
Asynchronous intrusion recovery
for interconnected web services

Ramesh Chandra, Taesoo Kim, and Nickolai Zeldovich
MIT CSAIL

Abstract
Recovering from attacks in an interconnected system is
difficult, because an adversary that gains access to one
part of the system may propagate to many others, and
tracking down and recovering from such an attack re-
quires significant manual effort. Web services are an
important example of an interconnected system, as they
are increasingly using protocols such as OAuth and REST
APIs to integrate with one another. This paper presents
Aire, an intrusion recovery system for such web services.
Aire addresses several challenges, such as propagating
repair across services when some servers may be unavail-
able, and providing appropriate consistency guarantees
when not all servers have been repaired yet. Experimen-
tal results show that Aire can recover from four realistic
attacks, including one modeled after a recent Facebook
OAuth vulnerability; that porting existing applications
to Aire requires little effort; and that Aire imposes a 19–
30% CPU overhead and 6–9 KB/request storage cost for
Askbot, an existing web application.

1 Introduction
In an interconnected system, such as today’s web services,
attacks that compromise one component may be able to
spread to other parts of the system, making it difficult
to recover from an intrusion. For example, consider a
small company that relies on a customer management
web service (such as Salesforce) and an employee man-
agement web service (such as Workday) to conduct busi-
ness, and uses a centralized access control web service
to manage permissions across all of its services. The
servers of these web services interact with each other on
the company’s behalf, to synchronize permissions, update
customer records, and so on. If an attacker exploits a bug

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the owner/author.

Copyright is held by the owner/author(s).
SOSP’13, Nov. 3–6, 2013, Farmington, Pennsylvania, USA.
ACM 978-1-4503-2388-8/13/11.
http://dx.doi.org/10.1145/2517349.2522725

in the access control service, she could give herself write
access to the employee management service, use these
new-found privileges to make unauthorized changes to
employee data, and corrupt other services. Manually re-
covering from such an intrusion requires significant effort
to track down what services were affected by the attack
and what changes were made by the attacker.

Many web services interact with one another using pro-
tocols such as OAuth [3], REST, or other APIs [12, 14,
22, 23], and several recent vulnerabilities in real web ser-
vices [9–11, 13, 20] could be used to launch attacks like
the one just described. For example, a recent Facebook
OAuth vulnerability [9] allowed an attacker to obtain a
fully privileged OAuth token for any user, as long as the
user mistakenly followed a link supplied by the attacker;
the attacker could have used this token to corrupt the
user’s Facebook data. If other applications accessed that
user’s data on Facebook, the attack would have spread
even further. So far, we do not know of serious attacks
that have exploited such vulnerabilities, perhaps because
interconnected web services are relatively new. However,
we believe that it is only a matter of time until attacks on
interconnected web services emerge.

This paper takes the first steps toward automating re-
covery from such attacks. We identify the challenges
that must be addressed to make recovery practical, and
present the design and implementation of Aire, a system
for recovering from intrusions in a large class of loosely
coupled web services, such as Facebook, Google Docs,
Dropbox, and Amazon S3.

Aire works as follows. Each web service that wishes
to support recovery runs Aire on its servers. During nor-
mal operation, Aire logs information about the service’s
execution, as well as requests received from and sent to
other services, thus tracking dependencies across services.
When an administrator of a service learns of a compro-
mise, he invokes Aire on the service, and asks Aire to
cancel the attacker’s request. Aire repairs the local state
of the service using selective re-execution [7, 15], and
propagates repair to other web services that may have
been affected, so they can recover in turn, until all af-
fected services are repaired. In addition to recovering
from attacks, Aire can similarly help recover from user or
administrator mistakes.

1

http://dx.doi.org/10.1145/2517349.2522725


Aire’s contribution over past work [7, 16] is in address-
ing three main challenges faced by intrusion recovery
across web services:

Decentralized, asynchronous repair (§3). One possi-
ble design for a recovery system is to have a central repair
coordinator that repairs all the services affected by an
attack. However, this raises two issues. First, web ser-
vices do not have a strict hierarchy of trust and so there is
no single system that can be trusted to orchestrate repair
across multiple services. Second, during repair, some
services affected by an attack may be down, unreachable,
or otherwise unavailable. Waiting for all services to be
online in order to perform repair would be impractical and
might unnecessarily delay recovery in services that are
already online. Worse yet, an adversary might purposely
add her own server to the list of services affected by an
attack, in order to prevent timely recovery.

Aire solves these issues with two ideas. First, to avoid
services having to trust a central repair coordinator, Aire
performs decentralized repair: Aire defines a repair pro-
tocol that allows services to invoke repair on their past
requests to other services, as well as their past responses
to requests from other services. Second, to repair services
after an intrusion without waiting for unavailable services,
Aire performs asynchronous repair: a service repairs its
local state as soon as it is asked to perform a repair, and
if any past requests or responses are affected, it queues a
repair message for other services, which can be processed
when those services become available.

While Aire’s repair infrastructure takes care of many
issues raised by intrusion recovery, there are two remain-
ing challenges that require application-specific changes
to support repair:

Repair access control (§4). Repair operations them-
selves can be a security vulnerability, and an application
must ensure that Aire’s repair protocol does not give at-
tackers new ways to subvert a web service. To this end,
Aire provides an interface for applications to specify ac-
cess control policies for every repair invocation.

Reasoning about partially repaired states (§5). With
Aire’s asynchronous repair, some services affected by
an attack could be already repaired, while others might
not have received or processed their repair messages yet.
Such a partially repaired state could appear inconsistent
to clients or other services, and lead to unexpected ap-
plication behavior. To help developers handle partially
repaired states in their applications, we propose the fol-
lowing contract: repair should be indistinguishable from
concurrent requests issued by some client on the present
state of the system. This contract largely reduces the prob-
lem of dealing with partially repaired states to the existing

problem of dealing with concurrent clients, which many
web application developers already have to reason about.

To evaluate Aire’s design, we implemented a prototype
of Aire for Django-based web applications. We ported
three existing web applications to Aire: an open-source
clone of StackOverflow called Askbot [1], a Pastebin-like
application called Dpaste, and a Django-based OAuth
service. We also developed our own shared spreadsheet
application. In all cases, Aire required minimal changes
to the application source code.

As there are no known attacks that propagate through
interconnected web services in the wild, we construct
four realistic intrusions that involve the above web ap-
plications, including a scenario inspired by the recent
Facebook OAuth vulnerability, and demonstrate that Aire
can recover from them. We also show that Aire can re-
cover a subset of services from attack even when others
are unavailable. Porting an application to Aire required
changing under 100 lines of server-side code for the ap-
plications mentioned above. Supporting partial repair can
require changing the API of a service; the most common
example that we found is adding branches to a versioning
API. Finally, we show that Aire’s performance costs are
moderate, amounting to a 19–30% CPU overhead and
6–9 KB/request storage cost in the case of Askbot.

2 Overview
Aire’s goal is to undo the effects of an unwanted operation
(specified by some user or administrator) that propagated
through Aire-enabled services, which means producing a
state that is consistent with the attack never having taken
place. Aire expects that the user or administrator will
pinpoint the unwanted operation (e.g., the initial intrusion
into the system) to initiate recovery. In practice, the user
or administrator will probably use some combination of
auditing, intrusion detection, and analysis [17, 18] to find
the initial intrusion point.

Aire assumes that each service exposes an API which
defines a set of operations that can be performed on it,
and that services and clients interact only via these oper-
ations; they cannot directly access each other’s internal
state. This model is commonplace in today’s web ser-
vices, such as Amazon S3, Facebook, Google Docs, and
Dropbox. Under this model, an attack is an API opera-
tion that exploits a vulnerability or misconfiguration in a
service and causes undesirable changes to the service’s
state. These state changes can propagate to other services,
either as a result of this service invoking operations on
other services or vice-versa. Aire aims to undo both the
initial changes to the service state, as well as any changes
propagated to other services.

On each individual service, Aire repairs the local state
in a manner similar to the Warp intrusion recovery sys-

2



tem [7], by rolling back the database state affected by the
attack and re-executing past requests to the service that
were affected by the attack. If during local repair Aire
determines that requests or responses to other services
might have been affected, Aire asynchronously sends re-
pair messages to those services. Each repair message
specifies which request or response was affected by re-
pair, and includes a corrected version of the request or
response. When a service receives a repair message, Aire
initiates local recovery, after checking permissions for
the repair message. Once repair messages propagate to
all affected services, the attack’s effects will be removed
from the entire system. However, even before repair mes-
sages propagate everywhere, applications that are already
online can repair their local state.

With API-level repair, Aire can recover from attacks
that exploit misconfigurations of a service or vulnerabili-
ties in a service’s code, and from accidental user mistakes.
This includes several scenarios, such as the ones described
in §1, but does not include attacks on the OS kernel or the
Aire runtime itself.

In the rest of this section we review Warp and present
Aire’s system architecture and assumptions.

2.1 Review of Warp

Aire’s recovery of a service’s local state is inspired by
Warp [7]. This section provides a brief summary of
Warp’s design, and its rollback-redo approach to recovery,
as it relates to Aire. Much as in Aire, an administrator of
a Warp system initiates recovery by specifying an attack
request to undo.

During normal execution of a web application, Warp
builds up a repair log that will be used to recover from
attacks. In particular, Warp records HTTP requests and
their responses, and database queries issued by each re-
quest and their results. Warp also maintains a versioned
database that stores all updates to every database row.

Given the above recorded information, Warp recovers
from an attack as follows. First, Warp rolls back the
database rows modified by the attack request to the re-
quest’s original execution time. Second, Warp uses its
logs to identify database queries that might have read the
rows affected by the attack, or queries that might have
modified the rows that have been rolled back, and re-
executes the corresponding requests (except for the attack
request, which is skipped). For each re-executed request,
Warp rolls back the database rows accessed by that request
to the time of the request’s original execution, and applies
the same algorithm to find other requests that might have
been indirectly affected. This algorithm finishes after it
has re-executed all requests affected by the attack, thereby
reverting all of the attack’s effects.

Web service A

Original 
web service

Repair log

Repair
controller

Versioned
database

Web service B

Web service C

Replay of 
web service

Original 
web service

Repair
controller

Request
tagging

Logging

Original 
web service

Repair
controller

Figure 1: Overview of Aire’s design. Components introduced or
modified by Aire are shaded. Circles indicate places where Aire
intercepts requests from the original web service. Not shown are
the detailed components for services B and C.

2.2 Aire architecture
Figure 1 provides an overview of Aire’s overall design.
Every web service that supports repair through Aire runs
an Aire repair controller, whose design is inspired by
Warp [7]. The repair controller maintains a repair log dur-
ing normal operation by intercepting the original service’s
requests, responses, and database accesses. The repair
controller also performs repair operations as requested by
users, administrators, or other web services, by rolling
back affected state and re-executing affected requests.

In order to be able to repair interactions between ser-
vices, Aire intercepts all HTTP requests and responses
to and from the local system. Repairing requests or re-
sponses later on requires being able to name them; to
this end, Aire assigns an identifier to every request and
response, and includes that identifier in an HTTP header.
The remote system, if it is running Aire, records this iden-
tifier for future use if it needs to repair the corresponding
request or response.

During repair, if Aire determines that the local system
sent an incorrect request or response to another service,
it computes the correct request or response, and sends
it along with the corresponding ID to the other service.
Aire’s repair messages are implemented as just another
API on top of HTTP (with one special case, when a server
needs to get in touch with a past client). Aire supports
four kinds of operations in its repair API. The two most
common repair operations involve replacing either a re-
quest or response with a different payload. Two other
operations arise when Aire determines that the local ser-
vice should never have issued a request in the first place,
or that it should have issued a request while none was
originally performed; in these cases, Aire asks the remote
service to either cancel a past request altogether, or to
create a new request.

3



Command and parameters Description

replace (request_id, new_request) Replaces past request with new data
delete (request_id) Deletes past request
create (request_data, before_id, after_id) Executes new request in the past
replace_response (response_id, new_response) Replaces past response with new data

Table 1: The repair protocol between Aire servers.

When repairing a request, Aire updates its repair log
and versioned database, just like it does during normal
operation, so that a future repair can perform recovery on
an already repaired request. This is important because
asynchronous repair can cause a request to be repaired
several times as repair propagates through all the affected
services.

Aire must control who can issue repair operations, to
ensure that clients or other web services cannot make
unauthorized changes via the repair interface. Aire dele-
gates this access control decision to the original service,
as access control policies can be service-specific: for
example, a service might require a stronger form of au-
thentication (e.g., Google’s two-step authentication) when
a client issues a repair operation than when it issues a nor-
mal operation; or a platform such as Facebook might
block repair requests from a third-party application if the
application is attempting to modify the profile of a user
that has since uninstalled that application.

In some cases, appropriate credentials for issuing a re-
pair operation on another web service may be unavailable.
For example, Aire on a service A may need to repair a
request it previously issued on behalf of a specific user
to a remote service B; however, if A no longer has the
user’s credentials to B, it cannot invoke repair on B. Aire
treats this situation as if service B is not available, and
queues the repair on A for later. Once the user logs in
to A and provides credentials for B, A can use the user’s
credentials to propagate repair.

2.3 Assumptions
To perform repair, Aire makes several assumptions.

First, Aire assumes that each service’s web software
stack is in the trusted computing base. This includes the
OS, the language runtime, the database server, and the
application framework (such as Rails or Django) that the
service operates on. Aire cannot recover from an attack
that compromises these system components.

Second, Aire’s repair propagation assumes that the ser-
vices and clients affected by an attack are running Aire.
If some client or service does not run Aire, then Aire will
not be able to repair the effects of the attack on that client
or service (and any other clients and services to which the
attack spread from there). If a service cannot propagate
repair to another machine, Aire notifies the service’s ad-
ministrator of the repair that cannot be propagated, so that

the administrator can take remedial action (e.g., manual
recovery).

As a corollary, Aire assumes that attacks do not propa-
gate through Web browsers, as our current Aire prototype
does not support browser clients, and hence cannot track
or repair from attacks that spread through users’ browsers.
It may be possible to add repair for browsers in a manner
similar to Warp’s shadow browser [7].

Finally, Aire assumes that each service has an appro-
priate access control policy that denies access to unau-
thorized clients requesting repair, and that each service
and its clients support partially repaired states. If the for-
mer assumption does not hold, attackers would be able
to use repair to make unauthorized changes to a service.
If the latter assumption is broken, clients may behave
incorrectly due to inconsistencies between services.

3 Distributed repair
The next three sections delve into the details of Aire’s
design. This section describes Aire’s asynchronous repair
protocol, §4 focuses on permission checking for repair
messages between services, and §5 discusses how applica-
tions can handle partially repaired states that arise during
asynchronous repair.

3.1 Repair protocol
Each Aire-enabled web service exports a repair interface
that its clients (including other Aire-enabled web services)
can use to initiate repair on it. Aire’s repair interface is
summarized in Table 1.

Aire’s repair begins when some client (either a user
or administrator, or another web service) determines that
there was a problem with a past request, or that it incor-
rectly missed issuing a past request. The client initiates
repair on the corresponding service by using the replace
or delete operations to fix the past request, or by using
the create operation to create a new request in the past.
Sometimes, a past response of a service is incorrect, in
which case the service initiates repair on the correspond-
ing client using the replace_response operation. We
now describe these operations in more detail.

Repairing previous requests. The simplest operation
is replace, which allows a client to indicate that a past re-
quest (named by its request_id) was incorrect, and should
be replaced with new_request instead. The new request
contains the corrected version of the arguments that were

4



originally provided to the original request, including the
URL, HTTP headers, query parameters, etc. When Aire’s
controller performs a replace operation, it repairs the
local state to be as if the newly supplied request happened
instead of the original request. If other requests or re-
sponses turn out to be affected by this repair, Aire queues
appropriate repair API calls for other services.

The delete operation is similar to replace, but it
is used when a client determines that it should not have
issued some request at all. In this case, delete instructs
the Aire repair controller to eliminate all side-effects of
the request named by request_id.

Creating new requests. Sometimes, repair requires
adding a new request “in the past.” For example, if an
administrator forgot to remove a user from an access con-
trol list when he should have been removed, one way to
recover from this mistake is to add a new request at the
right time in the past to remove the user from the access
control list. The create call allows for this scenario.

One challenge with create is in specifying the time at
which the request should execute. Different web services
do not share a global timeline, so the client cannot specify
a single timestamp that is meaningful to both the client
and the service. Instead, the client specifies the time for
the newly created request relative to other messages it
exchanged with the service in the past. To do this, the
client first identifies the local timestamp at which it wishes
the created request to execute; then it identifies its last
request before this timestamp and the first request after
this timestamp that it exchanged with the service, and
instructs the service to run the created request at a time
between these two requests. The before_id and after_id
parameters to the create call name these two requests.

The above scheme is not complete: it allows the client
to specify the order of the new request with respect to
past requests the client exchanged with the service exe-
cuting the new request, but it does not allow the client
to specify ordering with respect to arbitrary messages
in the system. More general ordering constraints would
require services to exchange large vector timestamps or
dependency chains, which could be costly. As we have
not yet found a need for it, we have not incorporated it
into Aire’s design.

Repairing responses. The replace_response opera-
tion allows a server to indicate that a past response to a
client, named by its response_id, was incorrect, and to sup-
ply a corrected version of the response in new_response.

In web services, clients initiate communication to the
server. However, to invoke a replace_response on a
client, the service needs to initiate communication to the
client. This raises two issues. First, the server needs to
know where to send the replace_response call for a
client. To address this issue, Aire associates a notifier

URL with each request; if the server wants to contact
the client to repair the response, it sends a request to the
associated notifier URL.

Second, once a client gets a replace_response call
from a service, it needs to authenticate the service. During
normal operation, as the client initiates communication, it
typically authenticates the server by communicating with
it over TLS (which verifies the server’s X.509 certificate).
To allow the client to use the same authentication mech-
anism during repair, the service sends only a response
repair token to the client’s notifier URL, instead of the
entire replace_response call; when a client receives a
response repair token, it contacts the server and asks the
server to provide the replace_response call for that
token. This way, the client can appropriately authenticate
the server, by validating its X.509 certificate.

Integrating Aire with HTTP. In order to name re-
quests and responses during subsequent repair operations,
Aire must assign a name to every one of them. To do
this, Aire interposes on all HTTP requests and responses
during normal operation, and adds headers specifying a
unique identifier that will be used to name every request.

To ensure these identifiers uniquely name a request (or
response) on a particular server, Aire assigns the iden-
tifier on the service handling the request (or receiving
the response); it becomes the responsibility of the other
party to remember this identifier for future repair oper-
ations. Specifically, Aire adds an Aire-Response-Id:
header to every HTTP request issued from a web service;
this identifier will name the corresponding response. The
server receiving this request will store the response iden-
tifier, and will use it later if the response must be repaired.
Conversely, Aire adds an Aire-Request-Id: header to
every HTTP response produced by a web service; this
identifier assigns a name to the HTTP request that trig-
gered this response. A client can use this identifier to
refer to the corresponding request during subsequent re-
pair. Aire also adds an Aire-Notifier-URL: header to
every issued request.

To make it easier for clients to use Aire’s repair in-
terface, Aire’s repair API encodes the request being
repaired (e.g., new_request for replace) in the same
way as the web service would normally encode this re-
quest. The type of repair operation being performed (e.g.,
replace or delete) is sent in an Aire-Repair: HTTP
header, and the request_id being repaired is sent in an
Aire-Request-Id: header. Thus, to fix a previous re-
quest, the client simply issues the corrected version of the
request as it normally would, and adds the Aire-Repair:
replace and Aire-Request-Id: headers to indicate
that this request should replace a past operation. In ad-
dition to requiring relatively few changes to client code,

5



this also avoids introducing infrastructure changes (e.g.,
modifying firewall rules to expose a new service).

3.2 Local repair
As part of local repair of a service, Aire re-executes API
operations that were affected by the attack. It is possible
that one of these operations will execute differently due
to repair, and issue a new HTTP request that it did not
issue during the original execution. In that case, Aire
must issue a create repair call to the corresponding web
service, in order to create a new request “in the past.” Re-
execution can also cause the arguments of a previously
issued request to change, in which case Aire queues a
replace message to the remote web service in question.
One difficulty with both create and replace calls is that
to complete local repair, the application needs a response
to the HTTP requests in these calls. However, Aire cannot
block local repair waiting for the response.

To resolve this tension, Aire tentatively returns a “time-
out” response to the application’s request, which any
application must already be prepared to deal with; this
allows local repair to proceed. Once the remote web ser-
vice processes the create or replace operation, it will
send back a replace_response that replaces the time-
out response with the actual response to the application’s
request. At this point, Aire will perform another repair to
fix up the response.

When re-execution skips a previously issued request
altogether, Aire queues a delete message. Finally, if re-
execution changes the response of a previously executed
request, or computes the response for a newly created
request, Aire queues a replace_response message.

Aire maintains an outgoing queue of repair messages
for each remote web service. If multiple repair messages
refer to the same request or the same response, Aire can
collapse them, by keeping only the most recent repair
message. Sometimes, Aire might be unable to send a
repair message, either because the original request or
response did not include the dependency-tracking HTTP
headers identifying the web service to send the message to,
or because the communication to the remote web service
timed out; in either case, Aire notifies the application
(as we discuss in §4). Aire also aggregates incoming
repair messages in an incoming queue, and can apply the
changes requested by multiple repair operations as part
of a single local repair.

3.3 Convergence
Recall that Aire’s goal is to produce a state that is consis-
tent with the attack never having taken place (attack-free
for short). We will now informally argue that Aire’s repair
protocol converges to this state, assuming no failures (e.g.,
unreachable services or insufficient credentials, which are
discussed in the next section).

Consider the list L of all messages (requests and re-
sponses between services) that were affected by the attack,
sorted by receive time. We will argue that Aire eventually
repairs the recipients of all these messages (i.e., servers
that ran affected requests or clients that received affected
responses). For simplicity, assume that each service keeps
a complete timeline of its state (e.g., a checkpoint at every
point in time), and that each service handled a request
or response instantaneously at the time it was received.
As repair messages propagate between services, the state
timeline of each service will be repaired up to increas-
ingly more recent points in time, eventually reaching the
present.

The first message in L must be the initial attack at time
t0. Local repair rolls back any state modified as a result of
this message to before t0, and possibly re-executes some
operations on that service. Since inputs to the service up
to and including t0 are now attack-free, the state timeline
of that service is now attack-free up to and including t0.
All other services are also attack-free up to and including
t0, since the attack did not propagate to any other services
as of t0.

Now we argue by induction on the times at which mes-
sages in L were received. Suppose that all state timelines
are attack-free as of some ti , and the next message m in
L is at ti+1 > ti . Consider the service s that sent m as a
result of some execution e. We know that m was sent at
or before ti+1, that s received no attack-affected message
between ti and ti+1, and that the timeline of s is attack-
free up to and including ti . This means that all inputs to e

up to the point when it sent m are now attack-free. Thus,
local repair on s will re-execute e, produce the attack-free
version of m, and send a repair message for m. Once the
recipient of this repair message performs local repair, its
timeline (and the timelines of all other services) will be
attack-free up to and including ti+1. By induction, Aire
will eventually repair all timelines to the present.

In addition to producing the goal state, we would like
Aire to eventually stop sending repair messages. This is
true as long as the local repair implementation is stable:
that is, when processing a repair message for time t, it
produces repair messages only for requests or responses
at times after t (i.e., does not change its mind about pre-
vious messages). Stable local repair ensures that repair
messages progress forward in time starting from the at-
tack, and eventually converge upon reaching the present
time. Local repair is stable if re-execution is deterministic,
which Aire achieves by recording and replaying sources
of non-determinism as in Warp [7].

4 Repair access control
Access control is important because Aire’s repair itself
must not enable new ways for adversaries to propagate
from one compromised web service to another. For ex-

6



Function and parameters Description

Functions implemented by the web service and invoked by Aire
authorize (repair_type, original, repaired) Checks if a repair message should be allowed
notify (msg_id, repair_type, original, repaired, error) Notifies application of a problem with a remote repair message

Functions implemented by Aire and invoked by the web service
retry (msg_id, updated_repair_type, updated_message) Resends a repair message

Table 2: The interface between Aire and the web service.

ample, a hypothetical design that allows any client with a
valid request identifier to issue repair calls for that request
is unsuitable, because an adversary that compromises a
service storing many past request identifiers would be
able to make arbitrary changes to those past requests, af-
fecting many other services; this is something an attacker
would not be able to do in the absence of Aire.

Aire requires that every repair API call be accompanied
with credentials to authorize the repair operation. Aire
delegates access control decisions to the application be-
cause principal types, format of credentials, and access
control policies can be application-specific. For exam-
ple, some applications may use cookies for authentication
while others may include an access token as an additional
HTTP header; and some applications may allow any user
with a currently valid account to repair a past request is-
sued by that user, while others may allow only users with
special privileges to invoke repair. In the special case of
replace_response messages, the repair message can
be authenticated using the server’s X.509 certificate, as
discussed in §3.1, although an application developer can
require (and supply) other credentials if needed.

The interface between Aire and an Aire-enabled ser-
vice is shown in Table 2. Services running Aire export
an authorize function that Aire invokes when it re-
ceives a repair message; Aire passes to the function the
type of repair operation (create, replace, delete, or
replace_response), and the original and new versions
of the request or response to repair (denoted by the origi-
nal and repaired parameters). The authorize function’s
return value indicates whether the repair should be al-
lowed (using credentials from the repaired message); if
the repair is not allowed, Aire returns an authorization
error for the repair message.

To perform access control checks, the service may need
to read old database state (e.g., to look up the principal
that issued the original request). For this purpose, Aire
provides the application read-only access to a snapshot
of Aire’s versioned database at the time when the orig-
inal request executed; the specific interface depends on
how the application’s web framework provides database
access (e.g., Django’s ORM). Once a repair operation is
authorized, Aire re-executes the new request, if any. As
part of request re-execution, the application can apply

other authorization checks, in the same way that it does
for any other request during normal operation.

If a repair message sent to a remote server returns an
authorization error (e.g., because the credentials have ex-
pired) or times out, Aire notifies the application of the
error by invoking the notify function (and continues to
process other repairs in the meantime). Once the appli-
cation obtains appropriate credentials for a failed repair
operation, it can use the retry function to ask Aire to re-
send the repair message. In the OAuth example above, the
client application could display the failed repair message
to the user whose OAuth token was stale, and prompt the
user for a fresh OAuth token or ask if the message should
be dropped altogether.

5 Reasoning about partially repaired state
Aire’s asynchronous repair exposes the state of a ser-
vice to its clients immediately after local repair is done,
without waiting for repair to complete on other affected
services. In principle, for a distributed system composed
of arbitrary tightly coupled services, a partially repaired
state can appear invalid to clients of the services. For ex-
ample, if one of the services is a lock service, and during
repair it grants a lock to a different application than it did
during original execution, then in some partially repaired
state both the applications could be holding the lock; this
violates the service’s invariant that only one application
can hold a lock at any time, and can confuse applications
that observe this partially repaired state.

However, Aire is targeted at web services, which are
loosely coupled, in part because they are under different
administrative domains and cannot rely on each other to
be always available. In practice, for such loosely coupled
web service APIs, exposing partially repaired states does
not violate their invariants. In the rest of this section, we
first present a model to reason about partially repaired
states, and then provide an example of how a developer
can modify a service to handle partially repaired states if
necessary.

5.1 Modeling repair as API invocations
Many web services and their clients are designed to deal
with concurrent operations, and so web application de-
velopers already have to reason about concurrent updates.
For example, Amazon S3, a popular web service offering

7



get(x)

put(x, b)

ok

get(x)

b

?

op2

op3

op1a

Client A
Amazon S3 

object X Attacker

t1

t2

t3

Repair
client

err

a

Figure 2: Example scenario demonstrating modeling repair actions
as concurrent operations by a repair client. Solid arrows indi-
cate requests during original execution, and dotted arrows indicate
eventual repair propagation. The S3 service initiates local repair in
between times t2 and t3 by deleting the attacker’s put. If S3’s lo-
cal repair completes before t3, op3 observes value a for X . If A

has not yet received the propagated repair from S3, receiving the
value a for X at time t3 is equivalent to a concurrent writer (the
hypothetical repair client) doing a concurrent put(x, a).

a data storage interface, supports both a simple PUT/GET
interface that provides last-writer-wins semantics in the
face of concurrency, and an object versioning API that
helps clients deal with concurrent writes.

Building on this observation, we propose a contract:
any repair of a service should be indistinguishable from
a hypothetical repair client performing normal API calls
to the service, in the present time. Note that this is just
a way of reasoning about what effects a repair can have;
Aire’s repair algorithm does not actually construct such a
sequence of API calls. If repair operations are equivalent
to a concurrent client, then application developers can
handle partially repaired states simply by reasoning about
this additional concurrent client, rather than having to
reason about all possible timelines in which concurrent re-
pair operations are happening. In particular, applications
that already handle arbitrary concurrent clients require no
changes to properly handle partially repaired states.

This model fits many existing web services. For exam-
ple, consider the scenario in Figure 2, illustrating opera-
tions on object X stored in Amazon S3. Initially, X had
the value a. At time t1, an attacker writes the value b to
X . At time t2, client A reads the value of X and gets back
b. At time t3 the client reads the value of X again. In the
absence of repair or any concurrent operations, A should
receive the value b, but what should happen if, between
t2 and t3, Amazon S3 determines the attacker’s write was
unauthorized and deletes that request?

If repair occurs between t2 and t3, the state of X

will roll back to a, and two things will happen with A:
first, it will receive a in response to its second request
at t3, and second, at some later time it will receive a
replace_response from S3 that provides the repaired
response for the first get, also containing a. Client
A observes partially repaired state during the time be-

tween when local repair on S3 completed (which is some-
time between t2 and t3) and when A finally receives the
replace_response message; A sees this state as valid
(with its first get(x) returning b and its second get(x)
returning a), because a hypothetical repair client could
have issued a put(x, a) in the meantime.

5.2 Making service APIs repairable
A web service with many concurrent clients that offers
only a simple PUT/GET interface can handle partially
repaired states, because clients cannot make any assump-
tions about the state of the service in the face of concur-
rency. However, some web service APIs provide stronger
invariants that require application changes to properly
handle partial repair. For example, some web services
provide a versioning API that guarantees an immutable
history of versions (as we discuss in §7.3). Suppose client
A from our earlier example in Figure 2 asked the server
for a set of all versions of X , instead of a get on the latest
version. At time t2, A would receive the set of versions
{a, b}. If repair simply rolled back the state of X between
t2 and t3, A would receive the set of versions {a} at time
t3 with b removed from the set, a state that no concurrent
writer could have produced using the versioning API. The
rest of this section describes how a developer can modify
an application to handle partially repaired states, using a
versioning interface as an example.

Consider a web service API that provides a single,
linear history of versions for an object. Once a client
performs a put(x, b), the value b must appear in the
history of values of x (until old versions are garbage-
collected). If the put(x, b) was erroneous and needs to
be deleted, what partially repaired state can the service
expose? Removing b from the version history altogether
would be inconsistent if the service does not provide any
API to delete old versions, and might confuse clients
that rely on past versions to be immutable. On the other
hand, appending new versions to the history (i.e., writing
a new fixed-up value) prevents Aire from repairing past
responses. In particular, if a past request asked for a
set of versions, Aire would have to send a new set of
versions to that client (using replace_response) where
the effects of b have been removed. However, if Aire
extends that past version history by appending a new
version that reverts b, this synthesized history would be
inconsistent with the present history.

One way to handle partial repair with a versioning API
is to extend the API to support branches, similar to the
model used by git [6]. With an API that supports branches,
when a past request needs to be repaired, Aire can create
a new branch that contains a repaired set of changes,
and move the “current” pointer to the new branch, while
preserving the original branch. This allows the API to
handle partially repaired states, and has the added benefit

8



T
im

e
put(x, a)

put(x, b)

get(x)

put(x, c)

versions(x)

put(x, d)

v1:a

v2:b

v3:c

v4:d

v5:c

current

put(x, a)

get(x)

put(x, c)

versions(x)

Original
operation history

Operation history
after repair

v6:d put(x, d)

Figure 3: Repair of a single key in a versioned key-value store. Re-
pair starts when the shaded operation put(x, b) from the original
history, shown on the left, is deleted. This leads to the repaired
history of operations shown on the right. The version history ex-
posed by the API is shown in the middle, with two branches: the
original chain of versions, shown with solid lines, and the repaired
chain of versions, dotted. In each immutable version v:w, v is the
version number and w is the value of the key. The mutable “cur-
rent” pointer moves from one branch to another as part of repair.

of preserving the history of all operations that happened,
including mistakes or attacks, instead of erasing them.

For example, consider a simple key-value store that
maintains a history of all values for each key, as illus-
trated in Figure 3. In addition to put and get calls, the
key-value store provides a versions(x) call that returns
all previous versions of key x. During repair, request
put(x, b) is deleted. An API with linear history does
not allow clients to handle partial repair (as discussed
above), but a branching API does. With branches, repair
creates a new branch (shown in the right half of Figure 3),
and re-applies legitimate changes to that branch, such as
put(x, c). These changes will create new versions on
the new branch, such as v5 mirroring the original v3 (the
application must ensure that version numbers themselves
are opaque identifiers, even though we use sequential
numbers in the figure). At the end of local repair, Aire ex-
poses the repaired state, with the “current” branch pointer
moved to the repaired branch. This change is consistent
with concurrent operations performed through the regular
web service API.

For requests whose responses changed due to repair,
Aire sends replace_response messages that contain
the new responses: for a get request, the new response
is the repaired value at the logical execution time of the
request, and for a versions request, it contains only the
versions created before the logical execution time of the
request. In the example of Figure 3, the new response
for get(x) is a (replacing b), while the new response
for the versions(x) call is {v1, v2, v3, v5} (replacing
{v1, v2, v3}), and does not contain v4 and v6.

6 Implementation
We implemented a prototype of Aire for the Django
web application framework [2]. Aire leverages Django’s
HTTP request processing layer and its object-relational
mapper (ORM). The ORM abstracts data stored in an ap-
plication’s database as Python classes (called “models”)
and relations between them; an instance of a model is
called a model object.

We modified the Django HTTP request processor and
the Python httplib library functions to intercept incom-
ing and outgoing HTTP requests, assign IDs to them, and
record them in the repair log. To implement versioning of
model objects, we modified the Django ORM to intercept
the application’s reads and writes to model objects. On
a write, Aire transparently creates a new version of the
object, and on a read, it fetches the latest version during
normal execution and the correct past version during lo-
cal repair. Aire rolls back a model object to time t by
deleting all versions after t. In addition to tracking de-
pendencies between writes and reads to the same model,
Aire also tracks dependencies between models (such as
unique key and foreign key relationships) and uses them
to propagate repair. We modified about 3,000 lines of
code in Django to implement the Aire interceptors; the
Aire repair controller was another 2,800 lines of Python
code.

Repair for a versioned API. If a service implements
versioning, it indicates this to Aire by making the model
class for its immutable versions a subclass of Aire’s
AppVersionedModel class. AppVersionedModel ob-
jects are not rolled back during repair, and Aire does not
perform versioning for these objects. If other model ob-
jects store references to AppVersionedModel objects,
Aire rolls those other objects back during repair.

7 Application case studies
This section answers the following questions:

• What kinds of attacks can Aire recover from?

• How much of the system is repaired if some services
are offline or authorization fails at a service?

• How much effort is required to start using Aire in an
existing application?

7.1 Intrusion recovery
As we do not know of any significant compromises that
propagated through interconnected web services to date,
to evaluate the kinds of attacks that Aire can handle, we
implemented four attack scenarios and attempted to re-
cover from each attack using Aire. The rest of this sub-
section describes these scenarios and how Aire handled
the attacks.

9



Signup using
OAuth

Verify email

Register

Post
Post code

Verified

Config

Attacker Askbot OAuth Dpaste

Admin

1
2

3

4

5

6

..
.

Figure 4: Attack scenario in Askbot demonstrating Aire’s repair
capabilities. Solid arrows show the requests and responses during
normal execution; dotted arrows show the Aire repair operations
invoked during recovery. Request 1© is the configuration request
that created a vulnerability in the OAuth service, and the attacker’s
exploit of the vulnerability results in requests 2©- 6©. For clarity,
requests in the OAuth handshake, other than request 2©, have been
omitted.

Askbot. A common pattern of integration between web
services is to use OAuth or OpenID providers like Face-
book, Google, or Yahoo, to authenticate users. If an at-
tacker compromises the provider, she can spread an attack
to services that depend on the provider. To demonstrate
that Aire can recover from such attacks, we evaluated Aire
using real web applications, with an attack that exploits
a vulnerability similar to the ones recently discovered in
Facebook [9, 10].

The system for the scenario consists of three large
open-source Django web services: Askbot [1], which
is an open-source question and answer forum similar to
Stack Overflow and used by sites like the Fedora Project;
Dpaste, a Django-based pastebin service, which allows
posting and sharing of code snippets; and a Django-based
OAuth service. These three services together comprise
183,000 lines of Python code, excluding blank lines and
comments. Askbot maintains a significant amount of
state, including questions and answers, tags, user profiles,
ratings, and so on, which Aire must repair. We modified
Askbot to integrate with Django OAuth and Dpaste, which
it did not do out-of-the-box; these modifications took 74
and 27 lines of Python code, respectively.

The attack scenario is shown in Figure 4. We config-
ured Askbot to allow users to sign up using accounts from
an external OAuth provider service that we set up for this
purpose. A user’s signup in our Askbot setup is depicted
by the requests 2©- 4© in Figure 4. As is typical in an
OAuth handshake, Askbot redirects the user to the OAuth
provider service. The user logs in to the OAuth service,
and the OAuth service grants an OAuth token to Askbot if
the user allows it to do so. To keep Figure 4 simple, only
the first request in the OAuth handshake (request 2©) is
shown. Once Askbot gets an OAuth token for the user, it

allows the user to register with an email address (request
3©) that it verifies with the OAuth service using the user’s
OAuth token (request 4©). If the verification succeeds,
Askbot creates a local account for the user and allows the
user to post and view questions and answers.

In addition to OAuth integration, we also modified
Askbot to integrate with Dpaste; if a user’s Askbot post
contains a code snippet, Askbot posts this code to the
Dpaste service for easy viewing and downloading by other
users. Finally, the Askbot service also sends users a daily
email summarizing that day’s activity. These loosely
coupled dependencies between the services mimic the
dependencies that real web services have on each other.

The attack we simulate in this scenario is based on a re-
cent Facebook vulnerability [9]. To enable the attack, we
added a debug configuration option in the OAuth service
that always allows email verification to succeed (adding
this option required modifying 13 lines of Python code in
the OAuth service). This option is mistakenly turned on
in production by the administrator by issuing request 1©,
thus exposing the vulnerability. The attacker exploits this
vulnerability in the OAuth service to sign up with Askbot
as a victim user (requests 2©- 4©) and post a question with
some code (request 5©), thereby spreading the attack from
the OAuth service to Askbot. Askbot automatically posts
this code snippet to Dpaste (request 6©), spreading the at-
tack further. Later, a legitimate user views and downloads
this code from Dpaste, and at an even later time, Askbot
sends a daily email summary containing the attacker’s
question, creating an external event that depends on the
attack; both of these events are not shown in the figure.
Before, after, and during the attack, other legitimate users
continue to use the system, logging in, viewing and post-
ing questions and answers, and downloading code from
the Dpaste service. Some actions of these legitimate users,
such as posting their own questions, are not dependent
on the attack, while others, such as reading the attacker’s
question, are dependent.

We used Aire to recover from the attack. The ad-
ministrator starts repair by invoking a delete operation
on request 1©, which introduced the vulnerability. The
delete is shown by the dotted arrow corresponding to
1© in Figure 4. This initiates local repair on the OAuth
service, which deletes the misconfiguration, and invokes
a replace_response operation on request 4© with an er-
ror value for the new response. The replace_response
propagates repair to Askbot: as requests 3© and 5© de-
pend on the response to request 4©, local repair on Askbot
re-executes them using the new error response, thereby un-
doing the attacker’s signup (request 3©) and the attacker’s
post (request 5©). Local repair on Askbot also runs a com-
pensating action for the daily summary email, which noti-
fies the Askbot administrator of the new email contents
without the attacker’s question; it re-executes all legiti-

10



ACL directory server

Master ACL
spreadsheet

Spreadsheet server A

Spreadsheet AACL

Spreadsheet server B

Spreadsheet BACL

Figure 5: Setup for the spreadsheet application attack scenarios.
Arrows represent the ACL directory server updating ACLs on
other spreadsheet servers.

mate user requests that depended on the attack requests;
and finally it invokes a delete operation on Dpaste to
cancel request 6©. Dpaste in turn performs local repair,
resulting in the attacker’s code being deleted, and a notifi-
cation being sent to the user who downloaded the code.
This completes recovery, which removes all the effects of
the attack and does not change past legitimate actions in
the system that were not affected by the attack.

Lax permissions. A common source of security vulner-
abilities comes from setting improper permissions. In a
distributed setting, we consider a scenario where one ser-
vice maintains an authoritative copy of an access control
list, and periodically updates permissions on other ser-
vices based on this list, similar to the example presented
in §1 to motivate the need for Aire. If a mistake is made
in the master list, it is important not only to propagate a
remedy to other services, but also to undo any requests
that took advantage of the mistake on those services.

Since Askbot did not natively support such a permis-
sion model, we implemented our own spreadsheet service
for this scenario. The spreadsheet service has a simple
scripting capability similar to Google Apps Script [12].
This allows a user to attach a script to a set of cells, which
executes when values in cells change. We use scripting
to implement a simple distribution mechanism for access
control lists (ACLs). The setup is shown in Figure 5. The
ACL directory is a spreadsheet service that stores the mas-
ter copy of the ACL for the other two spreadsheet services.
A script on the directory updates the ACLs on the other
services when an ACL on the directory is modified.

The attack is as follows: an administrator mistakenly
adds an attacker to the master copy of the ACL by issuing
a request to update the ACL directory; the ACL script
distributes the new ACL to spreadsheets A and B. Later,
the attacker takes advantage of these extra privileges to
corrupt some cells in both spreadsheets. All this happens
while legitimate users are also using the services.

Once the administrator realizes his mistake, he initi-
ates repair by invoking a delete operation on the ACL
directory to cancel his update to the ACL. The ACL direc-
tory reverts the update, and invokes delete on the two
requests made by its script to distribute the corrupt ACL
to the two services. This causes local repair on each of
the two services, which rolls back the corrupt ACL. All

the requests since the corrupt ACL’s distribution are re-
executed, as every request to the service checks the ACL.
As the attacker is no longer in the ACL, her requests fail,
whereas the requests of legitimate users succeed; Aire
thereby cleans up the attacker’s corrupt updates while
preserving the updates made by legitimate users.

Lax permissions on the configuration server. A more
complex form of the above attack could take place if
the ACL directory itself is misconfigured. For example,
suppose the administrator does not make any mistakes in
the ACLs in the directory, but instead accidentally makes
the directory world-writable. An adversary could then add
herself to the master copy of the ACL for spreadsheets A

and B, wait for updates to propagate to A and B, and then
modify data in those spreadsheets as above.

Recovery in this case is more complicated, as it needs
to revert the attacker’s changes to the ACL directory in
addition to the spreadsheet servers. Repair is initiated
by the administrator invoking a delete operation on his
request that configured the ACL directory to be world-
writable. This initiates local repair on the ACL directory,
reverting its permissions to what they were before, and
cancels the attacker’s request that updated the ACL. This
triggers the rest of the repair as in the previous scenario,
and fully undoes the attack.

Propagation of corrupt data. Another common pat-
tern of integration between services is synchronization of
data, such as notes and documents, between services. If
an attack corrupts data on one service, it automatically
spreads to the other services that synchronize with it.

To evaluate Aire’s repair for synchronized services, we
reused the spreadsheet application and the setup from the
previous scenarios, and added synchronization of a set of
cells from spreadsheet service A to spreadsheet service B.
A script on A updates the cells on B whenever the cells
on A are modified. As before, the attack is enabled by
the administrator mistakenly adding the attacker to the
ACL. However, the attacker now corrupts a cell only in
service A, and the script on A automatically propagates
the corruption to B.

Repair is initiated, as before, with a delete operation
on the ACL directory. In addition to the repair steps per-
formed in the previous scenario, after service A completes
its local repair, it invokes a delete operation on service
B to cancel the synchronization script’s update of B’s cell.
This reverts the updates made by the synchronization,
thereby showing that Aire can track and repair attacks
that spread via data synchronization as well.

7.2 Partial repair propagation
Repair might not propagate to all services if some ser-
vices are offline during repair or a service rejects a repair

11



message as unauthorized. To evaluate Aire’s partial re-
pair due to offline services, we re-ran the Askbot repair
experiment with Dpaste offline during repair. Local re-
pair runs on both the OAuth and Askbot services; the
vulnerability in the OAuth service is fixed and the at-
tacker’s post to Askbot is deleted. Clients interacting
with the OAuth and Askbot services see the state with
the attacker’s post deleted, which is a valid state, as this
could have resulted due to a concurrent operation by an-
other client. Most importantly, this partially repaired state
immediately prevents any further attacks using that vul-
nerability, without having to wait for Dpaste to be online.
Once Dpaste comes online, repair propagates to it and
deletes the attacker’s post on it as well. When we re-ran
the experiment and never brought Dpaste back online,
Aire on Askbot timed out attempting to send the delete
message to Dpaste, and notified the Askbot administrator,
so that he could take remedial action.

We also ran the spreadsheet experiments with service B

offline. In all cases, this results in local repair on service
A, which repairs the corrupted cells on A, and prevents
further unauthorized access to A. Once B comes online
and the directory server or A or both propagate repair to
it (depending on the specific scenario), B is repaired as
well. Similar to the offline scenario in Askbot, clients
accessing the services at any time find the services’ state
to be valid; all repairs to the services are indistinguishable
from concurrent updates.

Finally, we used the spreadsheet experiments to evalu-
ate partial repair due to an authorization failure of a repair
message. We use an OAuth-like scheme for spreadsheet
services to authenticate each other—when a script in a
spreadsheet service communicates with another service,
it presents a token supplied by the user who created the
script. The spreadsheet services implement an access
control policy that allows repair of a past request only if
the repair message has a valid token for the same user on
whose behalf the request was originally issued.

We ran the spreadsheet experiments and initiated repair
after the user tokens for service B have expired. This
caused service B to reject any repair messages, and Aire
effectively treats it as offline; this results in partially re-
paired state as in the offline experiment described before.
On the next login of the user who created the script, the
directory service or A (depending on the experiment)
presents the user with the list of pending repair messages.
If the user refreshes the token for service B, Aire propa-
gates repair to B, repairing it as well.

The results of these three experiments demonstrate that
Aire’s partial repair can repair the subset of services that
are online, and propagate repair once offline services or
appropriate credentials become available.

Service Simple Versioned DescriptionCRUD

Amazon S3 � � Simple file storage
Google Docs � � Office applications
Google Drive � � File hosting
Dropbox � � File hosting
Github � � Project hosting
Facebook � Social networking
Twitter � Social microblogging
Flickr � Photo sharing
Salesforce � Web-based CRM
Heroku � Cloud apps platform

Table 3: Kinds of interfaces provided by popular web service APIs
to their clients.

7.3 Porting applications to use Aire
Porting an application to use Aire involves changes both
on the client and the server side of that application’s inter-
face. This section explores the two in turn, demonstrating
that Aire requires little changes to both client-side and
server-side code to support repair.

Client-side porting effort. Clients of an Aire-enabled
service must be prepared to deal with partially repaired
states. To understand what would be involved for a client
to handle such states, we examine the interfaces of 10
popular web services for operations that might expose
inconsistencies as a result of partial repair. We found that
the APIs fell into two categories, as shown in Table 3.

Every service offered a simple CRUD (create, read,
update, delete) interface on the resource objects exported
by the service. There is no concurrency control for the
simple CRUD operations, and if multiple updates happen
simultaneously, the last update wins. For such services,
handling partial repair in a client boils down to assum-
ing there is an additional repair client that can perform
updates at any moment. In many situations, clients are
already prepared to deal with concurrent updates from
other clients, and thus would require little additional effort
to support Aire.

Half of the services studied also provide a versioning
API to deal with concurrent updates, typically exposing
a linear history of immutable versions for each resource.
These APIs allow clients to fetch a resource’s version
list, to perform an update only if a resource is at the
right version, and to restore a resource to a past version
(which creates a new version with the contents of the
past version). In this case, the interface would have to be
changed to support branching, as discussed in §5.2 (for
services that don’t already support it). The client would
then be able to assume that existing versions on a branch
are immutable, but that the current branch pointer could
be switched by a concurrent repair client at any time.

Server-side porting effort. To evaluate the effort of
adopting server-side application code to use Aire, we
measure the lines of code we changed in the Askbot,

12



Dpaste, and Django OAuth applications to support Aire
as described in §7.1. These three applications comprise
183,000 lines of code in total, excluding comments and
blank lines. To run these applications with Aire, we added
an authorize function to implement a repair access con-
trol policy. The policy allows repair of a past request
only if the repair message is issued on behalf of the
same user who issued the past request. Implementing
the authorize function took 55 lines of Python code.

For the spreadsheet application, we used the same ac-
cess control policy and authorize implementation. We
also implemented support for user-initiated retry of repair,
using the notify and retry interface, which we used in
our partial repair experiments (§7.2). Adding this capa-
bility to the spreadsheet application required 26 lines of
code (for comparison, the entire spreadsheet application
is 925 lines of code).

To evaluate the difficulty of implementing an Aire-
compatible service with a versioning API, we again used
our spreadsheet example application. We first imple-
mented a simple linear versioning scheme, where each
version is just an incrementing counter. We then extended
it to support version trees so that clients could handle
Aire’s partial repair. This involved adding parent and
timestamp fields to each version, and a pointer to the cur-
rent version for each cell. This required modifying 44
lines of code.

8 Performance evaluation
To evaluate Aire’s performance, this section answers the
following questions:

• What is the overhead of Aire during normal operation,
in terms of CPU overhead and disk space?

• How long does repair take on each service, and for the
entire system?

We performed experiments on a server with a 2.80 GHz
Intel Core i7-860 processor and 8 GB of RAM running
Ubuntu 12.10. As our prototype’s local repair is currently
sequential, we used a single core with hyperthreading
turned off to make it easier to reason about overhead.

8.1 Overhead during normal operation
To measure Aire’s overhead during normal operation, we
ran Askbot with and without Aire under two workloads: a
write-heavy workload that creates new Askbot questions
as fast as it can, and a read-heavy workload that repeat-
edly queries for the list of all the questions. During both
workloads, the server experienced 100% CPU load.

Table 4 shows the throughput of Askbot in these exper-
iments, and the size of Aire’s logs. Aire incurs a CPU
overhead of 19% and 30%, and a per-request storage over-
head of 5.52 KB and 9.24 KB (or 8 GB and 12 GB per
day) for the two workloads, respectively. One year of logs

Workload Throughput Log size per req.
No Aire Aire App. DB

Reading 21.58 req/s 17.58 req/s 5.52 KB 0.00 KB
Writing 23.26 req/s 16.20 req/s 8.87 KB 0.37 KB

Table 4: Aire overheads for creating questions and reading a list of
questions in Askbot. The left two columns show throughput with-
out and with Aire. The right two columns show the per-request
storage required for Aire’s logs (compressed) and the database
checkpoints.

Askbot OAuth Dpaste

Repaired requests 105 / 2196 2 / 9 1 / 496
Repaired model ops 5444 / 88818 9 / 128 4 / 7937
Repair messages sent 1 1 0
Local repair time 84.06 sec 0.10 sec 3.91 sec
Normal exec. time 177.58 sec 0.01 sec 0.02 sec

Table 5: Aire repair performance. The first two rows show the
number of repaired requests and model operations out of the total
number of requests and model operations, respectively.

should fit in a 3 TB drive at this worst-case rate, allowing
for recovery from attacks during that period.

8.2 Repair performance
To evaluate Aire’s repair performance, we used the Askbot
attack scenario from §7.1. We constructed a workload
with 100 legitimate users and one victim user. The at-
tacker signs up as the victim and performs the attack;
during this time, each legitimate user logs in, posts 5
questions, views the list of questions and logs out. After-
wards, we performed repair to recover from the attack.

The results of the experiment are shown in Table 5.
The two requests repaired in the OAuth service are re-
quests 1© and 4© in Figure 4, and the one request re-
paired in Dpaste is request 6©. The repair messages sent
by OAuth and Askbot are the replace_response for
request 4© and the delete for request 6©, respectively.
Askbot does not send replace_response for requests
3© and 5©, as the attacker browser’s requests do not in-
clude a Aire-Notifier-URL: header.

Local repair on Askbot re-executes only the requests
affected by the attack (105 out of the 2196 total requests),
which results in repair taking less than half the time taken
for original execution. The attack affects so many requests
because the attack question was posted at the beginning
of the workload, so subsequent legitimate users’ requests
to view the questions page depended on the attack request
that posted the question. These requests are re-executed
when the attacker’s request is canceled, and their repaired
responses do not contain the attacker’s question. Aire on
Askbot does not send replace_response messages for
these requests as the user’s browsers did not include a
Aire-Notifier-URL: header.

Repair takes longest on Askbot, and it is the last to
finish local repair. In our unoptimized prototype, repair

13



for each request is ~10× slower than normal execution.
This is because the repair controller and the replayed web
service are in separate processes and communicate with
each other for every Django model operation; optimiz-
ing the communication by co-locating them in the same
process should improve repair performance.

9 Discussion and limitations
Aire recovers the integrity of a system after an attack by
undoing unauthorized writes, but it cannot undo damage
resulting from unauthorized reads, such as an attack that
leaked confidential information. However, Aire could be
extended to help an administrator identify leaks, so he
can take remedial action—for example, if the administra-
tor marked confidential data for Aire, Aire could notify
him of reads that returned confidential data only during
original execution but not during repair.

Aire’s repair log and database of versioned Django
model objects grow in size over time, and eventually
garbage collection of old versions becomes necessary.
When the administrator of a service determines that logs
prior to a particular date are no longer needed, Aire per-
forms garbage collection by deleting repair logs and ver-
sions of database rows before that date. Once garbage
collection is done, Aire cannot repair requests to the ser-
vice prior to that date; if a client issues a repair operation
on a request whose logs were garbage collected, Aire
treats the service as permanently unavailable and notifies
the client’s administrator.

Our current prototype does not support simultaneous
normal execution and repair. When repair is invoked on a
service, Aire stops normal operation, switches the service
into repair mode, completes local repair, and switches it
back to normal operation. Our implementation could be
extended to support simultaneous normal execution and
repair similar to Warp’s repair generations [7].

10 Related work
The two closest pieces of work to Aire are the Warp [7]
and Dare [16] intrusion recovery systems. Warp focuses
on recovery in a single web service and is the inspiration
for Aire’s local recovery. Aire additionally tracks attacks
that spread across services and recovers from them, and
defines a model for reasoning about partially repaired
state. Dare performs intrusion recovery on a cluster of
machines. However, Dare’s repair is synchronous and
assumes that all machines are in the same administrative
domain; both of these design decisions are incompatible
with web services, unlike Aire’s asynchronous repair.

Some web services, like Google Docs and Dropbox,
already allow a user to roll back their files and documents
to a previous version. Aire provides a more powerful
recovery mechanism that tracks the spread of an attack

across services and undoes all effects of the attack while
preserving subsequent legitimate changes.

After a compromise, Polygraph [19] recovers the non-
corrupted state in a weakly consistent replication system
by rolling back corrupted state. However, unlike Aire,
it does not attempt to preserve the effects of legitimate
actions, which can lead to significant data loss.

Heat-ray [8] considers the problem of attackers propa-
gating between machines within a single administrative
domain, and suggests ways to reduce trust between ma-
chines. On the other hand, Aire is focused on attackers
spreading across web services that do not have a sin-
gle administrator, and allows recovery from intrusions.
Techniques such as Heat-ray’s could be helpful in under-
standing and limiting the ability of an adversary to spread
from one service to another.

Akkuş and Goel’s system [5] uses taint tracking to ana-
lyze dependencies between HTTP requests and database
elements, and uses administrator guidance to recover from
data corruption. However, unlike Aire, it can recover only
from accidental corruption and not attacks, and it cannot
handle attacks that spread across services.

The user-guided recovery system of Simmonds et
al. [21] recovers from violations of application-level in-
variants in a web service and uses compensating actions
and user input to resolve these violations. However, it
cannot recover from attacks or accidental data corruption.

Past work on distributed debugging [4] intercepts ex-
ecutions of unmodified applications and tracks depen-
dencies for performance debugging, whereas Aire tracks
dependencies for recovery.

11 Conclusion
This paper presented Aire, an intrusion recovery system
for interconnected web services. Aire introduced three
key techniques for distributed repair: (1) a repair protocol
to propagate repair across services that span administra-
tive domains, (2) an asynchronous approach to repair that
allows each service to perform repair at its own pace
without waiting for other services, and (3) a contract that
helps developers reason about states resulting from asyn-
chronous repair. We built a prototype of Aire for Django
and demonstrated that porting existing applications to
Aire requires little effort, that Aire can recover from four
realistic attack scenarios, and that Aire’s repair model is
supported by typical web service APIs.

Acknowledgments
We thank Frans Kaashoek, Eddie Kohler, the anonymous
reviewers, and our shepherd, Michael Walfish, for their
help and feedback. This research was supported by the
DARPA Clean-slate design of Resilient, Adaptive, Secure
Hosts (CRASH) program under contract #N66001-10-2-
4089, and by NSF award CNS-1053143.

14



References
[1] Askbot – create your Q&A forum. http://www.
askbot.com.

[2] Django: the Web framework for perfectionists with
deadlines. http://www.djangoproject.com.

[3] OAuth community site. http://oauth.net.

[4] M. K. Aguilera, J. C. Mogul, J. L. Wiener,
P. Reynolds, and A. Muthitacharoen. Performance
debugging for distributed systems of black boxes.
In Proceedings of the 19th ACM Symposium on Op-
erating Systems Principles (SOSP), Bolton Landing,
NY, Oct. 2003.

[5] İ. E. Akkuş and A. Goel. Data recovery for web
applications. In Proceedings of the 40th Annual
IEEE/IFIP International Conference on Depend-
able Systems and Networks, Chicago, IL, June–July
2010.

[6] S. Chacon. Pro Git. Apress, Aug. 2009.

[7] R. Chandra, T. Kim, M. Shah, N. Narula, and N. Zel-
dovich. Intrusion recovery for database-backed web
applications. In Proceedings of the 23rd ACM Sym-
posium on Operating Systems Principles (SOSP),
pages 101–114, Cascais, Portugal, Oct. 2011.

[8] J. Dunagan, A. X. Zheng, and D. R. Simon. Heat-
ray: Combating identity snowball attacks using ma-
chine learning, combinatorial optimization and at-
tack graphs. In Proceedings of the 22nd ACM Sym-
posium on Operating Systems Principles (SOSP),
Big Sky, MT, Oct. 2009.

[9] N. Goldshlager. How I hacked Facebook OAuth to
get full permission on any Facebook account. http:
//www.nirgoldshlager.com/2013/02/how-i-
hacked-facebook-oauth-to-get-full.html,
Feb. 2013.

[10] N. Goldshlager. How I hacked any Facebook
account...again! http://www.nirgoldshlager.
com/2013/03/how-i-hacked-any-facebook-
accountagain.html, Mar. 2013.

[11] N. Goldshlager. How I hacked Instagram ac-
counts. http://www.breaksec.com/?p=6164,
May 2013.

[12] Google, Inc. Google apps script, 2013. https:
//script.google.com.

[13] E. Hammer-Lahav. OAuth security advisory:
2009.1. http://oauth.net/advisories/2009-
1/, Apr. 2009.

[14] ifttt, Inc. Put the internet to work for you, 2013.
https://ifttt.com.

[15] T. Kim, X. Wang, N. Zeldovich, and M. F. Kaashoek.
Intrusion recovery using selective re-execution. In
Proceedings of the 9th Symposium on Operating
Systems Design and Implementation (OSDI), pages
89–104, Vancouver, Canada, Oct. 2010.

[16] T. Kim, R. Chandra, and N. Zeldovich. Recovering
from intrusions in distributed systems with Dare. In
Proceedings of the 3rd Asia-Pacific Workshop on
Systems, Seoul, South Korea, July 2012.

[17] T. Kim, R. Chandra, and N. Zeldovich. Efficient
patch-based auditing for web application vulnerabil-
ities. In Proceedings of the 10th Symposium on Op-
erating Systems Design and Implementation (OSDI),
pages 193–206, Hollywood, CA, Oct. 2012.

[18] S. T. King and P. M. Chen. Backtracking intrusions.
ACM Transactions on Computer Systems, 23(1):51–
76, Feb. 2005.

[19] P. Mahajan, R. Kotla, C. C. Marshall, V. Ramasubra-
manian, T. L. Rodeheffer, D. B. Terry, and T. Wob-
ber. Effective and efficient compromise recovery for
weakly consistent replication. In Proceedings of the
ACM EuroSys Conference, Nuremberg, Germany,
Mar. 2009.

[20] M. Mimoso. Twitter OAuth API keys leaked.
http://threatpost.com/twitter-oauth-
api-keys-leaked-030713, Mar. 2013.

[21] J. Simmonds, S. Ben-David, and M. Chechik.
Guided recovery for web service applications. In
Proceedings of the 18th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engi-
neering, Santa Fe, NM, Nov. 2010.

[22] Yahoo, Inc. Pipes: Rewire the web, 2013. http:
//pipes.yahoo.com.

[23] Zapier, Inc. Automate the web, 2013. https://
zapier.com.

15

http://www.askbot.com
http://www.askbot.com
http://www.djangoproject.com
http://oauth.net
http://www.nirgoldshlager.com/2013/02/how-i-hacked-facebook-oauth-to-get-full.html
http://www.nirgoldshlager.com/2013/02/how-i-hacked-facebook-oauth-to-get-full.html
http://www.nirgoldshlager.com/2013/02/how-i-hacked-facebook-oauth-to-get-full.html
http://www.nirgoldshlager.com/2013/03/how-i-hacked-any-facebook-accountagain.html
http://www.nirgoldshlager.com/2013/03/how-i-hacked-any-facebook-accountagain.html
http://www.nirgoldshlager.com/2013/03/how-i-hacked-any-facebook-accountagain.html
http://www.breaksec.com/?p=6164
https://script.google.com
https://script.google.com
http://oauth.net/advisories/2009-1/
http://oauth.net/advisories/2009-1/
https://ifttt.com
http://threatpost.com/twitter-oauth-api-keys-leaked-030713
http://threatpost.com/twitter-oauth-api-keys-leaked-030713
http://pipes.yahoo.com
http://pipes.yahoo.com
https://zapier.com
https://zapier.com

	Introduction
	Overview
	Review of Warp
	Aire architecture
	Assumptions

	Distributed repair
	Repair protocol
	Local repair
	Convergence

	Repair access control
	Reasoning about partially repaired state
	Modeling repair as API invocations
	Making service APIs repairable

	Implementation
	Application case studies
	Intrusion recovery
	Partial repair propagation
	Porting applications to use Aire

	Performance evaluation
	Overhead during normal operation
	Repair performance

	Discussion and limitations
	Related work
	Conclusion

