
Reducing Pause Times with Clustered Collection

Cody Cutler Robert Morris
MIT CSAIL, USA

ccutler@csail.mit.edu, rtm@csail.mit.edu

Abstract
Each full garbage collection in a program with millions of
objects can pause the program for multiple seconds. Much
of this work is typically repeated, as the collector re-traces
parts of the object graph that have not changed since the last
collection. Clustered Collection reduces full collection pause
times by eliminating much of this repeated work.

Clustered Collection identifies clusters: regions of the
object graph that are reachable from a single “head” object,
so that reachability of the head implies reachability of the
whole cluster. As long as it is not written, a cluster need not
be re-traced by successive full collections. The main design
challenge is coping with program writes to clusters while
ensuring safe, complete, and fast collections. In some cases
program writes require clusters to be dissolved, but in most
cases Clustered Collection can handle writes without having
to re-trace the affected cluster. Clustered Collection chooses
clusters likely to suffer few writes and to yield high savings
from re-trace avoidance.

Clustered Collection is implemented as modifications to
the Racket collector. Measurements of the code and data from
the Hacker News web site (which suffers from significant
garbage collection pauses) and a Twitter-like application
show that Clustered Collection decreases full collection
pause times by a factor of three and six respectively. This
improvement is possible because both applications have
gigabytes of live data, modify only a small fraction of it, and
usually write in ways that do not result in cluster dissolution.
Identifying clusters takes more time than a full collection, but
happens much less frequently than full collection.

Categories and Subject Descriptors D.3.4 [Programming
languages]: Processors – Memory management (garbage
collection)

Keywords Garbage collection, memory management

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ISMM’15 June 14, 2015, Portland, OR, USA
Copyright is held by the owner/author(s).
ACM 978-1-4503-3589-8/15/06
http://dx.doi.org/10.1145/2754169.2754184

1. Introduction
A major cost in tracing garbage collectors is the need to
examine every live object in order to follow its child pointers.
If there are millions of live objects this tracing can take
multiple seconds. Stop-the-world collectors expose this cost
directly in the form of pause times, which can be awkward for
servers and interactive programs. Many techniques have been
developed to reduce or mask tracing cost, such as parallel,
concurrent, and generational collection [1, 3, 5, 8, 9, 11].
Many of these techniques would benefit if they had to trace
fewer objects.

This paper’s core idea is to reduce pause times by exploit-
ing the similarity of the garbage collection computation from
one run to the next. Successive full collections can potentially
skip re-tracing regions of the object graph where no object’s
liveness has changed since the last collection. One challenge
is ensuring completeness and safety despite not tracing all
objects, particularly in the face of program writes that change
the object graph. Completeness means that garbage collection
frees all unreachable objects, and safety means that it frees
no reachable objects. The other main challenge is choosing
a set of regions whose graph structure ensures that skipping
yields substantial tracing speedups.

Clustered Collection addresses these challenges as follows.
A periodic Cluster Analysis identifies non-overlapping clus-
ters, each consisting of a head object along with other objects
reachable from the head. Cluster Analysis records, for each
cluster, the locations of “out” pointers that leave that cluster.
During a full collection, if a cluster’s head object is reachable,
and the program has not modified any of the cluster’s objects,
the entire cluster is live and need not be traced. In that case
tracing skips over the cluster and resumes at the cluster’s “out”
pointers.

If the program has modified a cluster’s objects, the situ-
ation is more complex: such a modification may break the
property that reachability of the head implies liveness of all
of the cluster’s objects, and that the cluster’s “out” pointer list
include all references to external objects. Simply dissolving
a cluster in response to any write to it, while correct, would
likely eliminate any performance win from Clustered Col-
lection. Instead, Clustered Collection handles many writes
without dissolving clusters. For example, a write that creates a
reference to an object outside the cluster is handled by adding

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ISMM’15, June 14, 2015, Portland, OR, USA
ACM. 978-1-4503-3589-8/15/06
http://dx.doi.org/10.1145/2754169.2754184

131

http://dx.doi.org/10.1145/2754169.2754184

an entry to the cluster’s “out” list. The only situation in which
a cluster must be dissolved is when a write eliminates (over-
writes) a reference to an object inside the same cluster; that
may cause the object to be dead, so completeness requires
that the cluster be re-traced during the next full collection.

Clustered Collection chooses clusters likely to be helpful
in reducing full collection pause times. One consideration is
that each cluster should have relatively few “out” pointers,
to reduce the time that a full collection must spend tracing
them. Cluster Analysis tries to form clusters large enough that
each holds many “natural clusters” (e.g. sub-trees); this helps
reduce out-pointers by reducing the number of natural clusters
sliced by cluster boundaries. However, clusters should not
be too large, in order to limit the impact of each cluster-
dissolving write. Finally, objects recently subject to a cluster-
dissolving write are omitted from newly formed clusters.

The paper presents an implementation of Clustered Col-
lection as a modification to Racket’s precise single-threaded
generational collector [4, 12]. The main challenge in this
implementation is Racket’s page-granularity write barriers,
since Clustered Collection needs to know about writes at ob-
ject granularity. The implementation creates a shadow copy
of the old content of each written page in order to observe
the specific writes to clustered objects that a program makes.

The paper’s Evaluation shows the performance improve-
ment for two programs that are well suited to Clustered
Collection: a news aggregator web service with hundreds
of thousands of articles, and a Twitter-like application han-
dling millions of messages. Clustered Collection reduces full-
collection pause times by an average of 2.9× for the former
and 6.6× for the latter. The periodic Cluster Analyses take
longer than a single full collection, but the evaluation shows
that Cluster Analysis needs to occur much less frequently
than full collection. Clustered Collection is most effective for
programs that have large numbers of live objects, and that
have locality in their writes – that concentrate their writes
in particular parts of the object graph so that large regions
are unmodified from one collection to the next. Clustered
Collection is compatible with generational collection.

This paper’s novel contributions include: 1) the idea that
full collections can avoid re-tracing large regions of the object
graph without sacrificing completeness; 2) techniques to cope
with many program writes to clustered objects without having
to dissolve the surrounding clusters; 3) heuristics for choosing
clusters that yield good performance; and 4) an evaluation
exploring the conditions under which Clustered Collection is
most beneficial.

2. Related Work
Hayes [6] observes that related objects often have the same
lifetimes, and in particular die at about the same time. Hayes
suggests a “key object opportunism” garbage collection
technique, in which a “key” object acts as a proxy for an
entire cluster; the collector would only trace the cluster if the

key object were no longer reachable. Hayes’ work contains
the basic insight on which Clustered Collection is built, but
is not a complete enough design that its properties can be
compared with those of Clustered Collection.

Generational garbage collection [9] is related to Clustered
Collection in the sense that, if objects in the old generation
don’t change much, a generational collector will not trace
them very often. However, once a generational collector de-
cides to collect the old generation, it traces every live object;
thus a generational garbage collector reduces total time spent
in collection but not the pause time for individual full collec-
tions. Clustered Collection is compatible with generational
collection, and can reduce their full collection pause times
(the collector which we present and evaluate in this paper
is also generational). Clustered Collection also borrows the
write barrier technique from generational collectors, though it
uses barriers to track connectivity changes within and among
clusters rather than between the old and new generations.

Generalizations of generational collection [3, 7] partition
the heap and are able to collect just one partition at a
time, reducing worst-case pause times. The G1 collector [3]
keeps track of inter-partition pointers using write barriers,
a technique which Clustered Collection borrows. The main
new ideas in Clustered Collection have to do with actively
finding parts of the object graph that never need to be traced
(modulo program writes); G1 does not do this.

Parallel [5] garbage collectors reduce pause times for
full collections by running the collection on multiple cores.
Clustered Collection seems likely to be helpful if added to a
parallel collector.

Concurrent/real-time [1, 8, 10, 11] collectors reduce col-
lection pause times by performing most of the collection
while the application runs. These collectors have short pause
times, but interleaving the collection work with program
execution typically reduces program throughput. Informal
measurements of HotSpot’s Concurrent Mark and Sweep
collector suggest that it reduces program speed by 20% to
30% compared to HotSpot’s Serial collector. Section 6 shows
that, while Clustered Collection yields a smaller reduction
in pause time, it also has a much lower impact on program
throughput.

Cohen [2] reduces collection synchronization in a parallel
run-time by associating sub-heaps of data with clusters of
threads that access that data; different sub-heaps can be
collected without disturbing program threads using other
sub-heaps.

The Mapping Collector [13] exploits the similarity in
lifetimes of groups of objects that are allocated at the same
time; instead of copying objects to avoid fragmentation, it
waits for whole pages of objects to become dead, so that entire
pages can be recycled. Avoiding copying allows the Mapping
Collector to reduce pause times. Clustered Collection exploits
related properties of objects; it does have to copy clustered

132

objects, but then is able to avoid further tracing of those
objects.

3. Design
3.1 Overview
Clustered Collection is an extension to pointer-tracing collec-
tor designs. It has three parts. Cluster Analysis runs periodi-
cally to decide which parts of the object graph should form
clusters. The Watcher uses write barriers to take action when
the program modifies an object in a cluster. The Tracer modi-
fies the way a full collection’s “mark” phase traces pointers,
causing it to skip over clusters.

Suppose a program’s object graph looks like part A of
Figure 1. When Cluster Analysis examines the object graph,
it might choose the two clusters shown in part B. Each cluster
has a “head” object (shown with a green dot), from which
all other objects in the cluster must be reachable; during a
collection, reachability of the head will imply that all of the
cluster’s objects are live. Pointers may also enter a cluster to
non-head objects, but only a reference to the head will cause
the Tracer to skip tracing the whole cluster. For each cluster,
Cluster Analysis records the set of objects in the cluster that
contain “out” pointers referring to objects outside the cluster
(there is just one in Part B).

While the program executes, the Watcher uses write
barriers to detect program modifications of cluster objects.
Part C shows three modifications with red dots: the program
has added a new child to the root object, has changed a pointer
in the right-hand cluster to point to a different object in the
cluster, and has added a pointer to an outside object to the
left-hand cluster. The Watcher responds to the change in the
right-hand cluster by dissolving the cluster, since a change to
an intra-cluster pointer may cause an object in the cluster to
be unreachable (as has happened here); completeness requires
that full collections no longer skip that cluster. The Watcher
also tags the written object so that later Cluster Analyses will
omit it from any cluster.

The Watcher can tell that the program’s write to the left-
hand cluster in part C could not have changed the liveness
of any object within the cluster, so it does not dissolve the
cluster. Because the new pointer points outside the cluster, it
may affect liveness of outside objects, so the Watcher adds
an entry to the cluster’s out-pointer set.

The Tracer is part of the full garbage collector’s “mark”
phase. Ordinarily, a mark phase follows (“traces”) all pointers
from a set of roots to discover all live objects; the mark
phase sets a “mark” bit in each discovered object’s header to
indicate that it is alive. The Tracer modifies this behavior. At
the start of a collection, the Tracer forgets about clusters that
the Watcher dissolved, leaving the situation in Part D. When
the mark phase encounters the “head” object of the remaining
cluster, the Tracer marks the entire cluster as live, and causes
the mark phase to continue by tracing the cluster’s “out”
pointers. If the Tracer encounters an object inside a cluster

Figure 1. An example clustering. Nodes with green circles
are cluster head objects, arrows are pointers, dashed arrows
are “out” pointers, and blue boxes enclose clusters. Part A
shows an application’s live data, part B shows a possible
choice of clusters, part C depicts the live data after the
program has modified some data (changed pointers in red),
and part D shows Clustered Collection’s response (dissolving
the right-hand cluster).

before encountering that cluster’s head object, it postpones
the object in order to increase the chance of the cluster’s head
being traced during the remainder of the mark phase, enabling
the Tracer to skip the postponed object when it is later re-
examined. If the cluster containing the postponed object is
still unmarked when the postponed object is re-examined, it
will be traced in the ordinary way.

In the example in Figure 1, it is good that Cluster Analysis
created two clusters instead of one; that allowed the left-hand
cluster to survive despite the writes in Part C.

A cluster is similar to an object: one can view it as a single
node in the object graph, with pointers to it and pointers out

133

of it. The cost to trace a cluster is little more than the cost
of tracing a single object; thus the more objects Clustered
Collection can hide inside clusters, the more it can decrease
collection pauses.

3.2 Clusters
An important aspect of the Clustered Collection design is the
way it chooses clusters. This section explains the properties
that clusters must have in order to be correct and useful.

In order that Clustered Collection be safe (never free
reachable objects) and complete (free all unreachable objects),
the collector includes these design elements:

• Head objects: In order to be complete despite not tracing
inside clusters, there must be a way to decide whether all
of a cluster’s objects are reachable. Clustered Collection
does this by choosing clusters that have a head object
from which all other objects in the cluster are reachable
via intra-cluster pointers; if the head object is reachable
from outside the cluster, every object in the cluster is live.

• Out pointers: In order to be safe, the collector must trace
all pointers that leave each cluster. Clustered Collection
does this by recording the set of cluster objects that contain
“out” pointers, which it traces during collections.

• Write barriers: In order to maintain the invariants that all
of a cluster’s objects are reachable from the head, and
that the “out” set contains all external pointers, Clustered
Collection must be aware of all program writes to cluster
objects. Some writes may force the cluster to be dissolved
(a “dissolving write”), or may require additions to the
cluster’s “out” set.

Among the possible correct clusters, some choices lead to
greater reduction in full collection time than others:

• Objects that have suffered one dissolving write may be
likely to suffer another. Thus it is good to omit such
objects from future clusters.

• Large clusters are good because they can reduce the
number of “out” pointers that each full collection must
trace. For example, if the head object is an interior node
of a tree, it’s good to allow the cluster to be large enough
to encompass the entire sub-tree below the head, since
then all the sub-tree’s links will point within the cluster. A
cluster smaller than the entire sub-tree will have to have
“out” pointers leading to sub-sub-trees.

• On the other hand, a large cluster is likely to have a higher
probability of receiving at least one write than a small
cluster. Since even a single write may force dissolution of
the entire cluster, there is an advantage to limiting the size
of clusters.

• Very small clusters, and clusters with a high ratio of
“out” pointers to objects, may have costs that exceed any
savings.

3.3 State
Clustered Collection maintains this state:

• o.cluster: for each object, the number of the cluster it
belongs to, if any.

• o.head: for each object, a flag indicating whether the
object is the head of its cluster.

• o.written: for each object, a flag indicating that the
object has suffered a dissolving write recently.

• c.mark: for each cluster, a flag indicating whether the
cluster’s head has been reached during the current full
collection.

• c.camark: for each cluster, a flag indicating whether the
cluster’s out-pointers have been clustered during Cluster
Analysis.

• c.out: for each cluster, its “out” set: the set of objects
within the cluster that contain “out” pointers.

3.4 Cluster Analysis
The job of Cluster Analysis is to form clusters in accordance
with the considerations explained in Section 3.2.

Cluster Analysis gets a chance to run before each full
collection. It runs if two conditions are met: 1) the heap
size has stabilized, and 2) the ratio of unclustered objects
to clustered objects is above a threshold run_thresh. The
first condition suppresses Cluster Analysis during program
initialization; it is true as soon as a full collection sees
that that the amount of live data has increased by only a
small fraction since the last full collection. For the second
condition, the ratio of unclustered objects to clustered objects
is low immediately after Cluster Analysis runs, then grows
as either program writes cause clusters to be dissolved or
newly allocated objects are accumulated, until it reaches
run_thresh and Cluster Analysis runs again.

Cluster Analysis pseudo-code is shown in Figure 2. At
any given time, Cluster Analysis has a work stack of (o, c)
pairs, each indicating that object o should be considered for
inclusion in cluster c. If Cluster Analysis has already visited
object o or if o.cluster.camark is set, Cluster Analysis
ignores o. If o.cluster.camark is not set, Cluster Analysis
sets o.cluster.camark and pushes o.cluster.out to the
work stack with o.cluster as the destination cluster. If
o.written is set, or o is a “sink” object (see below), Cluster
Analysis adds o to no cluster, and pushes o’s children on
the work stack, each with a null c. o’s children are likely to
become cluster heads. If c is not null, and adding o to c would
not cause c to contain more than max_size_thresh objects,
Cluster Analysis adds o to c and pushes o’s children with c.
Otherwise Cluster Analysis creates a new cluster c′ with o as
head, and pushes o’s children with c′ onto the work stack.

Cluster Analysis then moves each cluster’s objects to
a separate region of memory, so that the cluster’s objects
are not intermingled with other objects. This has several

134

cluster_analysis():
for r in roots:

cluster1(r, nil)
move objects to per-cluster separate memory
fix up pointers to clustered objects
for c in clusters:

calculate c.out
for c in clusters:

op_ratio = numoutpointers(c) / size(c)
if op_ratio > out_thresh:

destroy c
else if size(c) < min_size_thresh:

destroy c

cluster1(object o, cluster c):
if live_cluster(o.cluster):

if o.cluster.camark
return

o.cluster.camark = true
for o1 in o.cluster.out:

cluster1(o1, o.cluster)
return

if o.mark:
return

o.mark = true
size_ok = size(c) + 1 < max_size_thresh
if o.written or is_sink(o):

c = nil
else if c!=nil and size_ok

o.cluster = c
else:

c = new cluster
o.cluster = c
o.head = true

for o1 in children(o):
cluster1(o1, c)

Figure 2. Cluster Analysis pseudo-code. The implementa-
tion uses a work stack rather than recursive calls.

benefits. First, until the entire cluster is freed or dissolved,
the cluster’s objects will not need to be moved since they
are not fragmented. Second, to the extent that frequently-
written objects are successfully omitted from clusters, cluster
memory will be less likely to suffer Racket write-barrier page
faults and shadow page copying. Third, the cluster’s “out” set
can be compactly represented by a bitmap with a bit for each
word in the cluster’s memory area. Finally, since collections
don’t move a cluster’s objects, intra-cluster pointers need not
be fixed up during garbage collection.

Cluster Analysis then builds the “out” set for each cluster
by scanning the cluster’s objects. It sets the corresponding bit
in the out pointer bitmap if the object contains a pointer to a
non-sink object that is outside the cluster.

Finally, Cluster Analysis looks for clusters whose out-
pointer-to-object ratios are greater than out_thresh, or
whose size is less than min_size_thresh, and destroys
them. Such clusters do not save enough collector work to
be worth the book-keeping overhead. More importantly, de-
stroying these clusters feeds back into the adaptive maximum
cluster size computation; see Section 3.5 below.

3.5 Cluster Size Threshold
Cluster Analysis adjusts max_size_thresh (the target clus-
ter size) adaptively. Clusters should be large enough that
many of a cluster’s objects’ pointers point within the cluster,
in order to reduce the number of out-pointers. Clusters should
also be small enough that many clusters will not suffer any
dissolving writes.

max_size_thresh is initialized to the number of objects
at the time Cluster Analysis first executes. On each subse-
quent execution, Cluster Analysis calculates the number of
objects in clusters that were dissolved due to writes since the
last execution (nw), and the number of objects in clusters
that the previous execution dissolved because they had too
many out-pointers (no). If nw is greater than no, the danger
from too-large clusters is evidently greater than that from too-
small ones, so Cluster Analysis halves max_size_thresh.
Otherwise it doubles max_size_thresh.

This algorithm causes max_size_thresh to oscillate.
This oscillation causes no problems as long as the threshold
is considerably larger than the “natural” size of the program’s
clusters.

3.6 Sink Objects
Some objects are so pervasively referenced that they would
greatly inflate cluster out-pointer sets if not handled specially;
type-descriptor objects are an example. Cluster Analysis de-
tects long-lived objects with large numbers of references,
declaring them “sink” objects. It omits them from cluster out-
pointer sets, moves them to “immortal” regions of memory,
does not include them in any cluster, and arranges for them
not to be moved by subsequent collections. “Sink” objects are
detected while building the “out” sets; the objects most ref-
erenced by clusters’ “out” sets will become “sink” objects if
the number of references exceeds a threshold, sink_thresh.

To preserve completeness, the immortal regions have a
limited life-time – until the next Cluster Analysis. The next
Cluster Analysis dissovles the pre-existing immortal regions
and treats all objects in the immortal region as normal objects
(which can themselves be again added to a new immortal
region or a new cluster).

3.7 Watcher
Clustered Collection needs to know about program writes for
three reasons. First, a write to one of a cluster’s objects may
cause violation of the invariant that the cluster’s “out” set
contains all pointers that leave the cluster. Second, a write to
one of a cluster’s objects may cause violation of the invariant

135

that all of the cluster’s objects are reachable from the head
object. Third, Cluster Analysis should not include objects that
have recently suffered dissolving writes. Clustered Collection
can use the write barriers that are usually required for a
generational garbage collector (object granularity precision
is needed; see Section 4).

For each object the program writes, the Watcher decides
whether the write forces dissolution of the object’s enclosing
cluster. Suppose an object o has a slot that used to point to
oo, and that the program changes it to point to on. If oo is
inside the same cluster as o, then the modification forces
dissolution because oo may now be unreachable; the Watcher
sets o’s o.written and marks the cluster as dissolved. If
oo is a “sink” object or an immediate value such as a small
integer, and on is outside the cluster, the Watcher adds o to the
cluster’s “out” set. Otherwise, if none of o’s slots reference
objects outside o’s cluster, o is removed from the cluster’s
“out” set.

The above strategy avoids cluster dissolution for many
program writes. For example, suppose both oo and on are
outside the cluster. Changing o to point to on rather than oo
does not affect liveness of objects inside the cluster, though
it may affect liveness of oo or on. Because the collector will
trace all of the cluster’s out-pointers, and because the out-
pointer set contains the locations of the out-pointers (rather
than their values), the collector will notice if the modification
changed the liveness of either oo or on. Thus the Watcher can
safely ignore the write in this example.

3.8 Tracer
Clustered Collection requires modifications to the underlying
garbage collector, as follows.

Before the mark phase, the collector discards information
about clusters dissolved due to writes since the last collection.
These clusters’ objects are then treated as ordinary (non-
clustered) objects.

During the collector’s mark phase:

• If the mark phase encounters cluster c’s head object, and
c.mark is not set, the mark phase sets c.mark and traces
c’s “out” pointers.

• If the mark phase encounters a non-head object o in cluster
c, and c.mark is set, the mark phase ignores o. If c.mark
is not set and o’s mark is not set, the mark phase postpones
the marking of o and its children.

• If the mark phase encounters an unmarked object that is
not in a cluster, it proceeds in the ordinary way (by setting
its mark bit and tracing its children).

• The mark phase processes the postponed objects once
only postponed objects remain. For each postponed object
o in cluster c, if c.mark is set, the mark phase ignores
o. Otherwise the mark phase sets o’s mark and traces its
child pointers.

The purpose of postponing non-head objects is to avoid
intra-cluster tracing. If the head of an object’s cluster is traced
after the object has been postponed but before that postponed
object is re-inspected, the postponed object can be ignored.

After the mark phase completes, all non-live clusters are
dissolved. All objects in each live cluster are live. A non-
cluster object (including any object in a dissolved cluster) is
live if its mark bit is set.

The collector’s copy or compaction phase does not move
objects in live clusters.

The collector must “fix up” pointers to any objects it
moves. Typically the fix-up phase considers every pointer
slot in every object. Since a collection doesn’t move objects
that are in clusters, the fix-up phase only needs to consider
pointers in objects in a cluster’s “out” set; other pointers in
cluster objects don’t need fixing, since they point either to
objects within the same cluster, or to “sink” objects that never
move.

3.9 Discussion
Cluster Analysis uses depth-first search to build clusters, with
max_size_thresh limiting the size of each cluster. This
strategy works well for lists and for tree-shaped data: it yields
clusters with a high object-to-out-pointer ratio. For a list of
small items, the effect is to segment the list into clusters;
each cluster has just one out-pointer (to the head of the
next segment). For a tree, max_size_thresh is expected
to be much larger than the tree depth, so that each cluster
encompasses a sub-tree with many leaves; thus there will
be considerably fewer out-pointers than objects. For tables
or lists where the individual elements contain many objects,
Cluster Analysis will do well as long as max_size_thresh
is larger than the typical element size.

Some object graphs may contain large amounts of un-
changing data, but have topologies that prevent that data from
being formed into large clusters. For example, consider a
large array that is occasionally updated, and whose elements
are small and read-only. The only way to form a cluster with
more than one element is to include the array object in the
cluster, probably as the head. However, the program’s writes
to the array object may quickly force the cluster to be dis-
solved. If such situations are common, Cluster Collection
must treat them specially by splitting up the large object;
Section 4 describes this for Racket’s hash tables.

Cluster Analysis’ adaptive choice of max_size_thresh
responds to both program writes and graph structure. If
too many clusters are destroyed by writes, Cluster Analysis
will reduce max_size_thresh, so that each write dissolves
a cluster containing fewer objects. If max_size_thresh
shrinks too much, many clusters will have out-pointer-to-
object ratios exceeding out_thresh, so that Cluster Analysis
will itself destroy them; this will prompt the next execution
of Cluster Analysis to increase max_size_thresh.

It is possible for there to be no good equilibrium size
threshold: consider a program whose data is a randomly

136

connected graph, and that continuously adds and deletes
pointers between randomly selected objects. The program
will modify a relatively high fraction of unpredictable objects
between collections, which means that clusters must be small
in order to escape dissolution. On the other hand, the object
graph is unlikely to contain “natural” clusters of small size
with mostly internal pointers. Clustered Collection won’t
perform well for this program; it is targeted at programs
which leave large portions of the object graph unmodified,
and which exhibit a degree of natural clustering.

The Cluster Analysis strategy of omitting recently written
objects is a prediction that writes in the near future will affect
the same objects that were written in the recent past. If that
prediction is largely accurate, Cluster Analysis will eventually
form clusters that aren’t written, and thus aren’t dissolved,
and that therefore save time during full collections. If the
prediction isn’t accurate, perhaps because the program has
little write locality, many clusters will be dissolved and thus
won’t be skippable during full collections.

Some performance could be gained by sacrificing or
deferring completeness. For example, the Watcher could
temporarily ignore writes that change one internal pointer to
another, which is safe but might delay freeing of the object
referred to by the old pointer.

4. Implementation
We implemented Clustered Collection as a modification to
the precise collector in Racket [4, 12] version v5.90.0.9. The
Racket collector is a single-threaded generational copying
collector. It detects modifications to objects in the old genera-
tion by write-protecting virtual memory pages.

Clustered Collection uses 24 bits in each object’s header;
these bits are taken from the 43 bits holding each object’s
hash value. 20 of the bits hold the object’s cluster number,
one bit holds the “head” flag, one holds the “written” flag, and
one holds a “sink” flag. In all our experiments, this reduction
in hash bits had no noticeable effect.

The Watcher needs to discover which cluster (if any) owns
the page a write fault occurs on (it cannot easily tell from
the faulting pointer where the containing object starts). It
does this with a table mapping address ranges to cluster
numbers; this table is implemented as an extension of the
Racket collector’s “page table.”

In order to know exactly which objects the program has
modified, Clustered Collection needs object-granularity write
barriers. Racket only detects which pages have been written.
Clustered Collection copies each page to a “shadow copy”
on the page’s first write fault after each collection. During
the next full collection, each page and its shadow copy
are compared to find which objects were modified; each
written object may have its o.written flag set, and may
dissolve the containing cluster. The implementation maintains
o.written only for clustered objects.

Phase name Cluster analysis + GC Stock

Cluster ID assignment Yes No
Mark+Copy Yes Yes
Out pointer discovery Yes No
Pointer fix-up Yes Yes

Figure 3. The passes over the live data made by Cluster
Analysis, compared with the full collection passes made by
Racket’s stock collector.

Racket implements hash tables as single vectors, so that a
hash table with millions of entries is implemented as a very
large object. If not treated specially, such an object, if written,
might not be eligible for clustering; this in turn would likely
mean that each item in the hash table would have to be placed
in its own small cluster. To avoid this problem, Clustered
Collection splits large hash tables, so that each “split” and its
contents can form a separate cluster. This allows reasonably
large clusters, while also causing a program write to dissolve
only the cluster of the relevant split.

The Cluster Analysis implementation makes four passes
over the objects, as shown in Figure 3 (marking and copying
are interleaved). Two of these passes are shared with an asso-
ciated full collection. Combining Cluster Analysis with a full
collection saves work since both need to move live data, and
thus both need to fix up pointers. A more sophisticated im-
plementation could assign cluster IDs during the Mark+Copy
phase, saving one pass; similarly, out-pointer discovery could
be combined with pointer fix-up.

5. Applications
We use two applications to evaluate Cluster Collection.

5.1 Hacker News
Hacker News is a social news aggregation web site. We use
the publicly available source1, which runs on Racket. Most
activity consists of viewing comments on articles, submitting
articles, and submitting comments on both articles and other
comments (“news items”). Hacker News is sensitive to full
collection pause times since user requests cannot be served
during a collection, resulting in user-perceivable delays of
multiple seconds.

The application’s database is populated with the most
recent 500,000 news items from the real Hacker News2. The
software keeps active news items in memory, and the 500,000
news items consume approximately 3 GB of memory. A
single large hash table called items* contains an entry for
each news item; each news item is implemented as a small
hash table. When a new news item is submitted, a new hash
table is allocated and populated with the item’s contents. A
reference to the new hash table is then inserted into items*.

1 http://arclanguage.org/install
2 http://news.ycombinator.com

137

http://arclanguage.org/install
http://news.ycombinator.com

A new comment is added to a list of children attached to the
commented-on news item.

5.2 Squawker
Squawker is a Twitter-like service written in Racket. Each
user can post messages, subscribe to other users’ messages,
unsubscribe, and read messages from the users to whom they
subscribe. Users talk to the service over TCP.

For each user, the implementation maintains a subscription
hash table, a message list, and a message list tail pointer. The
implementation maintains three hash tables indexed by user
IDs to hold this data. The keys of User A’s subscription hash
table are the user IDs of all users that have ever subscribed
to A and each value indicates whether the user is currently
subscribed. User A’s message list contains the messages that
A should see, i.e. the posts of all users that A subscribes
to. When user A subscribes to user B, A’s identity is added
to B’s subscription hash table. When B posts a message,
a message object is appended to the message list of every
user for which an identity exists in B’s subscription hash
table, and each subscribing user’s message list tail pointer is
updated.

The Squawker implementation works well with Clustered
Collection because the primary operation (posting new mes-
sages) does not dissolve the clusters holding the bulk of the
data (the per-user message lists). Each new message is ap-
pended to each subscribing user’s message list. This causes
the null pointer at the end of the list to be changed to point to
a new list element. The rules described in Section 3.7 allow
this update to proceed without requiring dissolution of the
cluster containing the message list, though an entry will be
added to the cluster’s “out” set.

6. Evaluation
This section measures how much Clustered Collection re-
duces full collection pause times, how much time Cluster
Analysis takes, how much other overhead Clustered Collec-
tion imposes, and how sensitive it is to program writes.

The experiments run on a 3.47 GHz Intel Xeon X5960
with 96 GB of memory. The mutator and the garbage collector
are single-threaded and stay on the same core throughout
each experiment. min_size_thresh is 4096, out_thresh
is 2.5, sink_thresh is 100, and run_thresh is 1.1, and
max_size_thresh is set to the number of objects.

6.1 Hacker News Pause Times
This experiment quantifies Clustered Collection’s effect on
full collection pause times for a real application, Hacker
News. It compares Clustered Collection with the stock Racket
garbage collector.

The client program runs on a separate machine and issues
HTTP requests over TCP. The client is fast enough that the
server is the bottleneck, not the client. The client issues 1.5
million requests. 99% of them read one of the most recent

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40 45 50

C
o
lle

ct
io

n
 p

a
u
se

 t
im

e
 (

s)

Full collection number

Clustered Collection
stock collector

Figure 4. Hacker News pause times for full collections and
Cluster Analysis, which occurs during collection 17.

Phase Cluster (ms) Stock (ms)

Set written bits 7 -
Mark sink objects 0 -
Mark+Copy 302 2,695
Pointer fix-up 173 1,544
Reset cluster marks 118 -

Figure 5. The most costly phases during full collection 18
in the Hacker News experiment.

500 news items; the other 1% add a new comment to a recent
item. There is initially 2,760 MB of live data, and 3,068 MB
by the end of the experiment.

Figure 4 shows the results. It contains one data point per
full collection, with the collection’s pause time on the y axis.
The size of the live data fluctuates at collections 1 through 7
while the server loads the 500,000 news items and finishes
the initial loading at collection 15. The server then begins to
service the client’s requests.

The peak at full collection 17 in Clustered Collection’s
pause times corresponds to the execution of Cluster Analysis.
After the Cluster Analysis, Clustered Collection’s full collec-
tion pause times drop to an average of 0.25× as long as the
stock collector. Figure 5 confirms that most of the reduction
is in pointer tracing (Mark+Copy): Cluster Collection does
not need to trace within clusters. This multi-second reduction
in pause time is the main benefit of Clustered Collection.

The Cluster Analysis in Figure 4 takes 12.2 seconds;
Figure 6 breaks down this time. While expensive, Cluster
Analysis is infrequent: the next one would occur during
full collection 87. As Section 6.5 shows, subsequent Cluster
Analyses are typically faster than the first one.

Figure 7 contains details describing the clusters found
during the Hacker News experiment. 95% of the 44 million
objects are clustered into 458 clusters. Less than 2% of the
clustered objects are lost due to pointer modifications. Out

138

Cluster (ms) Stock (ms)
Cluster ID assignment 3,109 -
Mark+copy 4,296 2,134
Out pointer discovery 2,476 -
Pointer fix-up 1,583 1,076
Misc. 367 83

Figure 6. Time in milliseconds for each phase of the Cluster
Analysis during collection 17 of Hacker News; the total is
12.2 seconds. The second column shows the times for the
phases of the full collection at the same point for the stock
collector. Cluster Analysis copies much more than the stock
collector; the former copies all clustered data, while the latter
rarely copies old-generation objects.

Total objects 44,425,018
Pct. of objects clustered 95%
Total clusters 458
Avg. object count per cluster 93,147
Clustered obj. lost due to writes 557,196
Out pointer per clustered object 0.006
Total sink objects 164

Figure 7. Statistics for the clusters found in the first Cluster
Analysis in the Hacker News experiment.

Cluster Stock

Runtime (s) 5,493 5,715
Requests/second 273 262
Avg. young GC pause (ms) 79 79
Average live data size (MB) 2,903 2,967
Peak shadow page use (MB) 7 -
Full GC peak memory (MB) 3,317 3,703
CA peak memory (MB) 5,688 -

Figure 8. Run-time information for the Hacker News exper-
iment. Times are wall-clock time.

pointers in these clusters are rare: the ratio of out pointers to
clustered objects is 0.006. It is good that nearly all the live
data is clustered and out pointers are few: the result is that the
Mark+copy phase has a reduced workload since the tracing
of the clustered objects will be skipped and few out pointers
will be traced.

Figure 8 summarizes some of Clustered Collection’s
effects on run-time and memory use. Hacker News with
Clustered Collection serves requests 4% faster than with the
stock collector. The maximum amount of memory used by
shadow pages is 7 MB, less than 1% of the live data size.

Old New Number Dissolved?

in pointer any 37 Yes
nil/value nil/value 814 No
nil/value in/out pointer 1, 380 No
Total 2, 231

Figure 9. The number of different kinds of program writes
to clustered objects during the Hacker News experiment.
“In” pointer modifications force dissolution of the containing
cluster while other writes do not.

Figure 8 shows that the two collectors have similar peak
memory use during typical full collections. Cluster Analysis
requires more memory than a full collection: roughly 2× the
size of the live data, since Cluster Analysis copies all the
clustered objects. While in this experiment the stock collector
has a lower peak memory use than Clustered Collection,
in fact they have roughly the same worst-case memory
requirements. The reason is that the stock collector sometimes
copies live data in order to de-fragment memory. Whether it
copies each page of memory depends on whether the page
is more than 25% empty; given enough time, at some point
most of the pages will be simultaneously empty enough, and
a single stock collection will end up copying most or all of
the live data. Thus the worst-case memory requirement for
the stock collector is also 2× the size of the live data. For
this reason the comparison is fair with respect to the memory
available to each collector.

To summarize, Clustered Collection’s pause times reduc-
tion over all collections (including the Cluster Analysis) is
2.9× and increases throughput by 4% for Hacker News.

6.2 Tolerating Writes
Some program writes force Clustered Collection’s Watcher to
dissolve the surrounding cluster, while others can be tolerated
without dissolution (see Section 3.7). This section explores
how effective the Watcher is at tolerating Hacker News’
writes.

Figure 9 shows the numbers of different kinds of Hacker
News writes as classified by the Watcher. Only writes where
the old value is an “in” pointer (pointing to an object in the
same cluster) force a cluster to be dissolved. These are rare in
Hacker News: 37 out of 2,231 writes to a field in a clustered
object alter an “in” pointer. These writes occur when a new
comment is added to a news item’s child comment list; the 4
clusters that suffer this kind of write are dissolved.

The other writes do not force dissolution. The most
common writes were modifications that change a nil to
an “in” or “out” pointer with a count of 1,380. Most of these
occur when a new comment is added to items*. If the new
pointer is an “out” pointer, the write may cause a new entry
to be added to the cluster’s out-pointer set. Writes to change a
nil to an integer value, or change one integer to another (e.g.,
increment a counter) are also common with 814 occurances.

139

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
lu

st
e
r

A
n
a
ly

si
s

ru
n
-t

im
e
 (

s)

Fraction of objects still in clusters

Figure 10. The effect on Cluster Analysis run-time of the
fraction of objects still in clusters since the previous Cluster
Analysis. The time includes both the Cluster Analysis and
the associated full collection.

The watcher ignores these modifications since they cannot
change any object’s liveness.

The Watcher avoids dissolving the cluster for all but 1.6%
of program writes.

6.3 Later Cluster Analyses
Cluster Analysis preserves existing clusters and forms new
clusters only from previously unclustered objects. This sec-
tion explores how much this technique speeds up Cluster
Analysis.

The experiment uses Hacker News with the same setup
as in Section 6.1, except that the client program comments
on news items chosen randomly from the entire loaded set
of 500,000. The reason for this change is to allow control
over the number of clusters dissolved between one Cluster
Analysis and the next: that number will be close to the
number of random comments created, since each comment
will dissolve the cluster that contains the commented-on
news item. Each experiment loads the 500,000 news items,
runs Cluster Analysis, lets the client program insert a given
number of comments, runs Cluster Analysis a second time,
and reports the second Cluster Analysis’ run time.

Figure 10 shows the results. The graph depicts the time
taken in seconds for the second Cluster Analysis as a function
of the fraction of live objects that are still in non-dissolved
clusters when the second Cluster Analysis runs. Cluster Anal-
ysis with 91% of the data still clustered is more than twice as
fast as when only 17% of the data is still clustered. This ex-
periment shows that preserving existing clusters significantly
reduces Cluster Analysis run-times.

6.4 Effect of Cluster Out-Pointers
Clusters with fewer out pointers are likely to yield faster
full collections. This experiment explores the effect of out
pointers on collection pause times.

The benchmark builds a binary tree of 32 million nodes.
Every node in the tree also contains a pointer that either

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
o
lle

ct
io

n
 p

a
u
se

 t
im

e
 (

s)

Fraction of objects with an out-pointer

Clustered Collection
stock collector

Figure 11. The effect of the fraction of objects that contain
out-pointers on Clustered Collection’s ability to reduce pause
times.

references a special object, or is null. The special object is
not a member of any cluster. We vary the fraction of objects
that refer to the special object in order to vary the number of
out pointers. Once the binary tree is built, Cluster Analysis is
run, followed by a final full collection which is timed. Cluster
Analysis finds 716 clusters on each run.

Figure 11 presents the results. The x-axis is the fraction
of objects that reference the special object and the y-axis is
the pause time of the final full collection. When there are
no out-pointers, Clustered Collection’s final collection takes
only 51 ms compared to the stock collector’s 2.6 seconds.
Because each out-pointer is traced and repaired during a full
collection, Clustered Collection’s pause times increase as
the live data gains out-pointers. The break-even point occurs
when about 40% of objects have out-pointers; at that point,
the cost of tracing the out-pointers out-weighs the benefits of
not tracing within the clusters. This experiment shows that
Clustered Collection reduces pause times more effectively
when clusters have fewer out-pointers.

6.5 Squawker Pause Times
This experiment explores how general Clustered Collection is
by measuring its performance on Squawker (see Section 5.2),
an application significantly different than Hacker News.

The client runs on a separate machine and submits requests
over TCP. The client initially creates 5,000 users, creates
43,357 subscriptions with Pareto popularity distribution (the
most popular user has 4,950 subscribers), and creates one
million posts from random users. The client then issues
requests for 5400 seconds. The request types have these
probabilities: fetch 10 latest messages 0.992, 256-byte post
0.005, subscribe 0.002, unsubscribe 0.001. There is 1,987
MB of live data after the initial posts, and 2,792 MB by the
end of the experiment.

Figure 12 shows the results, with full collection number
on the x-axis, and collection pause time on the y-axis. The
peaks at 10 and 53 correspond to Cluster Analysis executions.

140

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70 80

C
o
lle

ct
io

n
 p

a
u
se

 t
im

e
 (

s)

Full collection number

Clustered Collection
stock collector

Figure 12. Pause times for full collections and Cluster Anal-
ysis for Squawker. Cluster Analysis occurred during collec-
tions 10 and 53.

Cluster Stock

Requests/second 13,004 13,428
Avg. young GC pause (ms) 4.6 2.2
Average live data size (MB) 2,256 2,276
Peak shadow page use (MB) 82 -
Full GC peak memory (MB) 2,964 3,006
CA peak memory (MB) 3,981 -

Figure 13. Run-time information for the Squawker experi-
ment.

Collections 1 through 7 occurred while the client program
was adding the initial million posts.

Collection pause times are over 20× shorter for Clustered
Collection than the stock collector immediately after the first
Cluster Analysis, because nearly all objects are included
in clusters. This advantage decreases as new posts create
unclustered objects. The second Cluster Analysis clusters
these new posts, again yielding a nearly 20× full collection
speedup. The second Cluster Analysis is faster than the first
because most of the live data (approximately 74%) is still
clustered. The average ratio of stock collector pause time to
Clustered Collection pause time (including Cluster Analyses)
is 6.6.

Figure 13 reports the stock and Clustered Collection av-
erage young generation collection pause times and requests
completed per second. Squawker running under Clustered
Collection had throughput 3% lower than under the stock
collector. Much of this difference is due to slower young gen-
eration collections. Young generation collections under Clus-
tered Collection are slower by 2.4 ms on average because the
Watcher inspects all pointer modifications to old-generation
objects during young generation collections.

For Squawker, it is important that Cluster Analysis ex-
tends existing clusters during the second Cluster Analysis
instead of creating new clusters. After the first Cluster Anal-

ysis, each cluster holds multiple users’ message lists. If a
subsequent Cluster Analysis created new clusters to hold the
new tails of the message lists, each tail would need its own
cluster, since different users’ tails would not share a head
object. These clusters would all have an “out” pointer per
message, referring to the shared string holding the message
content. Tracing this large number of “out” pointers would
eliminate any performance gain from clustering. Because
Cluster Analysis instead grows existing clusters, each new
message list tail is added to the cluster containing the existing
message list; this preserves the property that each cluster con-
tains many message lists that all share the same set of “out”
pointers to message content strings, much reducing the total
number of “out” pointers.

7. Conclusion
Clustered Collection significantly reduces full collection
pause times for applications with large amounts of mostly
read-only data whose writes have locality in the object
graph. Collection pause times are reduced by finding clusters
of objects that can be skipped without sacrificing safety
or completeness. Writes that may violate the invariants
required for safety or completeness are handled correctly.
An evaluation of Clustered Collection in Racket shows that it
reduces full collection pause times by a factor of three to six
times.

Acknowledgments
Thanks to Matthew Flatt and the anonymous reviewers for
their feedback. We gratefully acknowledge the support of
the National Science Foundation under awards 0964106,
1301934, and 0915164.

References
[1] H. G. Baker, Jr. List processing in real time on a serial computer.

Commun. ACM, 21(4):280–294, Apr. 1978. ISSN 0001-0782.

[2] M. Cohen. Clustering the heap in multi-threaded applications
for improved garbage collection. In Proceedings of the 8th
Annual Conference on Genetic and Evolutionary Computation,
GECCO ’06, pages 1901–1908, Seattle, WA, USA, 2006.
ACM.

[3] D. Detlefs, C. Flood, S. Heller, and T. Printezis. Garbage-first
garbage collection. In Proceedings of the 4th International
Symposium on Memory Management, ISMM ’04, pages 37–48,
Vancouver, BC, Canada, 2004. ACM.

[4] R. B. Findler and PLT. DrRacket: Programming Environment.
Technical Report PLT-TR-2010-2, PLT Design Inc., 2010.
http://racket-lang.org/tr2/.

[5] R. H. Halstead, Jr. Multilisp: A language for concurrent
symbolic computation. ACM Trans. Program. Lang. Syst.,
7(4):501–538, Oct. 1985. ISSN 0164-0925.

[6] B. Hayes. Using key object opportunism to collect old objects.
In Conference Proceedings on Object-oriented Programming

141

http://racket-lang.org/tr2/

Systems, Languages, and Applications, OOPSLA ’91, pages
33–46, Phoenix, Arizona, USA, 1991. ACM.

[7] M. Hirzel, A. Diwan, and M. Hertz. Connectivity-based
garbage collection. In Proceedings of the 18th Annual ACM
SIGPLAN Conference on Object-oriented Programing, Sys-
tems, Languages, and Applications, OOPSLA ’03, pages 359–
373, Anaheim, California, USA, 2003. ACM.

[8] B. Iyengar, G. Tene, M. Wolf, and E. Gehringer. The Collie: A
Wait-free Compacting Collector. In Proceedings of the 2012
International Symposium on Memory Management, ISMM ’12,
pages 85–96, Beijing, China, 2012. ACM.

[9] H. Lieberman and C. Hewitt. A real-time garbage collector
based on the lifetimes of objects. Commun. ACM, 26(6):419–
429, June 1983. ISSN 0001-0782.

[10] B. McCloskey, D. F. Bacon, P. Cheng, and D. Grove. Staccato:
A Parallel and Concurrent Real-time Compacting Garbage

Collector for Multiprocessors. Technical report, IBM, 2008.

[11] F. Pizlo, D. Frampton, E. Petrank, and B. Steensgaard. Sto-
pless: A real-time garbage collector for multiprocessors. In
Proceedings of the 6th International Symposium on Memory
Management, ISMM ’07, pages 159–172, Montreal, Quebec,
Canada, 2007. ACM.

[12] J. Rafkind, A. Wick, J. Regehr, and M. Flatt. Precise Garbage
Collection for C. In Proceedings of the 9th International
Symposium on Memory Management, ISMM ’09, Dublin,
Ireland, June 2009. ACM.

[13] M. Wegiel and C. Krintz. The mapping collector: Virtual mem-
ory support for generational, parallel, and concurrent com-
paction. In Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XIII, pages 91–102, Seattle, WA,
USA, 2008. ACM.

142

	Introduction
	Related Work
	Design
	Overview
	Clusters
	State
	Cluster Analysis
	Cluster Size Threshold
	Sink Objects
	Watcher
	Tracer
	Discussion

	Implementation
	Applications
	Hacker News
	Squawker

	Evaluation
	Hacker News Pause Times
	Tolerating Writes
	Later Cluster Analyses
	Effect of Cluster Out-Pointers
	Squawker Pause Times

	Conclusion

