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Chapter 1

Introduction

The design and implementation of lock-free data structures is a tricky art. It is difficult to

argue about the correctness of the implementation of parallel algorithms. Even a correctness

proof of the underlying algorithm is no guarantee for a correct implementation. For example,

Chapter 5 describes a bug in an implementation of the proven-correct Michael and Scott

queue [10]. The bug involves four different threads and a total of three preemptions, and it

is difficult to construct a sequence of events that triggers the bug even knowing what the bug

is.

Such bugs are hard to find by stress-testing because the implementations are non-

deterministic and the bugs appear with low probability. Model checkers that construct and

enumerate thread schedules, or traces, have been a successful alternative to stress-testing [6,

7, 14]. This thesis contributes a new model checker called Context Bounded Dynamic

Partial-Order Reduction, or CB-DPOR, designed to enumerate a subset of inequivalent

traces likely to exhibit bugs.

It is infeasible to enumerate all possible traces for most non-trivial programs. Instead,

past work has focused on two main approaches to enumerate fewer traces while still finding

bugs. The first approach, found in the original Dynamic Partial-Order Reduction or DPOR

algorithm, aims to enumerate only one representative trace for each class of equivalent

traces that are indistinguishable by the program using partial order reduction techniques [6].

However, the number of inequivalent traces is still too large to enumerate in practice [11].

The second approach instead focuses on enumerating only a subset of traces likely to
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exhibit bugs, such as traces with a limited number of forced context switches. The CHESS

model checker explores only traces where the number of preemptions does not exceed

a pre-defined context bound [11, 13]. As an example, a trace that briefly runs thread 1,

switches to thread 2, back to thread 1 and then finishes thread 2 has a context bound of 2 as

the first two context switches are preemptions of threads that later continue running, while

the third context switch is inevitable as thread 1 has finished running. When the context

bound is increased over time, CHESS’s exploration resembles a breadth-first search that

quickly covers a diverse set of traces. In practice many bugs can be found with a small

number of preemptions [14], and even though CHESS explores many equivalent traces, it

successfully finds bugs.

Another algorithm for enumerating traces that are likely to contain bugs is the non-

deterministic Probabilistic Concurrent Testing, or PCT, model checker [4]. PCT assigns

threads priorities and runs threads strictly according to priority order. To find bugs, PCT

randomly picks several priority change points where the current running thread is assigned

a lower priority. Because of its sampling approach PCT finds some bugs quickly while

missing other bugs completely.

CB-DPOR aims to enumerate CHESS’s subset of traces with DPOR’s efficiency by

combining the two algorithms. The core of CB-DPOR is a combination of CHESS with

DPOR. CB-DPOR respects the context bound from CHESS to rapidly explore a large

number of interesting traces. At the same time, CB-DPOR inserts preemption points only at

memory accesses that can be reordered after a later access by another thread. For example,

CB-DPOR will never preempt a thread while it accesses a thread-local variable.

The difficult part in combining CHESS with DPOR is the addition of sleep sets, which

are important to DPOR’s efficiency [6]. Musavathi and Qadeer have shown sleep sets to

be incompatible with CHESS [12]. Sleep sets stop the construction of traces from a given

prefix if all traces starting with the prefix can be guaranteed to be equivalent to an already

enumerated trace, which requires that the model checker enumerate all possible traces

starting with each previous prefix. Yet this assumption does not hold for CHESS combined

with sleep sets, so sleep sets will also stop the construction of traces when the equivalent

trace has never been enumerated because it exceeded the context bound.

8



This thesis refines the incompatibility result from Musavathi and Qadeer and contributes

preemption-only sleep sets, which are compatible with CB-DPOR by putting threads to

sleep only when they get preempted. Using preemption-only sleep sets CB-DPOR never

enumerates equivalent traces because of a preemption. The intuition behind preemption-only

sleep sets comes from DPOR where all context switches can be thought of as preemptions.

In CHESS and CB-DPOR not all context switches are preemptions, and precisely those

context switch points violate the sleep sets assumption. Preemption-only sleep sets are

compatible with CHESS, CB-DPOR and normal DPOR.

We have implemented CB-DPOR in a tool called CODEX along with implementations of

CHESS and PCT. CODEX instruments all memory accesses of a C++ program and allows

the algorithms to exactly control the scheduler for deterministic program execution. CODEX

also includes a modified linearizability checker from Line-Up [3] to work with PCT, as the

original Line-Up algorithm was designed with CHESS and in some cases finds linearizability

violations only in traces that are not explored by PCT. We propose a modification to Line-Up

so it considers all equivalent traces at the same time and no longer needs the equivalent

traces.

We have tested CODEX on random test cases generated by the Line-Up framework

for lock-free data structures from CDS [9] and Boost’s [1] lock-free library, finding both

previously known and unknown bugs. CB-DPOR does so an order of magnitude faster than

both CHESS and PCT because it explores far fewer equivalent traces.

In summary, the contributions of this thesis are as follows:

• A trace-enumerating algorithm CB-DPOR combining the two main approaches used

for practical software model checking. CB-DPOR was developed in parallel with the

Bounded Partial-Order Reduction, or BPOR, model checking algorithm [5]. BPOR

combines DPOR with bounds, such as the preemption bound used by CHESS. Algo-

rithmically, preemption-bounded BPOR and CB-DPOR function almost the same.

• An extension of the Line-Up linearizability checking algorithm that checks all equiva-

lent traces at the same time for compatibility with CB-DPOR.

• Implementations of CB-DPOR, CHESS, PCT and the extended Line-Up linearizability
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checker in the testing framework CODEX.

• A detailed evaluation comparing the performance of CB-DPOR, CHESS and PCT.

• Previously unknown bugs in libcds, an open-source concurrent data structure library.

The rest of this thesis is organized as follows. First, a description of previous work and a

formal description of key terms in Chapter 2. Then Chapter 3 contains a detailed description

of CB-DPOR along with pseudocode. CODEX’s implementation is described in Chapter 4.

Chapter 5 describes a bug reproduced using CODEX. In Chapter 6 we evaluate and compare

CB-DPOR with earlier model checkers.
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Chapter 2

Background

CB-DPOR builds on the algorithms and definitions from CHESS [14] and DPOR [6]. In

this chapter we provide the relevant definitions, as well as brief summaries of the internals

of different trace enumeration algorithms.

2.1 Partial-order reduction

Partial-order reduction techniques aim to reduce the number of different interleavings

explored, skipping interleavings where a program’s output will be the same. To reason about

a program’s result we need a formal view of program execution. The definitions used in this

thesis are based on the definitions used by DPOR.

A program consists of several threads that perform local operations and shared-memory

accesses. All local operations are assumed to be deterministic, so that a model checker can

instead focus on the shared-memory operations. All memory accesses are assumed to be

linearizable so that a program’s execution summarizing the interleaving of all threads is a

linear history of memory accesses or transitions. A transition can be a simple memory read

or write, or a more complex atomic increment, compare-and-swap or a lock acquire. The

sequence of transitions executed by a program is a trace.

Some model checkers, including CB-DPOR, do not fairly schedule threads. To prevent

a thread from spinning forever under unfair schedules, transitions can have a programmer-

supplied runnability predicate. For example, a lock acquire implemented using a compare-

11



and-swap should be runnable only if the compare-and-swap will succeed. A useful follow-up

definition is to consider a thread runnable if and only if its next transition is runnable.

The relative orders of many transition pairs, such as writes to different memory addresses,

do not influence a program’s result. Two transitions are independent if their relative order

never changes the result of any transition. All other transition pairs are called dependent.

Two transitions by the same thread are always dependent. For any two dependent transitions

in a trace, the later transition depends on the earlier transition.

Two traces are equivalent if they can be transformed into each other by reordering

adjacent independent transition pairs. Because all transitions have the same result in two

equivalent traces, the program’s outcome must be the same in both traces, and so it suffices

to enumerate only inequivalent traces to enumerate all possible outcomes.

To generate inequivalent traces it is useful to know if two transitions in a trace could

possibly be reordered. Although two independent transitions can always be reordered if

they are adjacent, that is not necessarily true if they are further apart, as they might both be

dependent with an intermediate transition which imposes a relative ordering. In that case,

the later transition transitively depends on, or happens after, the earlier transition and cannot

be reordered.

2.2 Context-bounded model checking

One way of exploring traces likely to contain bugs is to limit the number of preemptions

in each trace, as done by CHESS. A context switch in a trace happens whenever two

consecutive transitions come from different threads. A preemption is a forced context switch

where the original thread remains runnable after the first transition. Context-bounded model

checking in CHESS and CB-DPOR limits the number of preemptions in each trace.

Besides practical evidence that context-bounded exploration finds many bugs, context-

bounded exploration also provides a theoretical upper-bound on the number of traces that

must be explored: since the total number of traces with a fixed preemption limit grows

polynomially in program length, all traces up to a fixed preemption limit can be explored in

polynomial time.
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To find bugs as quickly as possible, CHESS and CB-DPOR use iterative deepening and

increase the preemption limit after each successive run of the algorithm. Using iterative

deepening CHESS and CB-DPOR can quickly find bugs with a low preemption count, and

provide coverage guarantees after each run in case there are no bugs.

2.3 Enumerating traces

From a low-level point of view, a model checker has only limited knowledge of and control

over a tested program: the model checker knows each threads’ next transition, can decide

the next transition to run, and no more. To systematically enumerate traces, CB-DPOR,

CHESS and DPOR all have a recursive exploration function that constructs traces as if they

were exploring a tree. These exploration functions start with an empty trace prefix, decides

what thread to run next, extend the prefix by one thread, and recurse. The algorithms differ

in how they decide what threads to run.

CHESS. The CHESS algorithm runs all threads at each prefix unless running a thread

would violate the preemption limit. CHESS does not consider dependencies between

transitions.

DPOR. The dynamic partial order reduction algorithm attempts to run only the threads

necessary to explore all inequivalent traces. Initially, DPOR picks an arbitrary transition

to run at each prefix. DPOR observes that there is no need to run other transitions at that

prefix unless there is a later transition dependent with the original transition that could be

reordered with the original transition. Only if such a later transition is found will DPOR’s

exploration algorithm run other threads at a prefix.

PCT. Instead of performing a structured exploration, PCT [4] randomly samples traces

and stores no state during its search. For each sample, PCT picks a number of priority

switch points which are positions in the trace where the current thread’s priority is adjusted.

Then PCT randomly assigns starting priorities, and constructs a trace solely based on its
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scheduler. PCT guarantees a lower-bound probability of finding a bug depending on the

program length and number of context switch points.

2.4 Sleep sets

Sleep sets are an important optimization to DPOR [6]. Where DPOR carefully attempts

to introduce preemptions only when truly necessary, sleep sets make sure that introduced

preemptions actually lead to new, inequivalent traces.

When preempting a thread, DPOR adds the preempted thread to the sleep set. Threads in

the sleep set are not allowed run until removed from the sleep set, and threads are removed

only when a transition dependent with the thread’s next transition executes.

If DPOR were to execute a thread still in the sleep set, the resulting trace would be

equivalent to an already explored trace: the sleeping thread’s next transition could be moved

back in the trace until right after the original prefix because there would be no dependent

transitions in between, and DPOR has already explored all traces with the sleeping thread’s

transition right after the prefix!

This reordering argument requires the model checker to have explored all possible

reordered traces starting with the original prefix. CHESS does not explore all traces starting

with each prefix because of the preemption limit, and so CHESS is not compatible with

sleep sets as described above [12].

2.5 Bounded partial-order reduction

The BPOR model checker combines DPOR with sleep sets with bounded exploration, such

as a context bound [5]. When BPOR uses a preemption bound, the model checker handles

conflicting memory accesses differently from DPOR. Like DPOR, BPOR schedules the

exploration of a trace where the original memory access executes after the later conflict.

Unlike DPOR, BPOR also schedules the exploration of a trace where the entire original

thread executes after the later conflict to not increase the number of preemptions. BPOR

uses sleep sets only for preemptions introduced by the original DPOR algorithm.
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In practice, CB-DPOR functions similar to BPOR with a preemption bound. Like BPOR,

CB-DPOR uses sleep sets only for preemptions. CB-DPOR inserts preemptions after finding

conflicting memory accesses, just like BPOR.
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Chapter 3

Design

In this chapter we present the CB-DPOR algorithm with pseudocode and introduce preemption-

only sleep sets compatible with CB-DPOR. An example exploration of a simple program

with three threads by CB-DPOR can be found in Figure 3-1.

3.1 CB-DPOR

CB-DPOR attempts to enumerate inequivalent traces with a limited number of preemptions.

CB-DPOR’s main mechanism for exploring different traces is the introduction of context

switch points. After a prefix that is marked as a context switch point, CB-DPOR will

explore every runnable thread. There are two types of context switch points: those explicitly

introduced by later dependencies, and those implicitly introduced by the trace. Implicit

context switch points are introduced whenever the previous thread is no longer runnable,

because it ended or blocked, and at the beginning of the trace.

In the example exploration in Figure 3-1 the first implicit context switch point is the

leftmost vertical line at the beginning of the program. Other implicit context switch points

can be found in trace (a) when thread A finishes running and threads B and C are attempted.

A context switch point might consider only one thread, such as in trace (a) after thread B

finishes and only C is left.

Whenever a transition depends on an earlier transition, CB-DPOR explicitly introduces

a preemption as a new context switch point. The goal of such a preemption is to construct a

16



Thread A:
w=1
x=2
y=3

Thread B:
y=z
x=y

Thread C:
z=4

(a)

(b)

(c)

(c)

(d)

(e)

(e)

(f)

(e)

(e)

(g)

(g)

(g)

(b)

(d)

(f)

(f)

(h)

A:w=1 A:x=2 A:y=3 B:y=z B:x=y C:z=4

C:z=4 B:y=z B:x=y

B:y=z B:x=y A:y=3 C:z=4

C:z=4 A:y=3

C:z=4 B:y=z B:x=y A:y=3

A asleep

B:y=z B:x=y A:x=2 A:y=3 C:z=4

C:z=4 A:x=2 A:y=3

C:z=4 B:y=z B:x=y A:x=2 A:y=3

A asleep

B:y=z B:x=y A:w=1 A:x=2 A:y=3 C:z=4

C:z=4 A:w=1 A:x=2 A:y=3

A:w=1 A:x=2 A:y=3 B:x=y C:z=4

C:z=4 B:x=y

C:z=4 A:w=1 A:x=2 A:y=3 B:x=y

B asleep

C:z=4 A:w=1 A:x=2 A:y=3 B:y=z B:x=y

B:y=z B:x=y A:y=3

B:y=z B:x=y A:x=2 A:y=3

B:y=z B:x=y A:w=1 A:x=2 A:y=3

A:w=1 A:x=2 A:y=3 B:x=y

y

x

x

x

y

x

Figure 3-1: A simple program along with its exploration by CB-DPOR. All preemptions are
marked with red arrows and have a dotted line connecting the dependent transition to the
preemption point. Each finished trace is labeled; equivalent traces have the same label.
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trace in which the later dependency runs before the preempted transition. Such a preemption

is introduced only if the later dependency can be reordered with the earlier transition.

An example of a preemption can be found in (a), introduced by the dependency B:y=z on

A:y=3. In the traces (c) and (d) constructed after that preemption B:y=z executes before the

preempted transition A:y=3. Note that in trace (a) the dependency of B:x=y on A:x=2 does

not yet introduce a context switch point before transition A:x=2, as they are both ordered by

the intermediate transition A:y=3.

3.2 Preemption-only sleep sets

CB-DPOR uses preemption-only sleep sets instead of DPOR’s sleep sets. Like DPOR,

CB-DPOR removes threads from the sleep set whenever it executes a dependent transition,

but unlike DPOR, CB-DPOR adds threads only after a preemption, and not at other context

switch points. The idea behind preemption-only sleep sets is that CB-DPOR can guarantee

that a sleeping preempted transition can be moved backwards in the trace to the point where

it was preempted and added to the sleep set without increasing the number of preemptions.

Preemption-only sleep sets allow CB-DPOR to skip an equivalent trace while exploring

(f) in the example. CB-DPOR does not run thread A after C: z=4, as A was preempted and

not yet removed from the sleep set. If CB-DPOR were to execute A:x=2 before the conflict

B:x=y, the preempted A:x=2 could be moved backwards in the trace without increasing the

total number of preemptions, and result in a trace equivalent to either (b) or (d).

CB-DPOR does not add the first transition A:w=1 to the sleep set, even though it tries

other transitions in its place. If CB-DPOR were to add the transition to the sleep set, then

CB-DPOR would not explore the trace (h): although (h) could start with A:w=1, that would

require adding a preemption and violating the preemption bound.

3.3 Pseudocode

Pseudocode for CB-DPOR can be found in Figure 3-2. The main recursive search function

is Explore(prefix, sleepset, preemptions). Explore starts with an empty prefix, an empty
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function ConsiderPreemptions(prefix, thread)
foreach t ∈ prefix dependent with Next(thread) do

if thread’s last transition does not happen after t
then

Mark the prefix ending with t

function Attempt(prefix, sleeping, preemptions, thread)
Remove threads whose next transition is dependent with

Next(thread) from sleeping
ConsiderPreemptions(prefix, thread)
Explore(prefix + Next(thread), sleeping, preemptions)

function Explore(prefix, sleeping, preemptions)
l ← the last thread in prefix
if l is still runnable then

Attempt(prefix, sleeping, preemptions, l)
if prefix has been marked and preemptions < limit
then

sleeping← sleeping∪{l}
preemptions← preemptions+1
foreach T ∈ threads− sleeping do

Attempt(prefix, sleeping, preemptions, T )

else
foreach T ∈ threads− sleeping do

Attempt(prefix, sleeping, preemptions, T )

Figure 3-2: Pseudocode for CB-DPOR.

19



sleep set, and a count of zero preemptions.

Explore first determines if it needs to introduce an implicit context switch point, and if so

it runs all threads not in the sleep set (this is the lower branch). Otherwise, Explore initially

attempts only the previous thread.

Explore extends a prefix by a thread by calling Attempt(prefix, sleeping, preemptions,

thread). First, Attempt updates the sleep set by removing dependencies of the next transition.

Then Attempt considers the introduction of explicit preemption context switch points: all

dependencies of the next transition that can be reordered have their prefix marked. Finally,

Attempt calls Explore to recursively explore the new prefix.

Whenever a recursive search of prefix with no implicit context switch point finishes,

Explore checks if the prefix has been marked by a later transition. When Explore finds a

conflict, and the number of preemptions does not yet exceed the limit, Explore introduces

an explicit context switch point and runs all available threads. Explore ignores marks on

prefixes with implicit context switch points.

3.4 Linearizability testing

By themselves, model checkers that enumerate different execution traces will trigger bugs,

but not detect them: although a program might return an invalid result, a model checker

such as CB-DPOR has no knowledge of correct or incorrect results. Instead, CB-DPOR by

itself will find only crash-bugs and deadlocks.

To find all concurrency bugs using CB-DPOR, CODEX use a modified version of the

Line-Up linearizability checker [3] to test lock-free data structures. Line-Up takes traces

generated by a model checker, and checks them for linearizability. A limitation of the

original Line-Up algorithm is that it does not guarantee the same result on two equivalent

traces. CODEX includes a modified version of Line-Up that considers all equivalent traces

at the same time.

To test for linearizability, Line-Up groups actions by threads in function calls. In a

trace these functions might run concurrently, for example, if CB-DPOR preempts individual

functions. However, for a trace to be linearizable, there must be another trace in which
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the individual functions do not run concurrently, yet return the same results. Line-Up

exhaustively enumerates different orderings of the function calls, or linearizations, to find a

correct linearization with the same results as in the trace.

Not all orderings of function calls are valid linearizations: for example, if two functions

do not run concurrently, so that the second the function starts in the trace after the first one

ends, then any valid linearization must respect that ordering.

The original Line-Up enforces such a relative order between two function calls only if

the earlier function finishes completely before the second function starts. However, this

means that Line-Up has different behavior on equivalent traces. For example, consider the

two equivalent traces labeled (c) in Figure 3-1. If the entirety of thread A and thread C are

each a single function call, then Line-Up would force C to run after A in the first trace (c),

yet not enforce any ordering in the second trace (c). This might hide a bug, if running C

before A gives a linearization with the same outputs.

The original Line-Up misses some bugs because Line-Up does not consider the actual

the dependencies between the two threads, instead considering only when the threads’

transitions run. CODEX’s modified version of Line-Up considers the dependencies between

threads, and allows two threads to be reordered only if they both have a dependency on each

other. Additionally, if there are no dependencies between two threads, CODEX requires that

both relative orderings are correct. Because dependencies are the same for equivalent traces,

CODEX will not miss linearizability violations.

For example, for trace (c), CODEX will allow A and B to be reordered, as B: x=y

happens after A:y=3, and A:y=3 happens after B:x=y. At the same time, C must run after

B as C:z=4 happens after B:y=z, and no transition of B happens after a transition of C.

Finally, in a correct linearization, changing the relative order of A and C should not make

the linearization incorrect, as A and C have no dependent transitions.
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Chapter 4

Implementation

We have implemented CB-DPOR and other model-checking algorithms in CODEX to

evaluate CB-DPOR’s performance and to find bugs in real-world lock-free data structures.

In this chapter we describe the implementation of CODEX as well our extended version of

Line-Up to find linearizability bugs.

4.1 Controlling trace execution

CODEX bridges the gap between the interface expected by CB-DPOR and other algorithms

to manipulate program execution and the reality of unmodified C++ code. Model checkers

operate on an abstract program that consists of multiple threads whose state consists of an

extensible prefix of transitions executed so far.

CODEX provides this API by intercepting all memory accesses, exposing them as

transitions, and carefully controlling the scheduler to execute the desired transitions. Using

the LLVM compiler framework, CODEX replaces all memory accesses in the target program

with calls to the CODEX scheduler. The CODEX scheduler pauses the calling thread and

records the upcoming transition. Once the scheduler has collected upcoming transitions for

all threads, it lets the model checker decide what thread to run next.

CODEX does not intercept library calls, such as calls to a mutex primitive. Instead,

CODEX provides several such primitives using compare-and-swaps. Lock-free data struc-

tures usually use few existing primitives, and so CODEX’s implementation suffices for the
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tested libraries. Programmers can supply a runnability predicate through a RequireResult

function. For example, CODEX’s lock is implemented with RequireResult:

void Acquire() {
bool old = false;
RequireResult(false);
while (!held.compare_exchange_weak(old, true)) {}

}

When run normally, the while loop will spin until the lock is released. When run under

CODEX, the loop never spins: CODEX knows that the function will progress only when the

held variable is false, and will not run the Acquire function until the lock is available.

4.2 Generating test cases

To find bugs using CODEX we generated random programs consisting of 3 threads with

3 function calls per thread, as described in the Line-Up paper. After CODEX found a

linearizability violation, we manually constructed a smallest reproducing test case by

removing function calls from the initial test case until the test case no longer caused

a linearizability violation. Afterwards, we inspected the trace to find the cause of the

linearizability violation.

4.3 Efficient implementation

CB-DPOR has two possibly computationally expensive parts: finding all dependent transi-

tions in ConsiderPreemptions, and determining if two transitions happen after each other.

Both can be implemented efficiently using the techniques from DPOR [6], so that the

overhead per executed transition is linear in the number of threads.

CODEX limits transitions to memory accesses that modify only a single location in

memory. Because of this simplification it is easy to find all dependent transitions that a

thread has not yet happened after: for each memory location, we keep a list of memory reads

and all memory writes, and an index in both lists for each thread indicating the latest seen
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transition. A new transition then needs to consider only transitions not considered before,

and the amortized runtime for ConsiderPreemptions is linear in the number of threads. This

optimization is similar to the stack traversal optimization as used by DPOR.

The happens-before relation is maintained using vector clocks [8], stored for each thread,

each memory address, and each past transition in the prefix. Updating vector clocks requires

time linear in the number of threads for each transition, and comparing two vector clocks

runs in constant time, again similar to DPOR.

All operations on sets of threads are implemented using bit sets: CODEX allows a

maximum of 64 threads, and encodes sets of threads as 64 bit integers, so all common set

operations run in constant time.
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Chapter 5

Example bug

CODEX reproduced a bug in a development version of Boost’s lock-free queue [1], which is

an implementation of the Michael and Scott queue [10]. Figure 5-1 contains the implemen-

tation of the enqueue and dequeue function, and Figure 5-2 shows a trace triggering the bug.

The trace contains 5 threads, with three threads performing an enqueue, and two threads

performing a dequeue. The output of CODEX normally lists addresses instead of variable

names (as CODEX’s instrumentation works on addresses). However, CODEX does list the

line that caused each write, allowing a careful programmer to determine what variables were

written, and reconstruct a trace as in Figure 5-2.

In this specific trace, Boost’s FIFO accidentally resets the pointer version of A.NEXT in

step 30. Boost’s FIFO uses tagged pointers to prevent compare-and-swaps from spuriously

succeeding; however, the node allocator contained a bug that reset the tag on the NEXT

pointer, as it invoked the default constructor which reset all fields to zero. In Figure 5-2 a

pointer’s tag is written in subscript, so that A1 represents a pointer to A with tag 1. On a high

level, the problem in this trace is as follows: first, thread 0 starts an enqueue and plans on

attaching its node to node A, by reading A.NEXT on line 3. However, before it can change

A.NEXT. Then, thread 2 starts another enqueue, and attaches its node B to A on step 11. Now

thread 3 performs a dequeue, removing A as it is the first element in the list. It stores A for

reuse on step 26. Then thread 1 starts an enqueue and retrieves A on step 27. Before thread

1 uses A, it first calls the constructor, spuriously resetting the tag on A.NEXT on step 30.

Then thread 1 is preempted, and now thread 0 attaches its node, C, to A on step 35. Thread
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0 does not realize that A has changed while it was preempted; from thread 0’s point of view,

A.NEXT has been NULL0 the whole time. Then thread 0 completes, and thread 4 begins a

dequeue. This dequeue fails, because although thread 0 has added a new node to A, the node

A is not yet part of the queue. This is a linearizability violation, as thread 0 has successfully

enqueued 1234, no one has dequeued 1234, and yet thread 4 believes the queue is empty.

This example illustrates that CODEX can reproduce well-hidden bugs, and that even with

a powerful model checker, actually understanding the buggy line of code is still a challenge,

as lock-free data structures have complicated execution traces.
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void enqueue(T const & t) {
node * n = alloc_node(t);
for (;;) {

atomic_node_ptr tail (tail_);
memory_barrier();
atomic_node_ptr next (tail->next);
memory_barrier();
if (likely(tail == tail_)) {

if (next.get_ptr() == 0) {
if ( tail->next.CAS(next, n) ) {

tail_.CAS(tail, n);
return;

}
} else tail_.CAS(tail, next.get_ptr());

}
}

}

bool dequeue (T * ret) {
for (;;) {

atomic_node_ptr head (head_);
memory_barrier();
atomic_node_ptr tail(tail_);
node * next = head->next.get_ptr();
memory_barrier();
if (likely(head == head_)) {

if (head.get_ptr() == tail.get_ptr()) {
if (next == 0) return false;
tail_.CAS(tail, next);

} else {
if (next == 0) continue;
*ret = next->data;
if (head_.CAS(head, next)) {

dealloc_node(head.get_ptr());
memory_barrier();
return true;

}
}

}
}

}

Figure 5-1: Enqueue and dequeue code from Boost’s FIFO.
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Thread 0 starts ENQUEUE(1234):

1. Read FREELIST = NULL0
2. Read TAIL = A0
3. Read A.NEXT = NULL0
4. Read TAIL = A0

Thread 0 is preempted, and thread 2 starts
ENQUEUE(1236):

5. Read FREELIST = NULL0
6. Write B.NEXT = NULL0
7. Write B.VALUE = 1236
8. Read TAIL = A0
9. Read A.NEXT = NULL0

10. Read TAIL = A0
11. Swap A.NEXT from NULL0 to B1

Thread 2 is preempted, and thread 3 starts
DEQUEUE:

12. Read HEAD = A0
13. Read TAIL = A0
14. Read A.NEXT = B1
15. Read HEAD = A0
16. Swap TAIL from A0 to B1
17. Read HEAD = A0
18. Read TAIL = B1
19. Read A.NEXT = B1
20. Read HEAD = A0
21. Read B.VALUE = 1236
22. Swap HEAD from A0 to B1
23. Read FREELIST = NULL0
24. Read A.NEXT = B
25. Write A.NEXT = NULL1
26. Swap FREELIST from NULL0 to A1

Thread 3’s DEQUEUE returns 1236, and
thread 1 begins ENQUEUE(1235):

27. Read FREELIST = A1
28. Read A.NEXT = NULL1
29. Swap FREELIST from A1 to NULL2
30. Write A.NEXT = NULL0
31. Read TAIL = B1
32. Read B.NEXT = NULL0
33. Read TAIL = B1

Thread 1 is preempted, and thread 0 contin-
ues:

34. Swap A.NEXT from NULL0 to C1
35. Failed to swap TAIL from A0 to C1; was

B1

Thread 0’s ENQUEUE finished, and thread 4
begins DEQUEUE:

36. Read HEAD = B1
37. Read TAIL = B1
38. Read B.NEXT = NULL0
39. Read HEAD = B1

Thread 4’s DEQUEUE failed, and thread 1
continues:

40. Swap B.NEXT from NULL0 to C1
41. Swap TAIL from B1 to C2

Thread 1’s ENQUEUE finished, and thread 2
continues:

42. Failed to swap TAIL from A0 to B1; was
C2

Thread 2’s ENQUEUE finished, and the pro-
gram is finished.

Figure 5-2: Trace with bug in Boost’s FIFO, an implementation of the Michael and Scott
queue, with 5 threads. Although thread 0 finishes before 4 starts, and 1234 thus must be
enqueued, thread 4 fails to dequeue any element from the list. Boost’s FIFO uses tagged
pointers; each pointer’s version is noted in subscript. This implementation incorrectly resets
the version of A.NEXT on step 30.
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Chapter 6

Evaluation

This chapter evaluates CB-DPOR experimentally to answer the following questions:

• Does CB-DPOR find bugs, and, in particular does it find new bugs?

• Is CB-DPOR faster than other model checkers?

• Is CB-DPOR’s design the reason that it finds bugs faster?

6.1 Experiment setup

To evaluate CB-DPOR’s performance we used CODEX to test several pre-existing lock-

free C++ data structures. The majority of the data structures come from the open-source

Concurrent Data Structures library libcds 3.1 [9]. The library is an interesting target to

test because it has been under development since 2007, had not exhaustively been tested

with model checkers before, and is based on proven-correct data structures.

CODEX does not wrap higher-level constructs such as the pthread library because we as-

sume that lock-free code provides its own implementation. To test libcds we implemented

a simple lock and thread-local storage abstraction using built-in atomics.

We also test an old version of Boost’s lock-free queue, as mentioned in chapter 5.

Another tested data structure is a development version of crange, an attempt at a lock-

free range set from sv6 [2]. In some interleavings a logic bug would cause crange to lose

elements.
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The last tested data structure is refcache, a conflict-free reference counter from sv6.

The published version refcache can incorrectly free an element.

Generating test cases CODEX uses Line-Up’s test case generation algorithm to create

testable programs for each data structure. We test the core methods exposed by each data

structure, such as queue, enqueue and empty for queues and stacks, as well as insert, delete

and find for sets. Some data structures also expose other methods, but they are mostly

implemented as a series of calls to already tested core methods and thus not linearizable.

Running codex CODEX is aimed at programmers that quickly want to find bugs in their

parallel code. We assume that a programmer is willing to wait 30 minutes to run a test. If

no bug is found after half an hour, we stop the test case. Without a time limit, all model

checkers could run for years on certain bug-free test cases.

All our benchmarks ran on an 80 core machine with eight 2.4 GHz 10 core Intel E7-8870

chips and 256 GB of RAM, running 80 tests in parallel with a single thread for each model

checker.

6.1.1 Model checker configuration

The CODEX implementations of CB-DPOR, PCT, CHESS all require some configuration.

We have configured each algorithm to find bugs as quickly possible, and provide results for

multiple alternatives if we could not find a single best configuration.

PCT. PCT’s only configuration option is the number of priority switch points it introduces

in each trace. We have not found an optimal number of priority switch points for all our

test cases, so we test three representative configurations of PCT with 3, 5 and 7 priority

switch points. Because of PCT’s non-deterministic nature, we ran PCT for several hours to

accurately determine the probability that PCT would find a bug in 30 minutes, as well the

expected time to find a bug.
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CB-DPOR and CHESS. Both CB-DPOR and CHESS run in iterative-deepening mode

to quickly find bugs with a low preemption bound and to provide actual coverage guarantees

after running for 30 minutes.

CHESS-atomic CODEX also runs CHESS modified to branch only on atomic instructions

as mentioned in CHESS’s original description. This modified version of CHESS runs

faster, but misses some bugs due to the difficulty in identifying atomic instructions in C++

programs.

6.1.2 Metrics

We use two metrics to compare the algorithms. The first metric is the time until a bug is

found. If no bug is found within 30 minutes, we stop the test case. If there is no bug, all

algorithms could run almost indefinitely.

The second metric is the efficiency of the algorithms when exploring up to a specific

context bound on cases with and without bugs. Efficiency of an algorithm is measured as

the number of distinct traces it explored out of all the traces explored.

6.2 Does CB-DPOR find bugs?

For each data structure we generated three test cases with Line-Up. A summary of the bugs

found for each data structure can be found in Figure 6-1. For each data structure and model

checker the table lists the number of test cases in which the model checker found a bug, out

of the total number of test cases with at least one bug. CB-DPOR is the only model checker

that reliably finds bugs in all test cases. CB-DPOR reproduces the known bugs in crange

and Boost’s queue, and finds several new bugs in libcds.

DPOR finds bugs in only 8 out of 17 test cases because it does not have enough time

to explore all inequivalent traces, and spends time enumerating traces without bugs. Both

CHESS and CHESS-atomic find bugs on more test cases, though not on the same: CHESS-

atomic misses one boost fifo test case while CHESS misses a crange test case.
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PCT finds 14 out of 18 test cases reliably, and might find more: the expected number of

bugs found is slightly higher.

6.3 How fast is CB-DPOR?

We compare the performance of model checkers by measuring the time it takes for a model

checker to find a bug. For all data structures except refcache, the test cases are numbered

1 to 3. Relative runtime for all algorithms compared to CB-DPOR on all test cases with a

bug, as well as absolute runtimes for CB-DPOR, can be found in Figure 6-2. The runtime

for PCT is the expected runtime, calculated using the average time to run a trace and the

probability of a trace finding a bug after running for several hours. All deterministic model

checkers are stopped after 30 minutes.

We do not compare runtime on test cases without bugs because the algorithms have no

measurable ending point on such cases. Instead, we compare efficiency in Section 6.4.

In almost all cases CB-DPOR is faster than the other algorithms. In the optimistic-

queue and first two skiplistset cases CB-DPOR is the only algorithm expected to find the

bug within 30 minutes. In the boost fifo 2 case the non-deterministic PCT algorithms are

faster CB-DPOR. In the skiplistset 3 case DPOR is faster than CB-DPOR. CB-DPOR is

designed to quickly explore relevant sub traces, and sometimes this exploration is unlucky.

CB-DPOR’s performance gain is bigger for the libcds data structures than for boost

fifo or for crange. This is because libcds’s data structures are more heavyweight

than the other data structures: for example, the garbage collection in libcds uses hazard

pointers that require significant maintenance, while crange and boost fifo provide no

garbage collection. These more complicated programs have longer traces where CB-DPOR’s

efficiency becomes valuable.

In a couple of cases the modified version of CHESS that branches only on atomic

instructions is faster than the version of CHESS branching on all instructions, because it

skips traces that in some cases do not contain a bug. In other cases however, the modified

version misses bugs because of this optimization. Because CB-DPOR tracks which memory

accesses lead to conflicts, CB-DPOR correctly introduces context switch points only when
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necessary, and can skip context switch points on atomic instructions that lead to conflicts

that CHESS atomic cannot.

6.4 Why does CB-DPOR find bugs faster than other model

checkers?

CB-DPOR is designed to combine the targeted search of CHESS with the efficiency of

DPOR, and so CB-DPOR quickly explores a relevant set of traces without wasting time on

the exploration of equivalent traces. To evaluate the efficiency of CB-DPOR, we measured

the number of inequivalent traces explored as a function of the total number of traces

explored.

Figure 6-3 illustrates the exploration behavior over time of CB-DPOR on the test case

cds skiplistset 2, where all model checkers are run for a total 75000 traces. The

total number of inequivalent traces varies significantly: CHESS explores fewer than 500

inequivalent traces, while CB-DPOR enumerates almost 65000 inequivalent traces. An

optimal model checker would explore no equivalent traces, indicated by the red line in the

graph. In this example, CB-DPOR is closer to optimal than DPOR; in some cases, DPOR

cannot finish a trace when all runnable threads are sleeping, which we count as equivalent

traces. Although DPOR is more efficient than PCT, DPOR does not find the bug, while all

instances of PCT do.

The CHESS and PCT algorithms do not attempt to explore inequivalent traces, resulting

in a large number of equivalent traces explored. CHESS and CHESS-atomic in particular

are especially vulnerable to unnecessary context switches (for example, at a thread-local

memory access), after which CHESS explores an entire prefix without enumerating any new

inequivalent traces.

We empirically compared CB-DPOR’s efficiency with the other model checkers’ on all

test cases. For each test case, we ran all model checkers for 30 minutes, and calculated each

model checker’s inefficiency: the total number of traces explored divided by the number

of inequivalent traces, or the average number of equivalent traces. Figure 6-4 contains
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a summary of all inefficiencies as a CDF over test cases. For example, DPOR has an

inefficiency of no more than 2 in all test cases.

CB-DPOR is not as efficient as DPOR overall, as CB-DPOR does explore equivalent

traces. However, CB-DPOR is significantly more efficient than PCT and CHESS on a

majority of the test cases. PCT’s efficiency increases as the number of priority change points

increases, even though its bug finding effectiveness no longer grows: PCT 5 is just as good

at finding bugs as PCT 7, yet PCT 7 is more efficient. PCT 7 does not improve upon PCT 5

because none of the test cases require 7 priority change points, and so while adding priority

change points makes traces more likely to be inequivalent, it does not make PCT more likely

to find bugs.
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Chapter 7

Conclusion

This thesis presented CB-DPOR, a fast model checking algorithm for finding bugs in lock-

free data structures, and its implementation in CODEX. CB-DPOR shows that CHESS and

DPOR can be effectively combined in a single model checker that quickly finds bugs. CB-

DPOR finds complicated bugs, and does so faster than earlier model checkers. CB-DPOR is

faster than earlier model checkers because it is efficient, exploring few equivalent traces,

and targeted, exploring only traces up to a given context bound. CODEX found previously

unknown bugs in libcds, and reproduced bugs in Boost and data structures from sv6.
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