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1. INTRODUCTION

This article presents a formal and pragmatic approach to the design and implementa-
tion of scalable multicore software, spanning the earliest stages of software interface
design through to the testing and maintenance of complete implementations.

The rest of this section introduces the multicore architectures that now dominate
general-purpose computing, the problematic ways in which software developers are
coping with these new architectures, and a new interface-driven approach to the design
and implementation of software for multicore architectures.

1.1. Parallelize or Perish

The mid-2000s saw a fundamental shift in programming techniques for high-
performance software. In prior decades, CPU clock speeds, which rode the exponential
curve of Moore’s Law, made sequential software faster automatically. Unfortunately,
higher clock speeds require more power and generate more heat, and around 2005,
CPUs reached the thermal dissipation limits of a few square centimeters of silicon.
CPU architects could no longer significantly increase the clock speed of a single CPU
core, so they began to increase parallelism instead by putting more CPU cores on
the same chip. Total cycles per second continues to grow exponentially, but software
must scale—must take advantage of parallel CPU resources—to take advantage of
this growth. Parallel programming has gone from niche to necessary. Unfortunately,
scaling with parallelism is still an untamed problem. Even with careful engineering,
software rarely achieves the holy grail of linear scalability, where doubling hardware
parallelism doubles the software’s performance.

Operating system kernels exemplify both the importance of parallelism and the dif-
ficulty of achieving it. Many applications depend heavily on the shared services and
resources provided by the kernel. As a result, if the kernel doesn’t scale, many applica-
tions won’t scale. But the kernel must cope with diverse and unknown workloads, and
its role as the arbiter of shared resources makes it particularly susceptible to scalabil-
ity problems. Despite the extensive efforts of kernel and application developers alike,
scaling software performance on multicores remains an inexact science dominated by
guesswork, measurement, and expensive cycles of redesign.

The state of the art for evaluating and improving the scalability of multicore software
is to choose some workload, plot performance at varying numbers of cores, and use
tools such as differential profiling [McKenney 1999] to identify scalability bottlenecks.
This approach focuses developer effort on demonstrable issues but is ultimately near-
sighted. Each new hardware model or workload restarts a Sisyphean cycle of finding
and fixing scalability bottlenecks. Projects such as Linux require continuous infusions
of manpower to maintain their scalability edge. Worse, scalability problems that span
layers—for example, application behavior that triggers kernel bottlenecks—require
cross-layer solutions, and few applications have the reach or resources to accomplish
these.

But the deeper problem with this workload-driven approach is that many scalability
problems lie not in the implementation, but in the design of the software interface.
By the time developers have an implementation, a workload, and the hardware to
demonstrate a bottleneck, interface-level solutions may be impractical or impossible.

As an example of interface design that limits implementation scalability, consider
the POSIX open call [IEEE 2013]. This call opens a file by name and returns a file
descriptor, a number used to identify the open file in later operations. Even though
few applications care about file descriptor values, POSIX—the standard for the Unix
interface—requires that open return the numerically lowest file descriptor available
in the calling process. This forces the kernel to coordinate file descriptor allocation

ACM Transactions on Computer Systems, Vol. 32, No. 4, Article 10, Publication date: January 2015.



The Scalable Commutativity Rule: Designing Scalable Software for Multicore Processors 10:3

across all threads, even when many threads are opening files in parallel. This choice
simplified the kernel interface during the early days of Unix, but it is now a burden
on implementation scalability. It’s an unnecessary burden too: a simple change to
allow open to return any available file descriptor would enable the kernel to choose
file descriptors scalably. This particular example is well known [Boyd-Wickizer et al.
2008], but myriad subtler issues exist in POSIX and other interfaces.

Interface design choices have implications for implementation scalability. If interface
designers could distinguish interfaces that definitely have a scalable implementation
from those that don’t, they would have the predictive power to design scalable interfaces
that enable scalable implementations.

1.2. A Rule for Interface Design

This article presents a new approach to designing scalable software that starts with the
design of scalable software interfaces. This approach makes reasoning about multicore
scalability possible before an implementation exists and even before the necessary
hardware is available. It can highlight inherent scalability problems, leading to better
interface designs. It sets a clear scaling target for the implementation of a scalable
interface. Finally, it enables systematic testing of an implementation’s scalability.

At the core of our approach is what we call the scalable commutativity rule: in any sit-
uation where several operations commute (meaning there’s no way to distinguish their
execution order using the interface), there exists an implementation that is conflict free
during those operations (meaning no core writes a cache line that was read or written
by another core). Since conflict-free operations empirically scale, this implementation
scales. Thus, more concisely, whenever interface operations commute, they can
be implemented in a way that scales.

This rule makes intuitive sense: when operations commute, their results (return
values and effect on system state) are independent of order. Hence, communication be-
tween commutative operations is unnecessary, and eliminating it yields a conflict-free
implementation. On modern shared-memory multicores, conflict-free operations can
execute entirely from per-core caches, so the performance of a conflict-free implemen-
tation will scale linearly with the number of cores.

The intuitive version of the rule is useful in practice but not precise enough to rea-
son about formally. Therefore, this article formalizes the scalable commutativity rule,
proves that commutative operations have a conflict-free implementation, and demon-
strates experimentally that, under reasonable assumptions, conflict-free implementa-
tions scale linearly on modern multicore hardware.

An important consequence of this presentation is a novel form of commutativity we
name SIM commutativity. The usual definition of commutativity (e.g., for algebraic
operations) is so stringent that it rarely applies to the complex, stateful interfaces
common in systems software. SIM commutativity, in contrast, is state dependent and
interface based, as well as monotonic. When operations commute in a specific context of
system state, operation arguments, and concurrent operations, we show that an imple-
mentation exists that is conflict free for that state and those arguments and concurrent
operations. SIM commutativity exposes many more opportunities to apply the rule to
real interfaces—and thus discover scalable implementations—than would a more con-
ventional notion of commutativity. Despite its state dependence, SIM commutativity is
interface based: rather than requiring all operation orders to produce identical internal
states, it requires the resulting states to be indistinguishable via the interface. SIM
commutativity is thus independent of any specific implementation, enabling developers
to apply the rule directly to interface design.

This article also shows that in certain situations, we can reason about when opera-
tions must conflict; that is, SIM commutativity is not only sufficient but also necessary
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for operations to be conflict free. This converse scalable commutativity rule is more
limited in scope than the scalable commutativity rule but helps to broaden our under-
standing of the relationship between SIM commutativity and conflict freedom.

1.3. Applying the Rule

The scalable commutativity rule leads to a new way to design scalable software: analyze
the interface’s commutativity; if possible, refine or redesign the interface to improve
its commutativity; and then design an implementation that scales when operations
commute.

For example, imagine that multiple processes are creating files in the same directory
at the same time. Can the creation system calls be made to scale? Our first answer
was “obviously not”: the system calls modify the same directory, so surely the imple-
mentation must serialize access to the directory. But it turns out these operations
commute if the two files have different names (and no hard or symbolic links are in-
volved) and, therefore, have an implementation that scales for such names. One such
implementation represents each directory as a hash table indexed by file name, with
an independent lock per bucket, so that creation of differently named files is conflict
free, barring hash collisions.

Before the rule, we tried to determine if these operations could scale by analyzing all
the implementations we could think of. This process—difficult, unguided, and appro-
priate only for simple interfaces—motivated us to reason about scalability in terms of
interfaces.

Real-world interfaces and implementations are complex. Even with the rule, it can
be difficult to spot and reason about all commutative cases. To address this challenge,
this article introduces a method to automate reasoning about interfaces and imple-
mentations, embodied in a software tool named COMMUTER. COMMUTER takes a symbolic
interface model, computes precise conditions under which sets of operations commute,
generates concrete tests of commutative operations, and uses these tests to reveal con-
flicts in an implementation. Any conflicts found by COMMUTER represent opportunities
for the developer to improve the scalability of the implementation. The tool can be
integrated into the software development process to drive initial design and imple-
mentation, to incrementally improve existing implementations, and to help developers
understand the commutativity of an interface.

We apply COMMUTER to a model of 18 POSIX file system and virtual memory system
calls. From this model, COMMUTER generates 26,238 tests of commutative system call
pairs, all of which can be made conflict free according to the rule. Applying this suite
to Linux, we find that the Linux kernel is conflict free for 17,206 (65%) of these cases.
Many of the commutative cases where Linux is not conflict free are important to
applications—such as commutative mmaps and creating different files in a shared
directory—and reflect bottlenecks found in previous work [Boyd-Wickizer et al. 2010].
Others reflect previously unknown problems that may become bottlenecks on future
machines or workloads.

Finally, to demonstrate the application of the rule and COMMUTER to the design and
implementation of a real system, we use these tests to guide the implementation of a
new research operating system kernel named sv6. sv6 doubles as an existence proof
showing that the rule can be applied fruitfully to the design and implementation
of a large software system and as an embodiment of several novel scalable kernel
implementation techniques. COMMUTER verifies that sv6 is conflict free for 26,115 (99%)
of the tests generated by our POSIX model and confirms that sv6 addresses many of
the sources of conflicts found in the Linux kernel. sv6’s conflict-free implementations of
commutative system calls translate to dramatic improvements in measured scalability
for both microbenchmarks and application benchmarks.
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1.4. Contributions

This article makes the following contributions:

—The scalable commutativity rule, its formalization, and a proof of its correctness.
—SIM commutativity, a novel form of interface commutativity that is state sensitive

and interface based. As we demonstrate with COMMUTER, SIM commutativity enables
us to identify myriad commutative cases in the highly stateful POSIX interface.

—A set of guidelines for commutative interface design based on SIM commutativity.
Using these guidelines, we propose specific enhancements to POSIX and empiri-
cally demonstrate that these changes enable dramatic improvements in application
scalability.

—An automated method for reasoning about interface commutativity and generating
implementation scalability tests using symbolic execution. This method is embod-
ied in a new tool named COMMUTER, which generates 26,238 tests of commutative
operations in our model of 18 POSIX file system and virtual memory system oper-
ations. These tests cover many subtle cases, identify many substantial scalability
bottlenecks in the Linux kernel, and guide the implementation of sv6.

—sv6, an OS kernel that demonstrates the application of these techniques to a POSIX
virtual memory system and file system.

Together, these ideas are the basis for a new approach to building scalable software,
one where interface-based reasoning guides design, implementation, and testing.

We validate sv6, and our design methodology, by evaluating its performance and
scalability on an 80-core x86 machine.

The source code to all of the software produced for this article is publicly available
under an MIT license from http://pdos.csail.mit.edu/commuter.

1.5. Outline

The rest of this article presents the scalable commutativity rule in depth and explores
its consequences from interface design to implementation to testing.

We begin by relating our thinking about scalability to previous work in Section 2.
We then turn to formalizing and proving the scalable commutativity rule, which

we approach in two steps. First, Section 3 establishes experimentally that conflict-
free operations are generally scalable on modern, large multicore machines. Section 4
then formalizes the rule, develops SIM commutativity, and proves that commutative
operations can have conflict-free (and thus scalable) implementations.

We next turn to applying the rule. Section 5 starts by applying the rule to inter-
face design, developing a set of guidelines for designing interfaces that enable scal-
able implementations and proposing specific modifications to POSIX that broaden its
commutativity.

Section 6 presents COMMUTER, which uses the rule to automate reasoning about in-
terface commutativity and the conflict freedom of implementations. Section 7 uses
COMMUTER to analyze the Linux kernel and demonstrates that COMMUTER can system-
atically pinpoint significant scalability problems even in mature systems.

Finally, we turn to the implementation of scalable systems guided by the rule. Sec-
tion 8 describes the implementation of sv6 and how it achieves conflict freedom for
the vast majority of commutative POSIX file system and virtual memory operations.
Section 9 confirms that theory translates into practice by evaluating the performance
and scalability of sv6 on real hardware for several microbenchmarks and application
benchmarks.

Section 10 takes a step back and explores some promising future directions for this
work. Section 11 concludes.
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2. RELATED WORK

This section relates the rule and its use in sv6 and COMMUTER to prior work.

2.1. Thinking About Scalability

Israeli and Rappoport [1994] introduce the notion of disjoint-access-parallel memory
systems. Roughly, if a shared memory system is disjoint- access parallel and a set of
processes access disjoint memory locations, then those processes scale linearly. Like
the commutativity rule, this is a conditional scalability guarantee: if the application
uses shared memory in a particular way, then the shared memory implementation will
scale. However, where disjoint-access parallelism is specialized to the memory system
interface, our work encompasses any software interface. Attiya et al. [2009] extend
Israeli and Rappoport’s definition to additionally require nondisjoint reads to scale.
Our work builds on the assumption that memory systems behave this way, and we
confirm that real hardware closely approximates this behavior (Section 3).

Both the original disjoint-access parallelism paper and subsequent work, including
the paper by Roy et al. [2009], explore the scalability of processes that have some
amount of nondisjoint sharing, such as compare-and-swap instructions on a shared
cache line or a shared lock. Our work takes a black-and-white view because we have
found that, on real hardware, a single modified shared cache line can wreck scalability
(Sections 3 and 9).

The Laws of Order [Attiya et al. 2011] explore the relationship between the strong
noncommutativity of an interface and whether any implementation of that interface
must have atomic instructions or fences (e.g., mfence on the x86) for correct concurrent
execution. These instructions slow down execution by interfering with out-of-order
execution, even if there are no memory access conflicts. The Laws of Order resemble
the commutativity rule but draw conclusions about sequential performance rather
than scalability. Paul McKenney [2011] explores the Laws of Order in the context of
the Linux kernel and points out that the Laws of Order may not apply if linearizability
is not required.

It is well understood that cache-line contention can result in bad scalability. A clear
example is the design of the MCS lock [Mellor-Crummey and Scott 1991], which elimi-
nates scalability collapse by avoiding contention for a particular cache line. Other good
examples include scalable reference counters [Corbet 2010; Ellen et al. 2007]. The com-
mutativity rule builds on this understanding and identifies when arbitrary interfaces
can avoid conflicting memory accesses.

2.2. Designing Scalable Operating Systems

Practitioners often follow an iterative process to improve scalability: design, imple-
ment, measure, repeat [Cantrill and Bonwick 2008]. Through a great deal of effort,
this approach has led kernels such as Linux to scale well for many important work-
loads. However, Linux still has many scalability bottlenecks, and absent a method for
reasoning about interface-level scalability, it is unclear which of the bottlenecks are
inherent to its system call interface. This article identifies situations where POSIX
permits or limits scalability and points out specific interface modifications that would
permit greater implementation scalability.

Scalable kernels such as K42 [Appavoo et al. 2007], Tornado [Gamsa et al. 1999],
and Hurricane [Unrau et al. 1995] have introduced and used design patterns such
as clustered objects and locality-preserving IPC. These patterns complement the scal-
able commutativity rule by suggesting practical ways to achieve conflict freedom for
commutative operations, as well as ways to cope with noncommutative operations.
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Multikernels for multicore processors aim for scalability by avoiding shared data
structures in the kernel [Baumann et al. 2009; Wentzlaff and Agarwal 2009]. These
systems implement shared abstractions using distributed systems techniques, such as
name caches and state replication, on top of message passing. It should be possible to
generalize the commutativity rule to distributed message-passing systems as well as
shared-memory systems.

The designers of the Corey operating system [Boyd-Wickizer et al. 2008] argue that
applications should manage the cost of sharing but do not provide a guideline for how
to do so. The commutativity rule could be a helpful guideline for application developers.

2.3. Commutativity

The use of commutativity to increase concurrency has been widely explored. Steele
[1990] describes a parallel programming discipline in which all operations must be
either causally related or commutative. His work approximates commutativity as con-
flict freedom. This article shows that commutative operations always have a conflict-
free implementation, showing that Steele’s model is broadly applicable. Rinard and
Diniz [1997] describe how to exploit commutativity to automatically parallelize code.
They allow memory conflicts but generate synchronization code to ensure atomicity
of commutative operations. Similarly, Prabhu et al. [2011] describe how to automati-
cally parallelize code using manual annotations rather than automatic commutativity
analysis. Rinard and Prabhu’s work focuses on the safety of executing commutative
operations concurrently. This gives operations the opportunity to scale but does not
ensure that they will. Our work focuses on scalability directly: given concurrent, com-
mutative operations, we show they have a scalable implementation.

The database community has long used logical readsets and writesets, conflicts, and
execution histories to reason about how transactions can be interleaved while main-
taining serializability [Bernstein and Goodman 1981]. Weihl [1988] extends this work
to abstract data types by deriving lock conflict relations from operation commutativity.
Transactional boosting applies similar techniques in the context of software transac-
tional memory [Herlihy and Koskinen 2008]. Shapiro et al. [2011a, 2011b] extend this
to a distributed setting, leveraging commutative operations in the design of replicated
data types that support updates during faults and network partitions. Like Rinard
and Prabhu’s work, the work in databases and its extensions focus on the safety of
executing commutative operations concurrently, not directly on scalability.

2.4. Test Case Generation

Concolic testers [Godefroid et al. 2005; Sen et al. 2005] and symbolic execution systems
[Cadar et al. 2006, 2008] generate test cases by symbolically executing a specific imple-
mentation. Our COMMUTER tool uses a combination of symbolic and concolic execution
but generates test cases for an arbitrary implementation based on a model of that im-
plementation’s interface. This resembles model-based testing in QuickCheck [Claessen
and Hughes 2000] or Gast [Koopman et al. 2002] but uses symbolic techniques. Further-
more, while symbolic execution systems often avoid reasoning precisely about symbolic
memory accesses (e.g., accessing a symbolic offset in an array), COMMUTER’s test case
generation aims to achieve conflict coverage (Section 6.2), which tests different access
patterns when using symbolic addresses or indexes.

3. SCALABILITY AND CONFLICT FREEDOM

Understanding multicore scalability requires first understanding the hardware. This
section shows that, under reasonable assumptions, conflict-free operations scale lin-
early on modern multicore hardware. The following section will use conflict freedom to
establish the scalable commutativity rule.
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Fig. 1. A basic cache-coherence state machine. “R” and “W” indicate local read and write operations, while
“rR” and “rW” indicate remote read and write operations, respectively. Thick red lines show operations that
cause communication. Thin green lines show operations that occur without communication.

3.1. Conflict Freedom and Multicore Processors

The connection between conflict freedom and scalability mustn’t be taken for granted.
Indeed, some early multiprocessor architectures such as the Intel Pentium depended on
shared buses with global lock lines [Intel 2013, §8.1.4], so even conflict-free operations
did not scale.

Today’s multicores avoid such centralized components. Modern, large, cache-coherent
multicores utilize peer-to-peer interconnects between cores and sockets; partition and
distribute physical memory between sockets (NUMA); and have deep cache hierarchies
with per-core write-back caches. To maintain a unified, globally consistent view of mem-
ory despite their distributed architecture, multicores depend on MESI-like coherence
protocols [Papamarcos and Patel 1984] to coordinate ownership of cached memory. A
key invariant of these coherence protocols is that either (1) a cache line is not present in
any cache, (2) a mutable copy is present in a single cache, or (3) the line is present in any
number of caches but is immutable. Maintaining this invariant requires coordination,
and this is where the connection to scalability lies.

Figure 1 shows the basic state machine implemented by each cache for each cache
line. This maintains the previous invariant by ensuring a cache line is either “invalid”
in all caches, “modified” in one cache and “invalid” in all others, or “shared” in any
number of caches. Practical implementations add further states—MESI’s “exclusive”
state, Intel’s “forward” state [Goodman and Hum 2009], and AMD’s “owned” state
[Advanced Micro Devices 2012, §7.3]—but these do not change the basic communication
required to maintain cache coherence.

Roughly, a set of operations scales when maintaining coherence does not require
ongoing communication. There are three memory access patterns that do not require
communication:

—Multiple cores reading different cache lines. This scales because, once each cache line
is in each core’s cache, no further communication is required to access it, so further
reads can proceed independently of concurrent operations.

—Multiple cores writing different cache lines. This scales for much the same reason.
—Multiple cores reading the same cache line. A copy of the line can be kept in each

core’s cache in shared mode; further reads from those cores can access the line without
communication.

That is, when memory accesses are conflict free, they do not require communication.
Furthermore, higher-level operations composed of conflict-free reads and writes are
themselves conflict free and will also execute independently and in parallel. In all of
these cases, conflict-free operations execute in the same time in isolation as they do
concurrently, so the total throughput of N such concurrent operations is proportional
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Fig. 2. Organization of Intel and AMD machines used for benchmarks [Super Micro Computer 2012; Tyan
Computer Corporation 2006a, 2006b].

to N. Therefore, given a perfect implementation of MESI, conflict-free operations scale
linearly. The following sections verify that this assertion holds on real hardware under
reasonable workload assumptions and explore where it breaks down.

The converse is also true: conflicting operations cause cache state transitions and the
resulting coordination limits scalability. That is, if a cache line written by one core is
read or written by other cores, those operations must coordinate and, as a result, will
slow each other down. While this doesn’t directly concern the scalable commutativity
rule (which says only when operations can be conflict free, not when they must be
conflicted), the huge effect that conflicts can have on scalability affirms the importance
of conflict freedom. The following sections also demonstrate the effect of conflicts on
real hardware.

3.2. Conflict-Free Operations Scale

We use two machines to evaluate conflict-free and conflicting operations on real hard-
ware: an 80-core (8 sockets × 10 cores) Intel Xeon E7-8870 (the same machine used
for evaluation in Section 9) and, to show that our conclusions generalize, a 48-core
(8 sockets × 6 cores) AMD Opteron 8431. Both are cc-NUMA x86 machines with
directory-based cache coherence, but the two manufacturers use different architec-
tures, interconnects, and coherence protocols. Figure 2 shows how the two machines
are broadly organized.

Figure 3 shows the time required to perform conflict-free memory accesses from
varying numbers of cores. The first benchmark, shown in the top row of Figure 3,
stresses read/read sharing by repeatedly reading the same cache line from N cores.
The latency of these reads remains roughly constant regardless of N. After the first
access from each core, the cache line remains in each core’s local cache, so later accesses
occur locally and independently, allowing read/read accesses to scale perfectly. Reads
of different cache lines from different cores (not shown) yield identical results to reads
of the same cache line.

The bottom row of Figure 3 shows the results of stressing conflict-free writes. Each of
N cores is assigned a different cache line, which it repeatedly writes. In this case, each
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Fig. 3. Each graph shows the cycles required to perform a conflict-free read or write from N cores. Shading
indicates the latency distribution for each N (darker shading indicates higher frequency).

cache line enters a “modified” state but then remains in that state: as with the previous
benchmark, further writes can be performed locally and independently. Again, latency
remains constant regardless of N, demonstrating that conflict-free write accesses scale.

Figure 4 turns to the cost of conflicting accesses. The top row shows the latency of
N cores writing the same cache line simultaneously. The cost of a write/write conflict
grows dramatically as the number of writing cores increases because ownership of the
modified cache line must pass to each writing core, one at a time. On both machines,
we also see a uniform distribution of write latencies, which further illustrates this
serialization, as some cores acquire ownership quickly while others take much longer.

For comparison, an operation like open typically takes 1,000 to 2,000 cycles on these
machines, while a single conflicting write instruction can take upwards of 50,000 cycles.
In the time it takes one thread to execute this one machine instruction, another could
open 25 files.

The bottom row of Figure 4 shows the latency of N cores simultaneously reading
a cache line last written by core 0 (a read/write conflict). For the AMD machine, the
results are nearly identical to the write/write conflict case, since this machine serializes
requests for the cache line at CPU 0’s socket. On the Intel machine, the cost of read/write
conflicts also grows, albeit more slowly, as Intel’s architecture aggregates the read
requests at each socket. We see this effect in the latency distribution, as well, with
read latency exhibiting up to eight different modes. These modes reflect the order in
which the eight sockets’ aggregated read requests are served by CPU 0’s socket. Intel’s
optimization helps reduce the absolute latency of reads, but nevertheless, read/write
conflicts do not scale on either machine.
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Fig. 4. Conflicting accesses do not scale. Each graph shows the cycles required to perform a conflicting read
or write from N cores. Shading indicates the latency distribution for each N (estimated using kernel density
estimation).

3.3. Limitations of Conflict-Free Scalability

Conflict freedom is a good predictor of scalability on real hardware, but it’s not perfect.
Limited cache capacity and associativity cause caches to evict cache lines (later result-
ing in cache misses) even in the absence of coherence traffic. And, naturally, a core’s
very first access to a cache line will miss. Such misses directly affect sequential perfor-
mance, but they may also affect the scalability of conflict-free operations. Satisfying a
cache miss (due to conflicts or capacity) requires the cache to fetch the cache line from
another cache or from memory. If this requires communicating with remote cores or
memory, the fetch may contend with concurrent operations for interconnect resources
or memory controller bandwidth.

Applications with good cache behavior are unlikely to exhibit such issues, while
applications with poor cache behavior usually have sequential performance problems
that outweigh scalability concerns. Nevertheless, it’s important to understand where
our assumptions about conflict freedom break down.

Figure 5 shows the results of a benchmark that explores some of these limits by
performing conflict-free accesses to regions of varying sizes from varying numbers of
cores. This benchmark stresses the worst case: each core reads or writes in a tight
loop and all memory is physically allocated from CPU 0’s socket, so all misses contend
for that socket’s resources. The top row of Figure 5 shows the latency of reads to a
shared region of memory. On both machines, we observe slight increases in latency as
the region exceeds the L1 cache and later the L2 cache, but the operations continue
to scale until the region exceeds the L3 cache. At this point, the benchmark becomes
bottlenecked by the DRAM controller of CPU 0’s socket, so the reads no longer scale,
despite being conflict free.
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Fig. 5. Operations scale until they exceed cache or directory capacity. Each graph shows the latency for
repeatedly reading a shared region of memory (top) and writing separate per-core regions (bottom) as a
function of region size and number of cores.

We observe a similar effect for writes, shown in the bottom row of Figure 5. On
the Intel machine, the operations scale until the combined working set of the cores
on a socket exceeds the socket’s L3 cache size. On the AMD machine, we observe an
additional effect for smaller regions at high core counts: in this machine, each socket
has a 1MB directory for tracking ownership of that socket’s physical memory, which
this benchmark quickly exceeds.

These benchmarks show some of the limitations to how far we can push conflict
freedom before it no longer aligns with scalability. Nevertheless, even in the worst
cases demonstrated by these benchmarks, conflict-free operations both perform and
scale far better than conflicted operations.

3.4. Summary

Despite some limitations, conflict freedom is a good predictor of linear scalability in
practice. Most software has good cache locality and high cache hit rates both because
this is crucial for sequential performance and because it’s in the interest of CPU man-
ufacturers to design caches that fit typical working sets. For workloads that exceed
cache capacity, NUMA-aware allocation spreads physical memory use across sockets
and DRAM controllers, partitioning physical memory access, distributing the DRAM
bottleneck, and giving cores greater aggregate DRAM bandwidth.

Section 9 will return to hard numbers on real hardware to show that conflict-free
implementations of commutative interfaces enable software to scale not just at the
level of memory microbenchmarks, but at the level of an entire OS kernel and its
applications.
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4. THE SCALABLE COMMUTATIVITY RULE

This section addresses two questions: what is the precise definition of the scalable
commutativity rule, and why is the rule true? We answer these questions using a
formalism based on abstract actions, histories, and implementations, combined with
the empirical result of the previous section. This formalism relies on a novel form
of commutativity, SIM commutativity, whose generality makes it possible to broadly
apply the scalable commutativity rule to complex software interfaces. Our constructive
proof of the scalable commutativity rule also sheds some light on how real conflict-free
implementations might be built, though the actual construction is not very practical.
Finally, we consider the converse scalable commutativity rule, which lets us argue in
limited ways about when conflicts must arise.

4.1. Actions

Following earlier work [Herlihy and Wing 1990], we model a system execution as a
sequence of actions, where an action is either an invocation or a response. In the context
of an operating system, an invocation represents a system call with arguments (such as
getpid() or open(“file”, O_RDWR)) and a response represents the corresponding return
value (a PID or a file descriptor). Invocations and responses are paired. Each invocation
is made by a specific thread, and the corresponding response is returned to the same
thread. An action thus comprises (1) an operation class (e.g., which system call is being
invoked), (2) operation arguments (for invocations) or a return value (for responses),
(3) the relevant thread, and (4) a tag for uniqueness. We’ll write invocations as left
half-circles (“invoke A”) and responses as right half-circles (“respond A”), where
the letters match invocations and their responses. Color and vertical offset differentiate
threads: and are invocations on different threads.

A system execution is called a history. For example,

consists of eight invocations and eight corresponding responses across three different
threads. We’ll consider only well-formed histories, in which each thread’s actions form
a sequence of invocation–response pairs. H above is well formed; checking this for
the red thread t, we see that the thread-restricted subhistory ,
which selects t’s actions from H, alternates invocations and responses as expected. In
a well-formed history, each thread has at most one outstanding invocation at every
point.

The specification distinguishes whether or not a history is “correct.” A specification S
is a prefix-closed set of well-formed histories. The set’s contents depend on the system
being modeled; for example, if S specified a Unix-like OS, then [ =getpid(), =0] �∈S ,
since no Unix thread can have PID 0. Our definitions and proof require that some
specification exists, but we aren’t concerned with how it is constructed.

4.2. SIM Commutativity

Commutativity means that an interface’s caller cannot distinguish the order in which
concurrent actions actually occurred, either by the actions’ responses or through any
possible future actions. Thus, the order of a set of commutative actions “doesn’t matter”:
the specification is indifferent to the execution order of that set. The rest of this section
formalizes this intuition as SIM commutativity.

Our definition has two goals: state dependence and interface basis. State depen-
dence means SIM commutativity must capture when operations commute in some
states, even if those same operations do not commute in other states. This is important
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because it allows the rule to apply to a much broader range of situations than traditional
non-state-dependent notions of commutativity. For example, few OS system calls uncon-
ditionally commute in every state, but many system calls commute in restricted states.
Consider POSIX’s open call. In general, two calls to open(“a”, O_CREAT|O_EXCL) don’t
commute: one call will create the file and the other will fail because the file already
exists. However, two such calls do commute if called from processes with different
working directories or if the file “a” already exists (both calls will return the same
error). State dependence makes it possible to distinguish these cases, even though the
operations are the same in each. This, in turn, means the scalable commutativity rule
can tell us that scalable implementations exist in all of these commutative cases.

Interface basis means SIM commutativity must evaluate the consequences of exe-
cution order using only the specification, without reference to any particular imple-
mentation. Since our goal is to reason about possible implementations, it’s necessary
to capture the scalability inherent in the interface itself. This in turn makes it possible
to use the scalable commutativity rule early in software development, during interface
design and initial implementation.

The right definition for commutativity that achieves both of these goals is a little
tricky, so we build it up in two steps.

Definition. An action sequence H′ is a reordering of an action sequence H when
H|t = H′|t for every thread t.

If , then is a reordering of H, but
is not, since it doesn’t respect the order of actions in H’s red thread. A reordering
of H contains the same invocations and responses as H, and within each thread the
operation order is unchanged, but the reordering may change the way different threads’
operations interleave.

Definition. Consider a history H = X || Y (where || concatenates action sequences).
Y SI-commutes in H when given any reordering Y ′ of Y and any action sequence Z,

X || Y || Z ∈ S if and only if X || Y ′ || Z ∈ S .

This definition captures the state dependence and interface basis we need. The action
sequence X puts the system into a specific state, without specifying a representation
of that state (which would depend on an implementation). Switching regions Y and Y ′
requires that the exact responses in Y remain valid according to the specification even
if Y is reordered. The presence of region Z in both histories requires that reorderings
of actions in region Y are indistinguishable by future operations.

Unfortunately, SI commutativity can be nonmonotonic: later operations in a history
can change whether prior operations SI-commute. This surprising property seems in-
compatible with scalable implementation. For example, consider a get/set interface and
the history

Y SI-commutes because set returns nothing and every reordering sets the underlying
value to 2, so future get operations cannot distinguish reorderings of Y . However,
the prefix Y1 does not SI-commute on its own: since some orders set the value to
1 and some to 2, future get operations could distinguish them. Whether or not Y1
will ultimately form part of a commutative region thus depends on future operations!
Real implementations cannot predict what operations will be called in the future, so
operations in a region like Y1 would “plan for the worst” by remembering their order. In
our machine models, tracking a precise order of operations induces conflicts and limits
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scalability. To draw a connection between conflict freedom and commutativity, we must
require monotonicity.

Definition. An action sequence Y SIM-commutes in a history H = X||Y when for any
prefix P of any reordering of Y (including P = Y ), P SI-commutes in X||P. Equivalently,
Y SIM-commutes in H when, given any prefix P of any reordering of Y , any reordering
P ′ of P, and any action sequence Z,

X || P || Z ∈ S if and only if X || P ′ || Z ∈ S .

Returning to the get/set example, while the sequence Y given in the example SI-
commutes (in any history), Y does not SIM-commute because its prefix Y1 does not
SI-commute.

Like SI commutativity, SIM commutativity captures state dependence and interface
basis. Unlike SI commutativity, SIM commutativity excludes cases where the commu-
tativity of a region changes depending on future operations and suffices to prove the
scalable commutativity rule.

4.3. Implementations

To reason about the scalability of an implementation of an interface, we need to model
implementations in enough detail to tell whether different threads’ “memory accesses”
are conflict free. We represent an implementation as a step function: given a state
and an invocation, it produces a new state and a response. We can think of this step
function as being invoked by a driver algorithm, or scheduler, that repeatedly picks a
thread to step forward and passes state from step to step. Special YIELD responses let
the step function request that the driver “run” a different thread and help represent
concurrent overlapping operations and blocking operations.

We begin by defining S, the set of implementation states. To help us reason about
conflicts, we divide states into components indexed by a component set C. Two imple-
mentation steps will conflict if they access at least one shared component and at least
one of those accesses is a write. Given s ∈ S and c ∈ C, we write s.c for the value of
the cth component of s. These values are left opaque, except that we assume they can
be compared for equality. We write s{c ← x} for component replacement; s{c ← x} is a
state so that, given any c′ ∈ C,

(s{c ← x}).c′ =
{

x if c′ = c,
s.c′ otherwise.

We extend these notations to component sequences in the natural way. For example, if
c = [c1, . . . , cn] is a sequence of components and x = [x1, . . . , xn] a sequence of values,
then s{c ← x} = s{c1 ← x1} · · · {cn ← xn}, and, given another state s′,

s{c ← s′.c} = s{c1 ← s′.c1} · · · {cn ← s′.cn}.
In addition, let I be the set of valid implementation invocations, which is the set

of specification invocations plus a special CONTINUE invocation; and let R be the set
of valid implementation responses, which is the set of specification responses plus a
special YIELD response.

Definition. An implementation m is a function in S × I �→ S × R×P(C): given an old
state and an invocation, the implementation produces a new state, a response, and a
set of components called the access set. An implementation must obey four restrictions.
For any step m(s, i) = 〈s′, r, a〉, we must have:

(1) Response consistency. The implementation returns the response to the same thread
as the invocation: thread(i) = thread(r).
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(2) Write inclusion. Any state component changed by the step is in the access set: for
any c �∈ a, s.c = s′.c.

(3) Access restriction. The implementation’s behavior is indifferent to state components
not in the access set: for any c �∈ a and any value x,

m(s{c ← x}, i) = 〈s′{c ← x}, r, a〉.

(4) Interruptibility. The implementation responds with YIELD to invocations that are not
CONTINUE: if i �= CONTINUE, then r = YIELD. This last requirement is not fundamental
(an implementation that does not satisfy this can be transformed into one that
does), but it simplifies some arguments.

We say an implementation step m(s, i) = 〈s′, r, a〉 accesses (reads and/or writes) all
components c ∈ a and specifically writes a component c ∈ a if s′.c �= s.c.

A YIELD response indicates that a real response for that thread is not yet ready and
gives the driver the opportunity to take a step on a different thread without a real
response from the current thread. CONTINUE invocations give the implementation an
opportunity to complete an outstanding request on that thread (or further delay its
response).1

An implementation generates a history when calls to the implementation (including
CONTINUE invocations) produce the corresponding history. The particular sequence of
invocations to the implementation that generates a history is a witness of that imple-
mentation generating that history. For example, this sequence shows an implementa-
tion m, given the invocations , generating the
history :

The state is threaded from step to step; invocations appear as arguments and responses
as return values. The generated history consists of the invocations and responses, in
order, with YIELDs and CONTINUEs removed.

An implementation m is correct for some specification S when the responses it
generates are always allowed by the specification. Specifically, let H be a valid history
that can be generated by m. We say that m is correct when every such H is in S . Note
that a correct implementation need not be capable of generating every possible legal
response or every possible history in S ; it’s just that every response it does generate
is legal.

Two implementation steps have an access conflict when they are on different threads
and one writes a state component that the other accesses (reads or writes). This notion
of access conflicts maps directly onto the read and write access conflicts on real shared-
memory machines explored in Section 3. A set of implementation steps is conflict free

1There are restrictions on how a driver can choose arguments to the step function. We assume, for example,
that it passes a CONTINUE invocation for thread t if and only if the last step on t returned YIELD. Furthermore,
since implementations are functions, they must be deterministic. We could model implementations instead
as relations, allowing nondeterminism, though this would complicate later arguments somewhat.
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when no pair of steps in the set has an access conflict; that is, no thread’s steps access
a state component written by another thread’s steps.

4.4. Rule

We can now formally state the scalable commutativity rule. Assume a specification
S with a correct reference implementation M. Consider a history H = X || Y where
Y SIM-commutes in H and where M can generate H. Then there exists a correct
implementation m of S whose steps in the Y region of H are conflict free. Empirically,
conflict-free operations scale linearly on modern multicore hardware (Section 3), so,
given reasonable workload assumptions, m scales in the Y region of H.

4.5. Example

Before we turn to why the scalable commutativity rule is true, we’ll first illustrate how
the rule helps designers think about interfaces and implementations, using reference
counters as a case study.

In its simplest form, a reference counter has two operations, inc and dec, which
respectively increment and decrement the value of the counter and return its new
value. We’ll also consider a third operation, iszero, which returns whether the reference
count is zero. Together, these operations and their behavior define a reference counter
specification Srefctr. Srefctr has a simple implementation with a single shared counter
component “ctr.” We can represent this implementation as

m({ctr ← x}, inc) ≡ 〈{ctr ← x + 1}, x + 1, {ctr}〉;
m({ctr ← x}, dec) ≡ 〈{ctr ← x − 1}, x − 1, {ctr}〉;

m({ctr ← x}, iszero) ≡ 〈{ctr ← x}, x = 0, {ctr}〉.
Consider a reference counter that starts with a value of 2 and the history

The region HAB SIM-commutes in H. Thus, by the rule, there is an implementation of
Srefctr that is conflict free for HAB. In fact, this is already true of the shared-counter
implementation: its iszero reads ctr but does not write it. On the other hand, HCD
does not SIM-commute in H, and therefore the rule does not apply (indeed, no correct
implementation can be conflict free for HCD).

The rule suggests a way to make HCD conflict free: if we modify the specification so
that inc and dec return nothing, then these modified operations commute (more pre-
cisely: any region consisting exclusively of these operations commutes in any history).
With this modified specification, S ′

refctr, the caller must invoke iszero to detect when
the object is no longer referenced, but in many cases this delayed zero detection is
acceptable and represents a desirable tradeoff [Boyd-Wickizer et al. 2010; Clements
et al. 2013a; DeTreville 1990].

The equivalent history with this modified specification is

.

Unlike HCD, H′
CD SIM-commutes; accordingly, there is an implementation of S ′

refctr
that is conflict free for H′

CD. By using per-thread counters, we can construct such an
implementation. Each dec can modify its local counter, while iszero sums the per-thread
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values. Per-thread and per-core sharding of data structures like this is a common and
long-standing pattern in scalable implementations.

The rule highlights at least one more opportunity in this history. H′
ABC also SIM-

commutes (still assuming an initial count of 2). However, the implementation given
previously for H′

CD is not conflict free for H′
ABC: will write one component of the state

that is read and summed by (and ). But again, there is a conflict-free implementa-
tion based on adding a Boolean iszero snapshot to the state. iszero simply returns this
snapshot. When dec’s per-thread value reaches zero, it can read and sum all per-thread
values and update the iszero snapshot if necessary.

These two implementations of S ′
refctr are fundamentally different. Which is most

desirable depends on whether the workload is expected to be write heavy (mostly inc
and dec) or read heavy (mostly iszero). An implementer must determine the scaling
opportunities that exist, decide which are likely to be the most valuable, and choose
the implementation that scales in those situations.

4.6. Proof

We derived implementations of the reference counter example by hand, but a general,
constructive proof for the scalable commutativity rule is possible. The construction
builds a conflict-free implementation mrule from an arbitrary reference implementation
M and history H = X || Y . The constructed implementation emulates the reference
implementation and is thus correct for any history. Its performance properties, however,
are specialized for H. For any history X || P where P is a prefix of a reordering of Y ,
the constructed implementation’s steps in P are conflict free. That is, within the SIM-
commutative region, mrule scales.

To understand the construction, it helps to first imagine deriving a nonscalable
implementation mreplay from the reference M. This nonscalable implementation begins
in replay mode. As long as each invocation matches the next invocation in H, mreplay
simply replays the corresponding responses from H, without invoking the reference
implementation. If the input invocations diverge from H, mreplay can no longer replay
responses from H, so it enters emulation mode. This requires feeding M all previously
received invocations to prepare its state. After this, mreplay passes all invocations to the
reference implementation and returns its responses.

A state s for mreplay contains two components. First, s.h either holds the portion of H
that remains to be replayed or has the value EMULATE, which denotes emulation mode.
s.h is initialized to H. Second, s.refstate is the state of the reference implementation
and starts as the value of the reference implementation’s initial state. Figure 6 shows
how the simulated implementation works. We make several simplifying assumptions,
including that mreplay receives CONTINUE invocations in a restricted way; these assump-
tions aren’t critical for the argument. One line requires expansion, namely, the choice
of a witness H′ “consistent with s.h” when the input sequence diverges. This step calcu-
lates the prefix of H up to, but not including, s.h; excludes responses; and adds CONTINUE

invocations as appropriate.
This implementation is correct—its responses for any history always match those

from the reference implementation. But it isn’t conflict free. In replay mode, any two
steps of mreplay conflict on accessing s.h. These accesses track which invocations have
occurred; without them, it would be impossible to later initialize the state of M. And
this is where commutativity comes in. The action order in a SIM-commutative region
doesn’t matter: the specification doesn’t distinguish among orders. Thus, it is safe to
initialize the reference implementation with the commutative actions in a different
order than that in which they were received. All future responses will still be valid
according to the specification.
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Fig. 6. Constructed nonscalable implementation mreplay for history H and reference implementation M.

Fig. 7. Constructed scalable implementation mrule for history H and reference implementation M.

Figure 7 shows the construction of mrule, a version of M that scales over Y in H = X||Y .
mrule is similar to mreplay but extends it with a conflict-free mode used to execute actions
in Y . Its state is as follows:

—s.h[t]—a per-thread history. Initialized to X || COMMUTE || (Y |t), where the special
COMMUTE action indicates the commutative region has begun.
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—s.commute[t]—a per-thread flag indicating whether the commutative region has been
reached. Initialized to FALSE.

—s.refstate—the reference implementation’s state.

Each step of mrule in the commutative region accesses only state components specific
to the invoking thread. This means that any two steps in the commutative region are
conflict free, and the scalable commutativity rule is proved. The construction uses SIM
commutativity when initializing the reference implementation’s state via H′. If the
observed invocations diverge before the commutative region, then just as in mreplay, H′
will exactly equal the observed invocations. If the observed invocations diverge in or
after the commutative region, however, there’s not enough information to recover the
order of invocations. (The s.h[t] components track which invocations have happened
per thread, but not the order of those invocations between threads.) Therefore, H′
might reorder the invocations in Y . SIM commutativity guarantees that replaying H′
will nevertheless produce results indistinguishable from those of the actual invocation
order, even if the execution diverges within the commutative region.2

4.7. Discussion

The rule and proof construction push state and history dependence to an extreme: the
proof construction is specialized for a single commutative region. This can be mitigated
by repeated application of the construction to build an implementation that scales
over multiple commutative regions in a history or for the union of many histories.3
Nevertheless, the implementation constructed by the proof is impractical and real
implementations achieve broad scalability using different techniques, such as the ones
this article explores in Section 8.

We believe such broad implementation scalability is made easier by broadly commu-
tative interfaces. In broadly commutative interfaces, the arguments and system states
for which a set of operations commutes often collapse into fairly well-defined classes
(e.g., file creation might commute whenever the containing directories are different).
In practice, implementations scale for whole classes of states and arguments, not just
for specific histories.

On the other hand, there can be limitations on how broadly an implementation can
scale. It is sometimes the case that a set of operations commutes in more than one
class of situation, but no single implementation can scale for all classes. The reference
counter example in Section 4.5 hinted at this when we constructed several possible
implementations for different situations but never arrived at a broadly conflict-free
one. As an example that’s easier to reason about, consider an interface with two calls:
put(x) records a sample with value x, and max() returns the maximum sample recorded

2We effectively have assumed that M, the reference implementation, produces the same results for any
reordering of the commutative region. This is stricter than SIM commutativity, which places requirements
on the specification, not the implementation. We also assumed that M is indifferent to the placement of
CONTINUE invocations in the input history. Neither of these restrictions is fundamental, however. If during
replay M produces responses that are inconsistent with the desired results, mrule could throw away M’s state,
produce a new H′ with different CONTINUE invocations and/or commutative region ordering, and try again.
This procedure must eventually succeed and does not change the conflict freedom of mrule in the commutative
region.
3This is possible because, once the constructed machine leaves the specialized region, it passes invocations
directly to the reference and has the same conflict freedom properties as the reference.
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so far (or 0). Suppose

Both HAB and HBC SIM-commute in H, but H overall is not SIM commutative. An
implementation could store per-thread maxima reconciled by max and be conflict free
for HAB. Alternatively, it could use a global maximum that put checked before writing.
This is conflict free for HBC. But no correct implementation can be conflict free across
all of H. Since HAB and HBC together span H, that means no single implementation
can be conflict free for both HAB and HBC.

In our experience, real-world interface operations rarely demonstrate such mutually
exclusive implementation choices. For example, the POSIX implementation in Section 8
scales quite broadly, with only a handful of cases that would require incompatible
implementations.

We hope to further explore this gap between the specificity of the formalized scalable
commutativity rule and the generality of practical implementations. We’ll return to
this question and several other avenues for future work in Section 10. However, as
the rest of this article shows, the rule is already an effective guideline for achieving
practical scalability.

4.8. Converse Rule

The scalable commutativity rule shows that SIM-commutative regions have conflict-
free implementations. However, it does not show the converse—that given a noncom-
mutative region, no correct implementation can be conflict free there.

The converse is, in fact, not strictly true. Consider a counter whose interface consists
of inc, which increments the counter value, and maybe-get, which either returns the
value or returns “retry.” inc and maybe-get do not SIM-commute. For instance, consider
the history

Y does not SIM-commute, and the suffix Z shows why. H = Y || Z ∈ S —the maybe-
get and inc operations overlap, so maybe-get may return the old value—but with the
reordering

Y ′ || Z �∈ S , since in this order the maybe-get must return 1 or “retry,” but Z gives
a response of 0. Nevertheless, a correct implementation mretry exists that is conflict
free in every history. mretry simply does nothing for inc and always returns “retry” for
maybe-get.

Although this disproves the rule’s converse, it does so on an unsatisfying technicality.
A version of the converse is true for specifications generated by an implementation. That
is, given an implementation mof some specification S , we consider only the subset S |m
of histories that m can generate. In our example, S |mretry does not contain histories
where maybe-get returns a value, so all histories in S |mretry SIM-commute and the
existence of a conflict-free implementation is no surprise.

Given an implementation m, SIM commutativity with respect to S |m is both suffi-
cient and necessary for m’s steps in a SIM-commutative region to be conflict free. The
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forward case is a direct consequence of the scalable commutativity rule. The reverse
case—the converse scalable commutativity rule—is a consequence of the restriction to
S |m. Stated precisely: given a specification S , a history H = X || Y ∈ S , and a correct
implementation m of S that can generate H, if Y does not SIM-commute in X || Y with
respect to S |m, then m’s steps in Y must conflict.

The full proof is given in Appendix A and builds on the fact that reordering a region
of operations with conflict-free implementation steps does not change the implementa-
tion’s responses or final state or the conflict freedom of those steps. It follows that, if
m’s steps in Y are conflict free, Y must SIM-commute with respect to S |m. Hence, if Y
does not SIM-commute with respect to S |m, m’s steps in Y must have a conflict.

The restriction to S |m limits the scope of the converse rule somewhat. However,
many real implementations achieve broad coverage of their specifications. This is sim-
ply a consequence of engineering; if it is not true, the specification is probably too
underspecified to be useful, or the implementation interprets the specification too nar-
rowly to be useful. Many specifications (especially those involving network communi-
cation) have a notion of retrying—allowing trivially conflict-free implementations like
mretry—but any worthwhile implementation should be capable of returning the actual
result eventually.

The converse rule also gives us insight into how an implementation can achieve
broader conflict freedom and hence better scalability. Any implementation that can
generate the same set of histories is bound by the reverse rule to have conflicts in the
same situations. However, an implementation that generates a strictly smaller subset
of the same specification may be able to achieve conflict freedom in situations where
a more “general” implementation of the same specification cannot. If S |m1 � S |m2,
regions that do not SIM-commute in S |m1 may SIM-commute in S |m2, so m2 may be
conflict free where m1 cannot be.

We can gain further insight by revisiting the assumptions of the reverse rule. In par-
ticular, the reverse rule depends on the implementation model described in Section 4.3.
This is not the only possible model. Section 10 considers other implementation models
that let us escape the constraints of the reverse rule and potentially achieve broader
conflict freedom.

5. DESIGNING COMMUTATIVE INTERFACES

The rule facilitates scalability reasoning at the interface and specification level, and
SIM commutativity lets us apply the rule to complex interfaces. This section demon-
strates the interface-level reasoning enabled by the rule, using POSIX as a case study.
Already, many POSIX operations commute with many other operations, a fact we will
quantify in the following sections; this section focuses on problematic cases to give a
sense of the subtler issues of commutative interface design.

The following sections explore four general classes of changes that make operations
commute in more situations, enabling more scalable implementations.

5.1. Decompose Compound Operations

Many POSIX APIs combine several operations into one, limiting the combined opera-
tion’s commutativity. For example, fork both creates a new process and snapshots the
current process’s entire memory state, file descriptor state, signal mask, and several
other properties. As a result, fork fails to commute with most other operations in the
same process, such as memory writes, address space operations, and many file descrip-
tor operations. However, applications often follow fork with exec, which undoes most
of fork’s suboperations. With only fork and exec, applications are forced to accept these
unnecessary suboperations that limit commutativity.
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POSIX has a little-known API called posix_spawn that addresses this problem by
creating a process and loading an image directly (CreateProcess in Windows is simi-
lar). This is equivalent to fork/exec, but its specification eliminates the intermediate
suboperations. As a result, posix_spawn commutes with most other operations and
permits a broadly scalable implementation.

Another example, stat, retrieves and returns many different attributes of a file si-
multaneously, which makes it noncommutative with operations on the same file that
change any attribute returned by stat (such as link, chmod, chown, write, and even read).
In practice, applications invoke stat for just one or two of the returned fields. An al-
ternate API that gave applications control of which field or fields were returned would
commute with more operations and enable a more scalable implementation of stat, as
we show in Section 9.2.

POSIX has many other examples of compound return values. sigpending returns all
pending signals, even if the caller only cares about a subset, and select returns all
ready file descriptors, even if the caller needs only one ready FD.

5.2. Embrace Specification Nondeterminism

POSIX’s “lowest available FD” rule is a classic example of overly deterministic design
that results in poor scalability. Because of this rule, open operations in the same
process (and any other FD allocating operations) do not commute, since the order in
which they execute determines the returned FDs. This constraint is rarely needed by
applications, and an alternate interface that could return any unused FD could use
scalable allocation methods, which are well known. We will return to this example in
Section 9.2. Many other POSIX interfaces get this right: mmap can return any unused
virtual address and creat can assign any unused inode number to a new file.

5.3. Permit Weak Ordering

Another common source of limited commutativity is strict ordering requirements be-
tween operations. For many operations, ordering is natural and keeps interfaces simple
to use; for example, when one thread writes data to a file, other threads can immedi-
ately read that data. Synchronizing operations like this are naturally noncommutative.
Communication interfaces, on the other hand, often enforce strict ordering but may not
need to. For instance, most systems order all messages sent via a local Unix domain
socket, even when using SOCK_DGRAM, so any send and recv system calls on the
same socket do not commute (except in error conditions). This is often unnecessary, es-
pecially in multireader or multiwriter situations, and an alternate interface that does
not enforce ordering would allow send and recv to commute as long as there is both
enough free space and enough pending messages on the socket. This in turn would
allow an implementation of Unix domain sockets to support scalable communication.
We return to this example in Section 9.3.

5.4. Release Resources Asynchronously

A closely related problem is that many POSIX operations have global effects that must
be visible before the operation returns. This is a generally good design for usable inter-
faces, but for operations that release resources, this is often stricter than applications
need and expensive to ensure. For example, writing to a pipe must deliver SIGPIPE
immediately if there are no read FDs for that pipe, so pipe writes do not commute with
the last close of a read FD. This requires aggressively tracking the number of read FDs;
a relaxed specification that promised to eventually deliver the SIGPIPE would allow
implementations to use more scalable read FD tracking. Similarly, munmap does not
commute with memory reads or writes of the unmapped region from other threads.
Enforcing this requires nonscalable remote TLB shootdowns before munmap can
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Fig. 8. The components of COMMUTER.

return, even though depending on this behavior usually indicates a bug. An mun-
map (or an madvise) that released virtual memory asynchronously would let the kernel
reclaim physical memory lazily and batch or eliminate remote TLB shootdowns.

6. ANALYZING INTERFACES USING COMMUTER

Fully understanding the commutativity of a complex interface is tricky, and achieving
an implementation that avoids sharing when operations commute adds another dimen-
sion to an already difficult task. However, by leveraging the scalable commutativity
rule, developers can automate much of this reasoning. This section presents a system-
atic, test-driven approach to applying the rule to real implementations embodied in a
tool named COMMUTER, whose components are shown in Figure 8.

First, ANALYZER takes a symbolic model of an interface and computes precise condi-
tions for when that interface’s operations commute. Second, TESTGEN uses these con-
ditions to generate concrete tests of sets of operations that commute according to the
interface model, and thus should have a conflict-free implementation according to the
commutativity rule. Third, MTRACE checks whether a particular implementation is con-
flict free for each test case.

Developers can use these test cases to understand the commutative cases they should
consider, to iteratively find and fix scalability issues in their code, or as a regression
test suite to ensure that scalability bugs do not creep into the implementation over
time.

6.1. ANALYZER

ANALYZER automates the process of analyzing the commutativity of an interface, sav-
ing developers from the tedious and error-prone process of considering large numbers
of interactions between complex operations. ANALYZER takes as input a model of the
behavior of an interface, written in a symbolic variant of Python, and outputs commu-
tativity conditions: expressions in terms of arguments and states for exactly when sets
of operations commute. A developer can inspect these expressions to understand an
interface’s commutativity or pass them to TESTGEN (Section 6.2) to generate concrete
examples of when interfaces commute.

Given the Python code for a model, ANALYZER uses symbolic execution to consider
all possible behaviors of the interface model and construct complete commutativity
conditions. Symbolic execution also enables ANALYZER to reason about the external
behavior of an interface, rather than specifics of the model’s implementation, and
enables models to capture specification nondeterminism (like creat’s ability to choose
any free inode) as underconstrained symbolic values.

6.1.1. Concrete Commutativity Analysis. Starting from an interface model, ANALYZER com-
putes the commutativity condition of each multiset of operations of a user-specified
size. To determine whether a set of operations commutes, ANALYZER executes the SIM
commutativity test algorithm given in Figure 9. To begin with, we can think of this
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Fig. 9. The SIM commutativity test algorithm in Python. s0 is the initial state, ops is the list of opera-
tions to test for commutativity, and args gives the arguments to pass to each operation. For clarity, this
implementation assumes all values in ops are distinct.

test in concrete (nonsymbolic) terms as a test of whether a set of operations commutes
starting from a specific initial state s0 and given specific operation arguments args.

This test is implemented by a function called commutes. commutes codifies the defi-
nition of SIM commutativity, except that it requires the specification to be sequentially
consistent so it needn’t interleave partial operations. Recall that Y SI-commutes in
H = X || Y when, given any reordering Y ′ of Y and any action sequence Z,

X || Y || Z ∈ S if and only if X || Y ′ || Z ∈ S .

Further, for Y to SIM-commute in H, every prefix of every reordering of Y must SI-
commute. In commutes, the initial state s0 serves the role of the prefix X: to put the
system in some state. ops serves the role of Y (assuming sequential consistency) and
the loop in commutes generates every Y ′, that is, all prefixes of all reorderings of Y . This
loop performs two tests. First, the result equivalence test ensures that each operation
gives the same response in all reorderings. Finally, the state equivalence test serves
the role of the future actions, Z, by requiring all prefixes of all reorderings to converge
on states that are indistinguishable by future operations.

Since commutes substitutes state equivalence in place of considering all possible fu-
ture operations (which would be difficult with symbolic execution), it’s up to the model’s
author to define state equivalence as whether two states are externally indistinguish-
able. This is standard practice for high-level data types (e.g., two sets represented as
trees could be equal even if they are balanced differently). For the POSIX model we
present in Section 7, only a few types need special handling beyond what ANALYZER’s
high-level data types already provide.

The commutes algorithm can be optimized by observing that if two permutations of
the same prefix reach the same state, only one needs to be considered further. This
optimization gives commutes a pleasing symmetry: it becomes equivalent to exploring
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Fig. 10. A simplified version of our rename model.

all n step paths from 〈0, 0, . . .〉 to 〈1, 1, . . .〉 in an n-cube, where each unit step is an
operation and each vertex is a state.

6.1.2. Symbolic Commutativity Analysis. So far, we’ve considered only how to determine
if a set of operations commutes for a specific initial state and specific arguments. Ul-
timately, we’re interested in the entire space of states and arguments for which a
set of operations commutes. To find this, ANALYZER executes both the interface model
and commutes symbolically, starting with an unconstrained symbolic initial state and
unconstrained symbolic operation arguments. Symbolic execution lets ANALYZER effi-
ciently consider all possible initial states and arguments and precisely determine the
(typically infinite) set of states and arguments for which the operations commute (i.e,
for which commutes returns True).

Figure 10 gives an example of how a developer could model the rename operation in
ANALYZER. The first five lines declare symbolic types used by the model (tuninterpreted
declares a type whose values support only equality). The POSIX class, itself a symbolic
type, represents the system state of the file system and its methods implement the in-
terface operations to be tested. The implementation of rename itself is straightforward.
Indeed, the familiarity of Python and ease of manipulating state were part of why we
chose it over abstract specification languages.

To explore how ANALYZER analyzes rename, we’ll use the version of commutes given in
Figure 11, which is specialized for pairs of operations. In practice, we typically analyze
pairs of operations rather than larger sets because larger sets take exponentially longer
to analyze and rarely reveal problems beyond those revealed by pairs.

By symbolically executing commutes2 for two rename operations, rename(a, b) and
rename(c, d), ANALYZER computes that these operations commute if any of the following
hold:

—Both source files exist, and the file names are all different (a and c exist, and a, b, c,
d all differ).

—One rename’s source does not exist, and it is not the other rename’s destination
(either a exists, c does not, and b�=c, or c exists, a does not, and d�=a).

—Neither a nor c exists.
—Both calls are self-renames (a=b and c=d).
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Fig. 11. The SIM commutativity test algorithm specialized to two operations.

—One call is a self-rename of an existing file (a exists and a=b, or c exists and c=d)
and it’s not the other call’s source (a�=c).

—Two hard links to the same inode are renamed to the same new name (a and c point
to the same inode, a�=c, and b=d).

Despite rename’s seeming simplicity, ANALYZER’s symbolic execution systematically
explores its hidden complexity, revealing the many combinations of state and argu-
ments for which two rename calls commute. Here we see again the value of SIM com-
mutativity: every condition earlier except the self-rename case depends on state and
would not have been revealed by the traditional algebraic definition of commutativity.

Figure 12 illustrates the symbolic execution of commute2 that arrives at these con-
ditions. By and large, this symbolic execution proceeds like regular Python execution,
except when it encounters a conditional branch on a symbolic value (such as any if
statement in rename). Symbolic execution always begins with an empty symbolic path
condition. To execute a conditional branch on a symbolic value, ANALYZER uses an SMT
solver to determine whether that symbolic value can be true, false, or either, given the
path condition accumulated so far. If the branch can go both ways, ANALYZER logically
forks the symbolic execution and extends the path conditions of the two forks with the
constraints that the symbolic value must be true or false, respectively. These growing
path conditions thereby constrain further execution on the two resulting code paths.

The four main regions of Figure 12 correspond to the four calls to rename from
commutes2 as it tests the two different reorderings of the two operations. Each call
region shows the three conditional branches in rename. The first call forks at every
conditional branch because the state and arguments are completely unconstrained at
this point; ANALYZER therefore explores every code path through the first call to rename.
The second call forks similarly. The third and fourth calls generally do not fork; by this
point, the symbolic values of s0, argsA, and argsB are heavily constrained by the path
condition produced by the first two calls. As a result, these calls are often forced to
make the same branch as the corresponding earlier call.

Finally, after executing both reorderings of rename/rename, commutes2 tests their
commutativity by checking if each operation’s return value is equivalent in both per-
mutations and if the system states reached by both permutations are equivalent. This,
too, is symbolic and may fork execution if it’s still possible for the pair of operations to
be either commutative or noncommutative (Figure 12 contains two such forks).

Together, the set of path conditions that pass this final commutativity test are
the commutativity condition of this pair of operations. Barring SMT solver time-outs,
the disjunction of the path conditions for which commutes2 returns True captures the
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Fig. 12. Symbolic execution tree of commutes2 (Figure 11) for rename/rename. Each node represents a
conditional branch on a symbolic value. The terminals at the right indicate whether each path constraint
yields a commutative execution of the two operations ( ), or, if not, whether it diverged on return values
( ) or final state ( ).
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Fig. 13. An example test case for two rename calls generated by TESTGEN for the model in Figure 10.

precise and complete set of initial system states and operation arguments for which
the operations commute.

As this example shows, when system calls access shared, mutable state, reasoning
about every commutative case by hand can become difficult. Developers can easily
overlook cases, both in their understanding of an interface’s commutativity and when
making their implementation scale for commutative cases. ANALYZER automates reason-
ing about all possible system states, all possible sets of operations that can be invoked,
and all possible arguments to those operations.

6.2. TESTGEN

While a developer can examine the commutativity conditions produced by ANALYZER

directly, for complex interfaces, these formulas can be large and difficult to decipher.
Further, real implementations are complex and likely to contain unintentional sharing,
even if the developer understands an interface’s commutativity. TESTGEN takes the first
step to helping developers apply commutativity to real implementations by converting
ANALYZER’s commutativity conditions into concrete test cases.

To produce a test case, TESTGEN computes a satisfying assignment for the corre-
sponding commutativity condition. The assignment specifies concrete values for every
symbolic variable in the model, such as the fname_to_inum and inodes data structures
and the rename arguments shown in Figure 10. TESTGEN then invokes a model-specific
function on the assignment to produce actual C test case code. For example, one test
case that TESTGEN generates is shown in Figure 13. The test case includes setup code
that configures the initial state of the system and a set of functions to run on different
cores. Every TESTGEN test case should have a conflict-free implementation.

The goal of these test cases is to expose potential scalability problems in an imple-
mentation, but it is impossible for TESTGEN to know exactly what inputs might trigger
conflicting memory accesses. Thus, as a proxy for achieving good coverage on the im-
plementation, TESTGEN aims to achieve good coverage of the Python model.

We consider two forms of coverage. The first is the standard notion of path coverage,
which TESTGEN achieves by relying on ANALYZER’s symbolic execution. ANALYZER produces
a separate path condition for every possible code path through a set of operations.
However, even a single path might encounter conflicts in interestingly different ways.
For example, the code path through two pwrites is the same whether they’re writing
to the same offset or different offsets, but the access patterns are very different. To
capture different conflict conditions as well as path conditions, we introduce a new
notion called conflict coverage. Conflict coverage exercises all possible access patterns
on shared data structures: looking up two distinct items from different operations,
looking up the same item, and so forth. TESTGEN approximates conflict coverage by
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concolically executing the model-specific test code generator to enumerate distinct tests
for each path condition. TESTGEN starts with the constraints of a path condition from
ANALYZER, tracks every symbolic expression forced to a concrete value by the model-
specific test code generator, negates any equivalent assignment of these expressions
from the path condition, and generates another test, repeating this process until it
exhausts assignments that satisfy the path condition or the SMT solver fails. Since path
conditions can have infinitely many satisfying assignments (e.g., there are infinitely
many calls to read with different FD numbers that return EBADF), TESTGEN partitions
most values in isomorphism groups and considers two assignments equivalent if each
group has the same pattern of equal and distinct values in both assignments. For our
POSIX model, this bounds the number of enumerated test cases.

These two forms of coverage ensure that the test cases generated by TESTGEN will
cover all possible paths and data structure access patterns in the model and, to the
extent that the implementation is structured similarly to the model, should achieve
good coverage for the implementation as well. As we demonstrate in Section 7, TESTGEN

produces a total of 26,238 test cases for our model of 18 POSIX system calls, and these
test cases find scalability issues in the Linux ramfs file system and virtual memory
system.

6.3. MTRACE

Finally, MTRACE runs the test cases generated by TESTGEN on a real implementation and
checks that the implementation is conflict free for every test. If it finds a violation of
the commutativity rule—a test whose commutative operations are not conflict free—it
reports which variables were shared and what code accessed them. For example, when
running the test case shown in Figure 13 on a Linux ramfs file system, MTRACE reports
that the two functions make conflicting accesses to the dcache reference count and
lock, which limits the scalability of those operations.

MTRACE runs the entire operating system in a modified version of qemu [Bellard et al.
2011]. At the beginning of each test case, it issues a hypercall to qemu to start record-
ing memory accesses and then executes the test operations on different virtual cores.
During test execution, MTRACE logs all reads and writes by each core, along with infor-
mation about the currently executing kernel thread, to filter out irrelevant conflicts by
background threads or interrupts. After execution, MTRACE analyzes the log and reports
all conflicting memory accesses, along with the C data type of the accessed memory
location (resolved from DWARF debug information [DWARF Debugging Information
Format Committee 2010] and logs of every dynamic allocation’s type) and stack traces
for each conflicting access.

6.4. Implementation

We built a prototype implementation of COMMUTER’s three components. ANALYZER and
TESTGEN consist of 4,387 lines of Python code, including the symbolic execution engine,
which uses the Z3 SMT solver [de Moura and Bjørner 2008] via Z3’s Python bind-
ings. MTRACE consists of 1,594 lines of code changed in qemu, along with 612 lines of
code changed in the guest Linux kernel (to report memory type information, context
switches, etc.). Another program, consisting of 2,865 lines of C++ code, processes the
log file to find and report memory locations that are shared between different cores for
each test case.

7. CONFLICT FREEDOM IN LINUX

To understand whether COMMUTER is useful to kernel developers, we modeled several
POSIX file system and virtual memory calls in COMMUTER, then used this both to
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evaluate Linux’s scalability and to develop a scalable file and virtual memory system
for our sv6 research kernel. The rest of this section focuses on Linux and uses this case
study to answer the following questions:

—How many test cases does COMMUTER generate, and what do they test?
—How good are current implementations of the POSIX interface? Do the test cases

generated by COMMUTER find cases where current implementations don’t scale?

In the next section, we’ll use this same POSIX model to guide the implementation of
a new operating system kernel, sv6.

7.1. POSIX Test Cases

To answer the first question, we developed a simplified model of the POSIX file system
and virtual memory APIs in COMMUTER. The model covers 18 system calls and includes
inodes, file names, file descriptors and their offsets, hard links, link counts, file lengths,
file contents, file times, pipes, memory-mapped files, anonymous memory, processes,
and threads. Our model also supports nested directories, but we disable them because
Z3 does not currently handle the resulting constraints. We restrict file sizes and offsets
to page granularity; for pragmatic reasons, some kernel data structures are designed to
be conflict free for offsets on different pages, but operations conflict for any offsets within
a page. COMMUTER generates a total of 26,238 test cases from our model. Generating
the test cases and running them on both Linux and sv6 takes a total of 16 minutes on
the machine described in Section 9.1.

The model implementation and its model-specific test code generator are 693 and
835 lines of Python code, respectively. Figure 10 showed a part of our model, and
Figure 13 gave an example test case generated by COMMUTER. We verified that all test
cases return the expected results on both Linux and sv6.

7.2. Linux Conflict Freedom

To evaluate the scalability of existing file and virtual memory systems, we used MTRACE

to check the previous test cases against Linux kernel version 3.8. Linux developers
have invested significant effort in making the file system scale [Boyd-Wickizer et al.
2010], and it already scales in many interesting cases, such as concurrent operations
in different directories or concurrent operations on different files in the same directory
that already exist [Corbet 2012]. We evaluated the ramfs file system because it is
effectively a minimal wrapper for the Linux inode, directory, and file caches, which
underlie all Linux file systems. Linux’s virtual memory system, in contrast, involves
process-wide locks that are known to limit its scalability and impact real applications
[Boyd-Wickizer et al. 2010; Clements et al. 2012; Tene et al. 2011].

Figure 14 shows the results. Out of 26,238 test cases, 9,032 cases, widely distributed
across the system call pairs, were not conflict free. This indicates that even a mature
and reasonably scalable operating system implementation misses many cases that can
be made to scale according to the commutativity rule.

A common source of access conflicts is shared reference counts. For example, most
file name lookup operations update the reference count on a struct dentry; the resulting
write conflicts cause them to not scale. Similarly, most operations that take a file
descriptor update the reference count on a struct file, making commutative operations
such as two fstat calls on the same file descriptor not scale. Coarse-grained locks are
another source of access conflicts. For instance, Linux locks the parent directory for any
operation that creates file names, even though operations that create distinct names
generally commute and thus could be conflict free. Similarly, we see that coarse-grained
locking in the virtual memory system severely limits the conflict freedom of address
space manipulation operations. This agrees with previous findings [Boyd-Wickizer et al.
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Fig. 14. Conflict freedom of commutative system call pairs in Linux, showing the fraction and absolute
number of test cases generated by COMMUTER that are not conflict free for each system call pair. One example
test case was shown in Figure 13.

2010; Clements et al. 2012, 2013a], which demonstrated these problems in the context
of several applications.

Figure 14 also reveals many previously unknown bottlenecks that may be triggered
by future workloads or hardware.

The next section shows how these current and future bottlenecks can be eliminated
in a practical implementation of POSIX.

8. ACHIEVING CONFLICT FREEDOM IN POSIX

Given that many commutative operations are not conflict free in Linux, is it feasible
to build file systems and virtual memory systems that do achieve conflict freedom for
commutative operations? To answer this question, we designed and implemented a
ramfs-like in-memory file system called ScaleFS and a virtual memory system called
RadixVM [Clements et al. 2013a] for sv6, our research kernel based on xv6 [Cox et al.
2011]. Both these systems make use of Refcache [Clements et al. 2013a], a scalable
reference counter. Although it is in principle possible to make the same changes in
Linux, ScaleFS’s design would have required extensive changes throughout the Linux
kernel. The designs of both RadixVM and ScaleFS were guided by the commutativity
rule. For ScaleFS, we relied heavily on COMMUTER throughout development to guide its
design and identify sharing problems in its implementation. RadixVM was built prior
to COMMUTER but was guided by manual reasoning about commutativity and conflicts
(which was feasible because of the virtual memory system’s relatively simple interface).
We later validated RadixVM using COMMUTER.

Figure 15 shows the result of applying COMMUTER to sv6. In contrast with Linux, sv6
is conflict free for nearly every commutative test case.

For a small number of commutative operations, sv6 is not conflict free. Some appear
to require implementations that would be incompatible with conflict freedom in other
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Fig. 15. Conflict freedom of commutative system call pairs in sv6.

cases. In these situations, we preferred the conflict freedom of the cases we consid-
ered more important. Other non-conflict-free cases represent intentional engineering
decisions in the interest of practical constraints on memory consumption and sequential
performance. Complex software systems inevitably involve conflicting requirements,
and scalability is no different. However, the presence of the rule forced us to explicitly
recognize, evaluate, and justify where we made such tradeoffs.

The rest of this section describes the high-level design of ScaleFS, RadixVM, and
Refcache; discusses operations that are difficult to make conflict free without sacrificing
other practical concerns; and briefly describes the implementation of sv6.

8.1. ScaleFS: Conflict-Free File System Operations

ScaleFS implements sv6’s unified buffer cache and VFS layers, providing operations
such as read, write, open, and unlink. We focused on the VFS and buffer cache layers
because these are the common denominators of all file systems in a Unix kernel.
ScaleFS makes extensive use of well-known techniques for scalable implementations,
such as per-core resource allocation, double-checked locking, lock-free readers using
RCU [McKenney et al. 2002], and seqlocks [Lameter 2005, §6]. It also employs Refcache
to track internal resources and inode link counts. ScaleFS is structured much like
contemporary Unix VFS subsystems, with inode and directory caches represented as
concurrent hash tables and per-file page caches. What sets ScaleFS apart is that the
details of its implementation were guided by the scalable commutativity rule and, in
particular, by COMMUTER. This led to several common design patterns.

Layer scalability. ScaleFS uses data structures that themselves naturally satisfy the
commutativity rule, such as linear arrays, radix trees, and hash tables. In contrast
with structures like balanced trees, these data structures typically share no cache
lines when different elements are accessed or modified. For example, ScaleFS stores
the cached data pages for a given inode using a radix tree, so that concurrent reads
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or writes to different file pages scale, even in the presence of operations extending or
truncating the file. COMMUTER led us to an additional benefit of this representation:
many operations also use this radix tree to determine if some offset is within the file’s
bounds without reading the size and conflicting with operations that change the file’s
size. For example, pread first probes this radix tree for the requested read offset: if the
offset is beyond the last page of the file, it can return 0 immediately without reading
(and potentially conflicting on) the file size.

Defer work. Many ScaleFS resources are shared, such as file descriptions and in-
ode objects, and must be freed when no longer referenced. Typically, kernels release
resources immediately, but this requires eagerly tracking references to resources, caus-
ing commutative operations that access the same resource to conflict. Where releasing
a resource is not time sensitive, ScaleFS uses Refcache to batch reference count rec-
onciliation and zero detection. This way, resources are eventually released, but within
each Refcache epoch, commutative operations can be conflict free.

Some resources are artificially scarce, such as inode numbers in a typical Unix file
system. When a typical Unix file system runs out of free inodes, it must reuse an inode
from a recently deleted file. This requires finding and garbage collecting unused inodes,
which induces conflicts. However, the POSIX interface does not require that inode
numbers be reused, only that the same inode number is not used for two files at once.
Thus, ScaleFS never reuses inode numbers. Instead, inode numbers are generated by
a monotonically increasing per-core counter, concatenated with the core number that
allocated the inode. This allows ScaleFS to defer inode garbage collection for longer
periods of time and enables conflict-free and scalable per-core inode allocation.

Precede pessimism with optimism. Many operations in ScaleFS have an optimistic
check stage followed by a pessimistic update stage, a generalized sort of double-checked
locking. The optimistic stage checks conditions for the operation and returns immedi-
ately if no updates are necessary (this is often the case for error returns but can also
happen for success returns). This stage does no writes or locking, but because no up-
dates are necessary, it is often easy to make atomic. If updates are necessary, the
operation acquires locks or uses lock-free protocols, reverifies its conditions to ensure
atomicity of the update stage, and performs updates. For example, lseek computes the
new offset using a lock-free read-only protocol and returns early if the new offset is in-
valid or equal to the current offset. Otherwise, lseek locks the file offset and recomputes
the new offset to ensure consistency. In fact, lseek has surprisingly complex interac-
tions with state and other operations, and arriving at a protocol that was both correct
and conflict free in all commutative cases would have been difficult without COMMUTER.

rename is similar. If two file names a and b point to the same inode, rename(a, b)
should remove the directory entry for a, but it does not need to modify the directory
entry for b, since it already points at the right inode. By checking the directory entry for
b before updating it, rename(a, b) avoids conflicts with other operations that look up b.
As we saw in Section 6.1.2, rename has many surprising and subtle commutative cases
and, much like lseek, COMMUTER was instrumental in helping us find an implementation
that was conflict free in these cases.

Don’t read unless necessary. A common internal interface in a file system implemen-
tation is a namei function that checks whether a path name exists and, if so, returns
the inode for that path. However, reading the inode is unnecessary if the caller wants
to know only whether a path name existed, such as an access(F_OK) system call. In
particular, the namei interface makes it impossible for concurrent access(b, F_OK) and
rename(a, b) operations to scale when a and b point to different inodes, even though
they commute. ScaleFS has a separate internal interface to check for existence of a file
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name, without looking up the inode, which allows access and rename to scale in such
situations.

8.2. RadixVM: Conflict-Free Virtual Memory Operations

The POSIX virtual memory interface is rife with commutativity. VM operations from
different processes (and hence address spaces) trivially commute, but VM operations
from the same process also often commute—in particular, operations on nonoverlap-
ping regions of the address space commute. Many multithreaded applications exercise
exactly this important scenario. mmap, munmap, and related variants lie at the core
of high-performance memory allocators and garbage collectors, and partitioning the
address space between threads is a key design component of these systems [Evans
2006; Ghemawat 2007; Liu and Chen 2012]. But owing to complex invariants in virtual
memory systems, widely used kernels such as Linux and FreeBSD protect each address
space with a single lock. This induces both conflicts and, often, complete serialization
between commutative VM operations on the same address space [Boyd-Wickizer et al.
2010; Clements et al. 2012].

The RadixVM virtual memory system makes commutative operations on nonover-
lapping address space regions almost always conflict free [Clements et al. 2013a].
Achieving this within the constraints of virtual memory hardware, without violating
POSIX’s strict requirements on the ordering and global visibility of VM operations, and
without unacceptable memory overhead, was challenging, and our experience with de-
veloping RadixVM led to our search for a more general understanding of commutativity
and scalability in multicore systems. Again, several design patterns arose.

Prefer data structures that localize conflicts to key regions. Most operating system
kernels represent address spaces as balanced trees of mapped memory regions. Unfor-
tunately, balancing operations on red-black trees (the representation in Linux), splay
trees (FreeBSD), and AVL trees (Solaris and Windows) have nonlocal effects: an opera-
tion on one branch can cause conflicts over much of the tree. As a result, these kernels
use coarse-grained locking. Lock-free skip lists [Herlihy and Shavit 2008] and other
lock-free balanced lookup data structures avoid locking but still induce conflicts on
operations that should commute: inserts and removes make nonlocal memory writes to
preserve balance (or an equivalent), and those writes conflict with commutative lookups.
The effect of these conflicts on performance can be dramatic. RadixVM, instead, adopts
a data structure that is organized around the structure of its keys (memory addresses),
namely, a multilevel compressed radix tree. Thanks to this structure, changes in one
region of the address space almost always modify different cache lines than those
accessed for changes in another region.

Precise information tracking reduces conflicts. A major impediment to scaling address
space changes is the need to explicitly invalidate cached TLB (translation lookaside
buffer) entries on other cores. POSIX specifies that when one core changes an ad-
dress mapping, the new mapping (or, in the case of munmap, the new lack of mapping)
becomes instantly visible to all threads. This in turn requires explicitly invalidating
any cached mappings in the TLBs for those threads’ cores. Typical Unix VM systems
conservatively broadcast TLB shootdown interrupts to all cores in the process [Black
et al. 1989], inducing cache line conflicts and limiting scalability. RadixVM addresses
this problem by precisely tracking the set of CPUs that have accessed each page map-
ping. On the x86 architecture, RadixVM achieves this using per-core page tables. Each
core maintains its own page table for the process, and that page table is filled on
demand with just those memory regions actually accessed by threads on that core.
Per-core page tables require more memory than standard shared page tables; however,
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when an application thread allocates, accesses, and frees memory on one core, with
no other threads accessing the same memory region, RadixVM will perform no TLB
shootdowns.

8.3. Refcache: Conflict-Free Reference Counting

Reference counting is critical to many OS functions. RadixVM must reference-count
physical pages shared between address spaces, such as when forking a process, as
well as nodes in its internal radix tree; ScaleFS must reference-count file descriptions,
FD tables, and entries in various caches and scalably maintain other counts, such
as for hard links. sv6 uses Refcache for these reference counts and others. Refcache
implements space-efficient, lazy, scalable reference counting using per-core reference
delta caches [Clements et al. 2013a]. Refcache users trade off latency in releasing
reference-counted resources for scalability, which makes Refcache particularly suited
to uses where increment and decrement operations often occur on the same core (e.g.,
the same thread that allocated a page also frees it). Designing a practical reference-
counting scheme that is conflict free and scalable for most operations turns out to be an
excellent exercise in applying the scalable commutativity rule to both implementation
and interface design.

A common reference-counter interface consists of inc and dec functions, where inc
returns nothing and dec returns whether the count is now zero. (When zero is reached,
the caller must free the object.) In this interface, a sequence of inc and dec operations
SIM-commutes if—and only if—the count does not reach zero in any reordering. In this
case, the operations’ results are the same in all reorderings, and since reordering does
not change the final sum, no future operations can distinguish different orders. By the
scalable commutativity rule, any such sequence has some conflict-free implementation.
Sequences where zero is reached, however, might not. Refcache extends commutativity
to such sequences by allowing some latency between when the count reaches zero and
when the system detects that it’s reached zero. Refcache’s inc and dec both return
nothing and hence always commute. A new review operation finds all objects whose
reference counts recently reached zero; the Refcache user now frees objects after review,
not after dec. review does not commute in any sequence where any object’s reference
count has reached zero and its implementation conflicts on a small number of cache
lines even when it does commute. However, unlike dec, the Refcache user can choose
how often to invoke review. More frequent calls clean up freed memory more quickly
but cause more conflicts. sv6 invokes review at 10ms intervals, which is several orders
of magnitude longer than the time required by even the most expensive conflicts on
current multicores.

By separating count manipulation and zero detection, Refcache can batch increments
and decrements and reduce cache line conflicts. inc and dec are conflict free with high
probability, and review induces only a small constant rate of conflicts for global epoch
maintenance. Refcache inherits ideas from prior scalable counters [Appavoo et al. 2007;
Boyd-Wickizer et al. 2010; Corbet 2010; Ellen et al. 2007], but unlike them, it requires
space proportional to the sum of the number of counters and the number of cores,
rather than the product. Space overhead is particularly important for RadixVM, which
must reference count every physical page; at large core counts, other counters could
use more than half of physical memory simply to track page references.

8.4. Difficult-to-Scale Cases

As Figure 15 illustrates, there are a few (123 out of 26,238) commutative test cases
for which RadixVM and ScaleFS are not conflict free. The majority of these tests
involve idempotent updates to internal state, such as two lseek operations that both
seek a file descriptor to the same offset or two anonymous mmap operations with
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the same fixed base address and permissions. While it is possible to implement these
scalably, every implementation we considered significantly impacted the performance
of more common operations, so we explicitly chose to favor common-case performance
over total scalability. Even though we decided to forego scalability in these cases, the
commutativity rule and COMMUTER forced us to consciously make this tradeoff.

Other difficult-to-scale cases are more varied. Several involve reference counting
of pipe file descriptors. Closing the last file descriptor for one end of a pipe must
immediately affect the other end; however, since there’s generally no way to know a
priori if a close will close the pipe, a shared reference count is used in some situations.
Other cases involve operations that return the same result in either order, but for
different reasons, such as two reads from a file filled with identical bytes. By the rule,
each of these cases has some conflict-free implementation, but making these particular
cases conflict free would have required sacrificing the conflict freedom of many other
operations.

8.5. sv6 Implementation

sv6 is derived from xv6 [Cox et al. 2011] but ports xv6 to the x86-64 architecture and
the C++ language and adds support for hardware features necessary to run on modern
multicores such as NUMA, the x2APIC, ACPI, and PCI Express. sv6 implements key
POSIX file system and virtual memory system interfaces (those shown in Figure 15
plus others), as well as interfaces for process management (fork, exec, wait, etc.), threads
(pthread_*), and sockets (connect, bind, send, recv, etc.).

In addition to the operations analyzed in this section, sv6 also scalably implements
many of the modified, more broadly commutative POSIX APIs from Section 5.

All told, sv6 totals 51,732 lines of code, including kernel proper, device drivers, and
user space and library code (but not including the lwIP [Dunkels et al. 2012] and
ACPICA [Intel 2012] libraries). sv6 is implemented primarily in C++11 [ISO 2011]
and makes extensive use of the C++11 memory model and language-based atomics as
well as object-oriented programming, generic programming, and automatic resource
management.

9. PERFORMANCE EVALUATION

Given that nearly all commutative ScaleFS and RadixVM operations are conflict free,
applications built on these operations should in principle scale perfectly. This section
confirms this, completing a pyramid whose foundations were set in Section 3 when we
demonstrated that conflict-free memory accesses scale in most circumstances on real
hardware. This section extends these results, showing that complex operating system
calls built on conflict-free memory accesses scale and that, in turn, applications built
on these operations scale. We focus on the following questions:

—Do conflict-free implementations of commutative operations and applications built
using them scale on real hardware?

—Do noncommutative operations limit performance on real hardware?

Since real systems cannot focus on scalability to the exclusion of other performance
characteristics, we also consider the balance of performance requirements by exploring
the following question:

—Can implementations optimized for linear scalability of commutative operations also
achieve competitive sequential performance, reasonable (albeit sublinear) scalability
of noncommutative operations, and acceptable memory use?

To answer these questions, we use sv6. We focus on the file system; benchmark results
for the virtual memory system appeared in previous work [Clements et al. 2013a].
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9.1. Experimental Setup

We ran experiments on an 80-core machine with eight 2.4GHz 10-core Intel E7-8870
chips and 256GB of RAM (detailed earlier in Figure 2). When varying the number
of cores, benchmarks enable whole sockets at a time, so each 30MB socket-level L3
cache is shared by exactly 10 enabled cores. We also report single-core numbers for
comparison, though these are expected to be higher because without competition from
other cores in the socket, the one core can use the entire 30MB cache.

We run all benchmarks with the hardware prefetcher disabled because we found that
it often prefetched contended cache lines to cores that did not ultimately access those
cache lines, causing significant variability in our benchmark results and hampering
our efforts to precisely control sharing. We believe that, as large multicores and highly
parallel applications become more prevalent, prefetcher heuristics will likewise evolve
to not induce this false sharing.

As a performance baseline, we run the same benchmarks on Linux 3.5.7 from Ubuntu
Quantal. All benchmarks compile and run on Linux and sv6 without modifications.
Direct comparison is difficult because Linux implements many features sv6 does not,
but this comparison confirms that sv6’s sequential performance is sensible.

We run each benchmark three times and report the mean. Variance from the mean
is always under 5% and typically under 1%.

9.2. Microbenchmarks

Each file system benchmark has two variants, one that uses standard, noncommutative
POSIX APIs and another that accomplishes the same task using the modified, more
broadly commutative APIs from Section 5. By benchmarking the standard interfaces
against their commutative counterparts, we can isolate the cost of noncommutativ-
ity and also examine the scalability of conflict-free implementations of commutative
operations.

statbench. In general, it’s difficult to argue that an implementation of a noncommu-
tative interface achieves the best possible scalability for that interface and that no
implementation could scale better. However, in limited cases, we can do exactly this.
We start with statbench, which measures the scalability of fstat with respect to link.
This benchmark creates a single file that n/2 cores repeatedly fstat. The other n/2 cores
repeatedly link this file to a new, unique file name, and then unlink the new file name.
As discussed in Section 5, fstat does not commute with link or unlink on the same file
because fstat returns the link count. In practice, applications rarely invoke fstat to get
the link count, so sv6 introduces fstatx, which allows applications to request specific
fields (a similar system call has been proposed for Linux [Howells 2010]).

We run statbench in two modes: one mode uses fstat, which does not commute with
the link and unlink operations performed by the other threads, and the other mode uses
fstatx to request all fields except the link count, an operation that does commute with
link and unlink. We use a Refcache scalable counter [Clements et al. 2013a] for the link
count so that the links and unlinks are conflict free and place it on its own cache line
to avoid false sharing. Figure 16(a) shows the results. With the commutative fstatx,
statbench scales perfectly for both fstatx and link/unlink and experiences zero L2 cache
misses in fstatx. On the other hand, the traditional fstat scales poorly and the conflicts
induced by fstat impact the scalability of the threads performing link and unlink.

To better isolate the difference between fstat and fstatx, we run statbench in a third
mode that uses fstat but represents the link count using a simple shared counter in-
stead of Refcache. In this mode, fstat performs better at low core counts, but fstat, link,
and unlink all suffer at higher core counts. With a shared link count, each fstat call
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Fig. 16. Microbenchmark and mail server throughput in operations per second per core with varying core
counts on sv6. The blue dots indicate baseline Linux performance for comparison.

experiences exactly one L2 cache miss (for the cache line containing the link count),
which means this is the most scalable that fstat can possibly be in the presence of
concurrent links and unlinks. Yet, despite sharing only a single cache line, the seemingly
innocuous conflict arising from the noncommutative interface limits the implementa-
tion’s scalability. One small tweak to make the operation commute by omitting st_nlink
eliminates the barrier to scaling, demonstrating that even an optimal implementation
of a noncommutative operation can have severely limited scalability.

In the case of fstat, optimizing for scalability sacrifices some sequential performance.
Tracking the link count with Refcache (or some scalable counter) is necessary to make
link and unlink scale linearly but requires fstat to reconcile the distributed link count to
return st_nlink. The exact overhead depends on the core count, which determines the
number of Refcache caches, but with 80 Refcache caches, fstat is 3.9× more expensive
than on Linux. In contrast, fstatx can avoid this overhead unless the caller requests
link counts; like fstat with a shared count, it performs similarly to Linux’s fstat on a
single core.

openbench. Figure 16(b) shows the results of openbench, which stresses the file
descriptor allocation performed by open. In openbench, n threads concurrently open
and close per-thread files. These calls do not commute because each open must allocate
the lowest unused file descriptor in the process. For many applications, it suffices to
return any unused file descriptor (in which case the open calls commute), so sv6 adds an
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O_ANYFD flag to open, which it implements using per-core partitions of the FD space.
Much like statbench, the standard, noncommutative open interface limits openbench’s
scalability, while openbench with O_ANYFD scales linearly.

Furthermore, there is no performance penalty to ScaleFS’s open, with or without
O_ANYFD: at one core, both cases perform identically and outperform Linux’s open by
27%. Some of the performance difference is because sv6 doesn’t implement things like
permissions checking, but much of Linux’s overhead comes from locking that ScaleFS
avoids.

9.3. Application Performance

We perform a similar experiment using a simple mail server to produce a file system
workload more representative of a real application. The mail server uses a sequence
of separate, communicating processes, each with a specific task, roughly like qmail
[Bernstein 2007]. mail-enqueue takes a mailbox name and a single message on the
standard input, writes the message and the envelope to two files in a mail queue
directory, and notifies the queue manager by writing the envelope file name to a Unix
domain datagram socket. mail-qman is a long-lived multithreaded process where each
thread reads from the notification socket, reads the envelope information, opens the
queued message, spawns and waits for the delivery process, and then deletes the
queued message. Finally, mail-deliver takes a mailbox name and a single message on
the standard input and delivers the message to the appropriate Maildir. The benchmark
models a mail client with n threads that continuously deliver email by spawning and
feeding mail-enqueue.

As in the microbenchmarks, we run the mail server in two configurations: in one
we use lowest FD, an order-preserving socket for queue notifications, and fork/exec
to spawn helper processes; in the other we use O_ANYFD, an unordered notification
socket, and posix_spawn, all as described in Section 5. For queue notifications, we use
a Unix domain datagram socket. sv6 implements this with a single shared queue in
ordered mode. In unordered mode, sv6 uses load-balanced per-core message queues.
Load balancing only triggers when a core attempts to read from an empty queue, so
operations on unordered sockets are conflict free as long as consumers don’t outpace
producers. Finally, because fork commutes with essentially no other operations in the
same process, sv6 implements posix_spawn by constructing the new process image
directly and building the new file table. This implementation is conflict free with most
other operations, including operations on O_CLOEXEC files (except those specifically
duped into the new process).

Figure 16(c) shows the resulting scalability of these two configurations. Even though
the mail server performs a much broader mix of operations than the microbenchmarks
and doesn’t focus solely on noncommutative operations, the results are quite similar.
Noncommutative operations cause the benchmark’s throughput to collapse at a small
number of cores, while the configuration that uses commutative APIs achieves 7.5×
scalability from one socket (10 cores) to eight sockets.

9.4. Discussion

This section completes our trajectory from theory to practice. Our benchmark results
demonstrated that commutative operations can be implemented to scale, confirming the
scalable commutativity rule for complex interfaces and real hardware and validating
our sv6 design and design methodologies. Furthermore, all of this can be accomplished
at little cost to sequential performance. We have also demonstrated the importance of
commutativity and conflict freedom by showing that even a single contended cache line
in a complex operation can severely limit scalability.

ACM Transactions on Computer Systems, Vol. 32, No. 4, Article 10, Publication date: January 2015.



The Scalable Commutativity Rule: Designing Scalable Software for Multicore Processors 10:41

10. FUTURE DIRECTIONS

This section takes a step back and reviews some of the questions we have only begun
to explore.

10.1. Synchronized Clocks

Section 4.3 formalized implementations as step functions reflecting a machine capable
of general computation and communication through shared memory. Some hardware
has at least one useful capability not captured by this model that may expand the
reach of the rule and enable scalable implementations of broader classes of interfaces:
synchronized timestamp counters.

Reads of a synchronized timestamp counter will always observe increasing values,
even if the reads occur on different cores. With this capability, operations in a commu-
tative region can record their order without communicating and later operations can
depend on this order. For example, consider an append operation that appends data to
a file. With synchronized timestamp counters, the implementation of append could log
the current timestamp and the appended data to per-thread state. Later reads of the
file could reconcile the file contents by sorting these logs by timestamp. The appends
do not commute, yet this implementation of append is conflict free.

Formally, we can model a synchronized timestamp counter as an additional argument
to the implementation step function that must increase monotonically over a history.
With this additional argument, many of the conclusions drawn by the proof of the
scalable commutativity rule and the proof of the reverse rule no longer hold.

Recent work by Boyd-Wickizer [2014] developed a technique for scalable implemen-
tations called OpLog based on using synchronized timestamp counters. OpLog does
not work well for all interfaces: although logs can be collected in a conflict-free way,
resolving logs may require sequential processing, which can limit scalability and per-
formance. The characterization of interfaces amenable to OpLog implementation is
worth exploring.

10.2. Scalable Conflicts

Another potential way to expand the reach of the rule and create more opportunities for
scalable implementations is to find ways in which non-conflict-free operations can scale.
For example, while streaming computations are in general not linearly scalable because
of interconnect and memory contention, we’ve had success with scaling interconnect-
aware streaming computations. These computations place threads on cores so that the
structure of sharing between threads matches the structure of the hardware intercon-
nect and such that no link is oversubscribed. For example, on the 80-core x86 from
Section 9, repeatedly shifting tokens around a ring mapped to the hardware intercon-
nect achieves the same throughput regardless of the number of cores in the ring, even
though every operation causes conflicts and communication.

It is unclear what useful computations can be mapped to this model given the vary-
ing structures of multicore interconnects. However, this problem has close ties to job
placement in data centers and may be amenable to similar approaches. Likewise, the
evolving structures of data center networks could inform the design of multicore inter-
connects that support more scalable computations.

10.3. Not Everything Can Commute

We have advocated fixing scalability bottlenecks by making interfaces as commuta-
tive as possible. Unfortunately, some interfaces are set in stone, and others, such as
synchronization interfaces, are fundamentally noncommutative. It may not be possible
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to make implementations of these scale linearly, but making them scale as well as
possible is as important as making commutative operations scale.

This article addressed this problem only in ad hoc ways. Most notably, resource recla-
mation is inherently non commutative but, of course, unavoidable in any real system.
However, resource reclamation is often not time sensitive. Hence, ScaleFS makes exten-
sive use of Refcache [Clements et al. 2013a], which focuses all of the noncommutativity
and nonscalability inherent in resource reclamation into a periodic, non-critical-path
operation. This periodic operation allows Refcache to batch and eliminate many con-
flicts and amortize the cost of these conflicts. However, whether there is a general
interface-driven approach to the scalability of noncommutative operations remains an
open question.

10.4. Broad Conflict Freedom

As evidenced by sv6 in Section 8, real implementations of real interfaces can be conflict
free in nearly all commutative situations. But, formally, the scalable commutativity
rule states something far more restricted: that for a specific commutative region of a
specific history, there is a conflict-free implementation. In other words, there is some
implementation that is conflict free for each of the 26,238 tests COMMUTER ran, but
passing all of them might require 26,238 different implementations. This strictness is
a necessary consequence of SIM commutativity, but, of course, sv6 shows that reality
is far more tolerant.

This gap between the theory and the practice of the rule suggests that there may
be a space of tradeoffs between interface properties and construction generality. A
more restrictive interface property may enable the construction of broadly conflict-
free implementations. If possible, this “alternate rule” may capture a more practically
useful construction, perhaps even a construction that could be applied mechanically to
build practical scalable implementations.

11. CONCLUSION

We are in the midst of a sea change in software performance, as systems from top-tier
servers to embedded devices turn to parallelism to maintain a performance edge. This
article introduced a new approach for software developers to understand and exploit
multicore scalability during software interface design, implementation, and testing. We
defined, formalized, and proved the scalable commutativity rule, the key observation
that underlies this new approach. We defined SIM commutativity, which allows devel-
opers to apply the rule to complex, stateful interfaces. We further introduced COMMUTER

to help programmers analyze interface commutativity and test that an implementation
scales in commutative situations. Finally, using sv6, we showed that it is practical to
achieve a broadly scalable implementation of POSIX by applying the rule, and that
commutativity is essential to achieving scalability and performance on real hardware.
As scalability becomes increasingly important at all levels of the software stack, we
hope that the scalable commutativity rule will help shape the way developers meet this
challenge.

APPENDIX

A. PROOF OF CONVERSE RULE

We begin by showing that the order of two conflict-free machine invocations can be
exchanged without affecting the responses or conflict freedom of the corresponding
steps or the machine state following the two steps.
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LEMMA A.1. Consider an initial state s0 and two invocations i1 and i2 on different
threads. If

m(s0, i1) = 〈s1, r1, a1〉 and m(s1, i2) = 〈s2, r2, a2〉
and m(s0, i1) and m(s1, i2) are conflict free, then for some s′

1,

m(s0, i2) = 〈s′
1, r2, a2〉 and m(s′

1, i1) = 〈s2, r1, a1〉
and m(s0, i2) and m(s′

1, i1) are conflict free. That is, i1 and i2 can be reordered without
changing their responses, the final state, or their conflict freedom.

Intuitively, this makes sense: since i1 and i2 are conflict free, the execution of each
step is unaffected by the other. Proving this is largely an exercise in transforming s0,
s1, and s2 in the appropriate ways.

PROOF. Let w1 and w2 be the sets of state components written by m(s0, i1) and
m(s1, i2), respectively. Because these steps are conflict free and on different threads,
w1 ∩ a2 = w2 ∩ a1 = ∅. This implies w1 ⊆ a2

c and w2 ⊆ a1
c (where sc denotes the set

complement of s). Furthermore, because of the write inclusion restriction, w1 ⊆ a1 and
w2 ⊆ a2.

Consider the step m(s0, i2), which applies i2 to state s0 instead of s1. We can write s0 =
s1{w1 ← s0.w1}; or, since w1 ⊆ a2

c, s0 = s1{a2
c ← s0.a2

c}. Since m(s1, i2) = 〈s2, r2, a2〉,
we can apply the access set restriction to see that

m(s0, i2) = m(s1{a2
c ← s0.a2

c}, i2) = 〈s2{a2
c ← s0.a2

c}, r2, a2〉.
So the response and access set are unchanged from the original order.

Let s′
1 be the new state. We expand it as follows:

s′
1 = s2{a2

c ← s0.a2
c} (from above)

= s0{w1 ← s1.w1}{w2 ← s2.w2}{a2
c ← s0.a2

c} (def. of s2)
= s0{w1 ← s1.w1}{a2

c ← s0.a2
c}{w2 ← s2.w2} (since a2

c ∩ w2 = ∅)
= s0{a2

c ← s0.a2
c}{w2 ← s2.w2} (since w1 ⊆ a2

c)
= s0{w2 ← s2.w2}. (self-assignment)

Now consider the step m(s′
1, i1), which applies i1 to s′

1. Since w2 ⊆ a1
c, we can write

s′
1 = s0{a1

c ← s′
1.a1

c}, and, again using the access set restriction, conclude that

m(s′
1, i1) = m(s0{a1

c ← s′
1.a1

c}, i1) = 〈s1{a1
c ← s′

1.a1
c}, r1, a1〉.

Again, the response and access set are unchanged from the original order.
Let s′

2 be the resulting state s1{a1
c ← s′

1.a1
c}. Then

s′
2 = s0{w1 ← s1.w1}{a1

c ← s′
1.a1

c}
= s0{w1 ← s1.w1}{w2 ← s′

1.w2}{(a1
c − w2) ← s′

1.(a1
c − w2)}

= s0{w1 ← s1.w1}{w2 ← s2.w2}{(a1
c − w2) ← s0.(a1

c − w2)}.
Since the three assignment groups affect disjoint components, we may reorder them.
That shows

s′
2 = s0{(a1

c − w2) ← s0.(a1
c − w2)}{w1 ← s1.w1}{w2 ← s2.w2}

= s0{w1 ← s1.w1}{w2 ← s2.w2} = s2 :

the new final state equals the original final state. �
As a corollary to Lemma A.1, we can reorder not only adjacent invocations but also

larger sequences of conflict free invocations.
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COROLLARY A.2. Given a history H = X||Y ||Z, an implementation mthat can generate
H whose steps in Y are conflict free, and any reordering Y ′ of Y , mcan generate X||Y ′ || Z
and m’s steps in Y ′ are conflict free.

PROOF. Let W = i1, . . . , in be a witness of m generating H where m’s steps cor-
responding to Y are conflict free. Through repeated applications of Lemma A.1 to
machine invocations in W , we can construct a witness W ′ of m generating X || Y ′ || Z.
By Lemma A.1, m’s steps in Y ′ will be conflict free. �

Now that we have several facts about conflict freedom, we can begin to consider
commutativity. As the definition of SIM commutativity builds on the definition of SI
commutativity, we begin by examining SI commutativity.

Consider a specification S and a history H = X || Y ∈ S . Let m be a correct
implementation of S that can generate H. Let S |m be the subset of S that m can
generate.

LEMMA A.3. If m’s steps in Y are conflict free, then Y SI-commutes in X || Y with
respect to S |m.

PROOF. Let Y ′ be any reordering of Y and Z be any action sequence. We want to show
that X || Y || Z ∈ S |m if and only if X || Y ′ || Z ∈ S |m. Since H ∈ S |m if and only if m
can generate H, we can equivalently show that m can generate X || Y || Z if and only if
m can generate X || Y ′ || Z; but this follows directly from Lemma A.2. �

Finally, we can extend this result to SIM commutativity.

THEOREM A.4. If m’s steps in Y are conflict free, then Y SIM-commutes in X || Y with
respect to S |m.

PROOF. Let Y ′ be any reordering of Y . By Corollary A.2, m can generate X || Y ′ and m
is conflict free in Y ′. Let P be any prefix of Y ′. Because m is a step function, m can also
generate X || P and, by extension, is conflict free in P. By Lemma A.3, P SI-commutes
in X || P and, therefore, Y SIM-commutes in X || Y . �

COROLLARY A.5. If Y does not SIM-commute in X || Y with respect to S |m, then m’s
steps in Y must conflict.
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Roscoe, Adrian Schüpbach, and Akhilesh Singhania. 2009. The multikernel: A new OS architecture for
scalable multicore systems. In Proceedings of the 22nd ACM Symposium on Operating Systems Principles
(SOSP’09).

Fabrice Bellard and others. 2011. QEMU. Retrieved August 1, 2014, from http://www.qemu.org/.
Daniel J. Bernstein. 2007. Some thoughts on security after ten years of qmail 1.0. In Proceedings of the ACM

Workshop on Computer Security Architecture.

ACM Transactions on Computer Systems, Vol. 32, No. 4, Article 10, Publication date: January 2015.

http://www.qemu.org/


The Scalable Commutativity Rule: Designing Scalable Software for Multicore Processors 10:45

Philip A. Bernstein and Nathan Goodman. 1981. Concurrency control in distributed database systems.
Computer Surveys 13, 2 (June 1981), 185–221.

David L. Black, Richard F. Rashid, David B. Golub, Charles R. Hill, and Robert V. Baron. 1989. Translation
lookaside buffer consistency: A software approach. In Proceedings of the 3rd International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS’89). 113–122.

Silas Boyd-Wickizer. 2014. Optimizing Communication Bottlenecks in Multiprocessor Operating System Ker-
nels. Ph.D. Dissertation. Massachusetts Institute of Technology.

Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, M. Frans Kaashoek, Robert Morris, Aleksey
Pesterev, Lex Stein, Ming Wu, Yuehua Dai, Yang Zhang, and Zheng Zhang. 2008. Corey: An operat-
ing system for many cores. In Proceedings of the 8th Symposium on Operating Systems Design and
Implementation (OSDI’08).

Silas Boyd-Wickizer, Austin Clements, Yandong Mao, Aleksey Pesterev, M. Frans Kaashoek, Robert Morris,
and Nickolai Zeldovich. 2010. An analysis of Linux scalability to many cores. In Proceedings of the 9th
Symposium on Operating Systems Design and Implementation (OSDI). Vancouver, Canada.

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In Proceedings of the 8th Symposium on Operating
Systems Design and Implementation (OSDI’08).

Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R. Engler. 2006. EXE: Au-
tomatically generating inputs of death. In Proceedings of the 13th ACM Conference on Computer and
Communications Security.

Bryan Cantrill and Jeff Bonwick. 2008. Real-world concurrency. Communications of the ACM 51, 11 (2008),
34–39.

Koen Claessen and John Hughes. 2000. QuickCheck: A lightweight tool for random testing of Haskell pro-
grams. In Proceedings of the 5th ACM SIGPLAN International Conference on Functional Programming.

Austin T. Clements. 2014. The Scalable Commutativity Rule: Designing Scalable Software for Multicore
Processors. Ph.D. Dissertation. Massachusetts Institute of Technology.

Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich. 2012. Concurrent address spaces using
RCU balanced trees. In Proceedings of the 17th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’12).

Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich. 2013a. RadixVM: Scalable address spaces
for multithreaded applications (revised 2014-08-05). In Proceedings of the ACM EuroSys Conference.

Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich, Robert T. Morris, and Eddie Kohler. 2013b. The
scalable commutativity rule: Designing scalable software for multicore processors. In Proceedings of the
24th ACM Symposium on Operating Systems Principles (SOSP’13).

Jonathan Corbet. 2010. The Search for Fast, Scalable Counters. Retrieved August 1, 2014, from http://
lwn.net/Articles/170003/.

Jonathan Corbet. 2012. Dcache scalability and RCU-walk. (April 23, 2012). Retrieved August 1, 2014, from
http://lwn.net/Articles/419811/.

Russ Cox, M. Frans Kaashoek, and Robert T. Morris. 2011. Xv6, a simple Unix-like teaching operating
system. (February 2011). Retrieved August 1, 2014, from http://pdos.csail.mit.edu/6.828/xv6/.

Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In Proceedings of the 14th
International Conference on Tools and Algorithms for the Construction and Analysis of Systems.

John DeTreville. 1990. Experience with Concurrent Garbage Collectors for Modula-2+. Technical Report 64.
DEC Systems Research Center.

Adam Dunkels and others. 2012. Lightweight IP. Retrieved August 1, 2014, from http://savannah.
nongnu.org/projects/lwip/.

DWARF Debugging Information Format Committee. 2010. DWARF debugging information format, version 4.
Retrieved from http://www.dwarfstd.org/doc/DWARF4.pdf.

Faith Ellen, Yossi Lev, Victor Luchango, and Mark Moir. 2007. SNZI: Scalable nonzero indicators. In Pro-
ceedings of the 26th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing.

Jason Evans. 2006. A scalable concurrent malloc (3) implementation for FreeBSD. In Proceedings of the
BSDCan Conference. Ottawa, Canada.

Ben Gamsa, Orran Krieger, Jonathan Appavoo, and Michael Stumm. 1999. Tornado: Maximizing locality and
concurrency in a shared memory multiprocessor operating system. In Proceedings of the 3rd Symposium
on Operating Systems Design and Implementation (OSDI’99). 87–100.

Sanjay Ghemawat. 2007. TCMalloc: Thread-caching Malloc. Retrieved from http://gperftools.googlecode.
com/svn/trunk/doc/tcmalloc.html.

ACM Transactions on Computer Systems, Vol. 32, No. 4, Article 10, Publication date: January 2015.

http://lwn.net/Articles/170003/
http://lwn.net/Articles/170003/
http://lwn.net/Articles/419811/
http://pdos.csail.mit.edu/6.828/xv6/
http://savannah.nongnu.org/projects/lwip/
http://savannah.nongnu.org/projects/lwip/
http://www.dwarfstd.org/doc/DWARF4.pdf
http://gperftools.googlecode.com/svn/trunk/doc/tcmalloc.html
http://gperftools.googlecode.com/svn/trunk/doc/tcmalloc.html


10:46 A. T. Clements et al.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed automated random test-
ing. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design and
Implementation.

J. R. Goodman and H. H. J. Hum. 2009. MESIF: A Two-Hop Cache Coherency Protocol for Point-to-Point
Interconnects. Technical Report. University of Auckland and Intel.

Maurice Herlihy and Eric Koskinen. 2008. Transactional boosting: A methodology for highly-concurrent
transactional objects. In Proceedings of the 13th ACM Symposium on Principles and Practice of Parallel
Programming.

Maurice Herlihy and Nir Shavit. 2008. The Art of Multiprocessor Programming. Morgan Kaufmann.
Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A correctness condition for concurrent

objects. ACM Transactions on Programming Languages Systems 12, 3 (1990), 463–492.
David Howells. 2010. Extended File Stat Functions, Linux Patch. Retrieved August 1, 2014, from https://

lkml.org/lkml/2010/7/14/539.
IEEE (The Institute of Electrical and Electronics Engineers) and The Open Group. 2013. The Open

Group base specifications issue 7, 2013 edition (POSIX.1-2008/Cor 1-2013). Retrieved from http://pubs.
opengroup.org/onlinepubs/9699919799/.

Intel. 2012. The ACPI Component Architecture Project. Retrieved August 1, 2014, from http://www.
acpica.org/.

Intel. 2013. Intel 64 and IA-32 Architectures Software Developer’s Manual. Vol. 3. Intel Corporation.
ISO. 2011. ISO/IEC 14882:2011(E): Information technology – Programming languages – C++. Geneva,

Switzerland.
Amos Israeli and Lihu Rappoport. 1994. Disjoint-access-parallel implementations of strong shared memory

primitives. In Proceedings of the 13th ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing.

Pieter Koopman, Artem Alimarine, Jan Tretmans, and Rinus Plasmeijer. 2002. Gast: Generic automated
software testing. In Proceedings of the 14th International Workshop on the Implementation of Functional
Languages.

Christoph Lameter. 2005. Effective synchronization on Linux/NUMA systems. In Gelato Conference. Re-
trieved August 1, 2014, from http://lameter.com/gelato2005.pdf.

Ran Liu and Haibo Chen. 2012. SSMalloc: A low-latency, locality-conscious memory allocator with stable
performance scalability. In Proceedings of the 3rd Asia-Pacific Workshop on Systems.

Paul E. McKenney. 1999. Differential profiling. Software: Practice and Experience 29, 3 (1999), 219–234.
Paul E. McKenney. 2011. Concurrent Code and Expensive Instructions. Retrieved August 1, 2014, from

https://lwn.net/Articles/423994/.
Paul E. McKenney, Dipankar Sarma, Andrea Arcangeli, Andi Kleen, Orran Krieger, and Rusty Russell. 2002.

Read-copy update. In Proceedings of the Linux Symposium.
John M. Mellor-Crummey and Michael L. Scott. 1991. Algorithms for scalable synchronization on shared-

memory multiprocessors. ACM Transactions on Computer Systems 9, 1 (1991), 21–65.
Mark S. Papamarcos and Janak H. Patel. 1984. A low-overhead coherence solution for multiprocessors with

private cache memories. In Proceedings of the 11th Annual International Symposium on Computer
Architecture.

Prakash Prabhu, Soumyadeep Ghosh, Yun Zhang, Nick P. Johnson, and David I. August. 2011. Commutative
set: A language extension for implicit parallel programming. In Proceedings of the 2011 ACM SIGPLAN
Conference on Programming Language Design and Implementation.

Martin C. Rinard and Pedro C. Diniz. 1997. Commutativity analysis: A new analysis technique for paral-
lelizing compilers. ACM Transactions on Programming Languages and Systems 19, 6 (November 1997),
942–991.

Amitabha Roy, Steven Hand, and Tim Harris. 2009. Exploring the limits of disjoint access parallelism. In
Proceedings of the 1st USENIX Workshop on Hot Topics in Parallelism.

Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A concolic unit testing engine for C. In Proceedings
of the 13th ACM SIGSOFT International Symposium on Foundations of Software Engineering.

Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski. 2011a. Conflict-free replicated data
types. In Proceedings of the 13th International Conference on Stabilization, Safety, and Security of
Distributed Systems.

Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski. 2011b. Convergent and commutative
replicated data types. Bulletin of the EATCS 104 (June 2011), 67–88.

Guy L. Steele, Jr. 1990. Making asynchronous parallelism safe for the world. In Proceedings of the 17th ACM
Symposium on Principles of Programming Languages.

ACM Transactions on Computer Systems, Vol. 32, No. 4, Article 10, Publication date: January 2015.

https://lkml.org/lkml/2010/7/14/539
https://lkml.org/lkml/2010/7/14/539
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://www.acpica.org/
http://www.acpica.org/
http://lameter.com/gelato2005.pdf
https://lwn.net/Articles/423994/


The Scalable Commutativity Rule: Designing Scalable Software for Multicore Processors 10:47

Super Micro Computer. 2012. X8OBN-F manual. Retrieved from http://www.supermicro.com/manuals/
motherboard/7500/X8OBN-F.pdf.

Gil Tene, Balaji Iyengar, and Michael Wolf. 2011. C4: The continuously concurrent compacting collector.
SIGPLAN Notices 46, 11 (June 2011), 79–88.

Tyan Computer Corporation. 2006a. M4985 manual. (2006).
Tyan Computer Corporation. 2006b. S4985G3NR manual. (2006).
R. Unrau, O. Krieger, B. Gamsa, and M. Stumm. 1995. Hierarchical clustering: A structure for scalable

multiprocessor operating system design. Journal of Supercomputing 9, 1–2 (March 1995), 105–134.
W. E. Weihl. 1988. Commutativity-based concurrency control for abstract data types. IEEE Transactions on

Computers 37, 12 (December 1988), 1488–1505.
David Wentzlaff and Anant Agarwal. 2009. Factored operating systems (FOS): The case for a scalable

operating system for multicores. ACM SIGOPS Operating System Review 43, 2 (2009), 76–85.

Received October 2014; accepted October 2014

ACM Transactions on Computer Systems, Vol. 32, No. 4, Article 10, Publication date: January 2015.

http://www.supermicro.com/manuals/motherboard/7500/X8OBN-F.pdf
http://www.supermicro.com/manuals/motherboard/7500/X8OBN-F.pdf

