
Towards a Common API for Structured
Peer-to-Peer Overlays?

Frank Dabek1, Ben Zhao2, Peter Druschel3, John Kubiatowicz2, and Ion Stoica2

1 MIT Laboratory for Computer Science, Cambridge, MA.
2 University of California, Berkeley, CA.

3 Rice University, Houston, TX.

Abstract. In this paper, we describe an ongoing effort to define common APIs
for structured peer-to-peer overlays and the key abstractions that can be built
on them. In doing so, we hope to facilitate independent innovation in overlay
protocols, services, and applications, to allow direct experimental comparisons,
and to encourage application development by third parties. We provide a snapshot
of our efforts and discuss open problems in an effort to solicit feedback from the
research community.

1 Introduction

Structured peer-to-peer overlay networks have recently gained popularity as a platform
for the construction or resilient, large-scale distributed systems [6–8, 10, 11]. Structured
overlays conform to a specific graph structure that allows them to locate objects by
exchanging O(lg N) messages where N is the number of nodes in the overlay.

Structured overlays can be used to construct services such as distributed hash ta-
bles [4], scalable group multicast/anycast [3, 12], and decentralized object location [5].
These services in turn promise to support novel classes of highly scalable, resilient, dis-
tributed applications, including cooperative archival storage, cooperative content distri-
bution and messaging.

Currently, each structured overlay protocol exports a different API and provides ser-
vices with subtly different semantics. Thus, application designers must understand the
intricacies of each protocol and the services they provide to decide which system best
meets their needs. Subsequently, applications are locked into one system and unable
to leverage innovations in other protocols. Moreover, the semantic differences make a
comparative evaluation of different protocol designs difficult.

This work attempts to identify the fundamental abstractions provided by structured
overlays and to define APIs for the common services they provide. As the first step, we
have identified and defined a key-based routing API (KBR), which represents basic (tier
0) capabilities that are common to all structured overlays. We show that the KBR can
be easily implemented by existing overlay protocols and that it allows the efficient im-
plementation of higher level services and a wide range of applications. Thus, the KBR
forms the common denominator of services provided by existing structured overlays.
? This research was conducted as part of the IRIS project (http://project-iris.net/),

supported by the National Science Foundation under Cooperative Agreement No. ANI-
0225660.

In addition, we have identified a number of higher level (tier 1) abstractions and
sketch how they can be built upon the basic KBR. These abstractions include dis-
tributed hash tables (DHT), group anycast and multicast (CAST), and decentralized
object location and routing (DOLR). Efforts to define common APIs for these services
are currently underway.

We believe that defining common abstractions and APIs will accelerate the adoption
of structured overlays, facilitate independent innovation in overlay protocols, services,
and applications, and permit direct experimental comparisons between systems.

Our APIs will not be universal. Certain applications will wish to use protocol-
specific APIs that allow them to exploit particular characteristics of a protocol. This
is necessary and desirable to facilitate innovation. However, we expect that such non-
standard APIs, once properly understood and abstracted, can be added to the common
APIs over time.

The rest of this paper is organized as follows. Section 2 provides an overview of
structured overlays and the key services they provide. Next, Section 3 defines and dif-
ferentiates current tier 1 services. Section 4 describes our KBR API and Section 5 eval-
uates our proposed API by demonstrating how it can be used to implement a variety
of services and how existing overlay protocols can efficiently implement the API. Sec-
tion 6 discusses future work: developing commons API for higher level tier 1 services
like distributed hash tables. We conclude in Section 6.

2 Background

In this section, we define application-visible concepts common to all structured overlay
protocols.

A node represents an instance of a participant in the overlay (one or more nodes may
be hosted by a single physical IP host). Participating nodes are assigned uniform random
nodeIds from a large identifier space. Application-specific objects are assigned unique
identifiers called keys, selected from the same id space. Tapestry [11, 5], Pastry [8] and
Chord [10] use a circular identifier space of n-bit integers modulo 2n (n = 160 for
Chord and Tapestry, n = 128 for Pastry). CAN [7] uses a d-dimensional cartesian
identifier space, with 128-bit nodeIds that define a point in the space.

Each key is dynamically mapped by the overlay to a unique live node, called the
key’s root. To deliver messages efficiently to the root, each node maintains a routing
table consisting of the nodeIds and IP addresses of the nodes to which the local node
maintains overlay links. Messages are forwarded across overlay links to nodes whose
nodeIds are progressively closer to the key in the identifier space.

Each system defines a function that maps keys to nodes. In Chord, keys are mapped
to the live node with the closest nodeId clockwise from the key. In Pastry, keys are
mapped to the live node with the closest nodeId. Tapestry maps a key to the live node
whose nodeId has the longest prefix match, where the node with the next higher nodeId
value is chosen for each digit that cannot be matched exactly. In CAN, neighboring
nodes in the identifier space agree on a partitioning of the space surrounding their
nodeIds; keys are mapped to the node responsible for the space that contains the key.

 CAST

Tier 0

DHT

OceanStoreCFS PAST I3 Scribe SplitStream Bayeux

Tier 1

Tier 2

DOLR

Key−based Routing Layer (KBR)

Fig. 1. Basic abstractions and APIs, including Tier 1 interfaces: distributed hash tables (DHT),
decentralized object location and routing (DOLR), and group anycast and multicast (CAST).

3 Abstractions

DHT DOLR CAST

put (key, data) publish (objectId) join(groupId)
remove (key) unpublish (objectId) leave(groupId)

value = get (key) sendToObj (msg, objectId, [n]) multicast(msg, groupId)
anycast(msg, groupId)

Table 1. Tier 1 Interfaces

All existing systems provide higher level abstractions built upon the basic structured
overlays. Examples are Distributed Hash Tables (DHT), Decentralized Object Location
and Routing (DOLR), and group anycast/multicast (CAST).

Figure 1 illustrates how these abstractions are related. Key-based routing is the com-
mon service provided by all systems at tier 0. At tier 1, we have higher level abstractions
provided by some of the existing systems. Most applications and higher-level (tier 2)
services use one or more of these abstractions. Some tier 2 systems, like i3 [9], use the
KBR directly.

The KBR API at tier 0 will be defined in detail in the following section. Here, we
briefly explain the tier 1 abstractions and their semantic differences. The key operations
of each of these abstractions are sketched in Table 1.

The DHT abstraction provides the same functionality as a traditional hashtable, by
storing the mapping between a key and a value. This interface implements a simple store
and retrieve functionality, where the value is always stored at the live overlay node(s)
to which the key is mapped by the KBR layer. Values can be objects of any type. For
example, the DHT implemented as part of the DHash interface in CFS [4] stores and
retrieves single disk blocks by their content-hashed keys.

The DOLR abstraction provides a decentralized directory service. Each object replica
(or endpoint) has an objectID and may be placed anywhere within the system. Appli-
cations announce the presence of endpoints by publishing their locations. A client mes-

sage addressed with a particular objectID will be delivered to a nearby endpoint with
this name. Note that the underlying distributed directory can be implemented by an-
notating trees associated with each objectID; other implementations are possible. One
might ask why DOLR is not implemented on top of a DHT, with data pointers stored
as values; this is not possible because a DOLR routes messages to the nearest available
endpoint—providing a locality property not supported by DHTs. An integral part of this
process is the maintenance of the distributed directory during changes to the underlying
nodes or links.

The CAST abstraction provides scalable group communication and coordination.
Overlay nodes may join and leave a group, multicast messages to the group, or any-
cast a message to a member of the group. Because the group is represented as a tree,
membership management is decentralized. Thus, CAST can support large and highly
dynamic groups. Moreover, if the overlay that provides the KBR service is proximity-
aware, then multicast is efficient and anycast messages are delivered to a group member
near the anycast originator.

The DOLR and CAST abstractions are closely related. Both maintain sets of end-
points in a decentralized manner and by their proximity in the network, using a tree
consisting of the routes from the endpoints to a common root associated with the set.
However, the DOLR abstraction is more tailored towards object location, while the
CAST abstraction targets group communication. Thus, their implementations combine
different policies with the same basic mechanism. The DHT abstraction, on the other
hand, provides a largely orthogonal service, namely a scalable repository for key, value
pairs.

Defining APIs for the DHT, DOLR and CAST interfaces is the subject of ongoing
work. By defining an API for key-based routing and identifying the key tier 1 abstrac-
tions, we have taken a major first step.

4 Key-based routing API

In this section we describe the proposed key-based routing API. We begin by defining
notation and data types we will use to describe the API. Section 5.1 will show how we
can use these calls to implement the DHT, DOLR and CAST higher level abstractions.

4.1 Data types

A key is a 160-bit string. A nodehandle encapsulates the transport address and nodeId
of a node in the system. The nodeId is of type key; the transport address might be,
for example, an IP address and port. Messages (type msg) contain application data of
arbitrary length.

We adopt a language-neutral notation for describing the API. A parameter p will be
denoted as→p if it is a read-only parameter and↔p if it is a read-write parameter. We
denote an ordered set p of objects of type T as T[] p.

4.2 Routing messages

void route(key→K, msg →M, nodehandle →hint) This operation forwards a mes-
sage, M, towards the root of key K. The optional hint argument specifies a node that
should be used as a first hop in routing the message. A good hint, e.g. one that refers
to the key’s current root, can result in the message being delivered in one hop; a bad
hint adds at most one extra hop to the route. Either K or hint may be NULL, but not
both. The operation provides a best-effort service: the message may be lost, duplicated,
corrupted, or delayed indefinitely.

The route operation delivers a message to the key’s root. Applications process mes-
sages by executing code in upcalls which are invoked by the KBR routing system at
nodes along a message’s path and at its root. To permit event-driven implementations,
upcall handlers must not block and should not perform long-running computations.

void forward(key ↔K, msg ↔M, nodehandle ↔nextHopNode) This upcall is in-
voked at each node that forwards message M, including the source node, and the key’s
root node (before deliver is invoked). The upcall informs the application that message M
with key K is about to be forwarded to nextHopNode. The application may modify the
M, K, or nextHopNode parameters or terminate the message by setting nextHopNode to
NULL.

By modifying the nextHopNode argument the application can effectively override
the default routing behavior. We will demonstrate examples of the use of this flexibility
in Section 5.1.

void deliver(key→K, msg→M) This function is invoked on the the node that is the
root for key K upon the arrival of message M. The deliver upcall is provided as a
convenience for applications.

4.3 Routing state access

The API allows applications to access a node’s routing state via the following calls. All
of these operations are strictly local and involve no communication with other nodes.
Applications may query the routing state to, for instance, obtain nodes that may be used
by the forward upcall above as a next hop destination.

Some of the operations return information about a key’s r-root. The r-root is a
generalization of a key’s root. A node is an r-root for a key if that node becomes the
root for the key if all of the i-roots fail for i < r. The node may be the r-root for keys
in one or more contiguous regions of the ID space.

nodehandle[] local lookup(key→K, int→num, boolean→safe) This call produces
a list of nodes that can be used as next hops on a route towards key K, such that the
resulting route satisfies the overlay protocol’s bounds on the number of hops taken.

If safe is true, the expected fraction of faulty nodes in the list is guaranteed to be no
higher than the fraction of faulty nodes in the overlay; if false, the set may be chosen
to optimize performance at the expense of a potentially higher fraction of faulty nodes.
This option allows applications to implement routing in overlays with byzantine node
failures. Implementations that assume fail-stop behavior may ignore the safe argument.

The fraction of faulty nodes in the returned list may be higher if the safe parameter is
not true because, for instance, malicious nodes have caused the local node to build a
routing table that is biased towards malicious nodes [1].

nodehandle [] neighborSet (int →num) This operation produces an unordered list
of nodehandles that are neighbors of the local node in the ID space. Up to num node
handles are returned.

nodehandle [] replicaSet (key →k, int →max rank) This operation returns an or-
dered set of nodehandles on which replicas of the object with key k can be stored. The
call returns nodes with a rank up to and including max rank. If max rank exceeds the
implementation’s maximum replica set size, then its maximum replica set is returned.
Some protocols ([11], [7]) only support a max rank value of one. With protocols that
support a rank value greater than one, the returned nodes may be used for replicating
data since they are precisely the nodes which become roots for the key k when the local
node fails.

update(nodehandle→n, bool→joined) This upcall is invoked to inform the applica-
tion that node n has either joined or left the neighbor set of the local node as that set
would be returned by the neighborSet call.

boolean range (nodehandle→N, rank→r, key↔lkey, key←rkey) This operation
provides information about ranges of keys for which the node N is currently a r-root.
The operations returns false if the range could not be determined, true otherwise. It is
an error to query the range of a node not present in the neighbor set as returned by the
update upcall or the neighborSet call. Certain implementations may return an error if
r is greater than zero. [lkey, rkey] denotes an inclusive range of key values.

Some protocols may have multiple, disjoint ranges of keys for which a given node
is responsible. The parameter lkey allows the caller to specify which region should be
returned. If the node referenced by N is responsible for key lkey, then the resulting
range includes lkey. Otherwise, the result is the nearest range clockwise from lkey for
which N is responsible.

5 Validating the API

To evaluate our proposed API, we show how it can be used to implement the tier 1
abstractions, and give examples of other common usages. We believe that the API is
expressive enough to implement all the applications known to the authors that have to
date been built on top of CAN, Chord, Pastry and Tapestry. We also discuss how the
API can be supported on top of several representative structured overlay protocols.

5.1 Use of the API

Here we briefly sketch how tier 1 abstractions (DHT, DOLR, CAST) can be imple-
mented on top of the routing API. We also show how to implement a tier 2 applica-
tion, Internet Indirection Infrastructure [9], and other mechanisms and protocols such
as caching and replication.

DHT. A distributed hash table (DHT) provides two operations: (1) put(key, value), and
(2) value = get(key). A simple implementation of put routes a PUT message containing
value and the local node’s nodehandle, S, using route(key, [PUT,value,S], NULL).
The key’s root, upon receiving the message, stores the (key, value) pair in its local
storage. If the value is large in size, the insertion can be optimized by returning only the
nodehandle R of the key’s root in response to the initial PUT message, and then sending
the value in a single hop using route(key, [PUT,value], R)).

The get operation routes a GET message using route(key, [GET,S], NULL). The
key’s root returns the value and its own nodehandle in a single hop using route(NULL,
[value,R], S). If the local node remembers R from a previous access to key, it can
provide R as a hint.

CAST. Group communication is a powerful building block in many distributed appli-
cations. We describe one approach to implementing the CAST abstraction described
in Section 3. A key is associated with a group, and the key’s root becomes the root of
the group’s multicast tree. Nodes join the group by routing a SUBSCRIBE message
containing their nodehandle to the group’s key.

When the forward upcall is invoked at a node, the node checks if it is a member
of the group. If so, it terminates the SUBSCRIBE message; otherwise, it inserts its
nodehandle into the message and forwards the message towards the group key’s root,
thus implicitly subscribing to the group. In either case, it adds the nodehandle of the
joining node to its list of children in the group multicast tree.

Any overlay node may multicast a message to the group, by routing a MCAST mes-
sage using the group key. The group key’s root, upon receiving this message, forwards
the message to its children in the group’s tree, and so on recursively. To send an anycast
message, a node routes an ACAST message using the group key. The first node on the
path that is a member of the group forwards the message to one of its children and does
not forward it towards the root (returns NULL for nexthop). The message is forwarded
down the tree until it reaches a leaf, where it is delivered to the application. If the un-
derlying KBR supports proximity, then the anycast receiver is a group member near the
anycast originator.

DOLR. A decentralized object location and routing (DOLR) layer allows applications
to control the placement of objects in the overlay. The DOLR layer provides three op-
erations: publish(objectId), unpublish(ObjectID), and sendToObj(msg, objectId, [n]).

The publish operation announces the availability of an object (at the physical node
that issues this operation) under the name objectID. The simplest form of publish calls
route(objectId, [PUBLISH, objectId, S], NULL), where S is the name of the orig-
inating node. At each hop, an application upcall handler stores a local mapping from
objectId to S. More sophisticated versions of publish may deposit pointers along sec-
ondary paths to the root. The unpublish operation walks through the same path and
removes mappings.

The sendToObj operation delivers a message to n nearby replicas of a named object.
It begins by routing the message towards the object root using route(objectId, [n, msg],
NULL). At each hop, the upcall handler searches for local object references matching
objectId and sends a copy of the message directly to the closest n locations. If fewer

than n pointers are found, the handler decrements n by the number of pointers found
and forwards the original message towards objectID by again calling route(objectId,
[n, msg], NULL).

Internet Indirection Infrastructure (i3). i3 is a communication infrastructure that
provides indirection, that is, it decouples the act of sending a packet from the act of
receiving it [9]. This allows i3 to provide support for mobility, multicast, anycast and
service composition.

There are two basic operations in i3: sources send packets to a logical identifier
and receivers express interest in packets by inserting a trigger into the network. In their
simplest form, packets are of the form (id , data) and triggers are of the form (id , addr),
where addr is either an identifier or an IP address.4 Given a packet (id , data), i3 will
search for a trigger (id , addr) and forward data to addr . i3 IDs in packets are matched
with those in triggers using longest prefix matching. i3 IDs are 256-bit long, and their
prefix is at least 128-bit long.

To insert a trigger (id, addr), the receiver calls route(H(id255:128), [id127:0, addr],
NULL), where H() is a hash function that converts an 128-bit string into an unique
160-bit string (eventually by padding id255:128 with zeros). This message is routed to
the node responsible for H(id255:128), where the trigger is stored. Note that all trig-
gers whose IDs have the same prefix are stored at the same node; thus the longest
prefix matching is done locally. Similarly, a host sending a packet (id, data) invokes
route(H(id255:128), [id127:0, data], NULL). When the packet arrives at the node re-
sponsible for H(id255:128), the packet’s id is matched with the trigger’s id and for-
warded to the corresponding destination. To improve efficiency, a host may cache the
address S of the server where a particular id is stored, and use S as a hint when invoking
the route primitive for that id.

Replication. Applications like DHTs use replication to ensure that stored data survives
node failure. To replicate a newly received key (k) r times, the application calls repli-
caSet (k,r) and sends a copy of the key to each returned node. If the implementation
is not able to return r suitable neighbors, then the application itself is responsible for
determining replica locations.

Data Maintenance. When a node’s identifier neighborhood changes, the node will be
required to move keys to preserve the mapping of keys to nodes, or to maintain a de-
sired replication level. When the update upcall indicates that node (n) has joined the
identifier neighborhood, the application calls range (n, i) with i = 0 . . . r and transfers
any keys which fall in the returned range to n. This has the effect of both transferring
data to a node which has taken over the local node’s key space (i = 0) and maintaining
replicas (i > 0). This description assumes that a node is using r replicas as returned by
replicaSet.

Caching. Applications like DHTs use dynamic caching to create transient copies of
frequently requested data in order to balance query load. It is desirable to cache data on

4 To support service composition and scalable multicast, i3 generalizes the packet and trigger
formats by replacing the id of a packet and the addr field of a trigger with a stack of identifiers.
However, since these generalizations do not affect our discussion, we ignore them here.

nodes that appear on the route request messages take towards a key’s root because such
nodes are likely to receive future request messages. A simple scheme places a cached a
copy of a data item on the last node of the route prior to the node that provides the data.
Caching can be implemented as follows. A field is added to the request message to store
the nodehandle of the previous node on the path. When the forward upcall is invoked,
each node along the message’s path checks whether it stores the requested data. If not,
it inserts its nodehandle into the message, and allows the lookup to proceed. If the node
does store the data, it sends the data to the requester and sends a copy of the data to
the previous node on the request path. The node then terminates the request message by
setting nextHopNode to NULL.

5.2 Implementation

Here we sketch how existing structured overlay protocols can implement the proposed
API. While the chosen example systems (CAN, Chord, Pastry, Tapestry) do not consti-
tute an exhaustive list of structured overlays, they represent a cross-section of existing
systems and support our claim the the API can be widely implemented easily.

CAN The route operation is supported by existing operations, and the hint functional-
ity can be easily added. The range call returns the range associated with the local node,
which in CAN can be represented by a binary prefix. local lookup is a local routing
table lookup and currently ignores the value of safe. The update operation is triggered
every time a node splits its namespace range, or joins its range with that of a neighbor.

Chord Route is implemented in an iterative fashion in Chord. At each hop, the lo-
cal node invokes an RPC at the next node in the lookup path; this RPC invokes the
appropriate upcall (route or deliver) and returns a next hop node. If a hint is given,
it is used as the first hop in the search instead of a node taken from the local rout-
ing table. The local lookup call returns the closest num successors of K in the node’s
location table. Calls to neighborSet and replicaSet return the node’s successor list;
neighborSet calls additionally return the node’s predecessor. The range call can be
implemented by querying the successor list; given the nth node, it returns the range
[succ[n].ID, succ[n + 1].ID. The exception to this rule is the predecessor; the range
of the predecessor cannot be determined.

Pastry The route operation can be trivially implemented on top of Pastry’s route
operation. The hint argument, if present, supersedes the routing table lookup. The range
operation is implemented based on nodeId comparisons among the members of Pastry’s
leafset. local lookup translates into a simple lookup of Pastry’s routing table; if safe is
true, the lookup is performed in Pastry’s constrained routing table [1]. The update
operation is triggered by a change in Pastry’s leafset, and the neighbor set (returned by
neighborSet) consists of the leafset.

Tapestry The route operation is identical to the Tapestry API call TapestryRouteMsg
forwarded to the hint argument, if present. Tapestry routing tables optimize performance
and maintain a small set (generally three) of nodes which are the closest nodes maintain-
ing the next hop prefix matching property. The local lookup call retrieves the optimized
next hop nodes. The safe routing mode is not used by the current Tapestry implemen-
tation, but may be used in future implementations. The range operation returns a set of

ranges, one each for all combinations of levels where the node can be surrogate routed
to. The update operation is trigged when a node receives an acknowledged multicast
for a new inserting node, or when it receives an object movement request during node
deletion [5].

6 Discussion and future work

Settling on a particular key-based routing API were complicated by the tight coupling
between applications and the lookup systems on which they were developed. Current
block replication schemes, especially the neighbor set replication used by Chord and
Pastry, are closely tied to the manner in keys are mapped to nodes. Supporting efficient
data replication independent of the lookup system necessitates the range and replicaSet
calls which allow a node to determine where to replicate keys. The common practice
of caching blocks along probable lookup paths also requires additional flexibility in
the API, namely the upcall mechanism which allows application procedures to execute
during the lookup.

The KBR API described here is intended to be language neutral to allow the greatest
possible flexibility for implementors of lookup systems. Without specifying a precise
binding of the API in a language, application developers will not be able to trivially
change which system they use. Instead, the API directs developers to structure their
applications in such a way that they can be translated from one system to another with
a minimum of effort. One possibility for true portability among structured P2P systems
would be to implement the API as an RPC program.

In the future, we will better articulate APIs for tier 1 services such as DHT, DOLR
and CAST, including clear definitions of functional and performance expectations. We
made a stab at this in Section 3, but more work must be done. In particular, the sim-
ilarities between DOLR and CAST are striking and demand further exploration. It is
at level of tier 1 abstractions that structured peer-to-peer overlays take on their great-
est power and utility. We hope that the effort detailed in this paper is the beginning
of convergence of functionality toward common services available for all peer-to-peer
applications writers.

References

1. CASTRO, M., DRUSCHEL, P., GANESH, A., ROWSTRON, A., AND WALLACH, D. S. Se-
cure routing for structured peer-to-peer overlay networks. In Proceedings of OSDI (Decem-
ber 2002).

2. CASTRO, M., DRUSCHEL, P., KERMARREC, A.-M., NANDI, A., ROWSTRON, A., AND

SINGH, A. SplitStream: High-bandwidth content distribution in a cooperative environment.
In Proceedings of (IPTPS’03) (February 2003).

3. CASTRO, M., DRUSCHEL, P., KERMARREC, A.-M., AND ROWSTRON, A. SCRIBE: A
large-scale and decentralized application-level multicast infrastructure. IEEE JSAC 20, 8
(Oct. 2002).

4. DABEK, F., KAASHOEK, M. F., KARGER, D., MORRIS, R., AND STOICA, I. Wide-area
cooperative storage with CFS. In Proceedings of SOSP (Oct. 2001).

5. HILDRUM, K., KUBIATOWICZ, J. D., RAO, S., AND ZHAO, B. Y. Distributed object lo-
cation in a dynamic network. In Proceedings of SPAA (Winnipeg, Canada, August 2002),
ACM.

6. MAYMOUNKOV, P., AND MAZIERES, D. Kademlia: A peer-to-peer information system
based on the xor metric. In Proceedings of (IPTPS) (2002).

7. RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND SHENKER, S. A scalable
content-addressable network. In Proc. ACM SIGCOMM (San Diego, 2001).

8. ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In Proceedings of IFIP/ACM Middleware (Nov.
2001).

9. STOICA, I., ADKINS, D., ZHUANG, S., SHENKER, S., AND SURANA, S. Internet indirec-
tion infrastructure. In Proceedings of SIGCOMM (August 2002), ACM.

10. STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND BALAKRISHNAN, H.
Chord: A scalable peer-to-peer lookup service for internet applications. In Proc. ACM SIG-
COMM (San Diego, 2001).

11. ZHAO, B., KUBIATOWICZ, J., AND JOSEPH, A. Tapestry: An infrastructure for fault-
tolerant wide-area location and routing. Tech. Rep. UCB/CSD-01-1141, Computer Science
Division, U. C. Berkeley, Apr. 2001.

12. ZHUANG, S. Q., ZHAO, B. Y., JOSEPH, A. D., KATZ, R. H., AND KUBIATOWICZ, J. D.
Bayeux: An architecture for scalable and fault-tolerant wide-area data dissemination. In
Proceedings of NOSSDAV (June 2001).

