Evolving Software with an Application-Specific Language

Eddie Kohler, Massimiliano Poletto, and David R. Montgomery
{eddietwo, maxp, dmontgom }@lcs.mit.edu
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139, USA

Abstract

Software systems can be developed through evolution
(gradual change) or revolution (reimplementation from
scratch). Both approaches have advantages and disad-
vantages. An evolutionary approach keeps the system
working throughout, allowing early problem detection,
but tends to retain ingrained design flaws and can result
in complex, ad hoc systems. A revolutionary approach
is required to change the basic architecture of a system,
but many more resources must be invested before the
system can be evaluated. In this paper, we describe how
we used a little application-specific language to combine
these approaches’ advantages.

The context of our work is CTAS [2], the next-
generation air traffic control automation system devel-
oped originally by NASA. The overall goal was to re-
design and reimplement one of the CTAS processes in
Java, while retainingits ability to communicate with un-
modified processes—a project complicated by CTAS’s ad
hoc message formats. To address this, we designed a lan-
guage that combines C code copied from CTAS source,
to express the message formats, with new Java code for
message actions. A compiler then automatically gener-
ates code for marshalling and unmarshalling. The result
is a system with both evolutionary and revolutionary
properties, exemplified by the use of both old CTAS code
and new Java code in the message language.

This paper discusses the language and compiler and
evaluates some of the engineering tradeoffs inherent in
their design.

1 Background and introduction

CTAS, the Center-TRACON Automation System, is a
next-generation air traffic control system designed at
the NASA Ames Research Center under the direction

Max Poletto was supported by an IBM Cooperative Fellowship. Ed-
die Kohler was supported by a National Science Foundation Graduate
Research Fellowship and DARPA.

of Dr. Heinz Erzberger [2]. The core of CTAS is a so-
phisticated expert system that optimizes the flow of air-
planes into an airport. A CTAS installation consists of
tens of Solaris workstations, each running one or more
processes: CPU-intensive route analyzers and dynamic
planners; graphical user interfaces, which allow air traf-
fic controllers to examine traffic and evaluate CTAS
recommendations; input managers, for radar feeds and
the like; and one Communications Manager (CM), the
central communications hub of CTAS. The CM’s main
function is to mediate all process-to-process communi-
cation in CTAS, relieving processes of the need to keep
track of each other.

Although the CM is central to CTAS, NASA research
focused on air traffic control algorithms rather than
software development methodology. As a result, the
original CM became increasingly complicated and dif-
ficult to maintain. Core scheduling functionality was
tied to a debugging GUI, low-level network code was
spread throughout the system, and the CM’s high-level
message-passing structure was obscured by debugging
code and other features. The goal of the work described
in this paper (part of a project for MIT course 6.894,
“Workshop in Software Engineering,” taught by Daniel
Jackson in the fall of 1998) was to redesign and reimple-
ment the 70000-line CM in Java, using modern object-
oriented design techniques, so as to make it more robust
and maintainable.

The redesign of the CM explicitly combined
evolutionary and revolutionary approaches to soft-
ware change. While our approach to the CM was
revolutionary—reimplementation from scratch in a very
different language environment—our approach to CTAS
as a whole was evolutionary: the new CM had to be
compatible with unchanged processes from the rest of
CTAS. These contrasting requirements caused some of
the hardest engineering problems in the redesign. This
paper focuses specifically on one of these problems: the
CM'’s message handling code.

The CM must understand every message that any pro-
cess in the system might send. There are about 350

messages in total, and each is sent in one of around
200 message formats. (Even the minimum functionality
implemented in the prototype Java CM required under-
standing 30 messages in 20 different formats.) Unfor-
tunately, CTAS does not use any existing library, like
XDR/Sun RPC, RMI, CORBA, DCOM, or PVM, to im-
plement message passing. Instead, CTAS messages are
just C structs directly copied onto the wire, each with a
header giving message ID and length. This non-standard
format complicated the design by making it impossi-
ble to find an existing Java library to facilitate mar-
shalling and unmarshalling. Writing marshalling and
unmarshalling code by hand was unacceptable: it would
have been tedious, error-prone, and hard to scale up to
all 350 messages.

The solution that we present in this paper is a mes-
sage language that abstracts away the marshalling and
unmarshalling code. This language includes the subset
of C for defining types (structure definitions, typedefs,
and enumerations), allowing us to cut-and-paste mes-
sage structure definitions directly from CTAS header
files. It also includes message handlers written in Java,
letting the programmer plug messages directly into the
new Java CM. Thus, the language neatly bridges the
two methodologies for software change—evolutionary
and revolutionary—Dby combining old and new CM. The
result is a flexible system, with considerable readability
advantages, that let us completely redesign the CTAS
CM without worrying about message formats. Encapsu-
lating both old and new in a single application-specific
language also makes both kinds of changes easier in the
future: an evolutionary change requires less work (the
application-specific language handles some of it for you),
and for some revolutionary changes, only the compiler
needs to be changed.

This paper discusses the language and its compiler
in some detail, focusing particularly on how it com-
bines evolutionary and revolutionary approaches to soft-
ware change. We provide an extended evaluation of the
language and some alternatives from several points of
view, including engineering tradeoffs, implementation
cost, and overall developer productivity. Finally, we dis-
cuss how the language evolved and why, and summarize
some general lessons distilled from our experience.

2 Related work

This paper mainly concerns two research areas, the spec-
ification of message formats for communication among
processes and the use of domain-specific languages for
software engineering.

2.1 Message formats

Courier [1], part of the Xerox Network Systems (XNS)
architecture of the 1970s, was one of the first languages
designed to specify a machine-independent encoding of
data structures as well as tools to produce those encod-
ings from machine-specific data representations. Sev-
eral data-encoding standards have been developed since
then, among them Sun Microsystems’ External Data
Representation (XDR) [7] and the ISO Open System In-
terconnection (OSI) architecture languages. OSI uses a
language called ASN.1 [9] to specify abstract objects, and
several sets of rules, among them BER [10], to specify
their wire encoding. ASN.1 is a powerful and complex
notation; like the CTAS message format, and unlike any
other popular data-encoding standards, it allows encod-
ings in which the value of a variable can affect the data
layout.

The Universal Stub Compiler (USC) [8] is a generic
stub compiler that emits code to translate between
two user-specified formats, rather than between a user-
specified encoding and a fixed wire format such as XDR.
Our CM message compiler has a similar philosophy, but
translates between C and Java message representations,
rather than between two different C representations.

Had we decided to rewrite the entire CTAS system in
Java, an alternative would have been to use Java RMI, a
standard for transferring arbitrary objects between Java
processes. RMI would not have been very practical when
rewriting only the CM, because it would have required
CTAS-to-Java proxies between the CM and all other pro-
cesses. Given the possibility to rewrite or significantly
modify much of CTAS, one could also replace the cus-
tom message system with standard RPC systems such
as Sun RPC or OSF/DCE, or with an object-oriented
RPC system such as CORBA or DCOM. A group at Lin-
coln Labs [6] made substantial changes to CTAS and
improved its reliability by replacing its message system
with the Parallel Virtual Machine [12], a software pack-
age generally used to simulate a large parallel computer
on a collection of networked computers.

2.2 Domain-specific languages

Spinellis and Guruprasad [11] survey common applica-
tions of domain-specific languages (DSLs) in software
engineering, provide interesting examples of their use,
and suggest implementation techniques. They empha-
size that DSLs should make the development process
easier and more efficient, and that therefore the effort
spent to develop a DSL and an application must be less
than that required to build the application without using
the DSL.

While we have not investigated it in detail, the FAST
(Family-oriented Abstraction, Specification, and Trans-

lation) process developed at Bell Labs appears to exem-
plify the potential of little languages. Weiss [14] reports
three-fold productivity increases when using this pro-
cess. FAST languages differ from our language in that
they are designed for use in an entire domain; we dis-
cuss a language targeted to a single application.

Van Deursen and Klint [13] acknowledge the utility
of DSLs in software engineering, and cite several exam-
ples of their benefits. However, they warn that DSLs
may increase the difficulty of making large changes to
and maintaining software. In our case, the message lan-
guage helped us radically redesign the CM, and it would
probably be useful when making changes to other CTAS
processes. Admittedly, long-term maintenance of a com-
piler as part of a large software project might be costlier
than a more straightforward implementation.

Hook and Walton [3] describe a system superficially
similar to CTAS that also uses a domain-specific lan-
guage to specify message handling. Their language ap-
pears to be much more formal and heavyweight than
ours.

3 The language

The message language concisely and abstractly ex-
presses the CM’s messaging functions, eliminating the
low-level network issues, debugging code, and other de-
tritus that cluttered the old CM. As discussed above,
the language divides into two sections: a subset of C
for specifying message formats, and a superset of Java
for specifying message actions. The message format sec-
tion consists of C statements for defining structures,
enumerations, and typedefs, allowing us to use the orig-
inal message definitions from CTAS header files un-
changed. The message action section defines how the
CM receives, sends, and forwards messages to and from
other CTAS processes. Each message is associated with
some message handlers—code fragments, written in a
Yacc-like extension of Java, that specify computations
to be performed when that message is sent or received.
The compiler then desugars the message handlers into
standard Java, taking care of lower-level networking is-
sues. This design allows the user to focus on the general
messaging structure.

The remainder of this section discusses message han-
dlers and an extension for variable-length messages,
closing with a description of the code generated by the
message language compiler.

3.1 Message handlers

The message handlers for a given message type are
grouped into message blocks, introduced by ‘mesg’,
which also associates the message type (generally an

enumerated constant) with its corresponding wire for-
mat (a C structure). The actual message handlers are in-
troduced by ‘send’ or ‘recv’, depending on whether the
handler should be executed when sending or receiving a
message. Different actions can be specified depending on
the type of the message’s source or destination process.

The code used to specify these actions is Java, slightly
extended to make message handling easier. The Java
code is not fully parsed by the compiler, which just
syntactically desugars the extensions, leaving the main
body of each action untouched. This design owes a lot
to Yacc actions [4]. The particular extensions are as fol-
lows:

e Field names from the wire format structure can be
used as variables in an action to refer to those fields
in the actual message. Thus, if a message has a field
named x, code like ‘x = 3’ can be used in a send
block to set that field in an outgoing message, and
‘x’ can be used in a recv block to refer to that field’s
value in an incoming message.

e The keywords ‘send’ and ‘forward’ simplify two
frequent operations: sending a new message to other
processes and forwarding a received message to
other processes.

e The name ‘mesg’ can be used to access the current
message object. In a recv block, the name ‘remote’
can be used to access the remote process which sent
the message.

e Several special names (TGUI, PGUI, I8N, etc.) repre-
sent classes of CTAS processes. For instance, one
can say ‘forward (PGUI | TGUI)’ to forward the cur-
rent message to all PGUI and TGUI processes.

e The special expression ac[%d] denotes the aircraft
object in the CM’s aircraft database corresponding
to a given aircraft ID.

Figure 1 shows how this fits together. The structure
declaration defines a simple wire format; the enum
defines the IDs for two messages. We'll describe the
handler for the first of these messages in detail. The
PINGPONG message block associates the ID PINGPONG
with the wire format wire_st, and contains one send
handler and one recv handler. The recv handler is sim-
ple: when the CM receives a PINGPONG message from a
PGUI process, it forwards it on to all PGUIs. The send
handler specifies how the CM should react to an explicit
request to send a PINGPONG message. This one tells the
CM to send only to PGUI and TGUI processes; specifies
that the send_PINGPONG method takes one extra argu-
ment, an integer; and tells the CM to set the message’s
wireval field from that argument.

typedef struct {
int wireval;
} wire_st;
enum { PINGPONG, TRIGGER };

mesg PINGPONG wire_st {
recv PGUI { forward(PGUI); }
send PGUI|TGUI(int v) { wireval = v; }
}
mesg TRIGGER wire_st {
recv TGUI {
send (PINGPONG, PGUI|TGUI, wireval);
remote.send(mesg) ;
}
}

Figure 1: Sample message handlers for a fictional CM.
When this CM receives a PINGPONG message from a
PGUI process, it resends that message to all PGUIs.
Receiving a TRIGGER message from a TGUI starts the

pingpong.

3.2 Variable-length messages

The message language actually accepts a superset of C's
types in order to support variable-length messages. Some
CTAS messages contain variable-length arrays of data,
preceded and followed by fixed-length elements: for ex-
ample, an integer number of aircraft, followed by that
number of aircraft_info structures, followed by an-
other integer. This is impossible to describe in C struc-
tures alone.

The message language uses elegant syntax to express
such constraints. The example above would look like
this:

struct {
int num_aircraft;
aircraft_info al[num_aircraft];
int more_data;

} wire_st2;

Here, the number of elements in a is explicitly equal to
the value of the num_aircraft field.

The compiler will require that the num_aircraft
field be set in every send handler using this wire format
so that the correct message length can be determined.
Furthermore, it correctly calculates the byte offset to
more_data by including a variable component based on
num_aircraft. This feature eliminates a difficult mar-
shalling task that was the potential source of many er-
rors.

public class MessageProcessor
extends engine.MessageProcessor {
public static final int PINGPONG = O;
public static final int TRIGGER = 1;

private void forward(Message mesg, ClientFilter f) {
clientGroup.send(mesg, f);
}
public void processMessage(Message mesg, Client c) {
try {
switch (mesg.getType()) {
case PINGPONG:
receive_PINGPONG(mesg, c);
break;
case TRIGGER:
receive_TRIGGER (mesg, c);
break;
default: break;
}
} catch (Exception e) {
e.printStackTrace();
}
}
private void receive_PINGPONG(Message mesg,
Client remote) {
switch (remote.getProcType()) {
case ProcType.PROC_PGUI: {
forward(mesg, PGUI_filter);
break;
}
default: break;
}
}
private void receive_TRIGGER(Message mesg,
Client remote) {
switch (remote.getProcType()) {
case ProcType.PROC_TGUI: {
send_PINGPONG(PGUI_TGUI_filter, mesg.getIntAt(0));
remote.send(mesg) ;

break;
}
default: break;
}
}
public void send_PINGPONG(ClientFilter filt, int v) {
try {

Message mesg = new Message (PINGPONG, 4);
mesg.putIntAt(v, 0);
clientGroup.send (mesg,
ClientFilter.and(filt, PGUI_TGUI_filter));
} catch (Exception e) {
e.printStackTrace();
}
}

Figure 2: Compiler output for the sample message han-
dler.

3.3 Compiler output

The compiler takes the wire format definitions and
message handlers and generates a single Java “mes-
sage processor” class. Generally, two methods are
created for each message type: send_message-name
and receive_message-name. These methods contain
desugared versions of each of the message’s send and
recv handlers. As part of the desugaring, names of mes-
sage fields compile to methods that read or write data
at appropriate offsets in the byte array representing the
message. Other language features, like process identi-
fiers, mesg, and send, are desugared into more or less
simple Java code. Finally, run-time errors are handled el-
egantly with Java exceptions. Figure 2 shows most of the
code generated by the handlers defined in Figure 1. The
code makes use of some Java CM abstractions, such as
ClientFilter and ClientGroup, that are beyond the
scope of this paper, but it should be relatively easy to
read.

In addition, the message compiler can generate Java
classes corresponding to C structures. These classes
know how to unmarshal themselves from a message
object and how to marshal themselves into a message
object starting at a given offset, and contain public fields
that match all the fields of the corresponding C struc-
ture.

4 The compiler

This section describes the compiler for the CM message
language. We begin with a quick overview of its struc-
ture, then give a detailed description of reparsing, an
interesting compiler technique.

4.1 General structure

The compiler consists of about 10,000 lines of C++ code.
Much of this code, however, is either unmodified library
code or code originally written for another compiler
project. Specifically, 2000 lines of code came directly
from libraries, and 2400 more were copied, with mod-
ifications, from the Prolac compiler [5]. (Some of these
modifications were fed back into the original source.)
Of the remaining code, a large fraction—at least 1600
lines—is not specific to the CM message language and
could be reused in another project.

Compiler processingis divided into three phases: pars-
ing, resolution, and output. In the first phase, the com-
piler reads and parses all its input files. Unlike C com-
pilers, it does not immediately resolve each object it
sees; instead, to allow for order independence, it cre-
ates a simple intermediate form. In the second stage,
resolution, C declarations are resolved, undefined types

are reported, message blocks are merged together, send
blocks are checked to make sure they set any required
fields, and so forth. In the final stage, the compiler cre-
ates its output Java files, including the main message
processor class and any exported marshalling classes.

Most of the compiler’s work consists of intermediate
form transformations completed in the second phase,
resolution. In an architecture based on the Visitor pat-
tern and experience with functional languages, each
transformation is modeled as a separate transformer
class. Various transformers detect and report errors, col-
lect information, create new expression trees, and so
forth; there are 13 transformers in all, which together
implement a large part of the compiler’s functionality.

The compiler understands most C types’ size and
alignment, and can mimic conventional C structure lay-
out, including any holes required to maintain alignment.
Member offset calculations are complicated by variable-
length structures: the offset to one field may depend on
the value of some other length field. Our solution was
simply to return a general expression tree, instead of a
simple integer, as the result of any member offset calcu-
lation.

4.2 Parsing message handlers

One interesting parsing wrinkle is caused by message
handlers. As discussed above, message handlers resem-
ble actions in a Yacc grammar: both consist of uninter-
preted code with some strings specially handled by the
language tool. The difference is that Yacc’s desugaring
is much easier; it simply replaces strings like ‘$1’ with
strings like ‘yyvsp[0] .str’. In contrast, the message
compiler must desugar field references and field assign-
ments to different method calls, although both are sig-
nalled by the same text (a field name). It therefore must
consider expression context and even precedence before
deciding what replacement text to use: a field name to
the left of an equals sign will generate quite different
code than the same field name on the right. For exam-
ple, assume that f and g are integer fields starting at
byte offsets 12 and 16 in the message structure. These
message language fragments would then be desugared to
the corresponding Java fragments:

Message language Java desugaring

int x = f + 2; int x = mesg.getIntAt(12) + 2;
f=x+ 2; mesg.putIntAt(x + 2, 12);
f=g=097; mesg.putIntAt

(mesg.putIntAt (97, 16), 12);

It seems clear that we must parse Java expressions to
generate correct code. However, a full Java parser cer-
tainly seems like overkill.

Our solution involves reparsing. When first encoun-

tered in the message language source, a message handler
is stored as a stream of bytes (comments, whitespace and
all). During the second phase of compilation, each mes-
sage handler is sent back through the lexer, creating a
new stream of tokens; the compiler then reads expres-
sions from this token stream. If a token is not part of
any expression, the compiler simply stores the token
verbatim. Thus, each Java action has been parsed, with-
out too much extra work, into a list of tokens and ex-
pression trees, where the expression trees automatically
contain context and precedence. The necessary desugar-
ings can then be implemented just by transforming the
expression trees.

5 Evaluation

5.1 The project as a whole

One way to evaluate the message language is to ask
whether the whole Java CM project was successful. The
redesigned CM was completed on time, just one month
after submission of the final design proposal, and it suc-
cessfully drove a subset of the CTAS system from traces
provided by NASA. We believe that the message lan-
guage played an important part in this success—not only
because some message subsystem was necessary, but
also because of unique properties of a language-based
solution:

e Our language design allowed us to copy code di-
rectly from the CTAS headers with at most a cou-
ple of changes, reducing human error. In addition,
error-prone marshalling and unmarshalling code
was machine-generated.

e The Java-related part of the message language was
enough like Java that other students could write
it directly. We could have designed a simpler in-
put language, which would have made the compiler
simpler, but such a language would probably have
had less functionality and been harder to under-
stand.

e The compiler’s code base was completely separate
from the rest of the Java CM. Therefore, we could
work on it earlier, in our own development environ-
ment, without developer communication overhead.
Furthermore, we could test it apart from the Java
CM, which, as part of CTAS, required a complex
environment to run—and didn’t work until far into
the project. Having one subsystem tested and work-
ing simplified debugging the rest of the system.

5.2 Measuring developer productivity

Spinellis and Guruprasad [11] convincingly argue that a
lightweight language is most useful as a software engi-
neering tool when it increases developer productivity,
and therefore decreases total development and mainte-
nance costs—where this total includes the cost of devel-
oping the language. If one measures cost only in terms
of lines of code, the message language is a failure. The
compiler and its input file together take about 12000
lines of code, while the compiler’s output is about 2000
lines of Java code. This is a factor of 6:1 against the lan-
guage. Even not considering the compiler, the ratio of
message language to output is a disappointing 1:1.1.

However, these numbers are deceiving. First, about
1450 lines of the message language file consist of C def-
initions lifted from the CTAS sources without change.
Only 350 lines were written for this project. Consider-
ing this makes the ratio of message language to output
a much more attractive 1:5.7.

The compiler itself is not so easily justified, even
taking into account that most of it was reused from
other projects. It begins to make economic sense only
when you consider other costs, like debugging time, and
other benefits, like ease of evolution. The compiler out-
put probably contained fewer errors than correspond-
ing hand-written code, since it used the CTAS message
structure definitions directly. For the same reason, the
language system can immediately respond to changes
in the CTAS message structures. Furthermore, the com-
piler would not need to be rewritten if other CTAS pro-
cesses were changed along the same lines as the CM—its
cost could be amortized. The compiler also makes some
kinds of software evolution easier, as discussed above.
Finally, its ability to be tested independently was a real
help in making the project’s tight deadlines.

5.3 How the language evolved

The message language evolved significantly in the few
weeks from initial design to final use. This section dis-
cusses the evolution, its implications, and two lessons
we learned: first, that a language that encapsulates some
system knowledge (here, message structure definitions
and enumerated constants) should make that knowledge
available to the rest of the system; and second, that even
an application-specific language should be as general—
as non-application-specific—as possible.

The C-like subset of the message language encap-
sulates a lot of information about the original CTAS
system (the structure definitions and enumerated con-
stants). We originally isolated this information in the
message language, reasoning that the rest of the Java CM
should be designed without influence from the old CM.
This choice also molded the message language: code that

creates or reads messages must be placed in the message
language, where message formats are known, leading to
the combined C-and-handlers design we have described.

There were alternatives to this design. One of us
(Montgomery) argued from the beginning that the com-
piler should have a more limited role—that it should
simply generate Java classes corresponding to the mes-
sage structures. We abandoned this option because we
worried that it would create too many Java classes,
provide a difficult-to-use interface, and maintain the
creeping influence of the old CM. However, we even-
tually added exactly this functionality to the compiler
(though we didn’t remove message handlers). Now, as
described earlier, the compiler automatically generates
Java classes corresponding to C structs or enumerated
types in response to a ‘pragma export’ statement.

We made this change because other programmers
needed the structure information. One person, for ex-
ample, was writing some debugging code independent
of the message language. He needed the values of some
enumerated constants from the old CM and counted by
hand to get them, introducing an off-by-one error which
caused a couple hours of debugging. In response, we de-
veloped ‘pragma export’, forestalling further errors of
this type.

We had initially forgotten that the goal of a little lan-
guage is to get the job done, not to enforce policy de-
cisions that others would have to work around. Our
decision to provide access to all the information the
compiler had—including C structure layout and enu-
merated constants—was simple to implement and got
the job done, making the message language significantly
more useful. This runs counter to conventional wisdom
about interfaces and information hiding, and seems to
merit an aphorism: Let the user access everything the
compiler can figure out.

The other general trend we observed as the language
evolved was towards simplicity and away from applica-
tion specificity. We had originally designed several lan-
guage features, amounting to application-specific syn-
tactic sugar, which were either unused or used less than
we expected.

One feature that wasn’t even implemented was the
translate block. This was an annotation meant to make
message handlers even simpler: a programmer could
specify that an outgoing message’s field should be filled
in with a particular value from system memory, and
that the memory value should be updated when that
message field was received, all with a simple one-line
notation. The problem with this notation soon became
clear: it wasn’t flexible enough to cover some common
situations, and it didn’t offer enough syntactic advantage
over simple assignments to justify its implementation
cost.

Some syntactic sugar is still in the compiler. Expres-

sions of the form “ac[z]” can be used to refer to air-
craft structures; they are translated to Java expressions
like “AircraftTable.get(z)”. The language’s send
and forward expressions, and the client types (PGUI,
ISM, DP, and the like), are also more or less simple syn-
tactic sugar. (We had imagined that each of these expres-
sions would expand to several lines of Java code, but this
turned out not to be necessary, often due to high-level
Java features like exceptions.)

Syntactic sugar has attendant advantages and dis-
advantages. Some disadvantages include compiler dif-
ficulty, lack of flexibility, and language complexity.
Advantages include readability, conciseness, and, sur-
prisingly, maintainability: If the compiler translates a
higher-level expression to lower-level code, then many
lower-level interface changes can be accommodated
simply by changing the compiler. (In the Java CM
project, for example, the client type interface frequently
changed. Each time, we only needed to make simple
compiler changes, since client type expressions were all
sugared from simple language forms that didn’t need up-
dating.) However, these advantages don’t matter if the
syntactic sugar isn’t used. In the message description
for the Java CM, “ac[z]” is used only once. In contrast,
send is used 16 times, forward six times, and the client
types on the order of 50 times.

Thus, in our experience, application-specific bells and
whistles like translate blocks and ac [z] expressions are
not worthwhile: they tend to be too inflexible to be fre-
quently useful. Even a domain-specific language should
be made as general as possible by focusing only on the
core of the domain.

5.4 Future use in CTAS

The message language can provide a long-term path for
evolving CTAS. It is flexible enough to be used on other,
currently unmodified CTAS processes as they are re-
designed, and simple message format changes can be
incorporated in the message language as is. Even large
changes—moving to a very different wire format, say—
wouldn’t require throwing away all of the message lan-
guage; for instance, only the compiler and message for-
mat sections might need updating.

Although we believe the language would be flexible
enough to last for some time, it may not be truly useful
in the long term. If CTAS were uniformly updated to
use a standard communications protocol, like CORBA,
DCOM, or Java RMI, existing libraries for marshalling
and unmarshalling could be used instead of a proprietary
solution. As discussed in Section 5.6, this doesn’t elim-
inate all the arguments for a message language, but it
does make one much more difficult to justify on engi-
neering grounds.

5.5 Development beyond CTAS

A message language like the one we have described
could be useful for evolving other applications. How
much of the infrastructure we have described could be
easily adapted to another project? And could it be gen-
eralized to handle an entire class of message-handling
applications without compiler changes?

The language has already become mostly general, as
discussed in Section 5.3. Most remaining CTAS-related
extensions are syntactic sugar: “ac [z] " expressions and
process names such as PGUI and ISM. Some of these
(“ac[z]”) should be removed; others (process names)
could easily be made generic, with the compiler reading
a list of process names from a configuration file rather
than having them hard-coded.

The compiler’s output is tied not to CTAS as much as
to the architecture of the Java CM. Since the compiler
generates Java classes meant to fit into the Java CM, it
assumes the presence of several specific abstractions: ob-
jectslikeClient,ClientFilter, Message, andso forth.
These abstractions are not CTAS-specific, however; they
are a plausible interface for a class of message-passing ap-
plications. If a new application could use these abstrac-
tions with only minor changes, the compiler would not
need to be changed at all.

Unfortunately, not all applications will fit this frame-
work. A better solution would be to provide flexible
tools that don’t enforce a possibly inappropriate appli-
cation architecture. The current compiler is somewhat
flexible already: the large majority of CTAS-specific code
is effectively localized in a string table. Thus, a user
could adapt the compiler to a new application architec-
ture with little difficulty. Even the output language is
not too hard to change; the only Java feature we rely
on is exception handling, which simplifies code gener-
ation. We could avoid per-application compiler changes
by designing a configuration metalanguage for describ-
ing the compiler’s output. Some care would be necessary
to ensure that every relevant output feature was express-
ible in the metalanguage. This approach would make
the compiler so much more complex, and changing the
compiler is so easy, that it does not seem practical.

5.6 Alternatives

In this section we discuss a number of alternatives to
the language choices we made. We evaluate each, par-
ticularly in terms of developer productivity.

A simpler-to-implement language. We could have de-
signed a significantly simpler compiler, if we had made
the language harder—or at least uglier—to write. For in-
stance, we could have removed around 20% of the com-
piler had we eliminated all syntactic sugar, including
message fields, from the language. While the impact on

readability and understandability would have been sig-
nificant, some might prefer a 20% smaller compiler on
engineering grounds. Our choice—an elegant language
and a more complicated compiler—was dictated by aes-
thetics.

No message handlers. We also could have focused
solely on marshalling and unmarshalling, leaving mes-
sage handlers to be written entirely by hand. The com-
piler would then become simply a message format con-
version tool, rather than a message handling language
system. As a result, its implementation could be short-
ened by about 30%. The arguments for and against a
language, instead of such a tool, are essentially the argu-
ments for and against domain-specific languages in gen-
eral. On the plus side, the language promises to make
message handling code simpler and more elegant, and
the possibility of changing the compiler facilitates cer-
tain kinds of system evolution. However, the language’s
unfamiliarity can be a drawback in the long run, and of
course it requires writing a compiler.

A very high level language. One might think that the
compiler would have been easier to write in a very high
level language like Perl or Python. However, this argu-
ment does not apply to this compiler: much of it had
already been written in C++, and the more complex
expression- and type-handling code would have been dif-
ficult to write in a language like Perl.

Off-the-shelf message formats. If the original CM had
used an off-the-shelf messaging system like PVM, or at
least an existing wire format like XDR, message format
parsing would not have been an issue. As a result, en-
gineering tradeoffs would have discouraged us from us-
ing a little language to evolve the system, even though
some of the arguments for a language would still have
been valid. In the actual CTAS system, we knew it was
necessary to handle the proprietary message format; the
message language was a small burden on top of this. If
message formats hadn’t been a problem, implementing
a message language would have seemed proportionately
much harder.

No language. The starkest alternative would simply
have been to write the message formatting code by hand.
After all, the compiler generates only 2000 lines of Java;
in hindsight, writing those 2000 lines by hand must be
easier than writing a 10000 line compiler and a 2000 line
file in the message language! As we've discussed, how-
ever, those 2000 lines would have been riddled with er-
rors, extending the prototype to full functionality would
require far more code, and we actually wrote far fewer
than 12000 lines for this project. Even considering these
problems, writing the message formatting code by hand
might have been easier for this prototype; but, again, the
compiler was partly an aesthetic choice.

6 Conclusions

This paper has described one way to evolve a software
system by using a little language. The language was con-
cise (resulting in an effective ratio of input language to
output code of 1:5.7), readable, and maintainable. Fur-
thermore, despite its size, the compiler worked on time:
the message language was an important factor in the
timely implementation of the Java CM. The language is
specific to the CTAS application, but seems more gener-
ally useful for message-passing systems with proprietary
message formats. Some of the lessons we learned, how-
ever, are more widely applicable still:

e A language can provide the advantages of two
methodologies of software change—evolution and
revolution—by combining aspects of both old and
new systems.

e Alittle language should let the user access anything
the compiler can figure out.

e Domain-specific languages should be made as gen-
eral as possible by focusing only on the core of the
domain.

e Evolving a system that includes a little language
can be easy, since one can make large changes to
the system with small changes to the compiler.

e Consider the implementation costs before making
a little language elegant.

Acknowledgements

We would like to thank Daniel Jackson, for teaching
a great class; the other students of 6.894, especially
Ilya Shlyakhter and Phil Sarin; Michelle Eshow and the
NASA-Ames CTAS group, for support and the opportu-
nity to work on CTAS; and Rick Lloyd from MIT Lin-
coln Labs, for perspective on other ways to redesign the
system.

References

[1] Xerox Corporation. Courier: the remote procedure
call protocol. Technical Report XSIS 038112, De-
cember 1981.

[2] H. Erzberger. CTAS: Computer intelligence for air
traffic control in the terminal area. TM 103959,
NASA Ames Research Center, July 1992.

[3] J. Hook and L. Walton. The design of message spec-
ification language. Technical report, Pacific Soft-
ware Research Center, OGI, June 1997.

[4]

[5]

[10]

[11]

[12]

[13]

[14]

S. C. Johnson. Yacc — yet another compiler-
compiler. Computer Science Technical Report 32,
Bell Laboratories, Murray Hill, NJ, July 1975.

E. Kohler, M. F. Kaashoek, and D. R. Mont-

gomery. A readable TCP in the Prolac pro-
tocol language. To appear in ACM SIG-
COMM 99, September 1999. See also

http://www.pdos.lcs.mit.edu/ eddietwo/prolac.

R. Lloyd, December 1998. Lecture to MIT class
6.894.

Sun Microsystems. XDR: External data representa-
tion standard. Request for Comments 1014, June
1987.

S. O’Malley, T. Proebsting, and A. Montz. USC: A
universal stub compiler. In Proceedings of the ACM
SIGCOMM Conference on Communications Ar-
chitectures, Protocols and Applications, London,
September 1994.

International Standards Organization. Specifica-
tion of abstract syntax notation one. Technical Re-
port International Standard 8824.

International Standards Organization. Specifica-
tion of basic encoding rules for abstract syntax nota-
tion one. Technical Report International Standard
8835.

D. Spinellis and V. Guruprasad. Lightweight lan-
guages as software engineering tools. In Pro-
ceedings of the USENIX Conference on Domain-
Specific Languages, Santa Barbara, CA, October
1997.

V. S. Sunderam. PVM: A framework for parallel
distributed computing. Concurrency: Practice and
Experience, 2(4):315-339, December 1990.

A. van Deursen and P. Klint. Little languages: lit-
tle maintenance? SEN Report R9704, Centrum
voor Wiskunde en Informatica, Amsterdam, The
Netherlands, March 1997.

D. Weiss. Creating domain-specific languages:
the FAST process. In S. Kamin, editor, Proceed-
ings of the First ACM Workshop on Domain-
Specific Languages. Department of Computer Sci-
ence, University of Illinois, January 1997. See also
http://www-sal.cs.uiuc.edu/"kamin/dsl.

