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Abstract

Text search has been an important feature of file sharing applications since Nap-
ster. This thesis explores a directory hierarchy for categorizing and retrieving con-
tent in peer-to-peer systems as an alternative to keyword search. This thesis discusses
Melody, a music sharing system that implements a directory hierarchy. Melody is built
on Chord, a distributed lookup algorithm, and DHash, a distributed hash table. We
evaluate the performance consequences and usability of Melody. In addition, this the-
sis presents two support applications: Autocat, to support automatic categorization,
and Paynet, to encourage users to pay for the songs they listen to.
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Chapter 1

Introduction

Data retrieval in peer-to-peer systems is difficult because the amount of data is vast

and ever-changing. Text search indexes have been used to catalogue and locate data

in peer-to-peer file sharing systems. Such an index can be queried to discover the

location of data, as well as discover the existence of data of interest.

An index that is distributed across many nodes in a peer-to-peer system is of

special interest because of its potential to scale with the number of nodes in the

system. Each node can now do part of the work necessary for answering search queries,

which closely matches the philosophy of peer-to-peer systems providing services for

their peers. However, a distributed index suffers from a variety of design problems

such as how to split up the index, and how to query all the parts efficiently [11].

An alternative to peer-to-peer text search is a directory hierarchy. Directories can

be used to categorize content. Each directory layer can separate content into finer

and finer grained categories. This system has several advantages over text search,

such as the ability to browse. It also has several disadvantages, such as the need to

categorize content, which is difficult to do automatically.

These categories might be used as follows: the first level category might be genre,

with each genre containing categories for artists in that genre, and each artist category

can contain album categories, and so on. Users are able to browse through categories

to find new music and can add new songs and directories through a web page interface.

Figures 1-1 and 1-2 are screenshots of Melody’s web interface.
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Figure 1-1: screenshot of web interface

Melody is an implementation of a directory-based music sharing application built

on top of Chord [23] and DHash [5]. In Melody, the directory hierarchy is append-only

to ease the implementation of the system as well as limit the damage that malicious

users can do.

The following chapters cover all aspects of the Melody system. Chapter 2 covers

the background of peer-to-peer systems and the Chord system that Melody is based

on. Chapter 3 discusses the basic design and implementation of Melody’s directory

hierarchy. Chapter 4 evaluates the Melody system. Chapter 5 presents the automatic

music categorization software used to support Melody. Chapter 6 discusses Paynet,

a system for contributing money to artists. We present conclusions and future work

in Chapter 7.
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Figure 1-2: screenshot of web interface
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Chapter 2

Background

2.1 Popular Peer-to-peer systems

Peer-to-peer systems were popularized by the success of music sharing systems like

Napster [16], Gnutella [8] and Kazaa [10]. These music sharing systems share files,

usually in MPEG Audio Layer-3 [15] (MP3) format, from the local user’s personal

collection. In these systems, files are automatically published when a node joins. In

Kazaa, a node that has just joined must publish its index of files with its supernode.

Napster, Gnutella, Kazaa and other peer-to-peer music sharing service also provide

a mechanism for finding and retrieving files. These systems use keyword searching

rather than a directory hierarchy to locate files. Napster maintained a central index

for searching for files. Kazaa and Gnutella have a distributed search mechanism.

They flood queries to many nodes to try to find matches. Kazaa uses a kind of

distributed indexing in the form of supernodes. These supernodes keep an index for

some limited number of nearby normal nodes. Searches then only need to be flooded

to the supernodes.

Searching on unstructured systems like Gnutella appears to be feasible only be-

cause most users are looking for “hay in a haystack” rather than a “needle in a

haystack” [12]. The majority of users have the popular files, “hay,” so a flooding

query is likely to receive a quick response. Files that are temporarily unpopular may

not be visible within parts of the network, or may disappear from the peer-to-peer
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network if all the nodes that host these files leave. In contrast, a keyword search sys-

tem based on a lookup algorithm such as Chord or Kademlia [13] supports looking for

the “needle,” a particular piece of data that can be found anywhere in the network.

Unfortunately, most users do not know the exact name of what they want, so the

“needle” model does not fit their needs well.

Overnet [18] is a peer-to-peer file sharing system built on Kademlia. Kademlia is

an overlay routing network that permits the lookup of nodes through a unique ID.

In Overnet, users publish an index of the files on their computer into a distributed

index in Kademlia. Other users can search this index to discover content, and transfer

it directly from the owner’s computer. This is a mixture of the Kazaa and Melody

models, because files are stored directly on the users’ computers, but files are found

through an overlay routing network. Public information on this system is limited, so

further comparisons are difficult to make.

Freenet [4] is a peer-to-peer file storage system. It is similar to Melody in that

content is published into the system as a whole, rather than just shared from a user’s

computer.

2.2 Chord and DHash

Melody uses DHash [5] to store and retrieve these files (see figure 2-1). Melody files

are split into 8192-byte blocks. DHash is a distributed hash table which stores key-

value pairs on nodes in a peer-to-peer system. In the case of Melody, the key is some

identifier for the block, and the value is the block itself. DHash performs hash table

lookups by using the Chord [23] lookup algorithm.

Chord is an overlay routing system that DHash uses to discover the location of

keys. With Chord, each node is assigned a 160-bit address called a Chord ID, which

is based on a SHA1 [6] hash of its IP address. This address determines where the

node will be in the Chord ring, which is 160-bit circular address space. Each node

knows the Chord ID and IP address of its predecessor and several of its successors

in the ring. It also has a table of fingers, which is a list of a series of nodes that are
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Chord node

Melody

DHash

Chord Chord Chord Chord

DHash DHash DHash

Chord nodeChord node Chord node

Figure 2-1: Melody and DHash/Chord Layers

at inverse powers of two around the ring. This list contains the node that is halfway

around the ring from the current node, one quarter of the way around the ring, and

so on. The finger table is used to quickly find nodes of interest by querying other

nodes for closer entries in their finger tables.

Given a key, DHash uses Chord to find the node responsible for it in log(N)

messages, where N is the number of nodes. This property permits DHash to scale to

very large systems with little overhead. In DHash, keys also are 160-bit addresses,

and their home node is the one that follows it in the Chord address space. The home

node is responsible for replicating blocks on the nodes following the home node, so

that in the event of a home node failure, a replica of the block already exists on the

new home node. This is possible because in the event of nodes failing, Chord is robust

enough to continue to locate the correct node.

The only ways for a block to leave DHash is for all the replicas to fail before any

of them have a chance to create a new replica, or for the system to remove the block

due to lack of space. With enough replicas and storage space, with high probability

any particular block will be available from DHash.

A common type of block that is stored in DHash is called a content-hash block.

This type of block stored under a key that is the SHA1 hash of its contents. This gives

the data the property of being self-certifying. A user that retrieves a content-hash

block from DHash can verify that it is the correct block by comparing the hash of

its contents with the address used to retrieve it. This property makes it extremely

difficult for malicious nodes to introduce incorrect data into the system. Content-

hash blocks are immutable by their very nature, since changing them also changes
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their address.

Another type of DHash block is the public-key block. It is a block that is signed

using the private key of an asymmetric key pair. This signature is stored in the block,

along with the public key. The block is stored in DHash under a key that is a hash

of the public key. The user can use the public key to verify the signature, as well as

the address that the block is stored at. The owner of the private key can store an

updated version of the block, along with an updated signature. This makes the block

mutable, as well as self-certifying.

Melody uses another type of block which is not self-certifying. This type is called

an append block. An append block exists at a fixed address, and is mutable, but it

only supports an append operation for changing its contents. The uses and security

implications of an append block are discussed in Chapter 3.
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Chapter 3

Directory Hierarchy

In Melody, users find content by interacting with a directory hierarchy. They are

presented with a list of genre categories. Choosing one of the genres leads to a list

of artist categories. Here, the user can create new artist directories. Choosing one of

the artists leads to a list of albums. Here, the user can add new albums. Choosing

one of the albums presents a list of music files to the user. Here the user can choose

an individual song to listen to, or add new songs.

The content being added needs to be added to the appropriate category if it is to

be easily found. The directory hierarchy system is only as useful as its categories are

descriptive, which depends on the content being categorized properly. Since catego-

rization is a tedious task for users to do manually, we investigated the feasibility of

automatically categorizing MP3 files. We constructed an automatic categorizer called

Autocat which is discussed further in Chapter 5.

Properly categorized songs provides an accurate source of song names that can

be used for other purposes, such as paying artists. We propose Paynet, which is a

system to voluntarily contribute money to artists on a usage basis. We conjecture

that users are willing to pay artists for content as long as it is convenient to do so.

Paynet takes advantage of the readily available and consistent names in Melody’s

directory hierarchy. Paynet’s operation is discussed in Chapter 6.

The rest of this chapter will discuss the design and implementation of Melody’s

directory hierarchy, as well as discuss the user interaction and security implications
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of its use.

3.1 Design

A directory hierarchy is an alternative to distributed indexing. A directory hierarchy

is composed of directory blocks, which consist of directory entries. Each directory

entry associates a name with an identifier for another directory or piece of content

in the system. A hierarchy can then be built, with directories referring to other

directories. Users can start a query at a root directory, which has a well-known

identifier.

..
directory broot dir

filename2

filename1

file d

file cdirname

..

Figure 3-1: Simple directory hierarchy

This directory hierarchy is created by users adding entries and new directories to

existing directory blocks. This depends on directory blocks being mutable.

3.1.1 Directory Blocks

Directory blocks are single blocks which are lists of directory entries. Each directory

block represents a directory, and each entry represents a subdirectory or file in that

directory. Each directory entry has a name, some metadata, and a content hash or

key. This content hash or key is the reference to the music content or directory block

associated with this name. This key is also appended to the name, to keep each name

unique and identifiable even if two different files with the same name are added to

the same directory.

18



Directory blocks are implemented as a new type of DHash block called an append

block. There are stored in DHash so that they can be distributed and replicated like

the other data blocks in the system. This additional type of block is needed because

other DHash blocks are either immutable, such as content-hash blocks, or cannot be

changed without a read-modify-write cycle, such as public-key blocks. Having to read

the block before modifying it would require some kind of locking to avoid the race

condition that could occur with multiple writers. Instead, the node responsible for

an append block can accept RPCs that contain data to be added to the end of the

block. Append blocks are easier to implement than lockable mutable blocks because

it avoids the whole issue of acquiring, releasing, and possibly revoking locks.

A system implemented with append blocks is not as flexible as one implemented

with some kind of lockable mutable block or public-key blocks. However, using append

blocks reduces the complexity of the system significantly. Furthermore, append is

sufficient to make interesting applications, such as Melody.

Directory blocks need to be stored at fixed IDs in the DHT so that other direc-

tory blocks can refer to them. Using a content-hash as an ID is precluded because

the directories need to be mutable. Instead, Melody uses the hash of a public-key

generated by the user that created that directory. The user also stores his public key

in the append block when he creates it. That user then owns the directory block, and

has the unique ability to clear or replace its contents, although anyone can append

data to it.

This clearing request is authorized by an accompanying signature. This signature

is generated using the user’s private key, and a random number that the home node

adds to the append block when it is created. The home node can then verify that

this signature by using the public key in the append block. This confirms that the

clearing request came from the user that owns the corresponding private key.

Directory entries are the chunks of data that are appended to directory blocks.

When users of the system are creating new files and subdirectories, Melody appends

new directory entries to a directory block. This append-only property means that files

cannot be modified after being created, and directories cannot have entries removed,
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except by the owner of the block.

3.1.2 Content Blocks

Some directory entries refer to content. Content can be music files, such as MP3 files,

or other media that can be categorized. Melody stores all files using content-hash

blocks, and uses a scheme to keep track of the blocks that is similar to the block

storage scheme used by the Venti [21] storage system at Bell Labs.

The files are referred to using a 160-bit Chord ID. This ID is the content-hash of

a content-hash block that is the root of a tree of content-hash blocks. It contains the

IDs of other content-hash blocks. These other blocks can either be data blocks, or can

contain more IDs. There can be several layers of these ID-containing blocks, which

we refer to as venti blocks. This enables the system to support files of unlimited size

by increasing the depth of the tree of venti-blocks.

file reference
venti

venti

ventiventi

data

data

data

content−hash
references

Figure 3-2: Tree of venti blocks used to keep track of files data blocks

The use of content-hash blocks means that content can be added to the system,

but not changed. Also, when files are added that are identical to existing files in the

system, no additional storage is needed because the addresses of the new blocks will

refer to existing content-hash blocks. This choice has the benefit of not penalizing

users for inserting content multiple times. Finally, since the blocks are use a content-

hash for their key with an essentially random distribution, the storing a file causes

its blocks to be stored at a many different nodes around the Chord ring.
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3.1.3 User Interaction

In terms of user interaction, the advantage of a Yahoo-like category model over a

Google-like searching model is that the system presents to the user precisely what

artists and songs are in the system, rather than having the user try to guess keywords

that are in the name of the music. Users can browse through artist or genre categories

of music that is similar to music that they know they like. Also, a user does not have

to have an exact query in mind to make progress when looking for content. Instead,

they can browse through categories and make local decisions to try to bring them

closer to their goal. For example, they might be looking for a song from an 80’s

European pop band whose name begins with ’c’, and with the proper categories they

should be able to browse and find that band.

A Google-like searching model is prone to returning false positives for files that

match the keyword in properties that the user did not intend to search. However, a

keyword search has the advantage that it can find disparate content that would be in

vastly different categories in directory hierarchy.

3.1.4 Security

The directory hierarchy scheme has several security problems, mainly to do with

trusting the directory hierarchy.

Trusting Nodes

Nodes cannot be trusted to return correct directory blocks. In a simple scheme,

each directory block is stored on a single node, with some replicas for reliability. A

malicious node could serve incorrect or subtly changed directory blocks. Unlike other

data blocks, these directory blocks cannot be self-certified, because they depend on

being found at a fixed identifier even when their content changes. Clients can only

check to see if the format of the directory block makes sense. However, potentially

a quorum scheme [3] could be used to allow clients to compare and verify directory

blocks. This would provide some measure of verifiability.
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Another form of verifiability is implementing some of the directory blocks using

public-key blocks. This would allow clients to certify that these blocks have not been

changed by a malicious node. Since these blocks would only be mutable by a trusted

few, this scheme would be practical only for blocks that change infrequently, such as

blocks near the root of the directory tree. These also happen to be the most important

blocks in the directory tree, since a bogus version of it has the greatest effect on a

client’s view of the directory hierarchy.

Trusting Users

Malicious users are another threat to directory blocks. The directories in the hierarchy

must be mutable by anyone to permit the addition of new data to the system. This is

much more dangerous than the previous attack because anyone can modify directory

blocks, not just the node responsible for the block. So a malicious user has a much

larger theater of action. The damage is limited by the append-only nature of the

directory blocks. A malicious user cannot remove correct directory entries, only add

incorrect entries or garbage. This attack will not prevent a user from retrieving valid

entries, but only slow them down. The data in the system previously will still be

available. The owner of a directory block has the unique ability to clear it, which

can be used as last-ditch measure to save a directory after garbage has been added

to it. Ideally, after clearing it, the owner of that directory block would immediately

add the “good” data back into that directory.

Security is a problem whenever you have data that is modifiable by anyone. Al-

though this directory hierarchy does not offer many guarantees about the robustness

of the directory blocks, smart clients may be able to skip over or ignore incorrect or

invalid entries. The append-only blocks help to maintain access to data in the system,

but this comes at the cost of losing the ability to delete or modify records.

Furthermore, users are used to dealing with security problems, given the experi-

ence of existing peer-to-peer systems. Systems like Gnutella contain many files that

are mislabeled by users, either accidentally or maliciously. Since these titles do not

reflect their content, the benefit of searching is reduced. In response, some systems,
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such as Kazaa, have implemented moderation to their file listings. A search result

can return a ranking associated with each file found. These rankings are set by users

in accordance with their happiness with the file’s quality and accuracy of its title.

However, not all files are ranked.

3.2 Implementation

Melody is implemented as a gateway that gives the user access to data stored in a

Chord ring. To communicate with the user, melody is implemented as a web-proxy in

C++ using the async library from SFS [14]. It provides the user with a web interface

where each web page represents a directory in Melody’s directory hierarchy. Links on

the web page refer to other directories or files stored in Melody. When a user clicks

on a link, the appropriate directory or file is fetched from DHash on the Chord ring,

and presented to the user. Melody communicates to the Chord ring over a socket file

to an lsd process.

Lsd is an implementation of Chord and DHash in C++ also using the async

library. Each physical node in the network runs an lsd process. Each lsd process is

one or more virtual Chord nodes in a Chord ring. The lsd programs only need to be

told of one other existing node to join a Chord ring. They communicate with each

other over the network using Sun RPCs [22].

Melody uses only a few RPCs to communicate with lsd:

RPC name description

insert Inserts a block into Chord using its content-hash as its key.
retrieve Given a key, retrieve either an append or content-hash block.
append Creates or appends data to an append block in Chord.

These RPCs are sufficient for Melody to store and retrieve more complex data

structures, such as files and directories, in DHash. Blocks are only retrieved as com-

plete entities. Partial retrieves are not supported. In order to mask latency from the

user when retrieving files, Melody reads ahead and tries to maintain 50 outstanding
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block retrieve requests.

Append is used to add keys to venti blocks, and to add directory entries to direc-

tory blocks. Both are appended one at a time. The directory entry format is listed

in figure 3-3. Directories are implemented as a single layer venti structure so that

a directory’s directory blocks remain smaller than 8192-bytes. The ability to clear

append blocks is implemented as a modification to the append RPC, because Melody

always wants a directory block to have some initial content, such as a directory entry

for the parent directory.

typedef struct {

int type;

char key[20];

int size;

struct timeval ctime;

char entry[256];

} dir_record;

Figure 3-3: Directory entry format
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Chapter 4

Evaluation

We evaluated Melody in several different dimensions. We evaluated Melody to see if

its transfer speed can support the realtime streaming of MP3 files to software player.

Unlike traditional peer-to-peer models, nodes in Melody do not store complete files.

This forces players to retrieve blocks from a variety of different nodes. Since this

involves contacting several different computers, it is important to evaluate whether

this harms streaming playback performance. We also tested Melody to see if the

content was still available after node failures. Finally, the storage requirements are

analyzed to examine their overhead.

4.1 Methodology

We tested Melody on on PlanetLab [20], which is a test-bed for experimenting on

peer-to-peer and other distributed networking technologies. It is composed of similar

computers at various research centers around the world. We used a subset of the

approximately 100 production nodes in PlanetLab for testing Melody. See table 4.2

for the list of nodes used. On each node, we ran an lsd process (see Chapter 3).

A single instance of melody runs on the limited-enthusiasm.lcs.mit.edu node, and

communicates with lsd to insert and retrieve data from DHash. A tool for inserting

complete directory hierarchies into Melody, called insertdir.pl, is used to test the

transfer rate of data onto Chord. The wget program is used to retrieve the directory
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hierarchy from Melody’s web interface.

A simplified MP3 file model is used to evaluate the adequacy of file transfer rate.

In this model, the MP3 files are of a constant bit-rate of 128 kilobits per second. This

corresponds to a required transfer rate of 16 kilobytes per second. Although some

MP3 files are recorded at high bit-rates and also variable bit-rates, the most common

average bit-rate is around 128 kilobits per second.

We evaluated the speed and robustness using a pre-created directory hierarchy

that consisted of 152 megabytes of MP3 files taken from CDs by “The Beatles.” The

experiment consisted of several timed retrieve and insertion tests using Melody on a

Chord ring with blocks replicated across 3 nodes and later replicated across 5 nodes.

The Chord rings were composed of PlanetLab nodes listed in table 4.2, and were

restarted with clean storage before every insert run.

4.2 Speed

The retrievals took vastly varying amounts of time. The first retrieval occurred with

all the nodes listed in table 4.2 running. The second occurred with the nodes listed

in table 4.3, which is approximately one-third of the ring. The insertion test is

labeled “insert,” and the two retrieval runs are labeled “retrieve 1” and “retrieve 2”

in table 4.1. Each row consists of a insert and retrieve test run on a single Chord

ring. Early testing was performed with lsd replicating blocks across three nodes.

These test runs correspond to the first row in the table. Two partial tests were run

with blocks being replicated across five nodes for improved reliability. These test runs

correspond to the second and third rows in the table. The data for these last 2 runs

is incomplete due to testing accidents.

In the first test run, retrieving 152 megabytes of data took 63 minutes. This

equates to a transfer rate of 39.9 kilobytes per second. In addition, closer examination

of the transfer logs shows that none of the transfers was slower than 28 kilobytes per

second. These rates are adequate to support the streaming MP3 files in real-time.

The transfer speed with three replicas is also entirely adequate to support the
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replicas operation
insert retrieve 1 retrieve 2

3 28:33 63:26 244:34
5 20:23 - -
5 136:46 236:01 -

Table 4.1: Insert and retrieval times in minutes:seconds

insertion of large directory hierarchies. At this rate, a user can insert average bit-rate

MP3 files roughly five times faster than he could listen to them. Although this is not

lightning fast, it is not a huge detriment since it is a one-time cost. The insertion

speed for the second test run is even faster than the first.

However, some tests took much longer. The second retrieval of the first test run

finished in 244 minutes, which is a transfer rate of 10.4 kilobytes per second. The

third test run was also slow. The transfer speeds of these test runs are not adequate.

This vast difference in transfer speeds is surprising, since little is changing in the

Chord ring between runs.. Both the addresses of the Chord nodes and the addresses

of the file data blocks are the same between test runs, so the variance cannot be

blamed on radically different Chord network configurations. The addresses of the

directory blocks are different between each run, because their address is based on the

hash of a randomly generated public key. However, the latency for accessing directory

blocks accounts for only a small part of the total transfer time. This speed difference

also cannot be solely blamed on the extra network traffic required to create two more

replicas, because the second test run was faster than any of the others. There is some

other factor causing some nodes to have much higher latencies when responding to

RPCs, which we explore next.

4.2.1 Chord node latency

To examine these large variances further, additional tests were constructed to exam-

ine differences in the PlanetLab network. There are two major differences between

running a Chord ring on a local testbed and running it on PlanetLab. One is the
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planetlab2.cs.arizona.edu 93.651 ms
planlab2.cs.caltech.edu 92.867 ms
planetlab3.xeno.cl.cam.ac.uk 80.885 ms
planetlab-3.cmcl.cs.cmu.edu 27.018 ms
planetlab3.comet.columbia.edu 17.046 ms
planetlab2.cs.duke.edu 25.766 ms
planet1.cc.gt.atl.ga.us 32.329 ms
righthand.eecs.harvard.edu 4.338 ms
planet2.berkeley.intel-research.net 88.474 ms
planet3.seattle.intel-research.net 78.296 ms
planetlab2.ext.postel.org 96.957 ms
planetlab2.netlab.uky.edu 46.769 ms
planetlab2.cs-ipv6.lancs.ac.uk 129.503 ms
planetlab2.eecs.umich.edu 43.942 ms
planetlab1.lcs.mit.edu 0.597 ms
planetlab2.lcs.mit.edu 0.689 ms
planet2.scs.cs.nyu.edu 10.276 ms
planetlab-2.cs.princeton.edu 19.222 ms
ricepl-3.cs.rice.edu 48.719 ms
planetlab-2.stanford.edu 79.732 ms
pl1.cs.utk.edu 32.111 ms
planetlab2.cs.ubc.ca 86.550 ms
planetlab1.cs.ucla.edu 122.747 ms
planetlab3.ucsd.edu 90.517 ms
planet2.cs.ucsb.edu 89.578 ms
planetlab2.cs.unibo.it 113.772 ms
planetlab2.it.uts.edu.au 240.399 ms
planetlab3.csres.utexas.edu 49.848 ms
planetlab2.cis.upenn.edu 20.723 ms
planetlab3.flux.utah.edu 62.689 ms
vn2.cs.wustl.edu 42.425 ms
planetlab2.cs.wisc.edu 43.360 ms
limited-enthusiasm.lcs.mit.edu 0.026 ms

Table 4.2: List of PlanetLab nodes used for In-
sertion and Retrieval 1 test, along with average
of 4 pings

planetlab2.cs.arizona.edu
planlab2.cs.caltech.edu
planetlab3.xeno.cl.cam.ac.uk
planetlab-3.cmcl.cs.cmu.edu
planetlab2.cs.duke.edu
planet1.cc.gt.atl.ga.us
planetlab2.netlab.uky.edu
planetlab2.cs-ipv6.lancs.ac.uk
planetlab2.eecs.umich.edu
planetlab1.lcs.mit.edu
planetlab2.lcs.mit.edu
planetlab-2.cs.princeton.edu
ricepl-3.cs.rice.edu
planetlab-2.stanford.edu
pl1.cs.utk.edu
planetlab2.cs.ubc.ca
planetlab3.ucsd.edu
planet2.cs.ucsb.edu
planetlab2.cs.unibo.it
planetlab2.it.uts.edu.au
vn2.cs.wustl.edu
planetlab2.cs.wisc.edu
limited-enthusiasm.lcs.mit.edu

Table 4.3: Nodes used for Re-
trieval 2
limited-enthusiasm.lcs.mit.edu
planetlab2.comet.columbia.edu
planetlab2.cs.duke.edu
righthand.eecs.harvard.edu
planet2.scs.cs.nyu.edu
planetlab-2.cs.princeton.edu
planetlab2.cs.umass.edu
planetlab2.cis.upenn.edu
planetlab-2.cmcl.cs.cmu.edu
planetlab3.xeno.cl.cam.ac.uk

Table 4.4: Nodes used for net-
work latency test
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difference in network latency between the various nodes. See table 4.2 for a listing

of ping times from MIT. The other is the difference in bandwidth between the sites.

Some sites, such as CMU, have a 10 megabit link rather than a 100 megabit link. The

computers at the sites are all similar, so the network differences are the key factors.

These tests used a small Chord ring composed of the nodes listed in table 4.4. This

ring focused on highly connected nodes on the east coast of the United States, along

with a node with much larger ping time in the United Kingdom, and a node with

much less bandwidth located at CMU. By leaving out the CMU node, the effect of well

connected nodes communicating with a high network latency node could be examined.

By leaving out the UK node, the effect of well connected nodes communicating with

a low bandwidth node could be examined. Leaving out both oddball nodes is useful

for a baseline. Chord IDs were chosen that evened out the spacing between nodes,

such that the UK and CMU nodes got an even amount of storage and replica storage

RPC traffic.

A Chord benchmarking program called dbm was used to store and fetch 8 megabytes

of data in the form of content-hash blocks. The number of fetch operations in flight

was varied to examine how much pipelining could hide network latencies. Tests were

run 3 times for consistency (see table 4.5).

operation baseline with CMU with UK
store, 10 operations in flight 19.85 20.01 24.33
fetch, 10 operations in flight 5.69 5.68 19.93
fetch, 10 operations in flight 5.30 5.21 18.33
fetch, 10 operations in flight 4.95 6.07 18.71
fetch, 50 operations in flight 4.89 4.14 10.16
fetch, 50 operations in flight 4.11 4.77 9.53
fetch, 50 operations in flight 4.25 4.49 10.13

Table 4.5: dbm store and fetch time in seconds

The results demonstrate that network latency is a much more important consider-

ation than bandwidth for Chord rings. Even though the RPCs are asynchronous, an

application may be difficult to have enough operations in flight to completely mask
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the latency.

To examine the effect of which transport the RPC layer used, a second test run

was performed using TCP instead of Chord’s UDP with congestion control. The

times for this test run are listed in table 4.6.

operation baseline with CMU with UK
store, 10 operations in flight 16.12 16.111 16.30
fetch, 10 operations in flight 9.69 10.01 11.95
fetch, 10 operations in flight 10.43 9.75 12.41
fetch, 10 operations in flight 8.21 10.43 11.48
fetch, 50 operations in flight 3.21 3.69 4.14
fetch, 50 operations in flight 2.85 3.76 3.91
fetch, 50 operations in flight 3.34 3.27 3.95

Table 4.6: dbm store and fetch time in seconds, TCP transport

These figures exhibit much less variance than the first latency test run, and demon-

strate a problem with Chord’s default congestion control. Examination of the timings

between packets when running with Chord’s default RPC transport shows that the

congestion control is inadequate when several well connected nodes are interacting

with a high latency node. If an RPC packet is dropped by the network, then other

packets waiting in the sender’s window are not sent until the dropped RPC is re-

solved. This stalls all RPCs waiting to be sent. This effect is exacerbated for nodes

with higher network latency. This is the ultimate root cause of the vast variance in

latencies, because the effect is intermittent and depends on packets being dropped.

The TCP transport is impractical for large systems because it maintains an open

connection between every node. However, it is useful as a demonstration of how

congestion control could work if it used more information. Chord’s congestion control

needs to be improved and separated from the RPC retransmit mechanism.

The system does have the potential to perform well, even when blocks are stored

on three different continents. Perhaps additional replicas would make it possible for

Melody to avoid retrieving from slow nodes, by selecting the fast replicas, thereby

improving transfer performance.

30



4.3 Robustness

This test involved stopping some nodes and retrieving data from the system. Ro-

bustness is demonstrated through the continued availability of all the content in the

system. In the second retrieval tests, all the MP3 files remained available even after

one-third the nodes had been stopped. Examining the content retrieved showed that

it was retrieved without corruption or missing data. In other robustness tests with

smaller rings, all the content was still available after two-thirds of the nodes were be

stopped.

Nodes were stopped sequentially in order to give the remaining nodes time to

maintain replicas of the blocks. Stopping too many nodes at once has the potential

to remove all the replicas of a particular block. The chance of all the replicas being

removed goes down as the number of replicas increases, so for large systems with high

turnover rate more replicas will be needed.

4.4 Storage

Melody’s directory hierarchy has low storage requirements. Directories are formed of

one Venti-style block, which refers to many directory-entry blocks. Each directory

entry contains a path name component that is 256-bytes long, a 160-bit ID, and some

other metadata. Overall, each directory entry is 292-bytes long. If each file is at an

average depth of 4, and each level has 50, then the overhead per file is about 1.02

directory entries, which corresponds to about 298-bytes per file.

Melody stores files with even less overhead. In general, the overhead is only that

of a 160-bit ID per block added to a venti block. With a block size of 8192-bytes, this

overhead is less than 0.24%. For very large files, this increases slightly because there

are multiple layers of venti blocks, but the increase is too small to bother calculating.

The overall overhead is then about .0024 times the file size plus 300-bytes, which

is miniscule. The actual overhead is much greater, however. The current implementa-

tion of DHash in the lsd program stores all blocks in a Berkeley database. In actual
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testing, storing 3 gigabytes of data resulting in 5 gigabytes of space taken up by the

database files. This is most likely due to Melody’s blocks being slightly larger than

Berkeley DB’s fixed internal blocksize. This would cause two internal Berkeley DB

blocks, one of which is mostly wasted, to be used to store one Melody block.
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Chapter 5

Automatic categorization

Melody must categorize songs properly for the system to be useful. Manual cat-

egorization of songs is a tedious task for users, since it involves making repetitive

decisions. Computers are good at repetitive work, but poor at understanding the in-

consistencies of human language. Unfortunately, humans have named most MP3 files.

These names are usually identifiable by people, but sometimes inconsistent enough to

foil simple computer pattern matching. Autocat attempts to automatically categorize

songs by genre, artist and album.

It tries to determine the artist, genre and album of arbitrary MP3 files using the

ID3 tag or filename. Autocat uses this information to insert songs into Melody’s

directory hierarchy in the form /genre/artist/album/. When album, artist and

genre information is not available, Autocat uses “unknown” for any missing artist

and album information, and “misc” for any missing genre information.

Although the task of automatically categorizing MP3 files is non-trivial, it does

not have to be completely accurate either. Users of Melody have the opportunity

to re-categorize files that appear to be in the incorrect place. Songs that are in the

wrong genre are harder to find than songs with a misspelled name. This observation

implies it is most important to have accurate genre categorization.
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5.1 ID3

MP3 files often include metadata called ID3 tags. These tags are often created using

information that people type in while listening to the song with their MP3 playing

software. This can result in MP3 files with inaccurate or inconsistent naming schemes.

These tags are also created automatically by software that queries CD databases

during the MP3 encoding process. Although automatically tagged MP3 files often

have much less variation than MP3 files that are tagged individually by people, the

CD databases are also created by people, and so they can also have inaccuracies.

The ID3 tag specification has two major versions, ID3v1 and ID3v2. Version one

has four fixed length text fields for artist, title, album and comment information, as

well as a one-byte field for genre and a four-byte field for year. The text fields are

limited to strings no longer than 30 characters. The one-byte genre field chooses a

genre from a predefined table. ID3v1 tags are found at the end of MP3 files. Version

two is much more flexible and allows an arbitrary number and order and length of

text fields. ID3v2 tags are found at the beginning of MP3 files. Some MP3 files have

both types of tags.

Autocat tries to use the ID3 tag information to help categorize MP3 files. The

ID3 tag’s artist, title, album and genre fields, are ideal for Autocat’s purposes because

they can be read without using heuristics to determine the fields, unlike filenames.

However, their existence and ease of acquisition does not guarantee their accuracy. In

addition, MP3 files with both ID3v1 and ID3v2 tags may have conflicting information

contained in those tags.

The limitations of ID3v1 cause some inaccuracy in determining the artist, title

and album. These inaccuracies due to the text fields being limited to strings no longer

than 30 characters. If a string is exactly 30 characters long, Autocat has to assume

it is truncated. A truncated name is not preferred, so in this case Autocat uses the

corresponding name acquired from the MP3’s filename instead.

Another limitation of ID3v1 tag format is the genre byte. The table that this byte

indexes into has a limited number of genres, which do not fit the needs of everyone.
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For example, it does not contain a “none” or “undecided” entry. When people fill in

the artist and title fields, but do not choose a genre for an ID3v1 tag, the software that

is creating that tag usually defaults to the first entry in the table, which is “Blues.”

It is more likely that a song’s genre has been chosen incorrectly than for it to actually

be a blues song. When testing Autocat, less than 11% of the songs tagged as “Blues”

were actually blues songs, and so Autocat ignores the genre from the ID3v1 tag if it

is “Blues.”

ID3v2 does not have an problem with a limited choice of genres because it includes

an optional text field for genre. This field permits much more flexible and complete

naming, and it also allows ID3 tag creation software to not create a genre field if

the user does not fill in any information. MP3 files can then be tagged without a

genre field rather than an inaccurate one. However, this flexibility also means that

misspelled and arbitrary genres, such as “genre,” are sometimes created by ignorant

users or software. Autocat ignores genres of the type “genre,” “other,” and others.

5.2 Filename parsing

Autocat also tries to interpret the filename to discover the artist and title. Autocat

prefers to use the ID3 tag information if it is available, on the basis that if someone

went to the trouble to add it, than it is more likely to be correct. Filename parsing

is useful if the ID3 tag cannot be used.

Autocat uses Perl regular expressions to interpret the filename. It assumes the

filename is of one of the following forms, in order of decreasing priority:

artist feat ignored - title.mp3

01 - artist - title.mp3

(artist) title.mp3

artist - title.mp3

title.mp3

Once a match is found, the rest of the filename forms are not tried. The last form

ensures that at least some kind of title is found.
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5.3 Freedb and Google

If Autocat has not been able to determine the genre either due to inaccurate or missing

ID3 information, then it consults two other sources over the Internet. The first is a

pair of databases constructed from Freedb [7]. The second is Google Directory [9].

5.3.1 Freedb

Freedb is a text database available at http://www.freedb.org/ of CD track names and

disc info. It consists of separate text files for each CD which contain disc title, song

title, artist and sometimes genre information. The disc’s unique id number is used to

name each file, resulting in a database indexed by disc id.

Autocat needs to discover genre by using either the artist, if available, or the title.

Since Freedb is not indexed by artist or title, a perl script creates two new databases

from the Freedb information. One of these new databases is indexed by artist, and

the other is indexed by title. Both are in Berkeley DB [2] format.

For the song title database, the records contain the disc title, genre and artist.

Because many songs have the same name, Autocat scans through all the matches for

a given song title, and filters the records to remove other artists. The artist database

is used in a similar manner, but with records that contain song title instead of artist.

5.3.2 Google Directory

Google Directory is a Yahoo-categories-like web site which contains categories of

links to other web pages. Some of these categories are music related, and contain

categories that include bands and artists organized by genre. Autocat uses another

program called “googleit” to fetch and interpret Google Directory web pages.

For songs that do not match any entries in the database, googleit queries Google

Directory using the artist’s name. It then looks to see if any Google Directory cat-

egories match the artist’s name. If they do, googleit retrieves the category’s web

page from Google, and searches it for any links to genre categories. This produces a

list of potential genres. In the case of multiple reported genres, googleit generally
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uses the last reported genre as the genre of the song. However, some of these genres

are of the form “1990s” or “2000s,” which are less useful in categorizing songs, so

googleit prioritizes the genres and prefers to return non-year genres.

5.4 Complete method

The order of actions in Autocat is as follows: parse the filename into title and artist,

if available. Look for an ID3 tag, and if available override the title and artist chosen

from the first step. If no genre has been found, attempt to lookup the title in Freedb,

then the artist in Freedb. The resulting Freedb record will contain a genre. Otherwise,

lookup the artist in Google Directory and look for a genre in the category listings.

Several alternate courses of action are tried if neither the Freedb and Google

lookups are successful in producing a genre. If only the ID3 tag was used to determine

the artist and title, then Autocat retries the Freedb and Google lookups using the

filename as the definitive source of artist and title. If both of these have been tried, and

if the filename is of the form “ignored - artist - title.mp3”, then this alternative

filename parsing is tried.

Once the genre, artist, and any album name are determined by Autocat, then a

C++ program called “it” is used to connect to Melody’s web interface, lookup the

appropriate directories and create them if needed, and upload the MP3 file.

5.5 Experimental Results

Autocat’s most important metric is how well it categories songs. This criteria is hard

to quantify, because a song’s genre is sometimes a matter of taste. However, we can

measure the number of songs that Autocat either categorized into “misc” or grossly

miscategorized. We performed two test runs, one with a directory of 776 MP3 files,

and another with a directory of 730 MP3 files.

From table 5.1, it is apparent that Autocat is able to categorize the vast majority of

MP3 files. It has a success rate of greater than 80%. Examining the badly categorized
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directory A B
number of files 776 730

time to categorize (average of 2 runs) 3m21s 4m36s
filenames successfully parsed 736 580

genre from ID3 414 316
genre from Freedb 139 144
genre from Google 159 184
uncategorized files 64 86
badly categorized 91 55

Table 5.1: Autocat test numbers

data more closely reveals the biggest offender to be ID3 tags with bad genres. This is

not surprising because Autocat trusts the ID3 tag above all other sources. Although

Autocat does not perform perfectly, it is suitable for initially sorting music that can

later be better categorized by people.
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Chapter 6

Paynet

Paynet is a system for donating money to artists. It consists of a central clearinghouse

which users can pay money to, for example, $10 per month through Paypal [19]. As

the user listens to music over the course of that month, their music playing software

gathers statistics on the relative length of time that the user listened to each artist.

At the end of the month, the music playing software sends this report to the clearing-

house. The clearinghouse can then allocate their money to the artists, again through

Paypal, in proportion to how long the user listened to them.

This system has the benefit of being mostly transparent to the user. The user

does not have to do any action per song to contribute money to the artist. Yet, the

payments from the user to a particular artist can be of very small granularity, for

example, a few cents, because the clearinghouse can coalesce many other payments

together before giving the money to the artist.

6.1 Implementation

Paynet is implemented as a pair of programs. Donation plugin runs on the user’s

computer, collects the statistics on their music listening habits, and sends them to

the clearinghouse along with their payment information. Clearinghouse processes the

statistics and does the accounting to pay the appropriate artist.
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6.1.1 Music player monitoring

Donation plugin is implemented as a plugin for XMMS [24]. XMMS is an music

playing program for Unix that plays a variety of music file formats, including MP3

files. Donation plugin queries XMMS for the currently playing song every second.

This polling method is used because there is no API for informing the plugin when

the music stops or changes. Donation plugin then stores this information in a hash

table of Berkeley database format so that the statistics are persistent in the event of

reboots or crashes.

6.1.2 Messages

At a regular interval, for example every month, donation plugin contacts the clear-

inghouse. It sends a donation message to the clearinghouse that includes the time

period that the statistics were gathered over, payment amount, payment information,

the source of each song, and the number of seconds that song was played for. The

payment information is currently a Paypal id, but this field could easily be extended

to handle credit card numbers or other forms of payment. The source of each song is

either a pathname of the file, or a URL.

Currently, the donation message is sent out in the clear, but this is not suitable for

a production system because it contains the user’s payment information. To protect

it, donation plugin could use Secure Socket Layer (SSL) [17] to communicate with

the clearinghouse. SSL encrypts communications as well as provides a certificate

mechanism for authenticating servers. It is commonly used with web servers to protect

customers that are making purchases. This is a similar scenario, so SSL is a good fit.

The user that sends this message does not need to be authenticated to the server,

because the message already contains all the information needed to perform a do-

nation. The payment information and the artists to donate to are both included in

the message. This precludes the need to link this message with an existing identity

stored on the server.

The clearinghouse responds with a unique transaction id that the user can use to
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confirm that proper payment took place.

6.1.3 Clearinghouse

Clearinghouse is the program that coalesces donations into payments to artists. It

decrypts each donation message, and looks at the list of songs for artists that it can

identify in the URLs. It then computes the proportion of the payment amount that

should be sent to each artist, and bills the user and credits the artists accordingly.

This financial information is recorded in a Berkeley DB. The clearinghouse program

currently does not do any actual billing with real money. However, it would be easy

to query the database every month and generate the necessary transactions.

6.2 Trust

Trust is an important issue whenever money is involved. In this case, in order for the

payment to go to the correct music artist, both the user and the clearinghouse have to

operate correctly. It is difficult for the user to verify that the clearinghouse operating

correctly without extensive accounting information. The clearinghouse could perhaps

publish this information with each payment tagged with an id that is unique and only

known to each user. The users can check for correct behavior as long as the clear-

inghouse presents the same accounting information to each user, because incorrect

behavior would show up as missing payments to some artist from some user. This

strategy puts some burden of verifying the transactions on the user.

The user must also verify that the songs that he listens to are labeled correctly.

The clearinghouse has only the category information that is embedded in the URL.

If the user wants the correct artist to be paid, he must be diligent in stopping the

playing of music that is incorrectly categorized or labeled. Again, this strategy puts

some burden on the user to be monitoring what the software is doing on his behalf.

Although the user is burdened with the responsibility of verifying the transactions,

ultimately it belongs nowhere else. The user is spending his money, and is therefore

responsible for verifying that he is getting good service for his money.
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Chapter 7

Future Work and Conclusion

In a sense, a directory hierarchy is a form of distributed index. It is an index that is

split up along semantic meaning, which can be arbitrarily fine grained. This pushes

the splitting of the index onto people and programs, which puts larger burden on

them to properly catalogue information, but it pays off in that queries can be focused

on only the type of information that is of interest.

We presented directory hierarchies, a method of categorizing and retrieving data

in peer-to-peer systems. We found it has many interesting properties that makes

it useful for systems like Melody. It can organize content into semantic categories.

It allows users to browse by category to find new content. We discussed Autocat,

a necessary support program for automatically creating useful directory hierarchies.

Finally, we discussed Paynet, a mechanism for contributing to artists.

Melody was the first time Chord was used in an application on a large distributed

testbed such as PlanetLab. The performance differences between running on a local

testbed and running on PlanetLab were very illuminating as to the difficulties in

developing peer-to-peer systems on wide-area networks. PlanetLab is also a moving

target for benchmarking. The composition of nodes and the latency and available

capacity of the network links between these nodes is constantly changing.
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7.1 Future work

There are many opportunities for improvement in Melody and the DHash layer. One

outstanding issue with DHash is properly handling network partitions. A Chord ring

can function even when split into two rings. If two copies of a directory block are

updated independently, and then the rings rejoin, the directory blocks may both have

unique data. In principle, the directory blocks can be merged into one, since none of

their data is position dependent.

Other enhancements include having Melody select among replicas to choose the

ones with the lowest latency or highest available bandwidth. This would improve

transfer speeds by enabling Melody to store or retrieve from several replicas in parallel.

Improvements to Chord RPC congestion control are also warranted.

Melody could be enhanced by the addition of per-user views of the directory

structure. This would permit users to customize the hierarchy as they see fit, and

share their changes with other users. Users could decide how much they trust other

users before accepting their “view” of the directory structure. This would give users

additional motivation to improve the categorization of the songs, and reduce the

threat of malicious users adding bad data to the directory hierarchy.

7.1.1 Autocat

There are many possible improvements to Autocat, including enhancements to the

filename parsing, better methods of matching similar names and using data from

new sources such as directory names and prior searches. Directory paths could be

examined for possible genres, since many users organize their MP3 files this way.

Many songs by the same artist end up in vastly different categories due to the many

different genres that people have chosen in Freedb. The categorization could be

improved by glomming together songs from the same artist so that they end up in

the same genre or genres. Voting among different genre sources could be used to pick

the strongest candidate.

The number of forms that Autocat uses to try to interpret the MP3 filename is
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fairly limited. A more general filename matching engine could extract more substrings

from the filename and attempt to match each one with the names in Freedb.

In addition, name matching could be improved by using a spell-check algorithm

to find partial matches in Freedb. In such a system, the dictionary would be the all

the artists or song titles in Freedb, and a successful partial match would return the

Freedb record for that artist or song.

Of course, both these methods depend on Freedb providing accurate and up-to-

date music information. This may not be the case for newly released or unpublished

songs, since users only fill Freedb with information from the CDs that they buy.

7.1.2 Paynet

Possible future work in Paynet includes implementing the SSL encryption, voluntary

large-scale testing to see if users are willing to use the system and to determine if

real-world song names are consistent enough to trust payments to. Actual payment

could be implemented if enough people were interested.
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