID space. In contrast, with a uniform random distribution, a lookup
approaches its key in ID space quickly in the beginning, but has to rely on successor
entries to approach the key by only 1 unit of ID distance at each hop. Specifically,
lookups require an average of O(

√

n
s
) hops in a network of n nodes if each node’s

routing table is of size s.
We derive the average number of lookup hops with uniform random routing

tables. Each node has a successor entry at 1 unit of ID distance away and s
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random neighbors. We calculate how many times nodes use their successor entries
to forward a lookup. The number of hops taken with successor entries serves as a
lower bound to the total number of lookup hops. Let y be the current forwarding
node at distance d(y, k) away from the lookup key k and y ′ be the next hop node.
The probability of y′ at distance d away from y is: Pr(d(y, y′) = d) = s

n
(1− d

n
)s−1 <

s
n
. The average distance between y and y′ is less than

∑d(y,k)
d=1 d · s

n
< s

n
· d(y,k)2

2
.

When d(y, y′) = s·d(y,k)2

2n
< 1, y has to use its successor to make forwarding

progress. Therefore, a total of
√

2n
s

successor hops are used to forward lookups

when the current node’s distance to the key is less than
√

2n
s

. Thus, we have shown

that lookups using uniform random routing entries result in O(
√

n
s
) hops.

5.4 Routing State Acquisition

After an Accordion node has joined an existing network, the routing state ac-
quisition process continuously collects new entries to replenish its routing table
under churn. As Chapter 4 has shown, a node should expand its routing table
to consume extra bandwidth more efficiently. The bigger the bandwidth budget,
the faster a node should acquire new state to maintain a larger routing table.
A straightforward approach to learning new neighbors is active exploration, i.e.
nodes explicitly lookup neighbors using IDs sampled from a small world distri-
bution. However, Chapter 4 has also revealed that a more bandwidth-efficient
approach is to learn about new neighbors, and the liveness of existing neighbors
as a side-effect of ordinary lookup traffic.

Learning from lookup traffic does not necessarily yield new neighbors with the
desired small world distribution in ID space. For example, if the DHT uses iterative
routing [77] during lookups, the original querying node would talk directly to each
hop of the lookup. Assuming the keys being looked up are uniformly distributed,
the querying node would communicate with nodes in a uniform distribution rather
than a small world distribution, resulting in O(

√

n
s
) lookup hops. Nodes can filter

out neighbors to force a small world distribution, but this leads to a smaller
routing table and is not ideal.

With recursive routing, on the other hand, intermediate hops forward a lookup
message directly to its next hop. Since most lookup hops are relatively short, a
node is likely to contact next hop neighbors with closer-by node IDs. In recursive
routing, when node y forwards a lookup to y′, y′ immediately sends back an
acknowledgment message to y. Accordion uses recursive routing. Furthermore,
an Accordion node piggy-backs additional routing entries whose IDs immediately
follow its own node ID in the acknowledgment message to help the previous hop
learn new routing entries. If lookup keys are uniformly distributed, then a node is
equally likely to use each of its routing entries. Assuming a node’s routing entries
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Figure 5-1: The density of ID distances between a node and its neighbors. The simulation
experiment is for a 3000-node static network. Each node starts out with 10 random
neighbors and 1 successor entry. Nodes learn new routing entries from 30, 000 recursive
lookups for random keys issued by random nodes in the network. The figure shows the
histogram of the resulting probability distribution of the ID distances between nodes and
their neighbors. The total ID ring length is normalized to be 1.0 and the bin size of the
histogram is 0.01. Each point on the graph shows the total number of routing entries at
a certain ID distance away from a node. The resulting probability density distribution
matches the ideal 1/x distribution well.

already follow a small world distribution, it also learns new entries following a
small world distribution from each lookup acknowledgment. A node inserts these
newly learnt neighbors in its routing table and uses them to route future lookups
and learns new entries from. In practice, even if nodes start out with only random
routing entries, learning from recursive lookups makes routing tables converge
to a small world distribution. We demonstrate this convergence using a simple
simulation experiment in a 3000-node static network. Each node initializes its
routing table with 10 random neighbors and 1 successor entry. Figure 5-1 shows
the probability density distribution of the ID distances between a node and its
neighbor after 30, 000 lookups for random keys which matches a 1/x distribution
well.

In reality lookup keys are not necessarily uniformly distributed, thus Accordion
should actively look for a small number of neighbors (e.g. log n neighbors) with
IDs sampled from the small-world distribution. Since routing tables with s entries
lead to O( log n

log s
) lookup hops, a node only requires a small number of such neighbors

to guarantee a small lookup hopcount. Therefore, the bandwidth consumed in
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active exploration can be very small.
Chapter 4 has shown that parallelizing lookups uses bandwidth more efficiently

than active neighbor exploration. This is because increased parallel lookup traffic
leads to increased opportunities of learning new routing entries, while at the same
time reduces the effect of timeouts on the overall lookup latency. Therefore,
Accordion adjusts the degree of lookup parallelism based on observed lookup
load to use most of its bandwidth budget.

5.5 Routing State Freshness

Chapter 4 shows that all DHT protocols need to ensure the freshness of routing
entries in order to minimize the effects of lookup timeouts in the face of churn. For
example in Chord and Tapestry, a node pings each neighbor every t seconds and
deletes a routing entry if it receives no response from the corresponding neighbor.
In other words, a Chord or Tapestry node never uses any routing entries that it
has not successfully contacted in the last t seconds. Instead of explicitly pinging
each neighbor, a node can simply evict neighbors that are likely dead without
extra communications (e.g. if the neighbor has not been contacted in the last
t seconds). How aggressively should a node evict its routing entries? On one
hand, evicting entries quickly results in a small routing table and many lookup
hops. On the other hand, evicting entries lazily leads to a large routing table but
lookups are likely to suffer from many timeouts. An Accordion node must make
a tradeoff between the freshness and the size of its routing table. In order to
design an optimal eviction process, we must be able to characterize the freshness
of a routing entry. We derive the optimal eviction threshold and present ways to
estimate a routing entry’s freshness without explicit communication.

5.5.1 Characterizing Freshness

A node never knows for sure if a neighbor is still alive. Nevertheless, we can
characterize the freshness of a routing entry probabilistically by estimating p, the
probability of a neighbor being alive. The eviction process deletes a neighbor from
the table if the estimated probability of it being alive is below some threshold pthresh.

If node lifetimes follow a memoryless exponential distribution, p is determined
completely by ∆tsince, where ∆tsince is the time interval since the neighbor was last
known to be alive. Intuitively, ∆tsince measures the “age” of the information that
the node was alive ∆tsince ago. The larger the ∆tsince, the less likely the node is
still alive now. However, in real systems, the distribution of node lifetimes is often
heavy-tailed: nodes that have been alive for a long time are more likely to stay
alive for an even longer time. In other words, with a heavy-tailed node lifetime
distribution, p should be estimated using both how long the node has been in the
network, ∆talive as well as ∆tsince.
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Figure 5-2: Cumulative distribution of measured Gnutella node uptime [32] compared
with a Pareto distribution using α = 0.83 and β = 1560 sec.

Figure 5-3: The age of a routing entry (∆tsince) is the time interval since the corresponding
neighbor was last contacted by some node in the system. The known lifetime (∆talive) of
a routing entry is the uptime of the corresponding neighbor when it was last contacted.
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If node lifetimes follow a Pareto distribution, a heavy-tailed distribution, the
probability of a node dying before time t is

Pr(lifetime < t) = 1−
(

β

t

)α

where α and β are the shape and scale parameters of the distribution, re-
spectively. Saroiu et al. observed such a distribution in a study of the Gnutella
network [32]; Figure 5-2 compares their measured Gnutella lifetime distribution
with a synthetic heavy-tailed Pareto distribution (using α = .83 and β = 1560 sec).
We will present our derivation of the best eviction threshold (pthresh) assuming a
Pareto node lifetime distribution with α = 1.

Let ∆talive be the time for which the neighbor had been a member of the DHT
network, at the time it was last heard, ∆tsince seconds ago. Figure 5-3 illustrates
the relationships between the two intervals ∆talive and ∆tsince. The conditional
probability of a neighbor being alive now is:

p = Pr(lifetime > (∆talive + ∆tsince) | lifetime > ∆talive)

=
Pr(lifetime > (∆talive + ∆tsince))

Pr(lifetime > ∆talive)

=
( β

∆talive+∆tsince
)

( β

∆talive
)

=

(

∆talive

∆talive + ∆tsince

)

(5.1)

Equation 5.1 matches our intuition that the bigger a routing entry’s age (∆tsince)
is, the less likely the corresponding neighbor is still alive now (i.e. a smaller p).
Furthermore, the longer a neighbor has been in the network (∆talive), the more
likely the neighbor is still alive.

From Equation 5.1, we obtain that ∆tsince = ∆talive(p
−1 − 1). Since ∆talive

follows a Pareto distribution, the median lifetime is 2β. Therefore, within ∆tsince =
2β(p−1

thresh−1) seconds, half of the routing table are evicted if the eviction threshold
is set at pthresh. If stot is the total routing table size, the eviction rate (E) is
approximately:

E =
stot

2
· 1

∆tsince

=
stot

2
· 1

2β(p−1
thresh − 1)

(5.2)

The bigger the eviction threshold pthresh, the faster a node evicts to ensure all the
remaining neighbors are alive with probability greater pthresh.
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Since Accordion nodes aim to keep their maintenance traffic below a certain
bandwidth budget, they can refresh or learn about new neighbors only at some
finite rate determined by the budget. For example, if a node’s bandwidth budget is
20 bytes per second, and learning liveness information for a single neighbor costs
4 bytes (e.g., the neighbor’s IP address), then at most a node could refresh or learn
routing table entries for 5 nodes per second.

Suppose that a node has a bandwidth budget such that it can afford to refresh
or learn about B nodes per second. At equilibrium, the eviction rate is equal to
the learning rate (E = B). Substituting E with results from Equation 5.2, the
routing table size stot at the equilibrium can be calculated as:

stot

2
· 1

2β(p−1
thresh − 1)

= B

⇒ stot = 2B · 2β(p−1
thresh − 1)

= 4Bβ(p−1
thresh − 1) (5.3)

Equation 5.3 implies that if a node evicts routing entries lazily using a smaller
pthresh, it will end up with a larger routing table (stot). However, with probability
1 − pthresh, each of the stot routing entries points to dead neighbors and does not
contribute to lowering lookup hops. Hence, the effective routing table size s,
consisting of only live neighbors, is:

s = stot · pthresh

= 4Bβ(p−1
thresh − 1) · pthresh

= 2Bβ · (2− 2pthresh) (5.4)

We have derived Equation 5.4 under the Pareto node lifetime assumption. We
can use the same techniques to derive the effective table size (s) under the equilib-
rium with different node lifetime distributions. For example, with a memoryless
exponential distribution with mean lifetime 2β, the effective table size s is:

s = 2Bβ · log
1

pthresh
· pthresh (5.5)

Similarly, with a uniform random distribution with mean lifetime 2β, the effective
table size s is:

s = 2Bβ · (2− pthresh) (5.6)

5.5.2 Choosing the Best Eviction Threshold

The eviction process deletes routing entries whose estimated probability of being
alive (p) is less than some threshold pthresh. Our goal is to choose a pthresh that will
minimize the expected number of hops for each lookup including timeout retries.
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We know from Section 5.3 that the average number of hops per lookup in a static
network is O( log n·log log n

log s
); under churn, however, each hop successfully taken has

an extra cost associated with it, due to the possibility of forwarding lookups to
dead neighbors. When each neighbor is alive with probability at least pthresh, the
upper bound on the expected number of trials per successful hop taken is 1

pthresh
(for

now, we assume no parallelism). Thus, we can approximate the expected number
of actual hops per lookup, h, by multiplying the number of effective lookup hops
with the expected number of trials needed per effective hop:

h ∝ log n · log log n

log s
· 1

pthresh

We then substitute the effective table size s using Equation 5.3:

h ∝ log n · log log n

log(4Bβ(1− pthresh))
· 1

pthresh
(5.7)

The numerator of Equation 5.7 is constant with respect to pthresh, and therefore
can be ignored for the purposes of minimization. It usually takes on the order of
a few round-trip times to detect lookup timeout and this multiplicative timeout
penalty can also be ignored. Our task now is to choose a pthresh that will minimize
h∗ which is obtained from h without the constant multiplicative factor log n ·
log log n:

h∗ =
1

log(4Bβ(1− pthresh))
· 1

pthresh
(5.8)

The minimizing pthresh depends on the constant Bβ. If pthresh varied widely given
different values of Bβ, nodes would constantly need to reassess their estimates of
pthresh using rough estimates of the current churn rate and the bandwidth budget.
Fortunately, this is not the case.

Figure 5-4 plots h∗ with respect to pthresh, for various values of Bβ. We consider
only values of Bβ large enough to allow nodes to maintain a reasonable number
of neighbors under the given churn rate. For example, if nodes have median
lifetimes of 10 seconds (β = 5 sec), but can afford to refresh or learn one neighbor
per second, no value of pthresh will allow its routing table to contain more than 10
entries.

Figure 5-4 shows that as pthresh increases the expected lookup hops decreases
due to fewer timeouts; however, as pthresh approaches 1, the number of hops
actually increases due to a smaller routing table size. The pthresh that minimizes
lookup hops lies somewhere between .8 and .95 for all curves. Figure 5-4 also
shows that as Bβ increases, the pthresh that minimizes h∗ increases as well, but only
slightly. In fact, for any reasonable value of Bβ, h∗ varies little near its minimum
that we can approximate the optimal pthresh for any value of Bβ to be .9.

Equation 5.8 is derived under the assumption of Pareto node lifetime distribu-
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Figure 5-4: The function h∗ (Equation 5.8) with respect to pthresh, for different values
of Bβ. h∗ goes up as pthresh decreases due to increased timeouts to stale routing entries.
h∗ goes to infinity as pthresh approaches 1 due to a smaller routing table leading to more
lookup hops.

tion. Analysis with exponential and uniform random node lifetime distributions
(using Equation 5.5 and Equation 5.6) results in similar optimal pthresh of .9. This
explains our observation in the previous chapter that there seems to be a best
staleness threshold for routing entries. In Table 4-4 from Chapter 4, we find the
best periodic pinging interval for Chord in simulations to be 144s, which is equiv-
alent to setting pthresh = Pr(lifetime > 144) = e

144

3600 ≈ 0.96 with exponentially
distributed node lifetime with a mean of 3600 seconds. In the actual Accordion
protocol, we set pthresh = .9, because even though this value may not be opti-
mal, it will produce an expected number of hops that is nearly minimal in most
deployment scenarios.

The above analysis for pthresh assumes no lookup parallelism. If lookups are sent
along multiple paths concurrently, nodes can use a much smaller value for pthresh

because the probability that all of the next hop neighbors are dead is small. Using
a smaller value for pthresh leads to a larger effective routing table size, reducing the
average lookup hop count. In fact, allowing nodes to use a less fresh but much
bigger routing table without suffering too many timeouts is the key benefit of
parallel lookups. An Accordion nodes adjusts pthresh based on its current lookup
parallelism such that the probability of at least one next hop neighbor being alive
is .9. Therefore, if wp is the current lookup parallelism, an Accordion node should

71



set the actual eviction threshold to be:

1− (1− pthresh)
wp = 0.9

⇒ pthresh = 1− e
ln 0.1
wp (5.9)

5.5.3 Calculating Entry Freshness

Nodes can use Equation 5.1 to calculate p, the probability of a neighbor being
alive, and then evict entries with p < pthresh. Calculating p requires estimating two
values: ∆talive and ∆tsince for each routing entry. Interestingly, p does not depend
on the scale parameter β of the Pareto lifetime distribution, which determines the
median node lifetime in the system. This is counterintuitive; we expect that the
eviction rate increases when the churn rate is higher (i.e. smaller median node
lifetimes). Interestingly, this median lifetime information is implicitly present in
the observed values for ∆talive, so β is not required to calculate p.

To help other nodes calculate and update ∆talive, each node can piggyback
its current uptime information in each packet it sends out. To calculate ∆tsince,
each node not only counts the time interval since the routing entry has been left
un-contacted in its own routing table, but it also takes into account how long the
routing entries have aged in other nodes’ routing tables at the time it first acquired
the routing entry from those nodes. Each node independently calculates ∆talive

and ∆tsince for each routing entry. The estimated values do not reflect the current
global information about the neighbor; e.g. the estimating node is not aware that
some other node may have contacted the neighbor in the last ∆tsince. Therefore, p
is only a local estimate of the probability of a neighbor being alive.

5.6 Discussions

In this chapter, we have presented a design of Accordion’s routing table mainte-
nance process. The design allows a node to have a variable routing table size so
it can shrink or expand its routing table to obtain best lookup performance using
bounded maintenance traffic. We use many insights from Chapter 4 to choose spe-
cific techniques that can use bandwidth most efficiently for low latency lookups.
Here we discuss a number of high level design decisions and their consequences.

Under a deployment scenario with high bandwidth budget and relatively low
churn, the Accordion table maintenance process will result in complete routing
state and one hop lookups. But does Accordion use bandwidth optimally in these
scenarios to perform one hop lookups? Let us assume the presence of an oracle
that detects nodes join and leave events instantaneously and informs all other
nodes immediately to maintain complete and accurate routing state. Suppose the
median node lifetime in the system is 2β. Then within 2β seconds, half of the
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node population have left the system and are replaced by newly joined nodes,
resulting in n total join and leave events. The total bandwidth consumption for
the oracle to send all n join and leave events to all nodes in the system is n

2β

bytes/second per node assuming optimistically that each event takes 1 byte and
there is no packet header overhead. This is the minimal bandwidth consumption
any protocol has to incur in order to maintain complete routing state. According
to Equation 5.4, Accordion requires each node to consume B = n

4β(1−pthresh)
= 5n

2β

bytes/second to keep an effective routing table size of n using the recommended
eviction threshold (pthresh = .9). Therefore, Accordion consumes 5 times the
absolute minimal bandwidth to maintain mostly accurate complete routing state.
However, the above analysis assumes that the amount of application lookup traffic
exceeds Accordion’s bandwidth budget so there is no redundant parallel lookups
(i.e. no overhead maintenance traffic). For example, if the bandwidth budget
allows lookup parallelism to be set at 2, a node requires only n

1.28β
bytes/second

using the eviction threshold pthresh = 0.68 (from Equation 5.9) to maintain complete
state, only 56% more than the oracle’s bandwidth consumption.

In designing Accordion, we decide not to send explicit notification messages
of node leave events like that in OneHop [33]. This is the main reason Accordion
tends to use more bandwidth than the oracle’s absolute minimal in scenarios
when nodes can afford to keep full state. Each Accordion node independently
evicts a routing entry if the neighbor has less than pthresh estimated probability of
being alive instead of evicting an entry only after receiving an explicit notification
message that the neighbor has actually left the network. The decision of not
sending explicit node leave notifications is two fold. First, it is hard to detect node
failures correctly over the wide area network. Unlike a local area cluster, wide
area network connections suffer from transient disruptions [4, 30, 45] caused by
link failures, BGP routing updates and ISP peering disputes etc. For example, a
certain wide area link failure prevents part of the network from communicating
with y directly, but not the rest. As a result, there is going to be an oscillation of
join and leave notifications about y as nodes have contradicting beliefs on whether
or not y is in the network. Second, Accordion uses a variable per-node routing
table size. In OneHop, all leave events are always propagated to all nodes, as
OneHop aims to keep complete state. In contrast, Accordion nodes do not try to
keep complete state in scenarios when the churn is high relative to the bandwidth
budget. Therefore, it is difficult and expensive for a node to find out those nodes
that contain the corresponding dead routing entry in order to send the leave event
to. Our evaluations in Chapter 7 show that although Accordion is not optimized
for those scenarios when nodes can afford to keep full state, its lookup latency
still outperforms that of OneHop.

Accordion requires users to explicitly specify a bandwidth budget. Each node
bounds its bandwidth consumption according to its budget based on the current
workload. In order to be robust against unpredictable and changing environ-
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ments, it is essential that DHT nodes have the ability to control its bandwidth
use to avoid overloading the network. However, it is less important for nodes to
observe a specific bandwidth constraint. What Accordion really needs is a binary
signal from the environment that informs a node whether or not the network is
currently being overloaded so a node can decide if it should send more mainte-
nance traffic. Unfortunately, it is not sufficient to simply rely on packet losses as
an indication of network overload as losses also arise when nodes send packets
to failed neighbors. Therefore, more sophisticated mechanisms are required to
correctly detect network overload and signal an Accordion node to cut back its
bandwidth use. We leave the detection mechanism to future work and adopt the
simple design of letting users explicitly specify a desired bandwidth consumption.
In practice, users can set a node’s bandwidth budget to be some small fraction of
the node’s access link capacity.

Accordion uses the observation that node lifetime distribution is often heavy
tailed to improve the accuracy of its estimate of p, the probability of a neighbor
being alive. Therefore, nodes that have been in the network for a longer time
appear in more nodes’ routing tables because they are judged to have a higher
probability of being alive. This causes Accordion to bias lookups towards neigh-
bors that have been in the network for a long time. Fortunately, the imbalance in
lookup traffic is not severe as evaluations as Chapter 7 will show.

74



Chapter 6

Accordion Implementation

After an Accordion node has joined an existing network, it starts to populate and
maintain its routing table. Accordion’s routing table maintenance process consists
of two sub-processes; routing state acquisition and eviction. The overall structure
of Accordion is depicted in Figure 6-1. Accordion’s routing state acquisition pro-
cess obtains routing entries predominantly by learning opportunistically through
lookup traffic. Each node spends most of its bandwidth budget performing par-
allel lookups. Accordion’s routing state eviction process calculates the known
uptime (∆talive) and age (talive) of each routing entry to avoid routing through
neighbors that are likely dead. The routing table size is simply the equilibrium
of the acquisition and eviction process. The bigger the budget, the faster a node
learns, resulting in a larger routing table and low lookup latency. The bigger
the churn rate, the faster a node evicts, leading to a smaller routing table with
bounded bandwidth overhead.

The pseudocode in Figure 6 outlines Accordion’s routing table maintenance
and lookup procedures. In this Chapter, we explain in detail how an Accordion
node acquires new entries via learning from lookups and active exploration, how
it evicts stale entries and how it chooses the best set of next hop neighbors to
forward a lookup message to.

6.1 Bandwidth Budget

The owner of each Accordion node independently sets a bandwidth budget for the
desired amount bandwidth consumption. Each Accordion node controls how to
best consume the “available” portion of budget left over after sending all lookup
traffic. Accordion’s strategy for using its available bandwidth is to use as much
of the bandwidth budget as possible on lookups by exploring multiple paths in
parallel. When some bandwidth is left over (perhaps due to bursty lookup traffic),
Accordion uses the rest to explore; that is, to find new routing entries according
to a small-world distribution.
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Figure 6-1: The overall architecture of Accordion. Each Accordion node consists of an in-
memory routing table. A node acquires and updates its routing entries predominantly by
learning through lookup traffic. A node adjusts its lookup parallelism based on observed
lookup workload to fill up its bandwidth budget, specified by the user. A node evicts
routing entries that are likely dead based on their corresponding ∆tsince and ∆talive. The
size of the routing table is the equilibrium between the routing acquisition and eviction
process, reflecting the bandwidth budget and churn rate.

The user specifies the bandwidth budget in two parts: the average desired
rate of traffic in bytes per second (ravg), and the maximum burst size in bytes
(bburst). Each node maintains an integer variable, bavail, to keep track of how
much of the budget is left over from lookups and available for maintenance traffic
(including exploration and parallel lookups), based on recent activity. Every
tinc seconds, the node increments bavail by ravg · tinc (where tinc is the size of one
typical packet divided by ravg). Each time the node sends an RPC packet or
receives the corresponding acknowledgment (for any type of traffic), it decrements
bavail by the size of the packet. Nodes decrement bavail down to a minimum of
−bburst. While bavail = −bburst, nodes stop sending all maintenance traffic (such as
redundant lookup traffic and exploration traffic). Nodes do not decrement bavail for
unsolicited incoming traffic, or for the corresponding outgoing acknowledgments.
In other words, each packet counts towards only the bandwidth budget at one
end.

Every tinc seconds, a node checks if bavail is positive. If so, the node sends one
exploration packet, according to the algorithm we present in Section 6.2.2. Thus,
nodes send no exploration traffic unless the average traffic over the last bburst/ravg

seconds has been less than ravg.

The bandwidth budget aims to limit the maintenance traffic generated by an
Accordion node, but does not give the node any control over its incoming traffic
or outgoing forwarded lookup traffic. For example, a node must acknowledge all
traffic sent to it from its predecessor regardless of the value of bavail; otherwise,
its predecessor may think it has failed and the correctness of lookups would be
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procedure StartMaint()
// update bavail periodically using budget (Section 6.1)
UpdateBavail() periodically

// adjust lookup parallelism periodically. (Section 6.4.1)
wp ← AdjustParallelism() periodically

// evicts stale entries according to the current lookup parallelism. (Section 6.3)
freshtable← Evict(table, wp)

// actively explore for more entries if budget permits (Section 6.2.2)
(n, end id)← Explore(freshtable) periodically
if n not NULL

v = n.GetNodes(me, wp, end id, 5)
table← table ∪ v

procedure Lookup(lookup request q)
if this node owns q.key

reply to lookup source directly
return

// help previous hop learn new entries (Section 6.2.1)
ack ← GetNodes(q.prev hop, q.prev wp, q.key, 5)
send ack to q.prev hop

// decide on lookup parallelism (Section 6.4.1)
para← GetParallelism()

// pick the best set of next hops (Section 6.4.2, 6.4.3)
freshtable← Evict(table, para)
nexts← NextHops(freshtable, q.key, para)

// send out copies of the lookup and learn from each reply
q.prev hop = me
q.prev wp = para
for each n in nexts

v ← n.Lookup(q)
table← table ∪ v

Figure 6-2: The outline of Accordion’s routing table maintenance and lookup
procedures. n.LOOKUP invokes the LOOKUP function on the remote node n. The
global variable table denotes a node’s current routing table and wp denotes a node’s
current lookup parallelism. Section numbers in the comments refer to the sections
where the corresponding functions will be defined.
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// choose m entries to piggyback in the lookup acknowledgment
// or in the reply to an active exploration message
// m is usually a small constant e.g. 5
procedure GetNodes(src, para, k, m)
// only consider entries fresher than src node’s eviction threshold
freshtable← Evict(table, para)
s← neighbors in freshtable between me and k
if s.size() < m

v ← s
else

v ← m nodes in s with the smallest VivaldiRTT() to src
return (v)

Figure 6-3: Learning from lookups in Accordion. Accordion includes the m entries
with the smallest network delay to the src node in the lookup acknowledgment
or the reply to an active exploration message. Furthermore, these m entries have
a higher probability of being alive than src node’s eviction threshold.

compromised. The imbalance between a node’s specified budget and its actual
incoming and outgoing traffic is of special concern in scenarios where nodes have
heterogeneous budgets. To help nodes with low budgets avoid excessive incoming
traffic from nodes with high budgets, an Accordion node biases lookup and table
exploration traffic toward neighbors with higher budgets. Section 6.4.2 describes
the details of this bias.

6.2 Acquiring Routing State

An Accordion node acquires most routing entries from piggybacked entries in the
lookup acknowledgment messages. When an Accordion node has not successfully
used up all its budget for performing parallel lookups, it explicitly explores for
new routing entries following a small world distribution.

6.2.1 Learning from lookups

An Accordion node forwards a lookup greedily in ID space. Each node chooses
a next hop node among its current neighbors with the closest ID distance to
the lookup key. We will relax this basic forwarding rule in later sections 6.4.2
and 6.4.3 to accommodate nodes with different bandwidth budget and network
proximity. Each intermediate node acknowledges the receipt of every lookup. The
acknowledgment serves to indicate that the next hop node is currently alive. In
addition, an Accordion node piggybacks m entries from its own routing table in
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Figure 6-4: Learning from recursive lookups in Accordion. Node y forwards a
lookup for key k to the next hop y′ that is closest to k in ID space. y′ acknowledges
the lookup message piggybacking additional routing entries from its own routing
table (x1,x2,x3) whose node IDs lie between itself and the lookup key k. The
shaded region denotes the ID range from which y′ chooses its routing entries to
include in the acknowledgment to y.

the acknowledgment message to help the previous hop learn from lookups. In our
implementation, m is usually set to be some small constant (e.g. 5).

Figure 6.2.1 shows how an Accordion node learns from forwarding a lookup
message. If y forwards a lookup for key k to the next hop y′, y′ piggybacks a
m routing entries in the ID range between y′ and k from its routing table. As
lookups usually require more than one hop to reach the predecessors, a node
forwards more lookup messages than it originates. Since forwarded lookups are
for keys in closer-by ID space, acquiring new entries from the next hop allows a
node to preferentially learn about new entries close to itself in ID space, the key
characteristic of a small-world distribution. Additionally, the fact that y forwards
the lookup to y′ indicates that y does not know of any neighbors in the ID gap
between y′ and k, and y′ is well-situated to supply routing entries that fill this gap.
In Figure 6, we have shown the pseudocode of a node forwarding a lookup to
its next hop. Figure 6.2.1 shows how y′ chooses a subset of its routing entries
to include in its lookup acknowledgment message to y. y′ only consider entries
whose probability of being alive is higher than y’s eviction threshold as calculated
using y’s lookup parallelism which is included in the lookup message. Node y ′

chooses entries with the lowest predicted delay to y. Accordion uses Vivaldi [16],
a network coordinate system, to predict the round trip delay between any pair of
nodes given their synthetic coordinates.
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6.2.2 Active Exploration

Accordion attempts to use most its budget for parallel lookups by periodically
adjusting the lookup parallelism (wp). When lookup traffic is bursty, Accordion
is not always able to set wp perfectly for the next time period. As such, parallel
lookups would not consume the entire bandwidth budget during that time period.
When the parallelism window (wp) is too small for the current level of lookup
traffic, bavail becomes positive indicating there is leftover bandwidth to explore for
new neighbors actively. The main goal of exploration is that it be bandwidth-
efficient and result in learning nodes with the small-world distribution described
in Section 5.3.

For each neighbor at x ID-distance away from a node, the gap between that
neighbor and the next successive entry should be proportional to x. A node with
identifier y compares the scaled gaps between its successive neighbors ni and ni+1

to decide the portion of its routing table most in need of exploration. The scaled
gap g(ni) between neighbors ni and ni+1 is:

g(ni) =
d(ni, ni+1)

d(y, ni)

where d(y, ni) computes the clockwise distance in the circular identifier space
between identifiers y and ni. When node y sends an exploration message, it
chooses to send to the neighbor ni with the largest scaled gap (g(ni)). The result
is that the node explores in the area of ID space where its routing table is the most
sparse with respect to the desired small world distribution.

An exploration message from node y asks neighbor ni for m routing entries
between ni and ni+1. Node ni chooses m entries from its routing table in the
same way as it chooses entries for learning from lookups (see Figure 6.2.1). If ni

returns fewer than m entries, node y will not revisit ni again until it has explored
all its other neighbors. Figure 6.2.2 presents the pseudocode for deciding which
neighbor to explore new entries from.

6.3 Evicting Stale Routing State

Accordion estimates a routing entry’s liveness probability based on ∆talive (the time
between when the neighbor last joined the network and when it was last heard)
and ∆tsince (the time between when it was last heard and now). A routing entry’s
liveness probability (p) is approximated as p ≈ ∆talive

∆tsince+∆talive
. The estimate is exact

when the node lifetime follows a Pareto distribution with shape parameter α = 1.
Each node keeps track of its own ∆talive based on the time of its last join, and

includes its current ∆talive in every packet it sends. Nodes learn (∆talive, ∆tsince)
information associated with neighbors in one of the following three ways:
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// decide which neighbor to explore
procedure Explore(freshtable)
// only explore when there is leftover budget from lookups
if bavail ≤ 0

return (NULL)
pn = IdSucc(freshtable, me.id)
n = IdSucc(freshtable, pn.id)
s← {}
while n.id not me.id

if pn not been directly contacted before
pn.gap = n.id− pn.id
pn.gap = pn.gap/n.id
s← s ∪ {pn}
pn = n
n = IdSucc(freshtable, pn.id)

n← node in s with biggest gap
return (n, IdSucc(freshtable, n.id))

Figure 6-5: Accordion chooses the neighbor with the biggest scaled gap to send
an exploration message. IDSUCC(freshtable, n.id) returns the immediate successor
in freshtable after node n.

� When the node hears from a neighbor directly, it records the current local
timestamp as tlast in the routing entry for that neighbor, and resets an asso-
ciated ∆tsince value to 0 and sets ∆talive to the newly-received ∆talive value.

� If a node hears information about a new neighbor indirectly from another
node, it will save the supplied (∆talive,∆tsince) pair in the new routing entry,
and set the entry’s tlast value to the current local timestamp.

� If a node hears information about an existing neighbor, it compares the
received ∆tsince value with its currently recorded value for that neighbor.
A smaller received ∆tsince indicates fresher information about this neighbor,
and so the node saves the corresponding (∆talive, ∆tsince) pair for the neighbor
in its routing table. It also sets tlast to the current local timestamp.

Whenever a node needs to calculate a current value for ∆tsince (either to com-
pare its freshness with a newly received entry with the same ID, or to pass it to
a different node), it adds the saved ∆tsince value and the difference between the
current local timestamp and tlast.

The freshness threshold of the routing entries pthresh depends on the lookup
parallelism (wp) a node currently uses (Equation 5.9). Since a node changes its
lookup parallelism from time to time based on observed lookup load, it does
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// return a list of fresh routing entries based on current eviction threshold
procedure Evict(table, p)
// calculate eviction threshold based on parallelism
pthresh = 1− (exp ∗ (log(1− 0.9)/p))
v ← {}
for each n in table

p = n.∆talive/(n.∆talive + n.∆tsince)
if p > pthresh

v ← v ∪ {n}
return (v)

Figure 6-6: Accordion precludes stale routing entries from being used in lookups
based on the current eviction threshold pthresh.

not physically evicts routing entries based on pthresh. Rather, a node simply
precludes stale routing entries from being used as next hop nodes if their estimated
probability of being alive is less than pthresh. Figure 6.3 shows the pseudocode for
the EVICT function that filters routing entries based on their estimated liveness and
the current pthresh.

6.4 Accordion Lookups

Accordion needs to adjust lookup parallelism based on observed lookup load. It
also carefully chooses the set of next hop nodes, balancing the need to make good
lookup progress in ID space and to use low delay and high budget neighbors.

6.4.1 Parallelizing Lookups

Accordion parallelizes recursive lookups by sending a small number of copies of
each lookup to a set of neighbors. A node increases the parallelism of lookup
messages it initiates and forwards until the point where the lookup traffic nearly
fills the bandwidth budget. A node must adapt the level of parallelism as the
underlying lookup workload changes and it must also avoid forwarding the same
lookup twice.

A key challenge in Accordion’s parallel lookup design is caused by its use of
recursive routing. Previous DHTs with parallel lookups use iterative routing: the
originating node sends lookup messages to each hop of the lookup in turn [48,58].
Iterative lookups allow the originating node to explicitly control the amount of
redundant lookup traffic and the order in which paths are explored, since the
originating node issues all messages related to the lookup. However, Accordion
uses recursive routing to learn more nodes closer-by in ID space, and nodes forward
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// periodically adjust the desired lookup parallelism
procedure AdjustParallelism()
// increase parallelism by one, subject to a maximum of 6
if explored more than forwarded unique lookups in last period

wp = Min(wp + 1, 6)
else if explored zero time in last period

wp = wp/2

// decide on the parallelism for the current lookup message
procedure GetParallelism()
if bavail < −bburst

return (1)
else if

return (wp)

Figure 6-7: Accordion adjusts lookup parallelism periodically based on observed
lookup load. The lookup parallelism for the current lookup message is set to one
once a node has used up its budget.

a lookup directly to its next hop. To control recursive parallel lookups, each
Accordion node independently adjusts its lookup parallelism to stay within the
bandwidth budget and drops redundant lookups when the bandwidth budget is
tight.

If a node knew the near-term future rate at which it was about to receive
lookups to be forwarded, it could divide the bandwidth budget by that rate to
determine the level of parallelism. Since it cannot predict the future, Accordion
uses an adaptive algorithm to set the level of parallelism based on the past lookup
rate. Each node maintains a “parallelism window” variable (wp) that determines
the number of copies it forwards of each received or initiated lookup. A node
adjusts wp every tp seconds, where tp = bburst/ravg, which allows enough time for
the bandwidth budget to recover from potential bursts of lookup traffic. A node
evaluates whether wp was too aggressive or conservative based on the amount of
unique lookup messages a node has originated or forwarded in the past tp seconds.
If the previous wp was too big, i.e. the total amount of parallel lookup traffic
exceeds what is allowed by the budget, a node decreases wp by half. Otherwise,
wp is increased by 1. This additive increase and multiplicative decrease (AIMD)
style of control resembles the congest control mechanisms in TCP [13, 38] and
gives a prompt response to wp overestimation or sudden changes in the lookup
load. Figure 6.4.1 shows the pseudocode for adjusting wp. For each lookup
message a node sends out, it decreases bavail by the number of bytes in the lookup
and its acknowledgment packet. A node does not parallelize lookups when bavail

is less than −bburst indicating it has already exceeded its budget at the moment.
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Nodes do not increase wp above some maximum value, as determined by the
maximum burst size, bburst.

When a node originates a lookup, it marks one of the parallel copies with a
“primary” flag which distinguishes that lookup message from other redundant
copies of the same lookup. If a node receives a primary lookup, it marks one
forwarded copy as primary, maintaining the invariant that there is always one
primary copy of a query. When a nodes receives a non-primary copy, it is free
to drop the lookup if it does not have sufficient bandwidth (bavail < −bburst) to
forward the lookup, or if it has already seen a copy of the lookup in the recent
past. Allowing a node to drop non-primary copies eliminates the danger of parallel
lookup traffic increasing uncontrollably at each hop.

6.4.2 Biasing Traffic to High-Budget Nodes

Because nodes have no direct control over the bandwidth consumed by incom-
ing lookups and exploration packets, in a network containing nodes with diverse
bandwidth budgets we expect that some nodes will be forced over-budget by
incoming traffic from nodes with bigger budgets. Accordion addresses this bud-
getary imbalance by biasing lookup and exploration traffic towards nodes with
higher budgets. Though nodes still do not have direct control over their incoming
bandwidth, in the absence of malicious nodes this bias serves to distribute traffic
in proportion to the bandwidth budgets of nodes.

When an Accordion node learns about a new neighbor, it also learns that
neighbor’s bandwidth budget. Traditional DHT protocols (e.g., Chord) route
lookups greedily to the neighbor most closely preceding the key in ID space,
because that neighbor is expected to have the highest density of routing entries
near the key. We generalize this idea to take into account of different bandwidth
budgets and forward lookup or exploration messages to neighbors with the best
combination of high budget and short ID distance to the lookup or exploration
key.

Suppose node y is to forward a lookup packet with key k for which n1 (with
budget b1) is the neighbor whose ID is the closest to k. Let ni (i = 2, 3...) be
neighbors preceding n1 in ID space from y’s routing table, each with a bandwidth
budget of bi. Let d(ni, k) be the distance in identifier space between ni and k, hence
d(n1, k) is the minimum distance among all d(ni, k)’s. Since y does not know of
any node in the ID interval between n1 and k, it should forward the lookup to
a neighbor having the densest routing entries in that interval to make the best
lookup progress in ID space. If vi is an estimate of the density of a neighbor’s
routing entries in the ID region between ni and k, then vi ∝ 1

d(ni,k)
since the density

of a node’s routing entries decrease inverse proportionally to the ID distance from
itself. However, bigger budgets lead to proportionally bigger routing tables and
hence vi ∝ bi. A node uses vi as the lookup “progress” metric in choosing which
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neighbor to forward the lookup to. In Accordion’s traffic biasing scheme, y prefers
forwarding the lookup packet to the neighbor ni with the largest value for vi:

vi =
bi

d(ni, k)
(6.1)

In the case of exploring for routing entries in the biggest scaled gap between
n1 and its successive entry n0, a node also prefers sending the exploration packet
to a neighbor ni with the largest vi = bi

d(ni,n0)
. For each lookup and exploration

decision, an Accordion node examines a fixed number of candidate neighbors (set
to 8 in our implementation) preceding n1 to choose the best set of next hops. Even
though a node does not send lookup packets to the neighbor (n1) closest to the
key, it learns new entries in the ID range between n1 and k from the next hop node
ni.

6.4.3 Proximity Lookups

When a node does not have a complete routing table, it has to forward a lookup
to an intermediate node. Accordion tries to route lookups to nodes with low
roundtrip trip delay using both Proximity Neighbor Selection (PNS) and Proximity
Route Selection [29] [18].

With PNS, an Accordion node preferentially acquires new routing entries with
low roundtrip delay to itself. For example, in Figure 6.2.1, nodes choose routing
entries with low network delays to include in the lookup acknowledgment message
to the previous hop. In Chord (base b = 2), PNS alone is sufficient to achieve most
of the lookup latency reduction and proximity route selection helps little [29].
This is because Chord has only a small number of finger entries chosen carefully
with low roundtrip delays for forwarding lookups. In contrast, an Accordion node
typically has a much larger routing table. As a node’s routing table approaches the
complete state, it is no longer the case that most routing entries point to neighbors
with low delay. Accordion explicitly weights vi to bias the next hop selection
towards proximate neighbors. We extend the “progress” metric in Equation 6.1
so a forwarding node y chooses the neighbor with the largest v ′

i:

v′

i =
bi

d(ni, k) · delay(y, ni)
(6.2)

where delay(y, ni) is the predicted roundtrip time between node a and ni based on
their Vivaldi coordinates. Figure 6.4.3 shows the pseudocode that an Accordion
node uses in choosing the best wp next hop nodes to forward a lookup message
to.
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// choose p best next hops to forward a lookup with key k
procedure NextHops(table, key, p)
v ← {}
n← IdPred(table, k)
// choose the best p out of a candidate pool of 8*p nodes
while |v| < 8 ∗ p

dist = IdDist(n.id, k)
// do not send to neighbors whose IDs are too far from the key
if dist > IdDist(me.id, k)/2

break
delay = VivaldiRtt(me.coord, n.coord)
n.vi = n.budget/(dist ∗ delay)
v ← v ∪ {n}
n← IdPred(table, n.id)

nexthops← p nodes with largest vi’s in v
return (nexthops)

Figure 6-8: Accordion chooses the next hop nodes based on a combination of their
budgets, ID distance to the lookup key and network proximity. IDDIST(a.id, b.id)
calculates the clockwise distance between two IDs. IDPRED(id, p) returns a neighbor
that immediately precedes the given id. VIVALDIRTT(a.coord, b.coord) calculates the
predicted roundtrip time between two nodes using their synthetic coordinates
a.coord and b.coord.

6.5 Implementation

We have implemented Accordion in both the p2psim simulator and the MIT
DHash [18] software release. DHash is a distributed hash table that distributes
and replicates data among a large number of nodes over the wide area network.
It relies on a lookup protocol to find the set of responsible nodes to store and
retrieve data from based on the lookup key. The original DHash lookup library
consists of two protocols, Chord and Koorde. Accordion is implemented as part
of the lookup library that DHash can use instead of Chord.

DHash runs as a user-level daemon process, lsd. Figure 6-9 shows the overall
architecture of DHash and an example application (UsenetDHT [75]) that uses
DHash for its distributed storage. The software is developed using the RPC
and asynchronous event handling library from the SFS toolkit [59]. The DHT
process (lsd) communicates with local applications via UNIX domain sockets and
communicates with lsds on remote machines via UDP sockets. Accordion provides
lookup service to local applications in two ways: applications can directly invoke
an Accordion lookup by issuing the findroute(k) RPC via a local UNIX domain
socket, or applications can issue the get(k) and put(k,v) RPCs to DHash which
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Figure 6-9: The overall architecture of lsd, a DHT daemon process that exports the
standard get(k), put(k,v) interface to applications. DHash implements the data storage,
retrieval and maintenance and use the DHT lookup library to find nodes responsible for
a key. Accordion is implemented as part of the lookup library.

further calls the find successors(k) function in Accordion in order to find the
responsible node to store or retrieval data from.

Accordion uses consistent hashing to map lookup keys to nodes and therefore
re-uses the successor stabilization code from Chord. Accordion obtains its band-
width budget from a user configuration file at lsd startup. The budget only limits
Accordion’s lookup and routing table exploration traffic and does not apply to
the DHash data storage, retrieval and maintenance messages.
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Chapter 7

Accordion Evaluation

We demonstrate the important properties of Accordion and compare it to existing
DHTs using simulation. In addition, we measure Accordion’s performance in a
real implementation using wide-area network emulation. Our evaluation shows
that Accordion nodes bound their bandwidth consumption effectively according
to the bandwidth budget. Accordion automatically tunes itself to provide better
latency vs. bandwidth tradeoffs than existing DHT protocols over a wide range
of churn and workloads. Specifically, Accordion nodes shrink their routing tables
to route lookups in logarithmic number of hops when the budget is small or churn
is high. When given a bigger budget or a more stable network, nodes efficiently
expand their routing tables to route lookups in one hop to achieve better lookup
latency. Furthermore, Accordion’s performance degrades only modestly when the
node lifetimes do not follow the assumed Pareto distribution.

7.1 Experimental Setup

We use simulations to investigate various properties of Accordion. In simulations,
we can run experiments quickly instead of in real time and thus we are able to ex-
amine Accordion’s performance under a large number of operating environments
with different churn rates and workloads. Chapter 4 has shown that Chord has
the best latency vs. bandwidth tradeoffs at small bandwidth consumption and
OneHop is the best at large bandwidth consumption. Therefore, we compare
Accordion’s bandwidth efficiencies to that of Chord and OneHop in simulations.

The experimental setups are identical to that in Chapter 4 except for the node
lifetime distribution and network topologies. Instead of using exponential lifetime
distribution, we uses a Pareto distribution with median lifetime of 1 hour (i.e.,
α = 1 and β = 1800 sec) to generate node join and leave time. We separately
evaluate the scenarios for which the node lifetime distribution does not follow the
assumed Pareto distribution. Because of the limited size of our measured roundtrip
times between DNS servers (1740×1740), for simulations involving larger networks
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we assign each node a random 2D Euclidean coordinate and derive the network
delay between a pair of nodes from their corresponding Euclidean distance. The
average round-trip delay between node pairs in both the synthetic and measured
delay matrices is 178 ms.

All Accordion configurations set bburst = 100 · ravg. The size in bytes of each
Accordion message is counted as 20 bytes for headers plus 8 bytes for each node
mentioned in the message to account for additional routing entry information
such as the bandwidth budget, node known uptime (∆talive), and time since last
contacted (∆tsince).

7.2 Latency vs. Bandwidth Tradeoff

A primary goal of the Accordion design is to adapt the routing table size to achieve
the lowest latency depending on bandwidth budget and churn. Figure 7-1 plots the
average lookup latency vs. bandwidth overhead tradeoffs of Accordion, Chord,
and OneHop. The curves for Chord and OneHop are their overall convex hulls
obtained by exploring their parameter spaces. There is no parameter exploration
necessary for Accordion, we just vary the bandwidth budget (ravg) between 3
and 60 bytes per second. Accordion automatically adapts itself to achieve low
lookup latency. We plot the measured bandwidth consumption, not the configured
bandwidth budget, along the x-axis. The x-axis values include all traffic; lookups
as well as routing table maintenance overhead.

Accordion achieves lower lookup latency that the best OneHop configuration
when the bandwidth budget is large, and approximates the latency of the best
Chord configuration when bandwidth is small. This is a result of Accordion’s
ability to automatically adapt its routing table size, as illustrated in Figure 7-1(b).

In Figure 7-1(b), when the budget is limited, Accordion’s table size is almost
as small as Chord’s. As the budget grows, Accordion’s routing table also grows,
approaching the number of live nodes in the system (on average, half of the 3000
nodes are alive in the system). As protocols use more bandwidth, Chord does not
increase its routing table size as quickly as Accordion, even when optimally tuned;
instead, a node spends bandwidth on maintenance costs for its slowly-growing
table. By increasing the table size more quickly, Accordion reduces the number of
hops per lookup, and thus the average lookup latency.

Because OneHop keeps a complete routing table, all join and leave events must
be propagated to all nodes in the system. This restriction prevents OneHop from
being configured to consume very small amounts of bandwidth. OneHop uses
more bandwidth by propagating these events more quickly, so its routing tables
are more up-to-date, resulting in fewer lookup hops and timeouts. Accordion, on
the other hand, parallelizes lookups to use more bandwidth and lower the eviction
threshold of routing entries. Therefore Accordion can cheaply expand its routing
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(a) Accordion’s latency vs. bandwidth trade-
off compared to Chord and OneHop. Each
point represents a particular parameter com-
bination for the given protocol. Accordion’s
lookup latency is lower than OneHop’s when
bandwidth is plentiful, and matches that of
Chord’s when bandwidth is small.

(b) The average routing table size for Chord
and Accordion as a function of the average
per-node bandwidth. The routing table
sizes for Chord correspond to the optimal
parameter combinations on Chord’s convex
hull segment in (a). Accordion’s ability to
expand its routing table as available band-
width increases explains why it achieves lower
latency than Chord.

Figure 7-1: Accordion’s latency vs. bandwidth tradeoff compared to Chord and
OneHop, using a 3000-node network and a churn intensive workload.

table size without suffering much from lookup timeouts.

7.3 Effect of a Different Workload

The simulations in the previous section featured a workload that was churn inten-
sive; that is, the amount of churn in the network was high relative to the lookup
rate. This section evaluates the performance of Accordion under a lookup inten-
sive workload. In this workload, each node issues one lookup every 9 seconds,
while the rate of churn is the same as that in the previous section.

Figure 7-2 shows the performance results for Chord, OneHop and Accordion.
Again, convex hull segments and scatter plots characterize the performance of
Chord and OneHop, while Accordion’s latency/bandwidth curve is derived by
varying the per-node bandwidth budget. Accordion’s lookup performance ap-
proximates OneHop’s when bandwidth is high.

Compared with the churn intensive workload, in the lookup intensive work-
load Accordion can operate at lower levels of bandwidth consumption than Chord.
With a low lookup rate as in Figure 7-1, Chord can be configured with a small
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Figure 7-2: Accordion’s lookup latency vs. bandwidth overhead tradeoff compared to
Chord and OneHop, using a 1024-node network and a lookup intensive workload.

base (and thus a small routing table and more lookup hops) for low bandwidth
consumption, with relatively high lookup latencies. However, with a high lookup
rate as in Figure 7-2, using a small base in Chord is not the best configuration:
it has relatively high lookup latency, but also has a large bandwidth use because
each lookup traverses many hops. Because Accordion learns new routing entries
from lookup traffic, a higher rate of lookups leads to a larger per-node routing
table, resulting in fewer lookup hops and less overhead due to forwarded lookups.
Thus, Accordion can operate at lower levels of bandwidth than Chord because it
automatically increases its routing table size by learning from the large number of
lookups.

The rest of the evaluation focuses on the churn intensive workload, unless
otherwise specified.

7.4 Effect of Network Size

This section investigates the effect of scaling the size of the network on the per-
formance of Accordion. Ideally, we would like to compare Accordion’s lookup
latency to the best latency that Chord and OneHop can achieve while consum-
ing the same amount of bandwidth by exploring their parameter spaces under
different network sizes. However, it is difficult to extract the optimal parameter
settings from the overall convex hull for arbitrary bandwidth consumptions, since
the convex hull is extrapolated from only a small number of discrete optimal
points. Therefore, we choose to fix the parameters for all three protocols under
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(a) The average lookup latency of Accordion,
Chord and OneHop as a function of network
size.

(b) The average bytes consumed per node by
Accordion, Chord and OneHop as a function
of network size for the same set of experiments
as in Figure 7-3.

Figure 7-3: The latency and bandwidth consumption of Accordion, Chord and OneHop
as a function of the number of nodes in the system. Accordion uses a bandwidth budget
of 6 bytes/sec, and the parameters of Chord and OneHop are fixed to values that mini-
mize lookup latency when consuming 7 and 23 bytes/node/sec in a 3000-node network,
respectively.

comparison. For Accordion, we fix the bandwidth budget at 24 bytes/sec. For
Chord and OneHop, we fix the protocol parameters to be the optimal settings
in a 3000-node network for bandwidth consumptions of 17 bytes/node/sec and 23
bytes/node/sec, respectively. These are the parameter combinations that produce
latency vs. bandwidth points lying on the convex hull segments and whose corre-
sponding bandwidth consumption most closely approximates Accordion’s budget
of 24 bytes/sec.

Figures 7-3 shows the average lookup latency and bandwidth consumption
of Chord, Accordion and OneHop as a function of network size. With fixed
parameter settings, Figure 7-3(b) shows that both Chord and OneHop incur in-
creasing bandwidth overhead that scales as log n and n respectively, where n is
the size of the network. However, Accordion’s fixed bandwidth budget results in
constant bandwidth consumption regardless of the network size. Despite using
less bandwidth than OneHop and the fact that Chord’s bandwidth consumption
approaches that of Accordion as the network grows, Accordion’s average lookup
latency is consistently lower than that of both Chord and OneHop.

These figures plot the average bandwidth consumed by the protocols, which
hides the variation in bandwidth that among different nodes and over time. For
Chord and Accordion, the bandwidth consumptions of different nodes are close to
the average. OneHop, however, explicitly distributes bandwidth unevenly among
nodes: slice leaders typically use 7 to 10 times the bandwidth of average nodes.
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(a)The average lookup latency of Accordion,
Chord and OneHop as a function of median
node lifetime.

(b) The average bandwidth consumption per
node by Accordion, Chord and OneHop as a
function of median node lifetime for the same
set of experiments as in Figure ??(a).

Figure 7-4: The latency and bandwidth consumption of Accordion, Chord and
OneHop as a function of median node lifetime, in a 3000-node network with churn
intensive workload. Accordion uses a bandwidth budget of 24 bytes/sec, and the
parameters of Chord and OneHop are fixed to values that minimize lookup latency
when consuming 17 and 23 bytes/node/sec, respectively, with median lifetimes of
3600 sec.

OneHop is also more bursty than Accordion; we observe that the maximum
bandwidth burst observed for OneHop is 1200 bytes/node/sec in a 3000-node
network, more than 10 times the maximum burst of Accordion. Thus, OneHop’s
bandwidth consumption varies widely and could at any one time exceed a node’s
desired bandwidth budget, while Accordion stays closer to its average bandwidth
consumption.

7.5 Effect of Churn

Previous sections illustrated Accordion’s ability to adapt to different bandwidth
budgets and network sizes; this section evaluates its adaptability to different levels
of churn.

Figure 7-4 shows the lookup latency and bandwidth overhead of Chord,
Accordion and OneHop as a function of median node lifetime. Lower node
lifetimes correspond to higher churn. Accordion’s bandwidth budget is constant
at 24 bytes per second per node. Chord and OneHop uses parameters that achieve
the lowest lookup latency while consuming 17 and 23 bytes per second, respec-
tively, for a median node lifetime of one hour. While Accordion maintains fixed
bandwidth consumption regardless of churn, both Chord and OneHop’s over-
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Figure 7-5: Bandwidth versus latency for Accordion and StaticAccordion, using a 1024-
node network and a churn intensive workload. Accordion tunes itself nearly as well as
the best exhaustive-search parameter choices for StaticAccordion.

head grow inversely proportional to median node lifetime (proportional to churn
rates). Accordion’s average lookup latency increases with shorter median node
lifetimes, as it maintains a smaller table due to higher eviction rates under high
churn. Chord’s lookup latency increases due to a larger number of lookup time-
outs, because of its fixed table stabilization interval. Accordion’s lookup latency
decreases slightly as the network becomes more stable, with consistently lower
latencies than both Chord and OneHop. OneHop has unusually high lookup
latencies under high churn as its optimal setting for the event aggregation interval
with mean node lifetimes of 1 hour is not ideal under higher churn, and as a result
lookups incur frequent timeouts due to stale routing table entries.

7.6 Effectiveness of Self-Tuning

Accordion adapts to the current churn and lookup rate by adjusting the lookup
parallelism (wp), in order to stay within its bandwidth budget. To evaluate the
quality of the adjustment algorithms, we compare Accordion with a simplified
version (called StaticAccordion) that uses manually adjustable wp, pthresh and ac-
tive exploration interval parameters. Simulating StaticAccordion with a range
of parameters, and looking for the best latency vs. bandwidth tradeoffs, indi-
cates how well Accordion could perform with ideal parameter settings. Table 7.1
summarizes StaticAccordion’s parameters and the ranges explored.

Figure 7-5 plots the latency vs. bandwidth tradeoffs of StaticAccordion for
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Parameter Range
Exploration interval 2-90 sec
Lookup parallelism wp 1,2,4,6
Eviction threshold pthresh .6 –.99

Table 7.1: StaticAccordion parameters and ranges.
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Figure 7-6: The performance of Accordion on three different node lifetime distributions,
and of Chord on an exponential distribution, using a 3000-node network and a churn
intensive workload. Though Accordion works best with a Pareto distribution, it still
outperforms Chord with an exponential node lifetime distribution in most cases.

various parameter combinations. The churn and lookup rates are the same as
the scenario in Figure 7-1. The lowest StaticAccordion points, and those farthest
to the left, represent the performance Accordion could achieve if it self-tuned
its parameters optimally. Accordion approaches the best static tradeoff points,
but has higher latencies in general for the same bandwidth consumption. This
is because Accordion tries to control bandwidth overhead, such that it does not
exceed the maximum-allowed burst size if possible (where we let bburst = 100ravg).
StaticAccordion, on the other hand, does not attempt to regulate its bandwidth
use nor burst size. Its bandwidth consumption is simply the result of using the
fixed parameters under the current workload. For example, when the level of
lookup parallelism is high, a burst of lookups will generate a large burst of traffic.
Accordion will reduce the lookup parallelism wp to try to stay within the maximum
burst size, but StaticAccordion still uses its fixed lookup parallelism. Therefore,
StaticAccordion can keep its lookup parallelism constant to achieve lower la-
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tencies (by using a bigger routing table with less fresh entries) than Accordion,
though the average bandwidth consumption will be the same in both cases. As
such, if controlling bursty bandwidth is a goal of the DHT application developer,
Accordion will control node bandwidth more consistently than StaticAccordion,
without significant additional lookup latency.

7.7 Lifetime Distribution Assumption

Accordion’s algorithm for predicting neighbor liveness probability assumes a
heavy-tailed Pareto distribution of node lifetimes (see Sections 5.5). In such a
distribution, nodes that have been alive a long time are likely to remain alive.
Accordion exploits this property by preferring to keep long-lived nodes in the
routing table. If the distribution of lifetimes is not what Accordion expects, it may
make more mistakes about which nodes to keep, and thus suffer more lookup
timeouts. This section evaluates the effect of such mistakes on lookup latency.

Figure 7-6 shows the latency/bandwidth tradeoff with node lifetime distribu-
tions that are uniform and exponential. The uniform distribution chooses lifetimes
uniformly at random between six minutes and nearly two hours, with an average
of one hour. In this distribution, nodes that have been part of the network longer
are more likely to fail soon. In the exponential distribution, node lifetimes are
exponentially distributed with a mean of one hour; the probability of a node being
alive does not depend on its join time.

Figure 7-6 shows that Accordion’s lookup latencies are higher with uniform
and exponential distributions than they are with Pareto. However, Accordion
still provides lower lookup latencies than Chord, except when bandwidth is very
limited.

7.8 Bandwidth Control

An Accordion node does not have direct control over all of the network traffic
it generates and receives, and thus does not always keep within its bandwidth
budget. A node must always forward primary lookups, and must acknowledge all
exploration packets and lookup requests in order to avoid appearing to be dead.
This section evaluates how much Accordion exceeds its budget.

Figure 7-7 plots bandwidth consumed by Accordion as a function of lookup
traffic rate, when all Accordion nodes have a bandwidth budget of 6 bytes/sec.
The figure shows the median of the per-node averages over the life of the exper-
iment, along with the 10th and 90th percentiles, for both incoming and outgoing
traffic. When lookup traffic is low, the median node achieves approximately 6
bytes/sec. As the rate of lookups increases, nodes explore less often and issue
fewer parallel lookups. Once the lookup rate exceeds one every 25 seconds there
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Figure 7-7: Accordion’s bandwidth consumption vs. lookup rate, using a 3000-node
network and median node lifetimes of one hour. All nodes have a bandwidth budget of 6
bytes/sec. Nodes stay within the budget until the lookup traffic exceeds that budget.

is too much lookup traffic to fit within the bandwidth budget. Each lookup packet
and its acknowledgment cost approximately 50 bytes in our simulator, and our
experiments show that at high lookup rates, lookups take nearly 3.6 hops on
average (including the direct reply to the query source). Thus, for lookup rates
higher than 0.04 lookups per second, we expect lookup traffic to consume more
than 50 ·3.6 ·0.04 = 7.2 bytes per node per second, leading to the observed increase
in bandwidth.

The nodes in Figure 7-7 all have the same bandwidth budget. If different
nodes have different bandwidth budgets, it might be the case that nodes with large
budgets force low-budget nodes to exceed their budgets. Accordion addresses this
issue by explicitly biasing lookup and exploration traffic towards neighbors with
high budgets. Figure 7-8 shows the relationship between the spread of budgets
and the actual incoming and outgoing bandwidth incurred by the lowest- and
highest-budget nodes. The node budgets are uniformly spread over the range [2, x]
where x is the maximum budget shown on the x-axis of Figure 7-8. Figure 7-8
shows that the bandwidth used by the lowest-budget node grows very slowly with
the maximum budget in the system; even when there is a factor of 50 difference
between the highest and lowest budgets, the lowest-budget node exceeds its budget
only by a factor of 2. The node with the maximum budget stays within its budget
on average in all cases.
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Figure 7-8: Bandwidth consumption of Accordion nodes in a 3000-network using a churn
intensive workload where nodes have heterogeneous bandwidth budgets, as a function of
the largest node’s budget. For each experiment, nodes have budgets uniformly distributed
between 2 and the x-value. This figure shows the consumption of the nodes with both the
minimum and the maximum budgets.

7.9 Evaluating Accordion Implementation

We evaluate the Accordion implementation in a fully functioning distributed hash
table, DHash, using Modelnet [81]. Modelnet is a wide area network emulation
toolkit which has also been used by previous studies to evaluate mature imple-
mentations of various DHTs [68].

7.9.1 Experimental Setup

Modelnet runs on a cluster of machines on the same LAN. It allows each physical
machine to emulate many virtual Internet edge nodes running an instance of lsd
(the DHash daemon process) with the Accordion lookup protocol. Traffic from
all the virtual nodes are forwarded to a single physical machine that acts as the
Modelnet “core router” which imposes link capacity constraints, FIFO queuing,
propagation delay and loss rate according to a specified network topology.

The Modelnet experimental setup consists of 16 physical machines, one of
which is configured as the Modelnet core router that all traffic are routed through.
Each of the other 15 machines emulates 68 virtual nodes to create a 1000-node
emulated network. Except for the smaller network size (1000 nodes as opposed
to 3000 in the simulations), we choose to configure our emulation experiments
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similarly to the simulations in the previous sections. The emulated network uses a
transit-stub topology generated by the Inet [86] Internet topology generator. The
average roundtrip propagation delay between two virtual edge nodes are 164ms.
The average bandwidth between a virtual edge node and the ISP stub network is
configured to be 500Kbps, a typical DSL link capacity. The capacity between two
transit networks is configured to be 150Mbps. In the Accordion implementation,
each lookup message and its reply each takes approximately 200 bytes. Therefore,
it takes roughly 4∗200∗8/500 = 12 ms in transmission delay to traverse the access
links between edge nodes and stub networks four times in addition to the 164ms
propagation delay to send and receive a lookup in one hop.

All lsd processes are started in the first 10 minutes of an experiment. Sub-
sequently, each lsd node joins and leaves the network alternatively, with life
times generated from a Pareto distribution with median time 3600s (α = 1.0
and β = 1800 s). Each node issues one lookup for a randomly generated key every
600 seconds. All experiments run for 4 hours in real time and statistics are only
collected in the second half of the experiments.

In all the graphs shown, the y-axis shows the average lookup latency in millisec-
onds and the x-axis shows the total number of bytes consumed by all Accordion
nodes in the second half of the experiment, divided by the total alive time of
all nodes. The bandwidth consumption shown in the graphs includes all lookup
traffic, routing table exploration messages and successor list stabilization traffic.
In the simulations from the previous section, we count the size of each message to
be 20 bytes for the header plus 8 bytes for each node mentioned in the message.
In the real implementation, each message header is 170 bytes long and consists
of 40 bytes of IP header and 130 bytes of transport headers (containing RPC
and the STP [18] transport headers). Furthermore, each node mentioned in the
packet takes 36 bytes including information on node’s IP address, port number,
Vivaldi coordinates [16], bandwidth budget, known uptime (∆talive), time since
last contacted (∆tsince) and an unique lookup identifier.

7.9.2 Latency vs. bandwidth tradeoffs

As a baseline comparison, we measure the best possible lookup latency on the
Modelnet testbed. We run Accordion with a complete routing table at each node
with no churn so each lookup finishes in exactly one hop with no timeouts. The
average lookup latency is 220 ms. This is higher than the average RTT it takes for
send and receive a 200-byte packets across the network (164 + 12 = 178ms). The
extra 40 ms is due to a combination of the Modelnet router’s processing delay and
the relatively high load (load average = 0.49) on each physical machine that each
runs 68 lsd processes simultaneously. Therefore, 220 ms is the lower bound on the
lookup latency in all Modelnet experiments.

Figure 7-9 shows Accordion’s lookup latency vs. bandwidth tradeoffs in a
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Figure 7-9: Accordion’s lookup latency vs. bandwidth tradeoff, in a 1000-node emulated
network and a churn intensive workload. The error-bars show the 10-percentile, average
and 90-percentile lookup latencies in msec. We use the default parameter settings for
evaluating Chord’s implementation.

churn intensive workload. Accordion’s lookup latency decreases quickly with
larger bandwidth consumption. Accordion re-uses Chord’s code for successor list
stabilization which consumes 170 bytes/node/s in all scenarios and is not subject
to Accordion’s bandwidth budget constraint. Hence, the minimal Accordion
bandwidth consumption approaches 170 bytes/node/s in Figure 7-9.

When the bandwidth budget is small, Accordion slows down its routing state
acquisition process with less parallel lookups and active exploration messages.
As a result, when consuming 185 bytes/node/s, each node routes lookups with
a smaller routing table in 1.96 hops (427.4 ms) and incurring 13.2% timeouts.
When the bandwidth budget is plentiful, each Accordion node expands its routing
table by learning more quickly through lookups and explorations and using less
fresh routing entries with more aggressive parallel lookups. At 328.4 bytes/node/s,
Accordion achieves lookup latency as low as 225 ms. Each lookup takes 1.14
hops on average to reach its responsible node and encounters very low timeout
probability (≈ 0.4%).

Unlike in p2psim, the Chord implementation in lsd does not allow variable
base (b) settings. Furthermore, since each Modelnet experiment takes 4 hours, it is
impractical to fully explore Chord’s parameter space to extrapolate its best latency
vs. bandwidth tradeoffs as we did in simulations. We ran lsd with Chord using
the set of default Chord parameter values. Chord uses b = 2 for its finger table.
Each node initially checks the liveness of each finger entry every 1 second interval
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Figure 7-10: Accordion’s lookup latency as a function of varying churn rates in a 1000-
node emulated network. The x-axis shows the median node lifetime in the experiment.
The y-axis shows the 10-percentile, average and 90-percentile lookup latency in msecs.

and doubles the checking interval if it has found all fingers to be alive in the
previous period till the maximal checking interval of 16 seconds. With its default
parameter setting, each Chord lookup finishes in 431 msec in 3.1 hops on average
and incurs 3.1% timeouts. The resulting bandwidth consumption (excluding cost
for stabilizing successor lists) is 318.8 bytes/node/s.

7.9.3 Effect of Churn

We measure Accordion’s lookup performance under different churn rates in Fig-
ure 7-10. We choose a fixed Accordion’s bandwidth budget and vary the median
node lifetime in each experiment. Each node issues one lookup per 600 seconds.
Since the budget remain unchanged, the per-node total bandwidth consumption
remains approximately constant at 274 bytes/node/s regardless of churn rates.
When churn is high (e.g. median lifetime 500 seconds), an Accordion node con-
tracts its routing table by evicting routing entries more quickly. Hence, nodes route
lookups in slightly more hops (1.45) and higher latency (263 msec). When there
is low churn, nodes evict entries slower, resulting in bigger routing tables. Hence,
when node lifetime is as long as 4000 seconds, lookups have correspondingly lower
latency (228 msec) as they finish in fewer hops (1.18).
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7.10 Discussions

The performance improvement of the Accordion implementation in DHash with
bigger bandwidth budget and larger median node lifetime show the same trend
as that in simulations. The absolute bandwidth consumption per node as shown
in Figure 7-9 is almost 10 times bigger than that in simulations (Figure 7-1).
In simulations, we use the most conservative way to measure each protocol’s
bandwidth consumption. In particular, each node ID only counts as 4 bytes,
the minimal number of bytes required to record a node’s IP address. In the
actual implementation, each DHT node needs to be identified with much more
information than its IP address such as port number, Vivaldi coordinates etc.
It is possible to compress the packet payload in the implementation at the cost
of increased software complexity, but all protocols will benefit equally from the
compression.

The evaluations of Accordion’s implementation in DHash shows that Accor-
dion works well as expected. However, our evaluations reveal some issues which
are largely ignored by simulations.

DHash uses the STP transport protocol [18] on top of the RPC library to
avoid congesting a node’s own access link. STP relies on packet losses as an
indication of congestion and shrinks its congestion window to slow down sending
RPCs. As Accordion aggressively sends out lookup messages to possibly dead
neighbors during parallel lookups, the STP congestion window is quickly reduced
to its minimal after a sequence of losses. This is because a node has no way
to tell if the losses are due to congestion or dead neighbors. In the current
implementation, Accordion lookup and exploration messages simply bypass STP’s
congestion control mechanism. Compared to DHash’s data block fetches and
stores, Accordion’s protocol messages are much smaller and are well bounded by
the user specified budget. Therefore, we believe it is unlikely that bypassing STP
will result in Accordion congesting a node’s access link.

DHT lookup latency is rarely the end-to-end performance metric that appli-
cations care about. DHash provides a replicated distributed storage system to
applications like UsenetDHT [75] and Overcite [78, 79]. In DHash, a block of
data is replicated and stored on a small number of successor nodes that immediate
follow the key of the data. The read performance of UsenetDHT and Overcite
depends on how fast a data block can be fetched from DHash. A DHT lookup ter-
minates at the immediate predecessor node of the key who returns the identities of
its current successors that are storing the data to the lookup originator. Accordion
can be used to reduce the lookup latency to approximately one round trip time
by forwarding a lookup directly to its predecessor node instead of going through
multiple intermediate hops. However, in order to fetch a block of data, the orig-
inating node still has to incur another round trip time to issue the fetch RPC to
one of the successors in the lookup rely to retrieve the data block. Therefore, even
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though Accordion provides one hop lookups, the end-to-end data fetch latency
requires two round trip times. We can improve the data fetch performance by
allowing nodes to issue data fetches opportunistically before it receives a lookup
reply from the key’s predecessor node. This requires a node to estimate the total
number of nodes in the system so it only issues the opportunistic data fetch when
its routing table is nearly complete. One common method for a node to estimate
the total number of nodes in the system is to measure the ID segment size occupied
by a node’s successor list and scale it up to the entire ID ring [57] [56].

104



Chapter 8

Related Work

There is a large body of related work on designing robust distributed system. The
design and applications of DHTs bear resemblance to early work in distributed
data structure (LH* [53], DDS [27]) and membership protocols in group com-
munication systems like Horus [82]. One main difference of DHTs from these
early work lies in its large scale and wide area deployment. Such a deployment
scenario makes precise failure detections impractical. Furthermore, latency and
bandwidth [15, 67] optimizations are crucial for good and robust performance
over the wide area network. In this chapter, we review related work in DHT
evaluations, protocol designs and techniques for handling churn over the wide
area network.

8.1 DHT Performance Evaluation

Many ways of evaluating DHTs in static networks exist [29,54]. The most system-
atic evaluation of DHTs is done by Gummadi et al. [29]. In particular, Gummadi
et al. simulate various DHT designs and analyze how different routing geome-
tries affect DHT overlay resilience and proximity routing. They have shown that
choosing routing neighbors with low round trip delay (i.e. proximity neighbor se-
lection) can greatly improve the end-to-end lookup latencies of log n protocols like
Chord. They also observe that some routing geometry such as the ring structure
of Chord is more resilient to nodes failures than others. The static resilience of
the ring structure correlates to our findings in Chapter 4 that Chord can use band-
width more efficiently to maintain its ring structure for correct lookups. However,
the analysis of Gummadi et al. is done in either static networks without churn or
networks in which a subset of nodes fail simultaneously before the DHT routing
table maintenance procedures have a chance to repair the entries. The analysis
does not take into account any overhead traffic and therefore is unable to quantify
the cost of different DHTs. Our framework, PVC [49,51], focuses on the perfor-
mance vs. cost tradeoffs of different DHTs which are affected by design choices
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such like parallelizing lookups, varying routing table size and bounding routing
entry staleness in addition to a DHT’s routing geometry.

Xu [87] studies the tradeoff between the amount of routing state and the
resulting overlay network’s diameter. The study concludes that existing overlay
protocols that maintain log(n) state have achieved the optimal asymptotic state vs.
network diameter tradeoffs. We have not argued against this point; we examined
the DHT’s lookup latency that was not evaluated by Xu, and found that factors
other than the size of the routing state can greatly influence performance.

Liben-Nowell et al. [52] give a theoretical analysis of Chord in a network with
churn. The concept of half-life is introduced to measure the rate of membership
changes. It is shown that Ω(log n) stabilization notifications are required per half-
life to ensure efficient lookup with O(log n) hops. The analysis focuses only on
the asymptotic communication cost due to Chord’s stabilization traffic, whereas
our study explores a much broader set of design choices and protocols.

Rhea et al [68] [67] tested three mature implementations of DHTs under churn
using Modelnet based emulations: Bamboo [68], FreePastry [24] and an older ver-
sion of Chord/DHash [17] with iterative lookups. The comparisons focus mostly
on lookup consistencies and latency instead of the tradeoffs between a DHT’s
performance and its bandwidth consumption. Their comparison experiments are
done with real implementations using the default protocol parameters. Therefore,
unlike PVC, there is no parameter explorations for the DHTs under study. Our
study study explores a wider range of protocols and demonstrates that parameter
tuning can have a large effect on a protocol’s performance vs. cost tradeoffs. On
the other hand, we do not model bandwidth congestion in p2psim and therefore
cannot observe the congestion collapse of FreePastry due to its pro-active recovery
in response to churn.

Mahajan et al. studies the reliability vs. maintenance cost tradeoffs of Pas-
try [55]. Reliability is measured as the probability of forwarding a lookup to a
dead neighbor. Reliability affects the lookup latency in the sense that more relia-
bility leads to less timeouts and hence lower lookup latency. However, reliability
is not the only factor that determines lookup latency; forwarding a lookup in
fewer hops or using proximate neighbors also lead to decrease in overall lookup
latency. One of the contribution of PVC is its ability to compare the efficiencies
of different design choices each of which uses bandwidth to improve one factor
that affects lookup latency. For example, the analysis in [55] provides a self tun-
ing mechanism that achieves a user desired reliability using minimal maintenance
cost. In contrast, with PVC we are able to discover that there is one best freshness
threshold (i.e. hop-by-hop reliability) and a node should use extra bandwidth to
increase its routing state to further reduce lookup hops.

Lam and Liu [46] present join and recovery algorithms for a hypercube-based
DHT, and show through experimentation that their protocol gracefully handles
both massive changes in network size and various rates of churn. While our work
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focuses on lookup latency and correctness, Lam and Liu explore K-consistency,
a much stronger notion of network consistency that captures whether or not the
network has knowledge of many alternate paths between nodes.

Many existing DHT protocol proposals include performance evaluations [11,
33, 34, 58, 62, 77, 88]. In general these evaluations have focused on lookup hop-
count or latency without churn, or the ability to route lookups correctly under
a number of simultaneous failures before a DHT’s maintenance procedures can
repair the stale routing entries. In contrast, PVC helps DHT designers to find
out how efficiently different routing table maintenance techniques use extra band-
width to cope with churn.

8.2 DHT Designs

The first generation of DHT designs focuses on scalable routing geometries that
achieve O(log n) lookup hops with a small routing table with O(log n) entries.
Many different geometries were inspired by the interconnect networks of parallel
computing research such as Hypercube (used by CAN [66]), Plaxton tree (used by
Pastry [72] and Tapestry [88]), ring with skiplist like fingers (used by Chord [77]).

Subsequent DHT designs have diverged based on different goals. On the
one hand, there are designs that explore different tradeoff points between a node’s
routing table size and lookup hopcount other than O(log n) state for O(log n) hops.
These include Kelips [34] with O(

√
n) and 2-hop lookups, OneHop [33] with O(n)

and 1-hop lookups, Koorde [39] and Viceroy with O(1) and O(log n)-hop lookups
etc. However, most of them are evaluated only in simulations with static failures.
On the other hand, there are efforts at improving a O(logn) DHT’s performance
under churn. One notable example is the design of Bamboo by Rhea et al [68].
They have found that reactive recovery of routing entry failures avoids the danger
of congestion collapse associated with pro-active recovery. Calculating timeouts
carefully based on virtual coordinates allows a node to re-route a failed lookup
via another neighbor quickly. These design lessons turn out to greatly affect a
DHT’s lookup latency in the actual DHT deployment. In a similar vein, Castro
et al. [10] describe how they optimize the Pastry implementation, MSPastry, to
route lookups consistently under churn with low bandwidth overhead. Dabek
et al [18] evaluate their Chord/DHash implementation in the Planetlab testbed
and find that the lookup latency of log n hops can be reduced dramatically using
proximity neighbor selection (PNS) using a small number of samples (also observed
by Gummadi et al [29] in simulations). The motivation for Accordion is similar
to the second goal, i.e. to understand and improve a DHT’s performance and
robustness under churn. One main difference of this work with the previous
efforts is that Accordion tunes itself with bounded bandwidth overhead to remain
robust across different operating scenarios. Therefore, unlike previous work,
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Accordion is not tied to one specific routing table size and can reduce its lookup
latency more efficiently at additional bandwidth consumption.

Whether the cost of maintaining complete routing state is too overwhelming
has been a topic of intense debate. Rodrigues and Blake [70] have argued that for
DHTs that provide a distributed persistent data storage, the cost of maintaining
data under churn is so high that it is only feasible in networks with very stable
node membership. Hence, for these types operating environments, the bandwidth
required to maintain complete state is very reasonable. Their analysis does not
quantify the effects of lookup timeouts. In practice, timeouts dominate end to end
lookup latency, hence they overestimate the benefits brought by a complete but
stale routing table. Any argument that nodes should always maintain complete
routing state assumes a typical deployment scenario with a maximum network
size or churn rate. Although we know most deployment scenarios involve small
and stable networks, the network growth or the worst case transient churn are ul-
timately unpredictable. Protocols that always aim to keep complete state degrade
badly when the network is overloaded. Accordion does not assume a fixed routing
table size and automatically adapts itself under changing conditions to perform
low latency lookups while avoid overloading the network.

Accordion [50] shares many aspects of its design with other DHTs or dis-
tributed protocols. Specifically, Accordion has borrowed routing table mainte-
nance techniques from a number of DHTs [34, 35, 39, 48, 58, 72, 77], and shares
specific goals with MSPastry, EpiChord, Bamboo, and Symphony.

Accordion is not the first DHT that uses a small world distribution to pop-
ulate a node’s routing table. Symphony [57] is a DHT protocol that provides
variable routing table size with its small-world distributed routing entries. While
Accordion automatically adjusts its table size based on a user-specified bandwidth
budget and churn, the size of Symphony’s routing table is a protocol parameter.
Symphony acquires the desired neighbor entries by explicitly looking up identifiers
according to a small-world distribution. Accordion, on the other hand, acquires
new entries by learning from existing neighbors during ordinary lookups and ac-
tive exploration. Evaluations of Symphony [57] do not explicitly account for a
node’s bandwidth consumption nor the latency penalty due to lookup timeouts.
Mercury [7] is another DHT that also employs a small-world distribution for
choosing neighbors. Mercury optimizes its tables to handle scalable range queries
rather than single key lookups.

Accordion’s routing table acquisition process has a flavor of classic epidemic
protocols [20]. Accordion learns about routing information indirectly from other
nodes, similar in spirit to the way nodes gossip about newly acquired information
in an epidemic protocol. There is one major difference between the two; classic
gossip algorithms aim to disseminate all resources assuming they are equally use-
ful. For example, gossip protocols are also used in distributed systems to detect
member failures [83]. The goal of a failure detection service is to allow all mem-

108



bers in the system to learn about all failures as quickly as possible.In Accordion,
depending on the bandwidth budget or churn rate, nodes may not have complete
routing state. Rather, a node tries to learn more routing entries for neighbors
closer by in ID space than far away according to a small world distribution. Ac-
cordion attaches and updates ∆tsince, the time since the neighbor was last heard to
be alive, for each routing entry a node propagates. Not only does ∆tsince provides
the information required to estimate a routing entry’s liveness, it can also be used
to distinguish a piece of old information from a new one and hence prevent a
dead routing entry from being resurrected, a common technique used by gossip
protocols [83]. Routing information can be considered as a non-monotone re-
source [42] in that it includes both positive (a node joins) or negative (a node
leaves) events. Accordion only propagates positive resources. The resource loca-
tion protocol shown in [42] uses a spatial gossip algorithm that times out possibly
out-of-date resources with timeout bounds same as the information dissemination
time which scales with the physical proximity to the resources.

A number of existing DHT designs also use gossip style techniques to acquire
routing entries. EpiChord [48] and Kelips [34] also use gossip protocols to popu-
late a node’s routing table. EpiChord uses parallel iterative lookups and cache new
routing entries from lookups. EpiChord also expires a node’s cached entry whose
age exceeds some configured limit. Kelips [34] nodes gossip to keep a complete
group membership within a node’s own group and at least one entry for each of
the foreign groups.

There are other DHTs that provide self-tuning. Castro et al. [10] present a
version of Pastry, MSPastry, that self-tunes its stabilization period to adapt to
churn and achieve low bandwidth. MSPastry also estimates the current failure
rate of nodes, using historical failure observations. Accordion shares the MSPastry
goal of automatic tuning, but tunes itself with a much wider range of design
choices such as routing table size, lookup parallelism to bound its maintenance
traffic while providing the best lookup latency under the current churn scenario
and workloads.

Kademlia [58] and EpiChord [48] also use parallel lookups to mitigate the
effect of lookup timeouts. Both protocols use iterative parallel lookups to control
the amount of redundant lookup messages effectively with a user configured par-
allelism parameter. Accordion prefers recursive lookups in order to allow nodes
to preferentially learn routing entries near its own node ID in order to converge
to a small world distribution.

There are many other protocols that are concerned with their associated band-
width cost in a dynamic environment. A number of file-sharing peer-to-peer
applications allow the user to specify a maximum bandwidth. Gia [12] exploits
that information to explicitly control the bandwidth usage of nodes by using a
token-passing scheme to approximate flow control.
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8.3 Handling Churn in Other Contexts

This thesis studies the problem of key-based DHT lookups under churn. We
use the DHT lookup latency as the performance metric with which a node tries
to optimize using a bounded amount of bandwidth. However, depending on
the applications that use DHT, the lookup latency might not be the end-to-end
performance metric that an application cares about. If an application uses DHT
to store data [79] [69] [17] [75] or pointers to data locations [22], the application
users are concerned with the latency of the actual data block or data pointer
fetches. Dabek et al. [18] have shown that combining the actual data fetch with
DHT lookups can reduce the overall data fetch latency.

More importantly than the fetch latency is a DHT’s ability to not lose data
under churn. The bandwidth required to maintain persistent data storage in a
system with churn can be potentially huge. Blake and Rodrigues [9] have mod-
eled the bandwidth cost needed to make new replicas of data when nodes fail and
argued that it is not feasible to construct a wide-area DHT-based storage infras-
tructure using nodes with both limited bandwidth and high churn. TotalRecall [6]
and Sostenuto [15] are two systems that use bandwidth efficiently to cope with a
common type of churn in which nodes eventually re-join the system after failures.
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Chapter 9

Conclusion

Distributed systems should control communication overhead to avoid overloading
the network under rapid system growth. Distributed hash tables are widely used
by peer-to-peer applications as a building block to locate data. This thesis has
shown the design and evaluation of a robust DHT protocol, Accordion, that has
bounded bandwidth overhead and best lookup performance across a wide range
of environments through self-tuning.

Accordion bounds its bandwidth consumption according to a user-specified
bandwidth budget. The key to Accordion’s self-tuning is to automatically adjust
a node’s routing table size. Accordion uses the bandwidth budget to parallelize
lookups and acquire new entries from lookups. Bigger budgets lead to bigger
routing tables and fewer lookup hops. Accordion estimates routing entries’ live-
ness probabilities based on past node lifetime statistics and evicts possibly dead
entries. Larger churn rates lead to faster evictions and hence smaller routing tables
that minimize the number of timeouts. Thus, Accordion’s final routing table size
is the equilibrium between the learning and evicting processes. The evaluations
in simulation and experimentation show that Accordion successfully bounds its
communication overhead and has matching or better lookup performance than
existing manually tuned DHT protocols.

Accordion’s bandwidth efficient design comes from insights we have gained
by studying existing DHT protocols using the PVC evaluation framework. PVC
systematically explores the parameter space of different DHTs to extrapolate the
best performance versus cost tradeoffs to provide a fair comparison. PVC also
allows DHT designers to evaluate the relative efficiencies of different design choices
in their abilities to turn each extra byte of communication into reduced lookup
latency.

A self-tuning, bandwidth-efficient protocol such as Accordion has several dis-
tinct advantages; First, by controlling and bounding its communication overhead,
Accordion avoids overloading the network. Thus, Accordion is robust across dif-
ferent operating environments, especially in scenarios when the system faces rapid
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growth or the churn surges. Second, Accordion eliminates the need for manual
parameter tuning. Users often do not have the expertise to tune each DHT param-
eter correctly for a given operating environment. Accordion shifts the burden of
tuning from the user to the system by automatically adapting itself to the observed
churn and workload to provide the best performance.

9.1 Future Work

We have implemented and evaluated Accordion in the DHash software release. As
part of the future work, we plan to deploy Accordion in the context of a specific
peer-to-peer application, OverCite [78,79]. OverCite is a cooperative distributed
digital library that runs on a few hundred machines distributed over the wide area
network to provide a CiteSeer [47]-like digital library service. OverCite uses the
DHash software to store and retrieve its meta-data database and research paper
repository. It also relies on DHash to retain as accurate and complete information
as possible about other nodes in the system. We are in the process of deploying
OverCite and hope to gain experiences on the day to day operations of Accordion
as a result.

There is a number of improvements that might affect Accordion’s performance
or usability in the wide area deployment.

Accordion estimates each routing entry’s liveness probabilistically, but it uses
a calculated threshold value to exclude stale routing entries from being used in
lookups. Instead of using a threshold, a more sophisticated approach is to explic-
itly incorporate the routing entry liveness probability in calculating the “progress”
metric during lookups. Let y be the current node to forward a lookup with key
k. Node ni (i = 1, 2, 3, ...) is y’s routing entry whose probability of being alive is
pi. One possible way to incorporate pi in the forwarding decision is for a node to
forward the lookup to a neighbor with the biggest v′′

i :

v′′

i =
v′

i

pi

where v′

i is calculated from Equation 6.2. A bigger pi results in a larger
v′′

i . Another way to calculate the “progress metric” is to explicitly compute the
expected routing delay to the key using each of its neighbors based on pi, the ID
distance of a neighbor to the lookup key, the network delay from y to the neighbor
and the neighbor’s bandwidth budget.

To work well under the wide area deployment, Accordion has to cope with
problems associated with non-transitive network connectivities as described in
Chapter 4. We believe that lookup failures due to inconsistent views of key’s
successors are best solved at the application layer [23]. For applications that re-
quire strong data consistency, all successor nodes in a replica set need to run a
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distributed consensus protocol (e.g. Paxos [61]) among themselves to ensure an
agreement of the replica set’s membership. For applications that require only even-
tual consistency, replica nodes can rely on periodic data repair mechanisms [15] to
synchronize data items among each other to reach eventual consistency. Lookup
failures due to a broken return path between the predecessor node and the lookup
originator should be fixed at the lookup layer. A simple yet effective solution is
for the predecessor node to send the lookup reply message via a randomly chosen
neighbor to the lookup originator.

Instead of relying on a user-specified bandwidth budget, we would like to
include mechanisms that allow Accordion to automatically find out if there is
bandwidth available and use it for parallel or active exploration traffic. The
biggest challenge here is to distinguish symptoms of network overload from node
failures since both situations result in packet losses.
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