
Eyo: Device-Transparent Personal Storage

Jacob Strauss∗ Justin Mazzola Paluska

Chris Lesniewski-Laas Bryan Ford† Robert Morris Frans Kaashoek

Massachusetts Institute of Technology †Yale University
∗Quanta Research Cambridge

Abstract

Users increasingly store data collections such as digital

photographs on multiple personal devices, each of which

typically offers a storage management interface oblivious

to the contents of the user’s other devices. As a result,

collections become disorganized and drift out of sync.

This paper presents Eyo, a novel personal storage sys-

tem that provides device transparency: a user can think

in terms of “file X”, rather than “file X on device Y ”,

and will see the same set of files on all personal devices.

Eyo allows a user to view and manage the entire col-

lection of objects from any of their devices, even from

disconnected devices and devices with too little storage

to hold all the object content. Eyo synchronizes these

collections across any network topology, including direct

peer-to-peer links. Eyo provides applications with a stor-

age API with first-class access to object version history

in order to resolve update conflicts automatically.

Experiments with several applications using Eyo—

media players, a photo editor, a podcast manager, and an

email interface—show that device transparency requires

only minor application changes, and matches the storage

and bandwidth capabilities of typical portable devices.

1 Introduction

Users often own many devices that combine storage, net-

working, and applications managing different types of

data: e.g., photographs, music files, videos, calendar en-

tries, and email messages. When a single user owns more

than one such device, that user needs a mechanism to

access their objects from whichever device they are us-

ing, in addition to the device where they first created or

added the object to their collection. Currently, users must

manually decide to shuttle all objects to a single master

device that holds the canonical copy of a user’s object

collection. This hub-and-spoke organization leads to a

storage abstraction that looks like “object a on device

x”, “object b on device y”, etc. It is up to the user to keep

track of where an object lives and determine whether a

and b are different objects, copies of the same object, or

different versions of the same object.

A better approach to storing personal data would pro-

vide device transparency: the principle that users should

see the same view of their data regardless of which of

their devices they use. Device transparency allows users

to think about their unified data collection in its entirety

regardless of which device a particular object may reside

on, rather than as the union of independent copies of ob-

jects scattered across their devices.

Traditional distributed file systems provide location

transparency whereby a file’s name is independent of

its network location. This property alone is insufficient

for use with disconnected, storage-limited devices. A

device-transparent storage system, however, would pro-

vide the same abstraction regardless of connectivity.

One attempt at providing device transparency is to

store all data on a centralized cloud server, and request

objects on demand over the network. In the presence of

poor or disconnected networks, however, this approach

fails to provide device-transparency: disconnected de-

vices cannot access new objects or old objects not cached

locally. In addition, two devices on the same fast local

network cannot directly exchange updates without com-

municating with the central hub.

Beyond the challenge of transferring data between de-

vices, either by direct network connections or via cen-

tralized servers, providing device-transparent access to a

data collection faces two additional challenges: (1) con-

current updates from disconnected devices result in con-

flicting changes to objects, and (2) mobile devices may

not have enough space to store an entire data collection.

This paper presents Eyo, a new personal storage sys-

tem that provides device transparency in the face of dis-

connected operation. Eyo synchronizes updates between

devices over any network topology. Updates made on

one device propagate to other reachable devices, and

users see a single coherent view of their data collection

from any of their devices. Since these updates may cause



conflicts, Eyo supports automated conflict resolution.

The key design decision behind Eyo is to use ob-

ject metadata (e.g., author, title, classification tags, play

count, etc.) as a proxy for objects themselves. This de-

cision creates two requirements. First, Eyo requires ap-

plications to separate object metadata from content, so

that Eyo knows what is metadata and what is content.

Second, Eyo must replicate metadata on every device, so

that applications can manage any object from any device

as though that device held the master copy of that object.

To meet these requirements, Eyo provides a new stor-

age API to applications. This API separates metadata

from content, and presents object version histories as

first-class entities, so that applications can automatically

resolve most common divergent version histories with-

out user intervention, while incorporating the presenta-

tion and resolution of other conflicts as a part of ordinary

operation. In return, applications delegate inter-device

synchronization to Eyo.

Experiments using Eyo in existing applications—

media players, a photo editor, a podcast manager, and an

email interface—show that Eyo transforms these stand-

alone applications into distributed systems providing

device-transparent access to their data collections, takes

advantage of local peer-to-peer communication chan-

nels, permits automatic conflict resolution, and imposes

only modest storage and bandwidth costs on devices.

Eyo’s main contribution is a design for device trans-

parency for disconnected storage-limited devices, build-

ing on our earlier proposal for device transparency [44].

The design adopts techniques pioneered by existing

systems (e.g., disconnected operation in Coda [22],

application-aware conflict resolution in Bayou [46],

placement rules in Cimbiosys [36] and Perspective [40],

version histories in source control systems [16], up-

date notifications in EnsemBlue [33]). Eyo wraps these

techniques in a new storage interface that supports ef-

ficient, continuous, peer-to-peer synchronization, and

avoids most user involvement in conflict resolution.

The remainder of this paper is organized as follows:

Section 2 describes Eyo’s API and its use, followed by

Eyo’s synchronization protocols in Section 3 and imple-

mentation in Section 4. Section 5 evaluates Eyo with

existing data collections and applications. Section 6 de-

scribes related systems, and Section 7 concludes.

2 Eyo

Eyo enables a traditionally architected, single-device ap-

plication to work as a distributed application whose state

is scattered among many devices. For example, suppose

we have a traditional photo management application that

copies photos from a camera into a local database of

photo albums. After modifying the application to use

Eyo, the album database becomes replicated automati-

cally across all devices, permitting the user to manage

her photo collection from whichever device is most con-

venient. Eyo maintains these properties for the photo ap-

plication on all devices, even if a given device isn’t large

enough to hold the entire collection of photos.

Eyo sits between applications, local storage, and re-

mote network devices. Eyo uses an overlay network [13]

to identify a user’s devices, and track them as they move

to different locations and networks. Eyo manages all

communication with these devices directly, and deter-

mines which updates it must send to each peer device

whenever those devices are reachable.

In order to bring these features to applications, Eyo

provides a new storage API. Eyo’s API design makes the

following assumptions about applications:

• Users identify objects by metadata, not filesystem

path. For example, headers and read/replied flags

of emails or the labels and dates of photos.

• The application provides user interfaces that make

sense when the device stores only object metadata;

for example, songs listings or genre searches.

• Modification of metadata and insertion/deletion of

objects are common, but modification of object con-

tent is rare. For example, a user is more likely to

change which folder a stored email message resides

in, and less likely to change the message itself.

• Metadata is small enough to replicate on every de-

vice. In our application study (Section 5.1), we find

that metadata is less than 0.04% of the size of typi-

cal music and photo objects.

• Application developers agree on the semantics of a

basic set of metadata for common data types, in or-

der to permit multiple applications to share the same

data objects: e.g., standard email headers, ID3 tags

in MP3 audio files, or EXIF tags in photos. Appli-

cations can still attach arbitrary data to metadata in

addition to the commonly agreed upon portions.

We believe that these assumptions match the char-

acteristics of common personal data management ap-

plications. The following sections describe how Eyo’s

techniques can transform such applications into peer-

to-peer distributed applications operating on a device-

transparent data collection, using the photo album appli-

cation as a running example.

2.1 Objects, metadata, and content

Eyo stores a user’s object collection as a flat set of ver-

sioned objects. Figure 1 shows an example of an ob-

ject representing one photo, with multiple versions from

adding and removing organizing tags. Each Eyo ver-

sion consists of a directed acyclic graph of collections of

metadata and content. Edges in the version graph denote

parent-child relationships. Newly created object versions

include explicit predecessor pointers to their parent ver-



Figure 1: Eyo object store.

object creation and manipulation:

create(ID hint)→ (objectID, versionID)

lookup(query )→ list<(objectID, versionID)>

getVersions(objectID)→ list<versionID>

getMetadata(objectID, versionID)→ list<(key,value)>

open(objectID, versionID)→ contentID

read(contentID, offset, length)→ contents

newVersion(objectID, list<versionID>,

metadata, contents)→versionID

deleteObject(objectID)→ versionID

placement rules:

addRule(name, query, devices, priority )→ ruleID

getRule(name)→ (ruleID, query, devices, priority )

getAllRules()→ list<(ruleID, query, devices, priority )>

removeRule(ruleID)

event notifications:

addWatch(query, watchFlags, callback )→ watchID

removeWatch(watchID)

callback (watchID, event)

Figure 2: Eyo API summary. Event notifications are dis-

cussed in Section 2.2, and placement rules in Section 2.3.

sions, represented as a parent version attribute. An ob-

ject version’s metadata consists of a set of Eyo- and

application-defined key/value pairs. The metadata also

contains a content identifier; the associated content might

or might not be present on any particular device.

Applications retrieve objects via queries on metadata.

Eyo expects applications to maintain rich enough meta-

data to display to the user meaningful information about

an object, even on devices not storing the content. In our

photo album example, the metadata may include rating,

album, and location to help the user sort photos.

Eyo’s API contains elements similar to databases for

searching, reading, and editing object metadata, along

with elements similar to filesystems for reading and writ-

ing object content. This distinction is deliberate, as it

matches common uses of media applications which of-

ten use both elements internally. In addition, the API

provides mechanisms to learn about and repair conflicts,

to specify content placement rules, and to receive no-

tices about changes to the object store. Figure 2 lists

commonly used Eyo methods. The figure omits alternate

iterator-based versions of these methods for constructing

or viewing large collections as well as library functions

combining these base operations. All of these methods

access only device-local data, so no method calls will

block on communication with remote devices.

If an application tries to read an object’s content, but

the content is not present on the device, Eyo signals an

error. A user can still perform useful operations on meta-

data, such as classifying and reorganizing objects (e.g.,

updating the rating of a photo), from a device that does

not store content. If the user wants to use content that is

not on the current device, the system can use the meta-

data to help the user find a device that has the content, or

ask Eyo to try to fetch the content using the placement

methods in the API (Section 2.3). Section 3 shows how

metadata replication supports efficient synchronization.

2.2 Queries

While Eyo does not provide human-readable object iden-

tifiers, it provides queries with which applications can

implement their own naming and grouping schemes. For

example, the photo application may tag photos with their

associated albums. Queries return IDs for all objects that

have metadata attributes matching the query. As in Per-

spective [40], users never see Eyo queries; applications

create queries on their behalf.

Eyo’s lookup() call performs a one-time search,

whereas addWatch() creates a persistent query. Watch

queries allow applications to learn of new objects and ob-

ject versions, and to observe the progress of inter-device

synchronization, fulfilling a purpose similar to filesystem

notification schemes such as inotify [28].

Eyo’s queries use a subset of SQL, allowing boolean

combinations of comparisons of metadata values with

constants. Such queries are efficient to execute but lim-

ited in expressiveness. For example, the language does

not directly support searching for the 10 most-viewed

photos, but does allow searching for photos viewed more

than 100 times. Eyo limits queries to these restricted

forms to assure efficiency for query uses (watch events

and placement rules) that must evaluate queries in two

different contexts: evaluating new or changed queries to

identify which objects match, and determining which ex-

isting queries match new or modified objects.

2.3 Placement Rules

Eyo allows applications to specify placement rules con-

trolling which objects’ content has highest priority for

storage on storage-limited devices. For example, the

placement rules for our photo album application may



specify that a user’s laptop should hold only recent al-

bums, but that a backup device should hold every photo.

Applications are expected to generate placement rules

based on user input. Experience suggests that users are

not very good at predicting what objects they will need

or at describing those objects with rules [40]. Eyo’s

metadata-everywhere approach makes it easy to find

missing objects by searching the metadata, to discover

which devices currently have copies of the object, and to

fix the placement rules for the future.

Applications specify placement rules to Eyo using the

query language. A placement rule is the combination of

a query and the set of devices that should hold objects

matching the query. For example, the photo album ap-

plication might present a UI allowing the user to indicate

which devices should hold a complete photo album. An

application can also let users specify particular objects

and the devices on which they should be placed.

Each rule has a priority, and a storage-limited device

stores high-priority content in preference to low-priority.

When space permits, Eyo provides eventual filter consis-

tency [36] for object content, meaning that each device

eventually gathers the set of objects that best matches its

preferences. Eyo’s synchronization mechanism, as de-

scribed in Section 3.4, ensures that at least one copy of

content persists even if no placement rule matches.

To ensure that all devices know all placement rules,

Eyo stores each rule as an object with no content, but

whose metadata contain the query, priority, and device

set. Any device can modify a placement rule. If a conflict

arises between rule versions, Eyo conservatively applies

the union of all current versions’ requirements. Simi-

larly, if an object has multiple current versions and any

current version matches a placement query, Eyo acts as if

the query had matched all versions back to the common

ancestor. This behavior ensures that any device that may

be responsible for the object’s content has all versions

required to recognize and resolve conflicts.

Because placement rules operate at object granularity,

applications that maintain related variations of content

should store these variations as separate objects linked

via metadata, so that different placement rules can apply

to each variation. For example, our photo application

stores both a full size and a thumbnail size image of the

same base photo, assigning a high priority placement rule

to replicate the thumbnail objects widely, but placing the

full-size versions only on high-capacity devices.

2.4 Object Version Histories

Much of Eyo’s API design and storage model is moti-

vated by potentially disconnected devices. Devices carry

replicas of the Eyo object store and might make indepen-

dent modifications to their local replicas. Devices must

therefore be prepared to cope with divergent replicas.

When an Eyo application on a device modifies an ob-

ject, it calls newVersion() to create a new version of that

object’s metadata (and perhaps content) in the device’s

data store. The application specifies one or more par-

ent versions, with the implication that the new version

replaces those parents. In the ordinary case there is just

one parent version, and the versions form a linear history,

with a unique latest version. Eyo stores each version’s

parents as part of the version.

Pairs of Eyo devices synchronize their object stores

with each other, as detailed in Section 3. Synchroniza-

tion replaces each device’s set of object versions and

metadata attributes with the union of the devices’ sets.

For example, in Figure 1, suppose device A uses Eyo

to store a new photo, and to do so it creates a new ob-

ject O56, with one version, O56:34, and metadata and

content for that version. If A and B synchronize, B’s

object store will then also contain the new object, its

one version, that version’s metadata, and perhaps its con-

tent. If an application on B then modifies O56’s meta-

data or content, the application calls newVersion(O56,

[O56:34], metadata, content), indicating that the new

version (O56:78), should supplant the existing version.

When A and B next synchronize, A will learn about

O56:78, and will know from its parent that it supersedes

O56:34. Since the version history is linear, Eyo applica-

tions will use the unique most recent version.

2.5 Continuous Synchronization

To propagate updates to other devices as promptly as

possible, Eyo provides continuous synchronization. Con-

tinuous synchronization helps reduce concurrency con-

flicts by propagating changes as quickly as the network

allows, essentially serializing changes. Continuous syn-

chronization also improves the user experience by show-

ing changes from other devices “instantly”. If two de-

vices on the same network run the photo album applica-

tion, for example, rating changes in one application will

be immediately reflected in other application. Section 3

details continuous synchronization.

2.6 Automated Conflict Management

A primary goal of Eyo’s API is to enable applications to

offer the user automated conflict management. To man-

age conflicts, applications need access to history infor-

mation, notifications when conflicts arise, and a way to

resolve those conflicts permanently.

Eyo uses per-object version histories and update noti-

fications to provide a distributed metadata database that

describes objects at the same granularity as user-visible

objects. Applications thus need to examine only the Eyo-

provided history of changes to a single object at a time in

order to resolve changes. Cloud synchronization services

that use existing filesystem APIs would instead require



applications to examine two (or more) complete copies

of a metadata database and write a resolution procedure

to operate on the entire collection at once.

Continuing with the example from Figure 1, consider

a case where A had produced a new version of O56 be-

fore the second synchronization with B, such as adding

additional category or location tags to the photo.

In that case, both new versions would have parent ver-

sion O56:34. After synchronization, A and B would

both have two “latest” versions of O56 in their object

stores. These are called head versions. When it detects

concurrent updates, Eyo presents to the application each

of the head versions along with their common ancestors.

Eyo’s version graphs with explicit multiple parent ver-

sions are inspired by version control systems [16, 45].

Where version control systems keep history primarily

for users to examine, Eyo instead uses version history to

hide concurrency from users as much as possible. When

combined with synchronization, version graphs automat-

ically capture the fact that concurrent updates have oc-

curred, and also indicate the most recent common an-

cestor. Many procedures for resolving conflicting up-

dates require access to the most recent common ances-

tor. Since Eyo preserves and synchronizes complete ver-

sion graphs back to those recent ancestors, applications

and users can defer the merging of conflicting updates as

long as they want. In order to ensure that parent pointers

in object version histories always lead back to a common

ancestor, Eyo transfers older versions of metadata before

newer ones during synchronization [34].

Applications hold responsibility for handling concur-

rent updates of the same object on different devices, and

should therefore structure the representation of objects in

a way that makes concurrent updates either unlikely or

easy to merge automatically. Applications must notice

when concurrent updates arise, via Eyo queries or watch

notifications. When they do occur, applications should

either resolve conflicts transparently to the user, or pro-

vide ways for users to resolve them. This division allows

Eyo to take advantage of fleeting network connectivity to

transfer all new updates. Users avoid interruptions about

irrelevant objects, and can wait until some more conve-

nient time to merge conflicts, or perhaps ignore unimpor-

tant conflicts forever.

Eyo’s version history approach permits many concur-

rent updates to be resolved automatically and straightfor-

wardly by the application. For example, a user may move

a photo between albums on one device, while changing

the rating for the same photo on another device. Appli-

cations can arrange for these pairs of operations to be

composable, e.g., ensuring that album tags and ratings

can be set independently in the metadata. Eyo identi-

fies these conflicting modifications, but the applications

themselves merge the changes since applications know

the uses of these attribute types, and so can determine the

correct final state for these classes of concurrent changes.

Some concurrent updates, however, require user inter-

vention to merge them into a single version. For exam-

ple, a user might change the caption of a photo different

ways on different devices. In such cases it is sufficient

for Eyo to detect and preserve the changes for the user,

either to fix at some later time or ignore entirely. Be-

cause Eyo keeps all of the relevant ancestor versions, it is

simple for the application to show the user what changes

correspond to each head version. All of Eyo’s API calls

work regardless of whether an object contains an unre-

solved conflict, so it is up to applications as to whether

they wish to operate on conflicted objects.

Applications may not intentionally create conflicts:

when calling newVersion(), applications may list only

head versions as predecessors. This requirement means

that once a unique ancestor is known to all devices in a

personal group, no version that came before the unique

ancestor can ever be in conflict with any new written or

newly learned version. Eyo can thus safely delete these

older versions without affecting later conflict resolution.

For example, in Figure 1, if all devices knew about ver-

sion O56:21, that version is a unique ancestor for the ob-

ject O56, and Eyo may prune the older versions O56:34,

O56:56, and O56:78. Section 5.4 discusses storage costs

when devices do not agree on a unique ancestor.

Applications permanently remove objects from Eyo

via deleteObject(), which is just a special case of cre-

ating a new version of an object. When a device learns

that a delete-version is a unique ancestor (or that all head

versions are deletes, and seen by all other devices), Eyo

deletes that object from the metadata collection.

3 Continuous Synchronization

Eyo needs to synchronize two classes of data between

devices, metadata and content, and faces different needs

for these classes. Metadata is usually small, and updates

must be passed as quickly as possible in order to provide

the appearance of device-transparency. The goal of Eyo’s

metadata synchronization protocol is to produce identical

metadata collections after synchronizing two devices.

Content, in contrast, can consist of large objects that

change infrequently and take a long time to send over

slow network links. Synchronizing content, unlike meta-

data, results in identical copies of individual objects, but

not of the entire collections. The goal of content synchro-

nization is to move objects to locations that best match

placement policies.

Given the different needs for these two classes of data,

Eyo uses different protocols for each class. Both run over

UIA [13], an overlay network supporting direct peer-to-

peer links as well as centralized cloud server topologies.



3.1 Metadata Synchronization

The primary goal of Eyo’s metadata synchronization pro-

tocol is to maintain identical copies of the entire meta-

data collection. This process must be efficient enough

to run continuously: updates should flow immediately to

devices connected to the same network. If connectivity

changes frequently, devices must quickly identify which

changes to send to bring both devices up to date.

The main approach that Eyo takes to synchronize

metadata is to poll for changes whenever connectivity

changes and to push notifications to reachable devices

whenever a local application writes a new version of an

object. Eyo identifies and organizes changes as they oc-

cur rather than iterating over the entire collection, allow-

ing Eyo to quickly find the set of changed objects (among

a much larger set of unchanged objects) at every synchro-

nization opportunity.

Eyo groups multiple metadata updates into a perma-

nent collection called a generation. Each generation is

uniquely named by the device that created it and includes

an id field indicating how many generations that device

has created. A generation includes complete metadata

updates, but only identifiers and new status bits for con-

tent updates. All synchronization occurs at the granu-

larity of individual generations; each device that holds a

copy of a given generation will have an identical copy.

A generation vector is a vector denoting which gener-

ations a device has already received. These vectors are

equivalent to traditional version vectors [32], but named

differently to avoid confusion with the versions of in-

dividual objects. For a personal group with n devices,

each Eyo device updates a single n-element vector of

(device, id) tuples indicating the newest generation au-

thored by device that it holds.

Each device regularly sends getGenerations requests

to other reachable devices. When local applications

modify or create new objects (via newVersion calls),

Eyo adds these uncommunicated changes to a pending

structure, and attempts to contact reachable peers. With

each of these requests, the client includes either its local

generation vector, or the next generation vector it will

write if it has new changes pending. When a device re-

ceives a reply, it incorporates the newly learned changes

into its local data store, updates its generation vector

accordingly, notifies applications about newly learned

changes, and updates and applies placement rules to the

newly learned changes.

When a device receives an incoming getGenerations

request, it first gathers all pending changes, if any, into

a new generation. It then identifies all the changes the

other device lacks, and replies with those changes. If the

request includes a generation vector with some compo-

nent larger than the device handling the request knows

about, the device queues a getGenerations request in

Figure 3: Metadata Synchronization: Messages sent be-

tween two devices for one new object

the reverse direction to update itself, either immediately,

or when next reachable if the request fails.

Figure 3 presents an example use of these structures

between two devices: a camera C that temporarily stores

photos when the user takes a picture, and a target device

T that archives the user’s photos. Initially, at t0 in Fig-

ure 3, both devices hold no objects and agree on an initial

generation vector <C:0,T:0>. When the user takes a

picture P at time t1, the camera adds the contents of the

picture to its local content store with content identifier

Pcid, creates a new Eyo object with object id Poid, and

adds Poid to the metadata store. Eyo adds each of these

updates to the next generation under construction (noted

pending in the figure).

At time t2, C holds uncommunicated updates, so it

sends getGenerations() requests to all reachable de-

vices with the single argument <C:1,T:0>: C’s gen-

eration vector with the C element incremented. T com-

pares the incoming generation vector to its own and de-

termines that it has no updates for C and replies with

an empty generation list. However, since C’s generation

vector was larger than its own, T now knows that C has

updates it has not seen, so T immediately makes its own

getGenerations() call in the opposite direction with ar-

gument <C:0,T:0> since T has no uncommunicated

updates of its own. Upon receiving the incoming request

from T , C increments its generation vector and perma-

nently binds all uncommunicated updates into generation

C:1. C then replies with generation C:1 and its newly-

updated generation vector to T . The camera makes no



further call back to T , as T ’s generation vector was not

larger than its own. Both devices now contain identical

metadata.

Although for the sake of clarity this example only in-

cluded two devices and did not include a large existing

data collection, it does illustrate the protocol’s scaling

properties. For a group containing n devices, the Eyo

metadata synchronization protocol sends only a single

generation vector of length n to summarize the set of

updates it knows about in a getGenerations() request.

Upon receiving an incoming vector, an Eyo device needs

only a simple lookup to identify what generations to send

back, rather than an expensive search. This lookup re-

quires one indexed read into the generation log per ele-

ment in the incoming generation vector. This low cost

means that devices can afford to push notifications in-

stantaneously, and poll others whenever network connec-

tivity changes.

3.2 History and Version Truncation

Eyo must have a way to prune version histories. It must

identify which past changes are no longer needed and

reclaim space taken up by those updates. This process

involves three separate steps: determining when gener-

ation objects have been seen by all devices in a group,

combining the contents of those generation objects into

a single archive, and truncating the version history of in-

dividual objects.

Eyo learns that each other device has seen a given gen-

eration G by checking that every other device has written

some other generation G′ that includes G in its genera-

tion vector. At this point, no other existing device can

correctly send a synchronization request that would in-

clude G in the reply, so it can remove G from its gen-

eration log. Once a device learns that all other devices

have received a given generation G, it may lazily move

G’s contents into its archive generation, which groups

together updates made by different devices and from dif-

ferent original generations, and does not retain those ori-

gins. Eyo preserves at least one generation for each de-

vice separate from the combined archive, even if that

generation is fully known to all other devices. This en-

sures that Eyo knows the latest generation each other de-

vice has reported as received.

Object versions in the archive generation are known by

all the user’s devices, and are thus candidates for pruning,

which is the second phase of history truncation. Version

pruning then proceeds as described in Section 2.4.

3.3 Adding and Removing Devices

When a user adds a new device to their personal group,

and that new device first synchronizes with an existing

device, Eyo sees a getGenerations() request with miss-

ing elements in the incoming generation vector. Exist-

Figure 4: Content Synchronization. The thick double

arrows represent a metadata sync from Figure 3.

ing devices reply with a complete copy of all generations

plus the archive generation. This copy cannot easily be

broken down into smaller units, as the archive genera-

tion differs between devices due to pruning. Users ex-

pect new devices to require some setup, however, so this

one-time step is not an undue burden.

Users remove devices from an Eyo group by deleting

them from the underlying overlay network. Unless the

user explicitly resets an expelled device entirely, it does

not then delete any objects or content, and behaves there-

after as group with only one device. Removing an inac-

tive or uncommunicative device from an Eyo group al-

lows the surviving devices to make progress truncating

history.

3.4 Content Synchronization

The challenges in moving content to its correct location

on multiple devices are (1) determining which objects

a particular device should hold, (2) locating a source

for each missing data object on some other device, and

(3) ensuring that no objects are lost in transit between

devices.

Eyo uses placement rules to solve the first of these



challenges, as described in Section 2.3. Each device

keeps a sorted list of content objects to fetch, and up-

dates this list when it learns about new object versions,

or when changes to placement rules affect the placement

of many objects.

Eyo uses the global distribution of metadata through a

user’s personal group to track the locations of content ob-

jects. In addition to the version information, devices pub-

lish notifications about which content object they hold

(as shown in Figure 3). Since all devices learn about all

metadata updates, all devices thus learn which devices

should hold content as part of the same process. When

Eyo learns that another device is reachable, it can look at

the list of content to fetch, and determine which objects

to request from the reachable device.

To ensure that content objects are not deleted prema-

turely, Eyo employs a form of custodial transfer [11]

whereby devices promise to hold copies of given objects

until they can pass that responsibility on to some other

device. When a device adds content to its local data store

as a result of a matching placement rule, it signals its in-

tent to hold the object via a flag in the metadata.

If placement rules later change, or the device learns of

newer higher-priority data that it would prefer to hold,

it issues a new metadata update removing its promise to

keep the object in the future. At this point, however, the

promise to hold still applies to the original data holder.

Its responsibility continues to apply until some other de-

vice authors a generation that falls strictly later than the

one which removed the promise, and includes a new or

existing promise to hold that same data item. If two dif-

ferent devices holding the last two copies of an object

each simultaneously announce their desire to remove it,

then the generations that contain these modifications can-

not be totally ordered. Neither device will be able to

delete the object, as neither can identify another device

that has accepted responsibility for storing the object.

This protocol ensures that, as long as no devices are

lost, stolen, or broken, each non-deleted item will have

at least one live replica in the device collection. This

property does not depend on the existence or correct-

ness of placement rules: applications may delete or mod-

ify placement rules without needing to ensure that some

other rule continues to apply to that object.

Figure 4 shows an example content sync that continues

where the metadata sync of Figure 3 leaves off. To match

the user’s workflow, the target device has a placement

rule matching photos the camera creates; the camera has

no such rule and thus tries to push its photos to other

devices. When the target device receives the camera’s

metadata update at time t2, it evaluates its own place-

ment rules, and adds Pcid to its list of content it desires.

The generation C:1 that T received included Pcid, so

T knows that C has a copy (the hold bit is set) of Pcid

that it wants to delete (the purge bit). At t3, T sends

a getContent(Pcid) request to C, which replies with the

new photo. Because T intends to keep P , it adds a hold

bit to Pcid in the next generation it publishes, T:1.

At t4, the devices synchronize again and the camera

and target again contain identical state. But the camera

now knows an important fact: the target (as of last con-

tact) contained a copy of P , knew that C did not promise

to keep P via the purge bit, and hence the target has ac-

cepted responsibility (hold but not purge) for storing P .

Thus, at t5, the camera can safely delete P if it needs to

reclaim that space for new items, placing the system in a

stable state matching the user’s preferences.

4 Implementation

Eyo’s prototype implementation consists of a per-user

daemon that runs on each participating device and han-

dles all external communication, and a client library that

implements the Eyo storage API. The daemon is writ-

ten in Python, runs on Linux and Mac OSX, keeps open

connections (via UIA) to each peer device whenever pos-

sible, and otherwise attempts to reestablish connections

when UIA informs Eyo that new devices are reachable.

It uses SQLite [43] to hold the device’s metadata store,

and to implement Eyo queries. The daemon uses sepa-

rate files in the device’s local filesystem to store content,

though it does not expose the location of those files to

applications. The Eyo implementation uses XML-RPC

for serializing and calling remote procedures to fetch

metadata updates, and separate HTTP channels to re-

quest content objects. This distinction ensures that large

content fetches do not block further metadata updates.

Larger content objects can be fetched as a sequence of

smaller blocks, which should permit swarming transfers

as in DOT [47] or BitTorrent [6], although we have not

yet implemented swarming transfers. We implemented

Eyo API modules for Python and a library for C applica-

tions. The client libraries fulfill most application requests

directly from the metadata store via SQLite methods,

though they receive watch notifications from the daemon

via D-Bus [8] method calls.

5 Evaluation

We explore the performance of Eyo by examining the

following questions:

• Is Eyo’s storage model useful for applications and

users?

• Can Eyo resolve conflicts without user input?

• Do Eyo’s design choices, such as splitting metadata

from content, unduly burden devices’ storage ca-

pacity and network bandwidth?

• Are Eyo’s continuous synchronization protocols ef-

ficient in terms of the bandwidth consumed, and the

delay needed to propagate updates?



We employ three methods to evaluate Eyo: (1) adapt-

ing existing applications to use Eyo’s storage API instead

of their native file-based storage to examine the modifica-

tion difficulty and describe the new features of the mod-

ified versions, (2) storing example personal data collec-

tions to examine storage costs, and (3) measuring Eyo’s

synchronization protocol bandwidth and delays to com-

pare against existing synchronization tools.

The purpose for adapting existing applications to use

Eyo as their primary storage interface is to examine

whether Eyo’s API is a good match for those uses, de-

scribe how those applications use the Eyo API, and how

difficult those changes were. We focus on two types of

applications: (1) media applications, where users do not

currently see a device-transparent data collection, and (2)

email, where users already expect a device-transparent

view, but typically only get one today while connected

to a central server. We modified two media players,

Rhythmbox and Quod Libet, the Rawstudio photo man-

ager, and the gPodder podcast manager, to use Eyo in-

stead of the local filesystem. We also built an IMAP-

to-Eyo gateway to enable existing email clients to access

messages stored in Eyo.

We evaluate Eyo’s storage and bandwidth costs using

three data collections: email, music, and photos. These

collections served as a basis for a synthetic workload

used to measure bandwidth costs and storage costs due

to disconnected devices.

We compare Eyo’s synchronization protocols to exist-

ing synchronization tools, Unison and MobileMe. Al-

though neither tool aims to provide device-transparent

access to a data collection, the comparison does verify

that the performance of Eyo’s metadata synchronization

protocol is independent of the number of objects in the

collection, and demonstrates the need for direct peer-to-

peer updates.

5.1 Eyo Application Experiences

Adapting existing applications to use Eyo is straight-

forward. Table 1 summarizes the changes made to

each application. In each case, we needed to modify

only a small portion of each application, indicating that

adopting the Eyo API does not require cascading changes

through the entire application. The required changes

were limited to modules composing less than 11% of the

total project size for the C-based applications, and sig-

nificantly less for the Python applications. The C-based

application changes were spread over a few months; the

python applications needed only a few days of work.

Eyo provides device-transparency. Eyo transforms

the existing media applications from stand-alone appli-

cations with no concept of sharing between devices into a

distributed system that presents the same collection over

multiple devices. The changes do not require any user

Size (lines) Rawstudio Rhythmbox QuodLibet gPodder Email

total project 59,767 102,000 16,089 8,168 3,476
module size 6,426 9,467 428 426 312
lines added 1,851 2,102 76 295 778
lines deleted 1,596 14 2 2 N/A
language C C python python python
content ←−−−−− individual files −−−−−→ N/A

metadata
central DB,
sidecar files

←−−− central DB −−−→ N/A

Table 1: Comparisons of applications adapted to Eyo, in-

cluding lines of code changed along with descriptions of

the application’s original organization for storing meta-

data and content. For email, the “total project” size only

includes Twisted’s IMAP module and server example

code, and “lines added” includes all of our newly writ-

ten code.

interface modifications to support device transparency;

users simply see a complete set of application objects

rather than the local subset. However, some user inter-

face changes are necessary to expose placement rules and

conflict resolution to the user.

Device transparency brings new features to the appli-

cations. For example, Rhythmbox and QuodLibet can

show the user’s entire media collection, even when con-

tent is not present, allowing users to search for items and

modify playlists from any device. In Rawstudio, users

can search for or organize photos in the entire collec-

tion, even when the content is missing. Surprisingly few

changes were necessary to support missing content. This

is because applications already have code paths for miss-

ing files or unreachable network services. Content that is

not on the current device triggers these same code paths.

Users rarely encounter metadata conflicts. As a con-

sequence of device transparency, users may encounter

conflicts from concurrent changes on multiple devices.

These concurrent changes result in multiple head ver-

sions of these objects when connectivity resumes. For

changes to distinct pieces of metadata, the version his-

tory Eyo provides permits applications to resolve con-

current changes simply by applying the union of all user

changes; Eyo’s client library makes this straightforward.

For concurrent changes to the same piece of metadata,

the application must manually resolve the conflict be-

cause the correct policy depends on the application and

the metadata item. In most cases, users are never aware

when concurrent updates occur, as the applications per-

form these operations automatically. For example, if one

device changes an email message status to “read” while

another device changes the status to “replied”, Eyo will

signal a conflict to the application. However, the IMAP

gateway knows that these updates are composable and

resolves the conflict without user intervention.



Application Type User-Visible
Conflicts Possible?

Why?

IMAP
Email
Gateway

No Boolean flag changes only

gPodder
Podcast
Manager

No User cannot edit metadata directly

Rhythmbox
Media
Player

Yes Edit Song title directly

QuodLibet
Media
Player

Yes Edit Song title directly

Rawstudio
Photo
Editor

Yes Edit settings: contrast, exposure...

Table 2: Description of whether applications can handle

all version conflicts internally, or must show the pres-

ence of multiple versions as a result of some concurrent

events, along with an explanation or example of why that

result holds for each application.

Email Music Photos

number of objects 724230 5299 72380
total content size 4.3 GB 26.0 GB 122.8 GB

native metadata size 169.3 MB 2.6 MB 22.6 MB
Eyo metadata size 529.6 MB 5.8 MB 52.9 MB

metadata/content overhead 12% 0.02% 0.04%
metadata store per object 766 bytes 1153 bytes 767 bytes

Table 3: Metadata store sizes for example datasets. The

native metadata size is the size of the attribute key/value

pairs before storing in Eyo. The Eyo metadata size is the

on-disk size after adding all objects.

As shown in Table 2, it is possible to cause end-user

visible effects. For example, Rhythmbox and QuodLi-

bet allow users to modify metadata directly in the UI,

which may require manual intervention to resolve. How-

ever, these kinds of user-visible conflicts only arise due

to manual, concurrent changes and are rare in practice.

In Rawstudio, during the course of editing on two de-

vices, users may create conflicting versions of a photo.

Rather than hiding the change or requiring immediate

conflict resolution, Eyo exposes each version as a “de-

velopment version” of the photo. While this feature is

typically used to let the user test different exposure and

color settings, Eyo uses the feature to show concurrent

branches of the photo.

In the other applications, gPodder and email, user-

visible conflicts are impossible, as users cannot edit

individual metadata tags directly. These two applica-

tions never show multiple versions to end users, even

though the underlying system-maintained version histo-

ries exhibit forks and merges. The ability to hide these

events demonstrates the usefulness of keeping system-

maintained version histories so that applications face no

ambiguity about the correct actions to take.

5.2 Metadata Storage Costs

To determine the expected size of metadata stores in Eyo,

we inserted three modest personal data sets into Eyo: the

email, music, and photo collections a single user gath-

ered over the past decade. We included a collection of

email messages as a worst-case test; this collection in-

cludes a large number of very small objects, so the meta-

data overhead will be much larger than for other data

types. Table 3 shows the resulting metadata store sizes.

The table shows that for each of the data types, Eyo’s

metadata store size is approximately 3 times as large as

the object attributes alone. The overhead comes from

database indexes and implementation-specific structures.

The most important feature this data set illustrates is

that the size of the metadata store is roughly (within a

small constant factor) dependent only on the number of

individual objects, not the content type nor the size of

content objects. The number of objects, along with the

amount of metadata per object, thus provides a lower

bound on the necessary storage capacity of each device.

The total metadata size in this example (less than 600

MB) is reasonable for today’s current portable devices,

but the total content size (153 GB) would not fit on a

laptop only a few years old nor on many current portable

devices. Including video content would further reduce

the relative amount of overhead Eyo devotes to storing

object metadata.

5.3 Bandwidth Costs

In addition to storage costs, the metadata-everywhere

model places bandwidth costs on all devices, even when

those devices do not store newly created objects.

To measure bandwidth costs, we placed a pair of

object-generating devices on the same network and a

remote device on a different network with a slow link

to the object-generating devices. The object-generating

devices create new objects at exponentially distributed

times at a variable average rate, attaching four kilobytes

of attributes to each new object (larger than the median

email message headers considered in Section 5.2). The

remote object has no placement rules matching the new

objects, so it does not fetch any of the associated content.

As such, all of the bandwidth used by the remote device

is Eyo metadata and protocol overhead.

The bandwidth consumed over the slow link, as ex-

pected, relates linearly with the update rate. If the slow

link had a usable capacity of 56 kbps, and new updates

arrive once per minute on average, the remote device

must spend approximately 1.5% of total time connected

to the network in order to stay current with metadata up-

dates. This low overhead is expected intuitively: small

portable devices routinely fetch all new email messages

over slow links, so the metadata bandwidth for compara-

ble content will be similar.



1/8 1/4 1/2 1 2 4 8 16 32 64 128

Time between disconnecting and reconnecting (days)

2

4

8

16

32

64

128

256

512
S

iz
e
 o

f 
m

e
ta

d
a
ta

 s
to

re
 (

m
e
g
a
b
y
te

s
)

(2.56 kilobytes) x #minutes
Size before synchronizing
Size after synchronizing

Most objects modified
(1000 minutes)

Figure 5: Storage consumed by metadata versions

queued for a disconnected device (Log-Log plot).

5.4 Disconnected Devices

When an Eyo device, R, is disconnected from the rest

of the group due to network partitions, or because the

device in question is turned off, the other devices will

keep extra metadata object versions, which might prove

necessary to construct causally ordered version graphs

once R returns.

In this measurement, we place an initial set of 1000

non-conflicting objects synchronized across the three de-

vices. The remote device R then disconnects from the

network, and stays disconnected for a single period of

time ∆t ranging from four hours to four months. Start-

ing after R is out of communication, the other replicas

generate new versions to one of the existing objects at an

average rate of once per minute, attaching 2 kilobytes of

unique metadata, so the devices save no space by storing

only changed attributes.

After the interval ∆t, we measure the size of the Eyo

metadata store on the generating devices, allow R to re-

connect and synchronize, let each device prune its meta-

data, and then measure the metadata store again. Fig-

ure 5 shows the before (square markers) and after (cir-

cle markers) sizes as a function of the disconnect inter-

val ∆t. The figure shows two regions, for ∆t before

and after 1000 minutes, the point at which most objects

have been modified. For ∆t ≫ 1000 minutes, the sys-

tem reaches a steady state where the size of the metadata

store is proportional to the amount of time passed, but af-

ter returning and synchronizing shrinks to a constant size

independent of the amount of time spent disconnected.

The amount of recoverable storage is the difference be-

tween the two curves. The current implementation stores

exactly one version beyond those strictly necessary to go

back to the newest unique ancestor for each object, which

is why this steady state size is larger than the initial stor-

System Description

Unison Delays of at least 1 second for small collections.
Large collections take significantly longer:

23 seconds for an existing collection of 500K objects
87 seconds for 1M objects

MobileMe Most updates arrive after between 5 and 15 seconds.
Occasionally as long as 4 minutes.
Delay does not depend on collection size.

Eyo All delays fall between 5 and 15 milliseconds.
Delay does not depend on collection size.

Table 4: Synchronization Delay Comparison: Time to

propagate one new update to an existing data collection

between two devices on the same local network.

age size, and why the post-synchronization size changes

during the initial non-steady state region.

A collection with more objects (for example, the one

shown in Section 5.2) would show a much smaller frac-

tion of recoverable storage than this example. The abso-

lute amount of recoverable space would be the identical

given the same sequence of updates.

All of the object types shown in Table 3 contain im-

mutable contents, so disconnected devices using those

data types cause overhead in Eyo’s metadata store, but

not the content store. If updates change content as well,

then the storage costs would be proportionally larger.

Figure 5 shows that a long-term uncommunicating de-

vice can cause unbounded growth of the metadata store

on other devices. If this absence persists long enough

that a device runs out of space, Eyo can present the user

with two options: turn on and synchronize the missing

device, or evict it from the system. Evicting the miss-

ing device, as discussed in Section 3.3, does not require

a consensus vote of the remaining devices. Temporarily

evicting a device allows the remaining devices to trun-

cate history and preserve data until re-adding the missing

device later.

These results show that users are unlikely to encounter

problems due to accumulating metadata in practice, as

large collections and infrequently used devices alone

cannot cause problems. It is instead the rate of individual

edits that consumes excess space. None of the applica-

tions we have examined generate changes anywhere near

the frequency that this experiment assumes.

5.5 Synchronization Comparison

This section compares the latency of exchanging a sin-

gle small update between two physically adjacent de-

vices using Eyo to two existing classes of synchroniza-

tion tools: a point-to-point file synchronizer, Unison [3],

and a cloud service, MobileMe [29]. In this experiment,

two devices initially hold a synchronized data collection



with some number of existing small or metadata-only ob-

jects. One device then makes a single minimal change,

and we measure the time it takes for that update to ap-

pear on the second device. Table 4 summarizes the re-

sults. Since Unison is a stand-alone synchronizer, the

measurement time includes the time to start up the pro-

gram to send an update, which results in delays of around

one second even for very small data collections. After

starting, Unison first iterates over the local data collec-

tion to determine which files have changed. For large

data collections, this time dominates the end-to-end de-

lay, resulting in delays of tens of seconds for collections

of a few hundred thousand individual objects.

MobileMe and Eyo both run continuously and contin-

ually track object changes that need propagation to other

devices as applications edit data. Neither suffers a startup

delay, and delays are independent of the number of ob-

jects in the collection. Although both systems send sim-

ilar amounts of data (less than 10 kilobytes), MobileMe

updates take between several seconds to several minutes

to propagate, which is long enough for a person to notice

the delay. Eyo’s delays in this topology fall between 5

and 15 milliseconds.

MobileMe’s star topology requires that all updates

pass through a distributed cloud system, even if the two

devices are physically adjacent on the same local net-

work, as in this example. Eyo, in contrast, discovers local

network paths, and uses those to send updates directly to

the local device.

Eyo can share types of data for which the other two

are unsuited. Neither could store a music collection or a

photo catalog shared between devices. If two devices

read the catalog at startup and each later write some

changes, the last write would win, and the other de-

vice’s version of the file would be preserved separately

but marked as a conflict. The user would have to choose

one or the other versions, as the other synchronization

tools provide no help for the application to resolve the

concurrent changes automatically. Eyo, in contrast, natu-

rally shares metadata about for these types of collections

without requiring a user to routinely manage conflicts.

6 Related Work

The two systems most closely related to Eyo are Cim-

biosys [36] and Perspective [40]. Though neither at-

tempts to provide device transparency, Eyo shares ideas,

like placement rules, with both. Cimbiosys provides

an efficient synchronization protocol to minimize com-

munication overhead while partially replicating objects

across large groups of devices, but provides no way for a

device to learn of all objects without storing all such ob-

jects. Perspective allows users to see their entire collec-

tion spanning several devices, but disconnected devices

cannot continue to see the complete collection. Neither

of these systems preserve object history to help applica-

tions deal with concurrent updates. Polygraph [26] dis-

cusses extensions to Cimbiosys to guard against compro-

mised devices. Eyo could apply these approaches for the

same purposes.

Optimistic Replication Coda [22], Ficus [20],

Ivy [30], and Pangaea [39] provide optimistic replication

and consistency algorithms for file systems. Coda uses

a centralized set of servers with disconnected clients.

Ficus and Ivy allow updates between clients, but do not

support partial replicas. Pangaea handles disconnected

servers, but not disconnected clients. An extension to

Ficus [37] adds support for partial replicas, but removes

support for arbitrary network topologies.

BlueFS [31] and EnsemBlue [33] expand on ap-

proaches explored by Coda to include per-device affin-

ity for directory subtrees, support for removable de-

vices, and some consideration of energy efficiency.

Eyo’s lookup and watch notifications provide applica-

tions with similar flexibility as EnsemBlue’s persistent

queries without requiring that a central server know

about and process queries.

Podbase [35] replicates files between personal devices

automatically whenever network conditions permit, but

does not provide a way to specify placement rules or

merge or track concurrent updates.

Bayou [46] provides a device transparent view across

multiple devices, but does not support partial replicas,

and requires all applications to provide merge procedures

to resolve all conflicts. Bayou requires that updates be

eventually-serializable [12]. Eyo instead tracks deriva-

tion history for each individual object, forming a partial

order of happened-before relationships [24].

PersonalRAID [42] tries to provide device trans-

parency along with partial replicas. The approach taken,

however, requires users to move a single portable storage

token physically between devices. Only one device can

thus use the data collection at a given time.

Systems like TierStore [9], WinFS [27], PRACTI [4],

Pheme [49], and Mammoth [5] each support partial repli-

cas, but limit the subsets to subtrees of a traditional

hierarchical filesystems rather than the more flexible

schemes in Cimbiosys, Perspective, and Eyo. TierStore

targets Delay-Tolerant-Networking scenarios. WinFS

aims to support large numbers of replicas and, like Eyo,

limits update messages to the number of actual changes

rather than the total number of objects. PRACTI pro-

vides consistency guarantees between different objects

in the collection. Eyo does not provide any such con-

sistency guarantees, but Eyo does allow applications to

coherently name groups of objects through the exposed

persistent object version and content identifiers.

Several of these systems make use of application-

specific resolvers [38, 23], which require developers to



construct stand-alone mechanisms to interpret and re-

solve conflicts separately from the applications that ac-

cess that data. Eyo’s approach instead embeds resolu-

tion logic directly into the applications, which avoids the

need to recreate application context in separate resolvers.

Presenting version history directly to the applications, in-

stead of just the final state of each conflicting replica, per-

mits applications using Eyo’s API to identify the changes

made in each branch.

Star Topologies Many cloud-based storage systems

provide a traditional filesystem API to devices (e.g.,

Dropbox [10], MobileMe’s iDisk [21], and ZumoD-

rive [50]) or an application-specific front end atop one

of the former systems (e.g., Amazon’s Cloud Player [1]).

These systems require that the central cloud service store

all content in the system, and provides a filesystem API

for devices. While these systems provide a central-

ized location for storing content, they do not enable dis-

connected updates between devices, or handle metadata

about the objects that changes on multiple devices. Other

systems such as Amazon’s S3 [2], use a lower-level put-

get interface, and leave all concurrency choices to the ap-

plication using it. Eyo could use a system like S3 as one

repository for object content or for metadata collection

snapshots for added durability.

A number of systems build synchronization operations

directly into applications so that multiple clients receive

updates quickly, such as one.world [19], MobileMe [29],

Live Mesh [25] , and Google Gears [17]. In these sys-

tems a centralized set of servers hold complete copies

of the data collections. Applications, either running on

the servers themselves or on individual clients, retrieve a

subset of the content. Clients can neither share updates

directly nor view complete data collections while discon-

nected from the central hub.

Point to point synchronization: Point-to-point syn-

chronization protocols such as rsync [48], tra [7], and

Unison [3] provide on-demand and efficient replication

of directory hierarchies. None of these systems easily

extend to a cluster of peer devices, handle partial repli-

cas without extensive hand-written rules, or proactively

pass updates when connectivity permits.

Attribute Naming Storage system organization based

on queries or attributes rather than strict hierar-

chical names have been studied in several single-

device settings (e.g., Semantic File Systems [15],

HAC [18], and hFAD [41]) and multi-device settings

(e.g., HomeViews [14]), in addition to optimistic repli-

cation systems.

7 Summary

Eyo implements the device transparency abstraction,

which unifies collections of objects on multiple devices

into a single logical collection. To do so, Eyo uses

a novel storage API that (1) splits application-defined

metadata from object content and (2) allows applications

to define placement rules. In return for using the new

API, Eyo provides applications with efficient synchro-

nization of metadata and content over peer-to-peer links.

Evaluation of several applications suggests that adopting

Eyo’s API requires only modest changes, that most con-

flicting updates can be handled automatically by the ap-

plications without user intervention, and that Eyo’s stor-

age and bandwidth costs are within the capabilities of

typical personal devices.

Acknowledgments

We would like to thank Ansley Post, Jamey Hicks, John

Ankcorn, our shepherd Ed Nightingale, and the anony-

mous reviewers for their helpful comments and sugges-

tions on earlier versions of this paper.

References

[1] CloudPlayer. http://amazon.com/cloudplayer/.

[2] Amazon S3. http://aws.amazon.com/s3/.

[3] S. Balasubramanian and Benjamin C. Pierce. What is a

File Synchronizer? In Proceedings of MobiCom, 1998.

[4] Nalini Belaramani, Mike Dahlin, Lei Gao, Amol Nayate,

Arun Venkataramani, Praveen Yalagandula, and Jiandan

Zheng. PRACTI replication. In Proceedings of NSDI,

2006.

[5] Dmitry Brodsky, Jody Pomkoski, Shihao Gong, Alex

Brodsky, Michael J. Feeley, and Norman C. Hutchinson.

Mammoth: A Peer-to-Peer File System. Technical Re-

port TR-2003-11, University of British Columbia Dept of

Computer Science, 2002.

[6] Bram Cohen. Incentives Build Robustness in BitTor-

rent. In Workshop on Economics of Peer-to-Peer Systems,

2003.

[7] Russ Cox and William Josephson. File Synchronization

with Vector Time Pairs. Technical Report MIT-CSAIL-

TR-2005-014, MIT, 2005.

[8] D-Bus. http://dbus.freedesktop.org/.

[9] Michael Demmer, Bowei Du, and Eric Brewer. TierStore:

A Distributed File-System for Challenged Networks. In

Proceedings of FAST, 2008.

[10] Dropbox. http://dropbox.com/.

[11] Kevin Fall, Wei Hong, and Samuel Madden. Custody

Transfer for Reliable Delivery in Delay Tolerant Net-

works. Technical Report IRB-TR-03-030, Intel Research

Berkeley, 2003.

[12] Alan Fekete, David Gupta, Victor Luchangco, Nancy A.

Lynch, and Alexander A. Shvartsman. Eventually-

Serializable Data Services. In Proceedings of PODC,

1996.

[13] Bryan Ford, Jacob Strauss, Chris Lesniewski-Laas, Sean

Rhea, Frans Kaashoek, and Robert Morris. Persistent Per-

sonal Names for Globally Connected Mobile Devices. In

Proceedings of OSDI, 2006.



[14] Roxana Geambasu, Magdalena Balazinska, Steven D.

Gribble, and Henry M. Levy. Homeviews: Peer-to-Peer

Middleware for Personal Data Sharing Applications. In

Proceedings of SIGMOD, 2007.

[15] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and

Jr. James W. O’Toole. Semantic File Systems. In Pro-

ceedings of SOSP, 1991.

[16] Git. http://git.or.cz/.

[17] Google Gears. http://gears.google.com.

[18] Burra Gopal and Udi Manber. Integrating Content-based

Access Mechanisms with Hierarchical File Systems. In

Proceedings of OSDI, 1999.

[19] Robert Grimm, Janet Davis, Eric Lemar, Adam Mac-

beth, Steven Swanson, Thomas Anderson, Brian Bershad,

Gaetano Borriello, Steven Gribble, and David Wetherall.

System Support for Pervasive Applications. ACM Trans.

Comput. Syst., 22(4):421–486, 2004.

[20] Richard G. Guy, John S. Heidemann, Wai Mak,

Thomas W. Page, Jr., Gerald J. Popek, and Dieter Roth-

meir. Implementation of the Ficus Replicated File Sys-

tem. In Proceedings of USENIX Summer, 1990.

[21] iDisk. http://apple.com/idisk.

[22] James J. Kistler and M. Satyanarayanan. Disconnected

Operation in the Coda File System. In Proceedings of

SOSP, 1991.

[23] Puneet Kumar and M. Satyanarayanan. Flexible and Safe

Resolution of File Conflicts. In Proceedings of USENIX,

1995.

[24] Leslie Lamport. Time, Clocks, and the Ordering of

Events in a Distributed System. Communications of the

ACM, 21(7):558–565, July 1978.

[25] Live Mesh. http://www.livemesh.com.

[26] Prince Mahajan, Ramakrishna Kotla, Catherine Mar-

shall, Venugopalan Ramasubramanian, Thomas Rode-

heffer, Douglas Terry, and Ted Wobber. Effective and

Efficient Compromise Recovery for Weakly Consistent

Replication. In Proceedings of EuroSys, 2009.

[27] Dahlia Malkhi, Lev Novik, and Chris Purcell. P2P

Replica Synchronization with Vector Sets. SIGOPS Oper.

Syst. Rev., 41(2):68–74, 2007.

[28] John McCutchan. inotify. http://inotify.aiken.cz/.

[29] MobileMe. http://www.apple.com/mobileme/.

[30] Athicha Muthitacharoen, Robert Morris, Thomer M. Gil,

and Benjie Chen. Ivy: A Read/Write Peer-to-peer File

System. In Proceedings of OSDI, 2002.

[31] Edmund B. Nightingale and Jason Flinn. Energy-

efficiency and Storage Flexibility in the Blue File System.

In Proceedings of OSDI, 2004.

[32] D. Scott Parker Jr., Gerald J. Popek, Gerard Rudisin,

Allen Stoughton, Bruce J. Walker, Evelyn Walton, Jo-

hanna M. Chow, David Edwards, Stephen Kiser, and

Charles Kline. Detection of Mutual InConsistency in Dis-

tributed Systems. IEEE Transactions on Software Engi-

neering, SE-9(3):240–247, May 1983.

[33] Daniel Peek and Jason Flinn. EnsemBlue: Integrating

Distributed Storage and Consumer Electronics. In Pro-

ceedings of OSDI, 2006.

[34] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Mar-

vin M. Theimer, and Alan J. Demers. Flexible Update

Propagation for Weakly Consistent Replication. In Pro-

ceedings of SOSP, 1997.

[35] Ansley Post, Juan Navarro, Petr Kuznetsov, and Peter Dr-

uschel. Autonomous Storage Management for Personal

Devices with PodBase. In Proceedings of Usenix ATC,

2011.

[36] Venugopalan Ramasubramanian, Thomas L. Rodeheffer,

Douglas B. Terry, Meg Walraed-Sullivan, Ted Wobber,

Catherine C. Marshall, and Amin Vahdat. Cimbiosys: A

Platform for Content-based Partial Replication. In Pro-

ceedings of NSDI, 2009.

[37] David Ratner, Peter L. Reiher, Gerald J. Popek, and

Richard G. Guy. Peer Replication with Selective Con-

trol. In Proceedings of Intl. Conference on Mobile Data

Access, 1999.

[38] Peter Reiher, John Heidemann, David Ratner, Greg Skin-

ner, and Gerald Popek. Resolving File Conflicts in the

Ficus File System. In Proceedings of USENIX Summer,

1994.

[39] Yasushi Saito, Christos Karamanolis, Magnus Karlsson,

and Mallik Mahalingam. Taming aggressive replication

in the Pangaea wide-area file system. In Proceedings of

OSDI, 2002.

[40] Brandon Salmon, Steven W. Schlosser, Lorrie Faith Cra-

nor, and Gregory R. Ganger. Perspective: Semantic Data

Management for the Home. In Proceedings of FAST,

2009.

[41] Margo Seltzer and Nicholas Murphy. Hierarchical File

Systems are Dead. In Proceedings of HotOS, 2009.

[42] Sumeet Sobti, Nitin Garg, Chi Zhang, Xiang Yu, Arvind

Krishnamurthy, and Randolph Y. Wang. PersonalRAID:

Mobile Storage for Distributed and Disconnected Com-

puters. In Proceedings of FAST, 2002.

[43] http://www.sqlite.org/.

[44] Jacob Strauss, Chris Lesniewski-Laas, Justin Mazzola

Paluska, Bryan Ford, Robert Morris, and Frans Kaashoek.

Device Transparency: a New Model for Mobile Storage.

In Proceedings of HotStorage, October 2009.

[45] http://subversion.tigris.org.

[46] Douglas B. Terry, Marvin M. Theimer, Karin Petersen,

and Alan J. Demers. Managing Update Conflicts in

Bayou, a Weakly Connected Replicated Storage System.

In Proceedings of SOSP, 1995.

[47] Niraj Tolia, Michael Kaminsky, David G. Andersen, and

Swapnil Patil. An Architecture for Internet Data Transfer.

In Proceedings of NSDI, 2006.

[48] Andrew Tridgell. Efficient Algorithms for Sorting and

Synchronization. PhD thesis, Australian National Uni-

versity, April 2000.

[49] Jiandan Zheng, Nalini Belaramani, and Mike Dahlin.

Pheme: Synchronizing Replicas in Diverse Environ-

ments. Technical Report TR-09-07, University of Texas

at Austin, 2009.

[50] ZumoDrive. http://zumodrive.com/.


